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Abstract 

Despite good early rhythm processing abilities, and clear enjoyment of music, 

infants appear not to be able to spontaneously synchronize their movement to 

the beat of a song (Zentner & Eerola, 2010). We present a new social bell-

ringing task designed to facilitate synchronous movement to music in infants. 

Ten-month-olds, 18-month-olds, and adults were played musical tracks of 

various tempos and given handheld bells to ring, in the presence of either a 

live experimenter or an animated non-social stimulus. Surface 

electromyography (EMG) was used to measure the timing of arm movements 

during periods of bell ringing. Infants showed no evidence of synchronous bell 

ringing at any tempo. However, while the 10-month-olds did not modulate 

their ringing to the music tempo, the 18-month-olds showed tempo flexibility. 

Moreover, 18-month-olds displayed more associated behaviors such as 

bouncing and rocking in the absence (rather than presence) of a social 

partner, whereas the behavior of the 10-month-olds was not modulated by the 

presence or absence of a social partner. The results suggest a distinction 

between ‘moving together’ and ‘moving to the beat’, which may have separate 

underlying mechanisms and developmental trajectories. 
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Music is present in all human cultures, although it can be highly variable in 

rhythm, melody and performance styles (Ayres, 1973). Equally, movement to 

music is a universally present behavior, be it through dance, drumming or 

singing (Wallin, Merker & Brown, 2001), with a direct comparison of cross-

cultural music capturing a network of related features centered on group 

performance and dance (Savage, Brown, Sakai & Currie, 2015). Tracking the 

development of movement to music in infancy provides a window into the 

perceptual and physical skills, experience and contexts necessary, for 

synchronizing movements to music. The current paper will discuss two types 

of behavior commonly seen in response to music: (1) moving isochronously, 

or moving at a steady rate, and (2) moving synchronously, or moderating 

rhythmic behavior so that it coincides with an external auditory rhythm. 

 From an early age, infants hold many of the prerequisites for 

movement to music. They are able to detect violations of rhythms from birth 

(Winkler et al., 2009), and by seven-months-of-age they can process 

complicated variations in rhythmic structure (Trehub & Thorpe, 1989). A 

relationship between movement and music also appears around this age. For 

example, movement to a beat biases the perception of an ambiguous rhythm 

from seven-months-of-age (Phillips-Silver & Trainor, 2005). Finally, cultural 

specificity in rhythm preference is accelerated if infants are subjected to 

movement training (Gerry, Faux & Trainor, 2010).  

 However, although the skills that underlie music (and especially 

rhythm) perception are in place very early on, infants do not seem to 

synchronize their movement to music spontaneously, despite spending up to 

40% of their time performing repetitive movements (Thelen, 1979; 1981). The 
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closest evidence of infants moving to a beat comes from Zentner and Eerola 

(2010). Using motion capture technology these authors demonstrated that 

infants aged 5 to 24 months engage in more isochronous movement to music 

than to speech, and have a degree of tempo flexibility; i.e., infants 

spontaneously move faster to faster rhythms, and slower to slower rhythms. 

Zentner and Eerola’s work hints at a developmental progression from moving 

isochronously in response to music, as seen in their data, to moving 

synchronously with music, as commonly seen in adults.  

 Infants appear not to progress into moving synchronously with 

exogenous rhythms until the early preschool years. By 2.5 years of age 

children will modify their behavior to entrain a drumming movement with a 

significantly slower than natural inter-stimuli-interval (ISI), though only in the 

presence of a social partner (Kirschner & Tomasello, 2009). This hints at how 

humans may transition from ‘feeling’ the beat of music, to moving to it: Moving 

to music might be inherently linked to moving together, or joint action, where 

individuals are motivated towards a higher-level process of reaching a 

common goal.  

 The facilitative effect of a social context seems intuitive. We move in 

synchrony with others unconsciously, even when it is not the most efficient 

action (Goodman et al., 2005). Adults (Chartrand & Bargh, 1999) and infants 

(Tuncgenc, Cohen & Fawcett, 2014) prefer those who mimic their 

movements. In the context of music, the desire to move together may go 

beyond physical mimicry, and may actually speak to the adaptive value of 

facilitating social cohesion; producing, hearing and performing to music may 

elicit a shared emotion in a group, which induces cooperation, a key skill for 
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increased chance of survival (Trainor, 2010). Moving together, even when not 

initiated by the infant themselves, has been shown to increase pro-social 

behavior in 14-month-olds: Infants bounced to music in time with an 

experimenter were more helpful to that experimenter than if bounced out of 

time (Cirelli, Einarson & Trainor, 2014; Cirelli, Wan & Trainor, 2014).  

 However, an alternative explanation for how infants transition to 

moving synchronously with music is that infants may ‘feel’ music in a 

qualitatively similar way to adults from very early on, but simply lack the motor 

skills to synchronize their movement (e.g. Zentner & Eerola, 2010). The 

finding that infant preference for rhythm is not culturally defined has led to the 

discussion of beat induction as a ‘spontaneously developing’ process, 

emphasizing a biological basis over a cultural, or learned basis (Honing, 

2012). Furthermore, anthropometric features including height and leg length 

have been shown to correspond with preferred beat rate in adults, with longer 

limbs associated with a slower preferred beat (Todd, Cousins & Lee, 2007; 

Dahl, Huron & Brod, 2014). Children have a faster spontaneous motor tempo 

(SMT) than adults; under-three-year-olds spontaneously tap at an inter-

stimuli-interval (ISI) of around 400ms, whereas adults typically tap at an ISI of 

around 600ms (Provasi & Bobin-Begue, 2003). If rhythm production is tied 

into physical characteristics of the body, it is plausible to predict that infants’ 

natural rhythm is again faster than young children’s, and that infants will find it 

easier to synchronize when presented with musical stimuli of a faster than 

400ms ISI.  

 The current study aims to test these two contrasting accounts of the 

development of movement to music, through the adoption of a novel 
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experimental procedure. Rather than measuring spontaneous movement, 

which has been shown to be asynchronous in infancy (Zentner & Eerola, 

2009; Fujii et al., 2014), in the current study, infants are given small hand-held 

bells to ring. This provides auditory feedback from their movements, 

something essential for an ape synchronizing to a beat (Hattori et al., 2013).   

It also allows us to evaluate infant abilities on a movement that does not 

require advanced motor skill (unlike in the measurement of drumming or 

finger tapping, that require a precise spatial location of the movement). 

Finally, it allows us to predict where on the body a movement will originate, 

enabling the accurate measurement of muscle activity in the arms using 

surface electromyography (EMG). By moving away from measurement of 

spontaneous movement to music, we are better able to see what infants are 

capable of doing when guided, in addition to the actions they spontaneously 

produce, when presented with music.  

 To evaluate the role a social partner in moving to the beat, infants take 

part in two conditions, a social condition in which they interact with a live 

social partner, and a non-social condition in which they are presented with a 

non-social visual animation. In accordance with Kirschner and Tomasello’s 

(2009) finding with 2.5-year-olds, we hypothesize that infants’ isochronous 

movements will be more accurate in the social condition than the non-social 

condition.  

 

Method 

Participants  
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Seventeen 10-month-olds (6 female; mean age= 302 days, range= 290 days 

to 317 days), and 27 18-month-olds (7 female; mean age= 555 days, range= 

534 days to 615 days) took part in this study1. All caregivers gave written, 

informed consent concerning the experimental procedure. Infants received a 

certificate and a t-shirt as a thank you for participation. Ten adults (8 female; 

mean age= 34 years, range= 22-60 years) also took part. Adults gave written, 

informed consent and received no recompense for participation. 

 

Procedure  

For infants, surface electromyography (EMG) was used to record the 

electrical activity of the right and left biceps brachii. Infants always 

experienced the familiarization trial first. The social and non-social conditions 

were then presented in a counter-balanced order.  

 Familiarization Trial. Infants were given two small hand-held sleigh 

bells and seated on a cushion on the floor adjacent to their caregiver. The 

experimenter sat opposite the infant, held a separate sleigh bell in each hand 

and demonstrated ringing the bells using a vertical up-and-down movement 

whilst singing. Infants were allowed to play freely with their bells for 

approximately 10 seconds. They were congratulated on playing, regardless of 

their behavior during the trial. To familiarize the infants with the testing 

                                                        
1 Although we initially matched the infant groups by number of participants, 

18-month-olds provided significantly less data than 10-month-olds. We 

therefore recruited further 18-month-olds to match the number of data points 

(or ‘bouts’ of ringing) across the groups. The results of our analyses are the 

same both with and without the additional 18-month-olds.  
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environment, a video screen approximately 100cm from the infants was then 

switched on. Infants saw two cartoon stills alternating every 5 seconds for 45 

seconds. Two speakers either side of the screen played the sound of running 

water concordantly. The sounds were intended to keep the infants’ attention 

directed towards the screen (and away from the caregiver) during the trial, 

without providing an alternative rhythm. 

Social Condition. Infants took part in four trials of 45 seconds each. 

Each trial used an abridged version of one of four naturalistic musical tracks, 

each of a different beat ISI (300ms, Traffic Jam by Weird Al Yankovic; 

350ms, Good Golly Miss Molly by Little Richard; 450ms, Let’s Get Loud by 

Jennifer Lopez; and 600ms, Rock Your Body by Justin Timberlake), with the 

trial order randomized between infants and between conditions. In each trial, 

the experimenter played her sleigh bells using the vertical motion, in time with 

the underlying beat of the track being played through the speakers (i.e., at the 

corresponding ISI). Infants were engaged in eye contact and smiles by the 

experimenter, regardless of their behavior, remaining unconstrained and 

allowed to move freely. Between each trial infants were given a short 

(approximately 10 second) break during which they were congratulated on 

taking part; if they dropped or rejected their bells during the trial these were 

returned before the beginning of the next trial. If infants stood up and/or 

moved around the room during the trial, they were returned to their seated 

position.  

 Non-social Condition. In the non-social condition infants heard the 

same four tracks across four trials, for 45 seconds per trial, in a randomized 

order. In this condition the experimenter moved out of sight, behind a curtain, 
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and the video screen was turned on. For each trial, the infants saw an 

animation on the screen of two sleigh bells moving in a vertical up-and-down 

motion against a plain black background, in time with the track being played.  

Again, between trials infants were congratulated on taking part. 

 The adult protocol was identical to the infant protocol, without the 

familiarization condition. Adults were instead given the following instructions: 

‘You’re going to hear two sets of four songs, and I’d like you to play your bells 

with the music. For one set of four, you will also see and hear me playing my 

bells with the song. For the other set, you will see and hear an animation of 

bells on the screen ahead of you.’ 

  

Apparatus 

EMG data were collected using four bipolar pediatric surface electrodes (3M 

monitoring electrodes with micropore tape and solid gel) and the Myon 320 

wireless EMG system, at a sampling rate of 4000 Hz. Animations for the 

baseline and non-social conditions were presented on a video screen using 

Matlab R2009b (Mathworks Ltd.). Simultaneous video recording of the testing 

session was conducted using a Logitech HD 1080p webcam positioned on top 

of the screen. See Figure 1 for a visual representation of testing set up.  

 

Data Processing 

Video recordings of the testing session were coded for all incidences of infant 

motor activity (see Table 1 for a summary of behaviors included). To be 

categorized as potentially rhythmic, infants had to make two or more of each 

movement; i.e., we coded for repetitive movements. Incidences in which 
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infants made only a single bounce or kick did not meet the criterion. Although 

we identified bouts of potentially rhythmic activity, no judgments about the 

relative timing of the movements were made at this stage of the analysis. 

Behaviors were excluded if the infant was in physical contact with the mother 

and the mother was moving, or if the infant performed repetitive movements in 

order to locomote (i.e. incidences of crawling and walking). An independent 

researcher double coded the video data for ten infants. The single measure 

ICC for duration of ringing behavior was .854, with a 95% confidence interval 

from .770 to .908, (F(2,63)=12.658, p<.001). For duration of other repetitive 

movements the ICC was .966, with a 95% confidence interval from .945 to 

.979, (F(2,63)=57.826, p<.001).  

 The EMG data were analyzed using the stand-alone ProEMG software 

(ProPhysics). Data were rectified and high-pass filtered at 400 Hz, low-pass 

filtered at 10 Hz and notch filtered at 50Hz. Infant EMG data were then 

segmented into corresponding periods of ‘shaking behavior’ as defined by the 

video coding. A researcher blind to trial type and the ISI of the track, hand-

coded the onset of each burst of activity from the corresponding EMG channel 

traces for right or left biceps during the ‘ringing’ period by taking the first peak 

of each burst with processed amplitude at or above 1 volt (see Figure 2). If 

data were so noisy that no burst was visible, they were discarded. Distances 

between burst onsets were then calculated in milliseconds to give an inter-

ring-interval (IRI). Adult data were processed in the same way, except that as 

adults rang their bells continuously through each trial, three-second periods 

(roughly the mean length of an infant segment) of clean data were pseudo-

randomly selected from within the trial for analysis. The difference between 
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the IRI for each bout of ringing and the target ISI of the track was calculated to 

give an accuracy score for each trial (often referred to as level of asynchrony 

in the literature). Accordingly, in the results described below, a lower score 

reflects less difference from the target ISI, and can be regarded as more 

accurate.  A pseudo-randomly selected subset of 10 infants were double 

coded by an independent researcher. The single measure ICC was .899, with 

a 95% confidence interval from .793 to .953, (F(2,26)=18.621, p<.001).  

 

Results 

EMG Data 

A univariate ANOVA with Accuracy as the dependent variable, and Age 

Group (10-months, 18-months, and adult), Social/Non-Social Condition and 

Target ISI  (300, 350, 450 and 600ms) as fixed factors, revealed significant 

main effects of Age (10-months M=.209, SE=.013 , 95% CI (.184, .234); 18-

months M=.187, SE=.013, 95% CI (.161, .213); adult M=.024, SE=.013, 95% 

CI (-.002, .051); (F(2,270)=58.4, p<.001)) and Target ISI (300ms M=.105, 

SE=.014, 95% CI (.076, .133); 350ms M=.103, SE=.015, 95% CI (.075, .132); 

450ms M=.131, SE=.016, 95% CI (.099, .163), 600ms M=.221, SE=.015, 95% 

CI (.191, .252); (F(3,270)=13.4, p>.001)), with a significant Age*Target ISI 

interaction (F(6,270)=6.04, p<.001). We found no main effect of Social/Non-

Social Condition (Social M=.129, SE= .01, 95% CI (.110, .148); Non-Social 

M=.151, SE=.012, 95% CI(.128, .174); (F(1,270)=2.08, p=.15)), and no other 

interactions.   

Planned comparisons revealed that the main effect of Age was driven 

by the adult group being more accurate than both infant groups (both p<.001), 
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with no difference between the 10- and 18-month-olds (p=.230). The main 

effect of Target ISI was driven by significantly lower accuracy in the 600ms 

condition than the three faster tracks (all p<.001), with no other differences 

between tracks (all p>.200).  

The significant Age*Target ISI interaction was further explored using a 

one-way ANOVA with Accuracy as the dependent variable and Age group as 

a factor, at each of the four target beat frequencies. All four ANOVAs 

confirmed the significant effect of Age (300ms, F(2,73)= 7.802, p<.001; 

350ms, F(2,73)=7.143, p=.002; 450ms F(2,60)=13.355, p<.001; 600ms 

F(2,63)=67.969, p<.001; see Table 2 for full descriptive statistics). Planned 

pairwise comparisons revealed that adults were significantly better than the 

two infant groups at all target frequencies (all p<.001), but that the 10- and 18-

month-olds did not differ from each other in the three fastest conditions 

(300ms, p=.917; 350ms, p=.147; 450ms, p=.158). However, in the slowest 

600ms condition, the comparisons confirmed a developmental progression 

whereby the 18-month-olds were significantly more accurate than the 10-

month-olds, (p=.001), and adults were significantly better than both infant 

groups (all p<.001).  

 Despite the initial ANOVA showing no overall difference in accuracy 

between the two infant groups, we were interested in whether the 

developmental shift in the slow 600ms condition reflects an overall ability to 

modulate movement to music in the 18-month-olds (and lack thereof in the 

10-month-olds). We reasoned that if participants were modulating their 

movement, they should be equally accurate across the different beat 

frequencies. We conducted a univariate ANOVA at each age group, with 
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Accuracy as the dependent variable and Target ISI as a fixed factor. We did 

not find a main effect of ISI for the adults (F(3,80)=.990, p=.402), who 

performed highly accurately across tracks, or the 18-month-olds 

(F(3,86)=1.758, p=.162), who performed to the same degree of accuracy 

across tracks. However, in the 10-month-old age group, we found a significant 

main effect of Target ISI (F(3,104)=32.722, p<.001). As shown in Table 2, the 

youngest infants were more accurate in the faster tracks, which are closer to 

hypothesized infant SMT, and less accurate in the slower tracks.  

The results suggest that the 10-month-olds did not modulate their rate 

of bell ringing to the music. They were less accurate when the music was 

slower than their hypothesized SMT. There was no impact of a social partner 

on their accuracy. The 18-month-olds did show some tempo-flexibility: they 

were equally proficient in all four ISI conditions. A developmental progression 

from 10- to 18-months of age is evidenced in the increased accuracy of the 

18-month-olds in the slow 600ms ISI condition, compared to the 10-month-

olds. However, even these older infants were not synchronizing at an adult-

like level. As with the younger age group, there was no impact of a social 

partner on the accuracy of the 18-month-olds.  

 

Behavioral Data 

Although we were only able to test the accuracy of one of our repetitive 

behaviors of interest (ringing), as piloting revealed infants would not reliably 

tolerate wearing more than two wireless EMG sensors, we also used the 

video data to calculate the amount of time infants spent in potentially rhythmic 

movement (see Table 1 for a full list). 
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At 10-months-of-age, a univariate ANOVA with time spent ringing bells 

as the dependent variable and Social/Non-social Condition and Target ISI as 

fixed factors revealed no difference in time spent ringing between the social 

condition (M=7.729, SE=1.187, 95% CI (5.360 10.097)) and the non-social 

condition (M=9.886, SE=1.385, 95% CI (7.123 12.648); F(1,76)=1.399, 

p=.241), and no effect of target ISI (300ms M=10.446, SE=1.766, 95% CI 

(6.922 13.969); 350ms M=10.972, SE=1.900, 95% CI (7.182 14.762); 450ms 

M=7.585, SE=1.869, 95% CI (3.857 11.313); 600ms M=6.226, SE=1.757, 

95% CI (2.721 9.732); F(3,76)=1.580, p=.202). Similarly, a univariate ANOVA 

with time spent in non-ringing repetitive behaviors as the dependent variable 

also showed no difference between the social and non-social conditions 

(social M=9.086, SE=2.871, 95% CI (3.251 14.920), non-social M=13.394, 

SE=2.816, 95% CI (7.670 19.117); F(1,41)=1.147, p=.292) or between target 

ISIs (300ms M=8.605, SE=3.721, 95% CI (1.044 16.166); 350ms M=11.811, 

SE=4.102, 95% CI (3.475 20.146); 450ms M=12.190, SE=3.983, 95% CI 

(4.096 20.284); 600ms M=12.353, SE=3.983, 95% CI (3.691 21.015); 

F(3,41)=.241, p=.886) 

At 18-months-of-age we see a different pattern of behavior. Though a 

univariate ANOVA with time spent ringing as the dependent variable and 

Condition and Target ISI as fixed factors also showed no difference between 

conditions (social M=5.600, SE=.986, 95% CI (3.640 7.559); non-social 

M=5.179, SE=1.029, 95% CI (3.136 7.222); F(1,99)=.087, p=.786) or target 

ISI (300ms M=6.018, SE=1.424, 95% CI (3.190 8.845); 350ms M=6.021, 

SE=1.424, 95% CI (3.193 8.849); 450ms M=5.047, SE=1.395, 95% CI (2.276 

7.817); 600ms M=4.472, SE=1.457, 95% CI (1.578 7.366); F(3,99)=.283, 
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p=.838), a univariate ANOVA with time spent in other repetitive behaviors 

revealed that at 18-months-of-age, infants engaged in non-ringing repetitive 

actions for significantly longer in the absence (non-social M=3.880, SE=.828, 

95% CI (2.228 5.531)) than the presence (social M=.916, SE=.896, 95% CI (-

.871 2.703)) of a social partner (F(1,79)=5.896, p=.018). Again, there was no 

effect of track (300ms M=2.340, SE=1.217, 95% CI (-.087 4.767); 350ms 

M=2.287, SE=1.183, 95% CI (-.073 4.646); 450ms M=3.179, SE=1.236, 95% 

CI (.714 5.643); 600ms M=1.785, SE=1.244, 95% CI (-.695 4.266); 

F(3,79)=.217, p=.884)).  

 

Discussion 

Our results revealed a developmental progression in the ability to move in 

time with music. Whilst 10-month-olds did display ringing behavior, they were 

not able to adapt this movement to the beat. At 18 months, infants 

demonstrated a degree of tempo-flexibility, modulating their movement: In 

contrast to the 10-month-olds, they were equally accurate across all four 

tracks. Though the 18-month-olds were not more accurate than the 10-month-

olds overall, they performed significantly better in the slowest 600ms 

condition, the condition furthest from infants hypothesized SMT. This 

suggests that the 18-month-olds, but not the 10-month-olds, were able to 

move away from their natural rate of movement. However, this ability clearly 

continues to develop past 18 months, as even when showing tempo-flexibility, 

infants were not synchronizing their movement at an adult level. We should 

note that this progression is in contrast to Zentner & Eerola’s (2010) finding, of 

no effect of age on tempo-flexibility in 5-24 month-olds. There are several 
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possible explanations for this. For one, Zentner and Eerola measured infants’ 

spontaneous movement. The current study effectively engaged infants in a 

task of bell ringing. It may be that the presence of a partner (social or not) 

impacted younger infants’ timing abilities, perhaps acting as a distracter from 

the music played. However, Zentner and Eerola also studied isochronous 

movement across the whole body and across almost the entire period of 

infancy. It may therefore be possible that the enormous advance in motor 

control seen between five and 24 months of age led to high heterogeneous 

variability in their data set, which may have masked age interactions. In the 

current study, we investigated infant abilities in a bell-ringing task, requiring a 

shaking motion that is well within the motoric competencies of both infant age 

groups. Perhaps we were better able to detect developmental change 

because our task was more constrained. 

 Our choice of design was motivated by a desire to facilitate infant 

synchrony, through the provision of visual, auditory and social cues; in 

particular we anticipated that the presence of a social partner would be 

advantageous for synchrony, in light of Kirschner and Tomasello’s (2009) 

findings with young children. However, contrary to our hypothesis, we found 

no difference in accuracy in any age group between the social and non-social 

conditions. Kirschner and Tomasello referred to this advantage in their work 

as the product of joint action; they argue that when drumming with a human 

partner, young children are motivated by the relatively higher-level process of 

reaching a common goal. It may be that the infants in our experiment were too 

young to understand or act upon these motivations. However, studies show 

many of the prerequisites for joint action are apparent early in the first year of 
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life (for a review see Carpenter, 2009), with active engagement in joint tasks 

appearing between 12 to 18 months (see Sebanz, Bekkering & Knoblich, 

2006). If understanding of joint action were crucial for synchronous movement 

to music, we would therefore expect some difference between the 10-month-

olds and 18-month-olds in the current study.  

 Although we are only able to test accuracy of one action, bell ringing to 

music, we also recorded the duration of other repetitive motor actions during 

the testing session. Both infant groups displayed spontaneous repetitive 

behaviors. Whilst 10-month-olds showed no differences in amount of non-

ringing repetitive behavior dependent on social/non-social condition, the 18-

month-olds displayed significantly more spontaneous repetitive movement in 

the non-social condition. One possible explanation is that the 18-month-olds 

were more aware of a joint goal of ringing together, and inhibited other, 

perhaps more ecological movements, such as bouncing or nodding the head, 

when attempting to participate in joint ringing. According to this interpretation, 

the 18-month-olds understood the joint goal of ringing together, but this did 

not translate to better accuracy of movement to music. Further, we cannot 

ignore the fact that infant accuracy did indeed improve from 10 months to 18 

months, at least in the difficult 600ms condition. That this improvement seems 

independent of the presence or absence of a social partner suggests a 

distinction between ‘moving together’ and ‘moving to the beat’, which may 

have separate underlying trajectories. Though they seem concurrent skills in 

the history of dance (Trainor, 2010) they may actually reflect separate 

developmental processes, with different historical adaptive advantages. 
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 If we are thus wary of explaining the improvement in infant accuracy of 

movement to music as a product of better interpersonal coordination, it is 

interesting to consider what may explain the change between 10- and 18-

months-of-age. The lowest level explanation is that infants’ motor skills will 

have seen a dramatic improvement over these eight months. Perhaps, the 18-

month-olds are better able to modulate their movement to music simply 

because they have better control over their movement in general. However, 

the current data also fit with a more complex picture of movement to music 

interacting with physical attributes of the human body.  

 Humans’ optimal tempo to perceive is between 300-900ms, which is 

similar to the tempo of human gait (Trainor, 2007). Most music also falls within 

this category. When we consider individual differences, we see that limb 

length corresponds with preferred beat rate, both when perceiving a rhythm 

(Todd, Cousins & Lee, 2007) and when moving rhythmically (Dahl, Huron & 

Brod, 2014). Further, Trevarthen (1999) proposes that humans’ ability to 

move in time to music is based in bipedal locomotion, in that our upright 

stance with flexibility of complex movements across the body provides our 

multi-jointed highly stacked bodies with the need to coordinate a multiplicity of 

rhythmic acts at any one time in order to locomote whilst also twisting, turning 

or isolating our free limbs. Anthropological data show that societies where 

infants are frequently held produce more music with a regular rhythm than 

those where infants are predominantly kept in baskets or cradles (Ayres, 

1973). Most Western infants do not walk independently until after their first 

birthday (Storvold, Aarethun & Grete, 2013). It may be that the developmental 

progression seen in the current study reflects the infants’ experience of self-



 19 

locomoting. Future studies should test the function of experience of bipedal 

locomotion directly.   

 In summary, we show a developmental progression in infants’ ability to 

entrain with music when given a simple bell ringing to music task. Ten-month-

olds are capable of ringing bells when presented with music, but are unable to 

modulate this movement to match the beat of the music played. Eighteen-

month-olds are able to modulate their rhythmic movement, but not to an adult 

level of synchronisation. Further, we find that a social partner does not 

improve accuracy of movement to music, although in older infants it may 

impact the extent to which they deviate from the task.   
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