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Abstract 

!
We have grown single crystals of M2+SO4 hydrates at 270 K from aqueous solutions in 

the ternary systems CoSO4–MgSO4–H2O and MnSO4–MgSO4–H2O. These systems exhibit 

broad stability fields for a triclinic undecahydrate on the Mg-rich side (i.e., Co- or Mn-

bearing meridianiite solid solutions) and stability fields for monoclinic heptahydrates on the 

Mg-poor side (i.e., Mg-bearing solid solutions of bieberite or mallardite). The solubility 

curves and distribution coefficients, describing the partitioning of M2+ ions between liquid 

and solid phases, have been determined by thermo-gravimetric and spectroscopic techniques. 

A subset of M2+SO4·11H2O specimens were selected for single-crystal time-of-flight neutron 

diffraction analysis in order to evaluate preferential occupancy of symmetry-inequivalent 

coordination polyhedra in the structure. Considering the nearly identical dimensions of the 

first coordination shells, there is a surprising difference in the distribution of Co and Mn over 

the two available sites. 

!
!
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!
1. Introduction 

!
1.1. Scientific background 

!
Magnesium sulfate forms a large number of crystalline hydrates, MgSO4·nH2O with n = 

1, 1¼, 2, 2½, 3, 4, 5, 6, 7, 9 and 11, many of which occur naturally as minerals. Of these 

hydrates, only kieserite (n = 1), hexahydrite (n = 6), epsomite (n = 7), and meridianiite (n = 

11) are known to be stable in contact with aqueous MgSO4 solution; the other phases 

generally occur under conditions of reduced water activity, either very low humidity, or in 

methanolic or acidified solutions (Hodenberg & Kühn, 1967), or else are formed under 

extreme disequilibrium conditions, such as rapid quenching of aqueous solution in liquid 

nitrogen (Fortes et al. 2012a, 2012b, 2017a). Other divalent metal sulfates, including ZnSO4, 

NiSO4, CuSO4, CoSO4, MnSO4, and FeSO4, also form a range of crystalline hydrates, many 

of which are isotypic with the Mg2+ analogue. Furthermore, there is extensive substitution 

possible amongst these compounds, including complete solid solution between many 

isostructural end-member species (Jambor et al., 2000). Amongst these divalent metal 

sulfates, however, only a single ‘cryohydrate’ – with n = 11, meridianiite – is known thus far 

to exist (Peterson & Wang 2006). This species has a small stability field in aqueous solution 

at atmospheric pressure, between a eutectic at 269 K and a peritectic at 275 K, where it 

decomposes into MgSO4·7H2O + liquid. The stability field of meridianiite may expand to as 

much as 30 K at pressures of 200 MPa (Fortes et al., 2017b).  

No M2+-substituted end members of meridianiite have been synthesised, even by extreme 

disequilibrium methods (Fortes et al., 2012a, 2012b). However, substantial uptake of dopant 

cations by the meridianiite structure, exceeding 50 mol. %, was found for Co2+ and Mn2+ 

when aqueous solutions were flash frozen. This contrasts with the behaviour of Ni2+, Zn2+ 

and Fe2+ where limited substitution (< 30 mol. %) was observed and a sequence of novel 

lower hydrates, with n = 8 and 9, were seen instead. It is therefore of some interest to 

characterise the equilibrium behaviour of systems that show the largest degree of substitution 

into the meridianiite structure on flash freezing, namely Co2+ and Mn2+. 



MgSO4·11H2O occurs naturally in various glacial and periglacial environments (Sakurai 

et al., 2009: Genceli et al., 2009) and in a limited number of MgSO4‒rich hypersaline lakes 

during the winter months (Peterson et al., 2007: Cannon, 2012). On Mars, abundant Mg2+‒ 

and Fe3+‒sulfates are known to occur and it has been hypothesized that meridianiite may be 

present in a permafrost-like deposit, forming a substantial reservoir of bound water in the 

near-surface regolith (Feldman et al., 2004a, 2004b: Peterson & Wang, 2006). Where 

conditions are sufficiently oxidising and natural concentrations of transition metals occur in 

ore bodies then Co2+ and Mn2+ might also be a component of martian brines. Until relatively 

recently, such oxidising conditions were believed not to have prevailed on early Mars, but the 

detection by the Mars Science Laboratory (Curiosity rover) of > 25 wt. % Mn-oxides in 

fracture-filling materials at Gale crater, Mars, has altered that view (Lanza et al., 2014, 2016). 

Hence the occurrence of manganoan or cobaltoan meridianiite on Mars should be recognised 

as a possibility. 

Similarly, water‒rock interactions during the accretion and differentiation of icy 

planetary bodies in the outer solar system may have resulted in large brine reservoirs 

crystallising substantial quantities of MgSO4 and Na2SO4 cryohydrates (Kargel, 1991). The 

partitioning of ‘trace’ elements into water-rich hydrates such as meridianiite therefore has 

mineralogical and planetary significance and allows inferences to be made about the 

composition of subsurface brine reservoirs by examination of salt hydrates deposited on a 

planet’s surface. 

There are more Earth-bound ramifications in relation to mine-wastes for substantial 

uptake of heavy metals in meridianiite. Increasing exploitation of ore deposits, particularly at 

high northern latitudes in Canada, Greenland and Russia, is likely to result in the formation of 

heavy-metal bearing cryohydrates as secondary minerals from mine-water waste, processing 

waste and effluent. We know from prior work (Fortes & Wood, 2012: Fortes, 2015) that 

hexavalent chromium and selenium are readily taken up in meridianiite-structured crystals at 

temperatures down to 258 K. This work shows that meridianiite has the potential to apply a 

seasonal control on the mobilization of heavy elements as meridianiite forms in the winter 

and undergoes partial melting in the spring. Similar phenomena are recognized in temperate 

climates where spring rainfall dissolves secondary sulfate minerals, thereby increasing the 

metal load in surface run-off (Hammarstrom et al., 2005 and references therein). 



Recognising and quantifying the uptake and storage of heavy metals, including divalent 

Co and Mn and hexavalent Cr and Se, in cryohydrates represents a significant step towards 

mitigating the environmental hazard posed by exploiting their ores in cold environments. It 

has recently been observed that knowledge of the thermodynamic properties of mine-

drainage sulfates is lacking (Majzlan, 2010), and the absence of hitherto unknown or 

uncharacterised cryohydrates in aqueous geochemical models (e.g., Marion et al., 2010) 

exacerbates that knowledge gap. 

Finally, the uptake of impurities in cryohydrates has technological relevance with the 

emergence of ‘Eutectic Freeze Crystallisation’ (EFC) as an energy-efficient method of water 

purification (Randall & Nathoo, 2015). There have been several EFC-related studies 

involving low-temperature MgSO4 brines (e.g., Himawan & Witkamp, 2006: Himawan et al., 

2006, Genceli et al., 2007) including work on the distribution of micro-impurities between 

liquid and crystal phases (Gärtner et al., 2005). 

!
1.2. Scientific objectives 

!
The system MgSO4–CoSO4–H2O was characterised previously between 298 and 313 K 

(Balarew et al., 1973: Oikova et al., 1976: Oikova & Barkov, 1979) and the system MgSO4–

MnSO4–H2O was studied between 273 and 373 K (Hey, 1931: Benrath & Blankenstein, 

1933: Zhelnin & Gorshtein, 1971). For the cobalt-doped system, low temperature data are 

lacking entirely, and for the manganese-doped system the 273 K isotherm pertains only to the 

two non-isotypic heptahydrates, orthorhombic (Mg,Mn)SO4·7H2O (Mn-bearing epsomite) 

and monoclinic (Mn,Mg)SO4·7H2O (Mg-bearing mallardite). Our main goals are therefore (i) 

to address the deficit in respect of the MgSO4–CoSO4–H2O system by characterising the 

crystal-liquid equilibria far below room temperature and (ii) to supplement existing work on 

the MgSO4–MnSO4–H2O system with data on the solubility of Mn-bearing meridianiite for 

comparison with 273 K data on Mn-bearing epsomite. 

In addition to characterising the partitioning of dopants between solid and liquid, we also 

wish to identify any preference for occupancy of particular environments in the crystal. In 

MgSO4·11H2O (S.G. , Z = 2) there are two symmetry-inequivalent octahedral sites (Figure 

1), the first on Wyckoff position 1a (0,0,0) and the second on Wyckoff position 1b (0,0,½); 



whilst the cations in these sites have very similar first nearest neighbour coordination shells, 

the more distant coordination and the pattern of hydrogen bonding differs considerably.  

Using neutron single-crystal diffraction methods we can determine the complete 

structure, including the positions of all hydrogen atoms, to high precision and determine the 

relative occupancy of the 1a and 1b sites by different elements. In the case of Mg vs Mn the 

contrast in scattering lengths (Sears, 1992) is much greater for neutrons than for X-rays (5.38 

vs −3.75 fm), giving far better site discrimination; for Mg vs Co the contrast is similar to that 

for X-rays, with the coherent scattering length differing by approximately a factor of two 

(5.38 vs 2.49 fm). 

!
2. Experimental and computational method 

!
2.1. Reagents 

!
The materials used were all of analytical reagent grade, these being MgSO4·7H2O 

(Sigma-Aldrich M1880, ≥ 99.0 %), CoSO4·7H2O (Sigma-Aldrich C6768, ≥ 99.0 %) and 

MnSO4·H2O (Sigma-Aldrich M7634, ≥ 99.0 %). The solvent used was ACS reagent grade 

H2O (Sigma-Aldrich 320072, σ ≤ 2µS cm−1). 

!
2.2. Sample synthesis 

!
M2+SO4 hydrates were weighed out and mixed together to form two sets of samples, one 

series from MgSO4 to CoSO4 in increments of 5 mol. % Co2+ up to 25 mol % and in 10 % 

increments above 30 mol. %, and a second series from MgSO4 to MnSO4 in increments of 10 

mol. % Mn2+. These mixtures were then dissolved in H2O to a concentration of 19 wt. % 

(anhydrous basis) by gradually adding the coarsely-powdered solid mixtures to the liquid at ~ 

320 K on a magnetic stirrer hotplate; when dissolution was the complete the solutions were 

poured into polystyrene petri dishes (100 mm diam. × 11 mm deep). These dishes were 

transferred to a refrigerated room at a temperature of 270.1(3) K, the air temperature adjacent 

to the samples being measured using a Tinytag Plus 2 cryogenic temperature recorder 

(Gemini Data Loggers TGP-4204), connected to a stainless-steel sheathed platinum 



resistance thermometer (Gemini PB-7002). Nucleation from the slightly supersaturated 

solutions occurred within one day and subsequent crystal growth proceeded by slow 

isothermal evaporation; no attempt was made to control the air flow over the samples, to 

monitor the ambient humidity or to characterise the evaporation rates, and no subsequent 

efforts were made to identify or quantify any compositional zoning in the crystals. Once a 

satisfactory population of crystals had developed, further evaporation was halted by covering 

the petri dishes, after which the crystals were left for approximately three weeks with 

occasional agitation before extraction. In all but the more Mn-rich solutions, crystals 

nucleated and grew to horizontal dimensions greater than 1 cm over a period of several days 

(Figure 2). Crystals were ultimately separated from their mother liquor and dried on filter 

paper. Gentle drying is essential with these low melting-point materials in order to avoid 

decomposition by body heat or else by the application of vacuum suction methods. Samples 

of the residual liquids were stored in glass vials at ~ 295 K and the crystals were stored in a 

freezer at 255 K. Solutions containing < 50 mol. % Mn2+ produced only undecahydrate 

crystals whereas solutions containing > 50 mol. % Mn2+ produced no crystals for the duration 

of the experiment. We are therefore unable to present data pertaining to (Mg,Mn)SO4·7H2O 

solid solutions or solid-liquid equilibria; since these were already reported by Benrath & 

Blankenstein (1933) at 273 K, there is no significant loss. 

!
2.3. Analysis 

!
The water content was determined by drying of liquid and crystalline materials in a 

furnace at 673 K for a minimum of 72 h, conditions demonstrated repeatedly to result in 

complete loss of water from these materials (Chihara & Seki, 1953: Sinha et al., 1987, 1989: 

Emon et al., 1990: Maneva et al., 1990:  Fortes et al., 2007). Samples were decanted into 10 

mL Pyrex beakers and weighed before and after thermal treatment. The composition of co-

existing solids and liquids was determined by re-dissolving the powder residue obtained after 

heating in ultra-pure water (σ = 0.055 µS cm−1) to a concentration in the region of a few 10s 

of mg L−1; inductively coupled plasma optical emission spectroscopy (ICP-OES) carried out 

with a Horiba JY Ultima 2C was then used to analyse the liquid for Mg, Mn and Co. 



Numerous separate solid and liquid aliquots of each composition were analysed between two 

and four times to assess reproducibility, as reported in Table 1. 

Given the difficulty of adequately drying the surfaces of crystals and of obtaining 

crystals entirely free of mother liquor in blebs or stringers in their interiors, the solids were 

treated as ‘wet residue’ and the compositions corrected using Schreinemakers’ Method 

(Schreinemakers, 1893: Schott, 1961: Cheeseman & Nunn, 1964), even though this 

correction typically was small, as can be seen in Figures 5 and 7. 

!
2.4. Crystalline phase identification 

!
Both the hepta- and undecahydrates have distinctive crystal habits and, in the case of the 

Co-bearing species, colour. The monoclinic heptahydrate of CoSO4 forms dark red platy 

crystals with a spade-like shape (Figure 3a) whilst the triclinic Co-bearing undecahydrates 

are a lucent orange colour and usually adopt an inclined rhombus-like shape (Figure 3b). The 

MnSO4-bearing undecahydrates are all virtually colourless and share the same inclined 

rhombic outline as other meridianiite-structured crystals (Figure 3c). On the whole, Co-

bearing meridianiite crystals are blockier and the Mn-bearing analogues are platier. 

Despite the obvious morphological differences, supporting X-ray powder diffraction data 

were collected to confirm phase identity. These data were acquired with a PANanalytical 

X’Pert Pro multipurpose powder diffractometer (with Ge-monochromated Co Kα1 radiation 

and X’Celerator multi-strip detector) using a thermoelectrically cooled cold stage (Wood et 

al., 2012). Powder diffraction patterns were measured in the range of 5–90° 2θ at 250 K and 

compared with data obtained previously from end-member MgSO4·11H2O, CoSO4·7H2O and 

solid solutions formed by quenching of aqueous solutions in liquid nitrogen (see Fortes et al., 

2012a, 2012b). The X-ray powder diffraction data supported the clear morphological 

distinction between triclinic 11-hydrate and monoclinic 7-hydrate crystals (Figure 4). 

!
2.5. Time-of-flight neutron single-crystal diffraction 

!
Two sets of experiments were carried out using the SXD time-of-flight Laue 

diffractometer at the ISIS neutron spallation source (Gutmann, 2005: Keen et al., 2006). 



Firstly, crystals grown from liquids with initial dopant concentrations of 25 and 50 mol. % Co 

and Mn were studied at 250 K. Raw uncut crystals similar to those shown in Figures 2 and 3, 

with masses between 50 and 350 mg, were loaded into thin-walled vanadium tubes in UCL 

Earth Sciences’ refrigerated laboratory and transported to ISIS packed in dry ice; for each 

analysis a pair of crystals was used in order to maximise the number and reciprocal-space 

coverage of measured reflections. Sample tubes were loaded into a closed-cycle refrigerator 

(CCR) on the SXD beamline and equilibrated at 250 K. Frames of data were then obtained at 

a series of six discrete angular positions about the vertical axis over a period of 15 – 23 h 

depending on counting statistics. 

Subsequently, further measurements were made at 10 K on a fresh set of crystals grown 

from solutions doped with 50 mol. % Co and Mn. These were cut with a scalpel blade into 

crude cubes of approximate dimensions 2×2×2 mm and loaded (again, in pairs) into thin-

walled vanadium cans. The measurement strategy for these crystals was the same as the first 

batch. 

The time-of-flight Laue peaks were integrated using the SXD2001 program and exported 

as hkl versus intensity files suitable for analysis with the GSAS/Expgui package (Larson and 

Von Dreele, 2000: Toby, 2001). 

!
2.6. Density Functional Theory calculations 

!
In an effort to understand the effect of substituting Co and Mn on different sites in the 

meridianiite structure, we carried out a series of first-principles calculations using Density 

Functional Theory, DFT, and the plane-wave pseudopotential method (Hohenberg & Kohn, 

1964: Kohn & Sham, 1965). The calculations were carried out using CASTEP (Payne et al., 

1992: Segall et al., 2002: Clark et al., 2005) in conjunction with the analysis tools in the 

Materials Studio software package (http://accelrys.com). Tests for convergence of the total 

energy and of structural parameters were done by varying the basis-set cut-offs and the 

reciprocal-space sampling. We found that the Wu–Cohen GGA functional (Wu & Cohen, 

2006) gives more accurate structural parameters than PBE for these materials, reducing the ~ 

5 % over-estimation of molar volume to a ~ 1 % under-estimation. Total energy  and strain 

convergence of 1 meV per atom and 0.01 GPa, respectively, was achieved with a basis-set 



cut-off of 1200 eV and a 4×4×2 -point grid, corresponding approximately with a reciprocal 

lattice spacing of 4×4×3 x10−2Å−1. 

Spin-polarized calculations were done for the transition metal-bearing compounds so as 

to allow degenerate d-orbitals to adopt differing energy levels. Lastly, as is well-known, DFT 

does not properly treat the Coulomb interactions of highly localised d and f electrons in 

transition metal elements (Hubbard, 1963). A correction of the on-site Coulomb interaction 

(U) and the on-site exchange interaction (J) to the Hohenberg-Kohn-Sham Hamiltonian is 

achieved by the use of a Hubbard interaction parameter. The CASTEP implementation adopts 

the Ueff = U − J approach of Dudarev et al. (1998) and we use literature values of Ueff = 4.40 

eV for Co (Chen et al., 2011) and Ueff = 3.75 eV for Mn (Zhou et al., 2004). 

Structural relaxations under zero-pressure athermal conditions were carried out using the 

Broyden-Fletcher-Goldfarb-Shanno method (Pfrommer et al., 1997). The relaxations were 

considered to have converged when the forces on each atom were less than 1x10−2 eV Å−1 

and each component of the stress tensor was smaller than 0.01 GPa. 

A baseline structural relaxation was done on pure Mg-meridianiite and on crystals 

containing 50 atom % Co or Mn. The cation-doped calculations were done with the dopant 

entirely occupying the 1a site (with Mg on the 1b site) and then with the dopant entirely 

filling the 1b site (and Mg on 1a). Calculations involving lower dopant concentrations or 

more elaborate site distribution models would involve the use of large supercells; given the 

computational expense of running these calculations, particularly for spin-polarized systems, 

such models were not explored here. 

!
3. Results 

!
The composition of co-existing liquid and solid phases at 270 K (both original ‘wet’ 

residue and calculated ‘dry’ values) are listed in Table 1 and depicted graphically on ternary 

phase diagrams in Figure 5 (for Co-doping) and Figure 7 (for Mn-doping). The delineation of 

experimental points into different series indicates results from separate batches of freshly-

prepared parent solutions each of which underwent crystallisation in consecutive three-week 

periods. Hence the level of agreement between independent series is a good reflection of how 

reproducible the measurements of solubility were. 



  

3.1. Solid-liquid equilibria in the MgSO4–CoSO4–H2O system at 270 K 

!
At 270 K we observe two solid-solution series, one involving Co-bearing MgSO4·11H2O 

and the other involving Mg-bearing CoSO4·7H2O, with a miscibility gap extending from ~ 47 

mol % CoSO4 to 77 mol % CoSO4 (Fig. 6). The end-member solubilities at 270 K, either 

taken directly or found by extrapolation of literature data, are 18.1 wt. % MgSO4 at 270 K 

(Pillay et al., 2005: Himawan et al., 2006) and 19.3 wt. % CoSO4 (Tobler, 1855), which agree 

well with the values of 17.8(1) wt. % MgSO4 and 18.8(3) wt. % CoSO4 we obtain from our 

best-fit solubility curves. 

There is a ternary eutonic point at 7.3 wt. % MgSO4, 14.8 wt. % CoSO4, 77.9 wt. % H2O. 

Clearly, a degree of metastability is possible on the Mg-rich side of the eutonic, with liquids 

becoming supersaturated with respect to the 11-hydrate solid solution and precipitating Mg-

rich CoSO4·7H2O (dashed extension of the solubility curve). No similar behaviour is seen on 

the Co-rich side of the eutonic. 

Intermediate hydration states with n = 8 and n = 9 are known to occur in flash frozen 

MgSO4 solutions doped with Ni2+, Zn2+ and Fe2+. Similarly, a hitherto unknown Mg-selenate 

hydrate with n = 9 has been found recently to be stable in contact with aqueous solution 

(Fortes et al., 2015). These facts allow for the possibility that small regions of stability for 

hydration states intermediate between n = 7 and n = 11 might exist. However, we have seen 

no evidence for this at 270 K. 

The partitioning of Co between the liquid and solid phase is drawn in Figure 6; the solid 

diagonal line represents a uniform distribution of the dopant cation between solution and 

crystal and dashed lines show best-fit values of constant distribution coefficients, D, such as 

one would expect for the partitioning of macro amounts of dopant in an ideal solid solution. 

The partition coefficient is defined as (for example): 

!
!
!



where the subscripts S and L denote mole fractions in the solid and liquid phases, 

respectively. Evidently, meridianiite has a greater preference for cobalt, D = 0.81(2), than 

bieberite does for magnesium, D = 0.34(1).  1

!
3.2. Solid-liquid equilibria in the MgSO4–MnSO4–H2O system at 270 K 

!
At 270 K we observed only a single solid-solution series involving Mn-bearing 

MgSO4·11H2O (Figures 7 & 8). The lack of crystallisation from more Mn-rich liquid over the 

three-week duration of the experiments is likely to reflect the much higher solubility of 

MnSO4 (34 wt. % at 273 K: Cottrell, 1900), thus requiring more time to reach saturation from 

the 19 wt. % initial composition, and the substantial increase in viscosity of the concentrated 

solution (Deckwer, 1980). After three weeks open to the air, MnSO4-bearing solutions 

exhibited signs of oxidation in the form of a thin film of brown MnO2 deposited on the 

bottom of the petri dish. The end-member solubility derived by a quadratic fit to the liquid 

compositional data is 17.9(8) wt. % MgSO4, which is in agreement with (if less well 

determined than) the value found in the MgSO4–CoSO4–H2O ternary system. 

The partitioning of Mn between the liquid and solid phase is drawn in Figure 8; 

meridianiite clearly has a lesser affinity for manganese, D = 0.24(1) than for cobalt, which 

may be attributable to the greater ionic radius of octahedrally coordinated high-spin Mn2+, 

0.83 Å, compared with Mg2+, 0.72 Å, and high-spin Co2+, 0.74 Å (Shannon, 1976). 

!
!
!
3.3. Comparisons with solubility data obtained at higher temperatures 

!
Figure 9 shows element partitioning data for Co/Mg at 298 K (Balarew et al., 1973) and 

for Mn/Mg at 273 K (Benrath & Blankenstein, 1933). Cobalt is uniformly distributed 

between orthorhombic MgSO4·7H2O and the co-existing liquid, with D(Co/Mg) = 1.03(3). 

Conversely, the uptake of Mg into monoclinic CoSO4·7H2O is less efficient, with D(Mg/Co) = 

 Since this is a two-component system, we can write (Mg)S = 1 − (Co)S and (Mg)L = 1 − (Co)L. 
1

Substituting these into the expression for the distribution coefficient leads to the equation used for 

least-squares determination of D, 



0.416(1). Oikova & Barkov (1979) made measurements at 313 K from which we obtain D(Mg/

Co) in bieberite equal to 0.51(2); clearly the structure is able to accommodate Mg more readily 

at higher temperatures. Indeed, from these two data points and our own at 270 K, we find an 

unweighted linear increase of D(Mg/Co) = 0.004(1) K−1 on warming from 270 to 313 K. 

Figure 9b shows that the D(Mn/Mg) for both meridianiite and epsomite are similar to 0.2, 

reflecting the difficulty in accommodating the much larger Mn2+ ion into both of these 

structures. 

!
3.4. Site partitioning in the undecahydrate crystal structure 

!
Structural refinements of the single-crystal neutron diffraction data using GSAS/Expgui 

yield bulk stoichiometries in good agreement with values obtained by ICP-OES, albeit with 

much larger uncertainties (Table 2). Note that the errors on the site occupancies and the 

propagated errors on bulk composition and site partitioning are larger for the Co-doped 

crystals by virtue of cobalt’s smaller neutron scattering contrast with Mg than manganese. 

One of the most important aspects of these structural refinements is the striking difference in 

site preference between the two dopant cations: cobalt shows a clear preference for the 1b site 

(0,0,½) and manganese, conversely, prefers to a lesser degree to occupy the 1a site (0,0,0). 

This observation is reproducible in crystals of different dopant concentrations and in 

independent batches of crystals of a given concentration measured at different times and 

under different conditions. 

The observation is difficult to explain in terms of the dimensions of the respective 

coordination polyhedra, as is commonly the case in framework compounds. For example, 

olivine consists of a quite rigid array of approximately hexagonal close-packed oxygen 

atoms, which define one tetrahedral and two types of octahedral cavities, M1 and M2. In 

forsterite olivine (Mg2SiO4), the M2 site is ~ 5 % larger and is more distorted than the M1 

site, the consequence of which is that there are strong site preferences for dopant cations 

based on ionic radius. The larger Mn2+ ion is strongly partitioned onto the larger M2 site 

(Akamatsu et al., 1988: Redfern et al., 1998) whilst the smaller Co2+ ion prefers the smaller 

M1 site (Kroll et al., 2016). In meridianiite there is no close-packed oxygen framework, but 

instead a much looser hydrogen-bonded network in which the coordination polyhedra are 



embedded. From single-crystal neutron diffraction analysis we know to high precision that 

the two symmetry inequivalent Mg(H2O)6 octahedra in meridianiite differ in volume by just 

0.1 % and exhibit very similar degrees of bond length and bond angle variation (Fortes et al., 

2013). The observed site partitioning in meridianiite must therefore be related to the way in 

which the structure beyond the first coordination sphere is able to accommodate larger or 

smaller cations or non-uniform distortion of the M(H2O)6 octahedra. It is therefore worth 

examining the wider differences in long-range coordination between these two sites. As 

illustrated by the structural connectivity map in Fortes et al. (2008) the Mg(H2O)6 octahedron 

centred on the 1a site donates three hydrogen bonds to interstitial water molecules, three 

hydrogen bonds to sulfate oxygens and accepts no hydrogen bonds. The Mg(H2O)6 

octahedron centred on the 1b site donates six hydrogen bonds to interstitial water and accepts 

both arms of a bifurcated H-bond across one of the octahedral edges. Hence, the 1a site has a 

direct interaction with the sulfate group and the 1b site does not. 

The most likely explanation is that there is a cation-dependent redistribution of charge 

outward to the ligand water molecules, which then influences the strength of hydrogen bonds 

to second-shell acceptors in a manner that depends on whether the acceptor oxygen is part of 

a water molecule or a sulfate anion. To a certain extent this is borne out by the results of DFT 

calculations reported in the next section. 

!
3.5. DFT results 

!
The most important initial observation pertains to the enthalpy, H, of the different doped 

structures. Whether doped with Co or with Mn, the models in which the dopant is located on 

the 1b sites each have the lowest enthalpy, although the enthalpic contrast is smaller for Mn 

by a factor of three. The model with Co on the 1a site is energetically disfavoured (at 0 K) by 

2.74 kJ mol−1, and that with Mn on the 1a site by 0.92 kJ mol−1. The effect of temperature is 

introduced via the configurational entropy, Sconf, which for a lattice containing two 

inequivalent sites labelled M1 and M2 is described by: 

!
!
!



where  and  are the number of moles of M1 and M2 sites per formula unit and , for 

example, is the fractional occupancy of species i on the M1 site. For the case of site ordering 

where, for example, , and site anti-ordering, where , the total configurational entropy is zero. 

For the case of complete disorder across the two sites, Sconf reaches a maximum value of 

5.762 J K−1 mol−1.  

Hence the difference in free-energy at finite temperature, ΔG = ΔH – TΔSconf, will vary 

with site occupancy as shown by the dashed lines in Figure 10, calculated for T = 250 K. For 

cobalt substitution, a minimum occurs when ~ 77 % of the Co atoms are on the 1b site, which 

is essentially the same as we observe in the single-crystal refinements. For manganese 

substitution, the minimum occurs when ~ 61 % of Mn atoms are on the 1b site, although the 

minimum is broad and quite flat from 55 – 65 atom % Mn on 1b. This differs somewhat from 

the single-crystal refinements where only 35 % of Mn is found on 1b, with the majority on 

1a. Nevertheless, the calculations support the overall experimental result that cobalt has a 

substantially greater preference for the 1b site than Mn and that Mn, whilst preferentially 

distributed, is rather more ‘ambivalent’ about its site occupancy.  

Furthermore, the calculations allow us to evaluate in detail the response of the structure 

to the introduction of foreign cations. The Mg-pure meridianiite relaxation yields a unit-cell 

volume (Table 3) that is 0.9 % smaller than the measured 4 K value (Fortes et al., 2008), as 

expected for the Wu-Cohen GGA functional. The cation-doped structures each have larger 

molar volumes and substantially strained unit-cells. The effective Eulerian infinitesimal strain 

with respect to the Mg-pure structure was calculated using the method outlined by Hazen et 

al. (2000) and the unit-strain coefficients, εij, are listed below the cell parameters in Table 3. 

The eigenvalues (the principal unit-strains, εi) are obtained by standard matrix decomposition 

methods and the volumetric strain, εV = ε1 + ε2 + ε3. Since, for a crystal of triclinic symmetry, 

the principal directions need bear no relation to the crystallographic axes, a graphical 

depiction of the strain tensor representation surface (Figure 11) is a more useful way of 

illustrating the spatial relationships than a tabulated list of direction cosines (cf., Hashash et 

al., 2003). It is clear that the effect of cobalt substitution is very different from manganese 

substitution, producing large negative strains roughly perpendicular to the a–c plane (i.e., 

subparallel to b*) and highly directional positive strains orthogonally. In contrast, Mn 

substitution produces either small positive or negative strains subparallel to b* and a more 



uniform positive strain orthogonally. It is satisfying to discover that the unit-strain 

representation surfaces in Figure 11 share some important characteristics with the same 

quantities derived experimentally from flash-frozen aqueous solutions of Co- and Mn-doped 

MgSO4 (bottom of Figure 11, redrawn from data in Fortes et al., 2012b). Experimentally, 

cobalt substitution leads to a large lobe of negative strain subparallel with b* and a much 

smaller lobe of positive strain subparallel with the c-axis. The observed volume strain is 

negative (i.e., cobalt substitution reduces the unit-cell volume in the real material) whereas 

the DFT-calculated volume strain is positive, but the overall spatial distribution is in good 

agreement with a model in which most of the Co is on the 1b site. 

Starting with the local coordination of each cation, we see from Table 4 that Co 

substitution increases the octahedral site volume by ~ 14 % and Mn substitution by ~ 17 %, 

but this is where the similarities end. Whilst effecting the greatest octahedral ‘inflation’, Mn 

substitution does little to alter the distance / angular distortion metrics. Conversely, Co 

substitution alters these metrics substantially with respect to the Mg-meridianiite structure. 

This octahedral distortion is attributable to a weak Jahn-Teller effect from the high-spin 3d7 

Co2+ ion, which is absent for the high-spin 3d5 Mn2+ ion. 

The change in hydrogen bond length (used as a proxy for H-bond strength) is also 

indicative (Table 5). Hydrogen bonds donated, or in one instance accepted, by cation-

coordinated water become shorter (stronger) when Mg is replaced by either Co (ΔL = −0.8 to 

−1.0 %) or Mn (ΔL = −0.6 to −0.7 %). Of the hydrogen bonds donated by interstitial water 

molecules, Ow7 through Ow11, only the one that is donated to a cation-coordinated water, 

H7b···Ow4, changes in length significantly. This supports our earlier hypothesis that a 

relocation of charge from the cation out into the hydrogen bonds between the cation’s first 

and second nearest neighbours. 

!
4. Conclusions 

!
The ternary systems CoSO4–MgSO4–H2O and MnSO4–MgSO4–H2O have been studied 

at 270 K and solubility phase diagrams representative of crystallisation under conditions of 

isothermal evaporation have been obtained. We report the partitioning of macro-amounts of 

dopant cations Co2+ and Mn2+ into the structure of meridianiite for the first time and reveal 



that each cation exhibits significantly different octahedral site preferences in the structure. 

Our results confirm the temperature dependence of the partitioning of Mg into the bieberite 

structure. No evidence of other hydration states (e.g., 9H2O) was observed. DFT calculations 

largely support the observed difference in site occupancy preference between Co and Mn and 

provide insight into the mechanism. 

Identifying these materials in nature is likely to be non-trivial, since they will be have 

limited spatial and temporal abundance, be prone to dehydration in air even at low 

temperatures, be friable when formed by efflorescence, and will require cryogenic storage, 

transport and X-ray diffraction analysis.  Where highly hydrated salts containing CoSO4 or 

MnSO4 occur, they tend to develop as fibrous efflorescences in cool high-humidity 

environments, often being protected from short- to long-term variations in temperature by 

virtue of being underground, either in caves or mines. The lack of any reported occurrence of 

Co- or Mn-bearing meridianiite may then be due simply to the difficulty in identification. 
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Table 1 

Composition of co-existing liquid and solid phases (wt. %), mole fraction of the dopant 

cation in each and the hydration state of the equilibrium crystalline phase: ‘11’ = triclinic 

meridianiite-structured undecahydrate; ‘7’ = monoclinic bieberite-structured heptahydrate. 

!
Sam

ple 

ID

Liquid 

composition 

(wt. %)

Wet 

crystalline 

residue (wt. 

%)

Calculated 

dry residue 

(wt. %)

Mole 

fraction of 

M

liquid

Mole 

fraction of 

M

solid

Solid 

phase

MgS

O

CoS

O

MgS

O

CoS

O

MgS

O

CoS

O

M M

Co_

5

17.14

(8)

1.20(

7)

35.0(

2)

2.2(2

)

35.82 2.29 0.0528 0.0485 11

Co_

10a

16.07

(7)

2.32(

7)

33.1(

2)

4.3(2

)

33.97 4.44 0.1009 0.0922 11

Co_

10b

15.93

(7)

2.51(

7)

32.7(

2)

4.6(2

)

33.68 4.77 0.1116 0.1014 11

Co_

15

15.23

(8)

3.74(

8)

31.2(

2)

6.6(2

)

31.99 6.73 0.1638 0.1436 11

Co_

20a

14.40

(8)

4.85(

8)

29.7(

2)

8.5(2

)

30.33 8.67 0.2072 0.1816 11

Co_

20b

14.49

(8)

4.75(

8)

29.5(

2)

8.8(2

)

30.09 8.95 0.2030 0.1876 11

Co_

20c

14.59

(8)

4.65(

8)

29.7(

2)

8.5(2

)

30.32 8.68 0.1984 0.1819 11

Co_

20d

14.04

(8)

5.13(

8)

30.0(

2)

8.8(2

)

30.18 8.84 0.2256 0.1892 11

Co_

25

13.40

(8)

6.29(

8)

28.7(

2)

10.8(

2)

28.52 10.76 0.2722 0.2312 11



Co_

30

12.71

(8)

7.31(

7)

26.7(

2)

12.5(

2)

26.92 12.62 0.3088 0.2669 11

Co_

40

10.87

(8)

9.91(

8)

23.9(

2)

16.1(

2)

23.92 16.11 0.4145 0.3434 11

Co_

50a

9.06(

8)

12.43

(8)

20.1(

1)

20.4(

1)

20.17 20.46 0.5158 0.4406 11

Co_

50b

8.53(

7)

12.14

(7)

22.4(

2)

18.2(

2)

22.22 18.09 0.5317 0.3935 11

Co_

60a

8.04(

8)

13.25

(8)

10.0(

2)

42.8(

2)

10.07 43.79 0.5613 0.7716 7

Co_

60b

10.19

(8)

12.77

(8)

11.9(

2)

40.1(

2)

11.85 41.78 0.4931 0.7325 7

Co_

70

6.62(

8)

14.95

(8)

7.0(2

)

46.0(

2)

7.00 47.26 0.6367 0.8398 7

Co_

80a

5.06(

7)

16.19

(7)

4.7(2

)

49.2(

2)

4.66 49.90 0.7131 0.8926 7

Co_

80b

5.00(

7)

16.25

(7)

5.0(2

)

48.9(

2)

4.98 49.54 0.7163 0.8854 7

Co_

80c

4.93(

7)

16.31

(7)

4.7(2

)

49.1(

2)

4.74 49.81 0.7197 0.8908 7

Co_

90

2.82(

7)

18.48

(7)

2.5(2

)

51.3(

2)

2.46 52.38 0.8357 0.9430 7

Co_

100

0.03(

6)

18.70

(6)

0.0(2

)

53.1(

2)

– – – – 7

MgS

O

MnS

O

MgS

O

MnS

O

MgS

O

MnS

O

M M

Mn_

10

17.14

(7)

3.01(

8)

34.9(

1)

1.6(1

)

36.48 1.50 0.1228 0.0316 11



!
1Calculated using the molar masses of MgSO4 = 120.3676 g mol−1, CoSO4 = 154.9958 g mol−1 and 
MnSO4 = 151.006 g mol−1. 

Mn_

20a

15.63

(9)

6.82(

9)

33.4(

1)

3.8(1

)

34.68 3.56 0.2580 0.0757 11

Mn_

20b

15.65

(9)

6.80(

9)

33.4(

1)

3.8(1

)

34.65 3.60 0.2573 0.0764 11

Mn_

20c

15.68

(9)

6.78(

9)

33.3(

1)

3.9(1

)

34.58 3.68 0.2564 0.0781 11

Mn_

25

14.43

(8)

8.11(

8)

33.3(

1)

4.6(1

)

33.86 4.49 0.3094 0.0956 11

Mn_

30

14.99

(9)

9.94(

9)

30.1(

1)

7.0(1

)

32.05 6.57 0.3457 0.1405 11

Mn_

50a

10.4(

1)

17.9(

1)

28.7(

2)

10.6(

2)

28.47 10.67 0.5801 0.2301 11

Mn_

50b

10.2(

1)

18.1(

1)

28.5(

2)

10.8(

2)

28.27 10.90 0.5844 0.2350 11

Mn_

50c

10.4(

1)

17.9(

1)

28.5(

2)

10.7(

2)

28.33 10.83 0.5786 0.2335 11



!



Table 2 

Results of single-crystal neutron diffraction analysis of Co- and Mn-doped meridianiite 

crystals. The upper portion of the table reports details of each dataset and the model fit 

quality; the lower portion of the table shows refined cation site occupancies. Complete 

structural information is in the supplementary electronic data. 

!
Co-bearing MgSO Mn-bearing MgSO

Co25 Co50_1 Co50_2 Mn25 Mn50_1 Mn50_2

Measurement T (K) 250 250 10 250 250 10

Reflections 
I > 3σ(I) 4065 4869 7364 4871 3667 9237

h −9 → 10 −12 → 20 −16 → 15 −9 → 11 −6 → 11 −17 → 17

k −17 → 16 −11 → 23 −13 → 10 −16 → 12 −9 → 13 −18 → 15

l −37 → 35 −28 → 47 −41 → 37 −25 → 31 −28 → 25 −44 → 39

d-spacing min (Å) 0.371 0.258 0.362 0.360 0.507 0.358

d-spacing max (Å) 6.034 6.049 17.353 8.636 6.050 6.004

R(F 0.200 0.214 0.172 0.206 0.219 0.137

R(F) 0.108 0.115 0.092 0.113 0.116 0.078

Site occupancies

Mg on 1a site (0,0,0) 0.97(5) 0.78(4) 0.82(3) 0.86(1) 0.73(2) 0.677(7)

M2+ 0.03(5) 0.22(4) 0.18(3) 0.14(1) 0.27(2) 0.323(7)

Mg on 1b site (0,0,½) 0.64(5) 0.38(4) 0.35(3) 0.94(1) 0.84(2) 0.848(7)

M2+ 0.36(5) 0.62(4) 0.65(3) 0.06(1) 0.16(2) 0.152(7)

Partition coeff., K 0.05(9) 0.17(4) 0.12(2) 2.6(5) 1.9(3) 2.7(1)

Bulk composition 
(M2+ 20(4) 42(3) 42(2) 10(1) 21(1) 23.8(5)



!
† KD = [(M2+/Mg)(1a)] / [(M2+/Mg)(1b)] where M2+ is the mole fraction of the dopant cation (Co 

or Mn, respectively) and Mg is the mole fraction of Mg; the subscripts 1a and 1b indicate the 

two available crystallographic sites.  

ICP-OES 
(M2+ 22.9 42.5 42.5 9.9 22.7 22.7



!
Table 3 

Unit-cell parameters of Mg-pure meridianiite and hypothetical 50 atom % Co-doped and Mn-

doped analogues as determined from DFT structural relaxations. Unit-strain tensor 

coefficients, and the eigenvalues of the strain tensor, are reported below. 

!

!

Pure Mg 
meridianiite

Co on 1a Co on 1b Mn on 1a Mn on 1b

Unit-cell dimensions

a (Å) 6.623307 6.660136 6.678814 6.672551 6.659671

b (Å) 6.807221 6.762641 6.776084 6.818661 6.824552

c (Å) 17.260227 17.382522 17.355476 17.346125 17.409940

α (°) 86.673270 87.479948 86.920667 86.983607 86.332583

β (°) 89.282351 90.002329 88.667891 89.238303 89.229527

γ (°) 63.441552 63.120247 62.807403 63.240772 63.392345

V (Å 694.831813 697.473269 697.622758 703.667952 705.918013

Unit-strain tensor coefficients

ε11 – 11.28x10 16.37x10 14.85x10 10.96x10

ε22 – −17.70x10 −19.20x10 0.55x10 3.46x10

ε33 – 14.17x10 11.04x10 9.95x10 17.35x10

ε12 – 0.25x10 4.14x10 0.68x10 -0.75x10

ε13 – −12.66x10 10.85x10 0.81x10 0.89x10

ε23 – −10.20x10 −10.89x10 −6.68x10 5.82x10

Eigenvalues of unit-strain tensor

ε1 – 1.95x10 25.18x10 15.01x10 11.02x10

ε2 – −21.07x10 −24.10x10 −2.97x10 1.24x10

ε3 – 26.87x10 7.12x10 13.32x10 19.50x10

εV – 7.75x10 8.21x10 25.35x10 31.77x10



!
Table 4 

Dimensions and distortion metrics (after Robinson et al., 1971) for the SO42− and M(H2O)6 

polyhedra in each of the various DFT structural models. Reproducibility in the calculations 

may be judged from the standard deviation of the sulfate tetrahedron’s metrics: bond lengths 

± 3x10−4 Å; volumes ± 1x10−3 Å3; bond angle variance ± 4x10−2 deg2. 

!

!

Pure Mg 
meridianiite

Co on 1a Co on 1b Mn on 1a Mn on 1b

Sulfate tetrahedron

Mean S‒O 1.4903 1.4899 1.4900 1.4904 1.4907

Volume 1.6986 1.6970 1.6975 1.6989 1.6998

Dist. Index 0.0057 0.0057 0.0059 0.0058 0.0058

Quad. Elong. 1.0001 1.0001 1.0001 1.0001 1.0001

Bond Angle Var. 0.32 0.28 0.38 0.34 0.30

1a octahedral site Co on 1a Mn on 1a

Mean M‒O 2.0929 2.1896 2.0943 2.2120 2.0950

Volume 12.120 13.898 12.213 14.395 12.232

Dist. Index 0.0065 0.0142 0.0086 0.0082 0.0062

Quad. Elong. 1.0015 1.0049 1.0020 1.0018 1.0016

Bond Angle Var. 4.99 15.61 6.47 5.69 5.30

1b octahedral site Co on 1b Mn on 1b

Mean M‒O 2.1019 2.0988 2.1905 2.1018 2.2194

Volume 12.364 12.311 13.921 12.365 14.560

Dist. Index 0.0195 0.0199 0.00172 0.0185 0.0232

Quad. Elong. 1.0012 1.0013 1.0048 1.0012 1.0014

Bond Angle Var. 1.13 1.41 15.28 1.66 0.70



!
Table 5 

Hydrogen bond lengths and change relative to the pure Mg-analogue (%) for each of the 

various DFT structural models. 

!
Pure Mg 

meridianiit
e

Co on 1a Co on 1b Mn on 1a Mn on 1b

H-bonds donated by water molecules coordinated to the cation on the 1a site

Δ (%) Δ (%) Δ (%) Δ (%)

H1a···O1 1.8388 1.8114 (-1.5) 1.8276 (-0.6) 1.8151 (-1.3) 1.8459 (0.4)

H1b···Ow8 1.6725 1.7025 (1.8) 1.6716 (-0.1) 1.6786 (0.4) 1.6773 (0.3)

H2a···O1 1.8103 1.7885 (-1.2) 1.8037 (-0.4) 1.8094 (0.0) 1.8135 (0.2)

H2b···Ow8 1.6737 1.6518 (-1.3) 1.6754 (0.1) 1.6657 (-0.5) 1.6817 (0.5)

H3a···Ow11 1.7945 1.7888 (-0.3) 1.7985 (0.2) 1.7927 (-0.1) 1.7887 (-0.3)

H3b···O1 1.8580 1.7976 (-3.3) 1.8634 (0.3) 1.8212 (-2.0) 1.8601 (0.1)

Average (-1.0) (-0.1) (-0.6) (0.2)

H-bonds donated / accepted by water molecules coordinated to the cation on the 1b site

H4a···Ow9 1.6130 1.6134 (0.0) 1.5688 (-2.7) 1.6172 (0.3) 1.6010 (-0.7)

H4b···Ow11 1.7562 1.7594 (0.2) 1.7499 (-0.4) 1.7487 (-0.4) 1.7399 (-0.9)

H5a···Ow7 1.6985 1.6957 (-0.2) 1.7156 (1.0) 1.7023 (0.2) 1.6896 (-0.5)

H5b···Ow9 1.7216 1.7083 (-0.8) 1.7199 (-0.1) 1.7243 (0.2) 1.7265 (0.3)

H6a···Ow10 1.6851 1.6871 (0.1) 1.6705 (-0.9) 1.6839 (-0.1) 1.6890 (0.2)

H6b···Ow7 1.6809 1.6729 (-0.5) 1.6558 (-1.5) 1.6824 (0.1) 1.6643 (-1.0)

H7b···Ow4 1.7243 1.7229 (-0.1) 1.7076 (-1.0) 1.7258 (0.1) 1.6873 (-2.1)

Average (-0.2) (-0.8) (0.0) (-0.7)

H-bonds donated by ‘interstitial’ water molecules

H7a···O2 1.7646 1.7574 (-0.4) 1.7935 (1.6) 1.7649 (0.0) 1.7761 (0.7)

H7b···Ow4 1.7243 1.7229 (-0.1) 1.7076 (-1.0) 1.7258 (0.1) 1.6873 (-2.1)

H8a···O3 1.8207 1.8067 (-0.8) 1.8093 (-0.6) 1.8224 (0.1) 1.8301 (0.5)

H8b···O4 1.6938 1.7030 (0.5) 1.6865 (-0.4) 1.6940 (0.0) 1.6958 (0.1)



!

H9a···O3 1.7395 1.7353 (-0.2) 1.7151 (-1.4) 1.7389 (0.0) 1.7363 (-0.2)

H9b···Ow10 1.6238 1.6217 (-0.1) 1.6173 (-0.4) 1.6313 (0.5) 1.6288 (0.3)

H10a···O4 1.6278 1.6307 (0.2) 1.6399 (0.7) 1.6352 (0.5) 1.6332 (0.3)

H10b···O2 1.7201 1.7281 (0.5) 1.7076 (-0.7) 1.7281 (0.5) 1.7245 (0.3)

H11a···O2 1.8492 1.8289 (-1.1) 1.8292 (-1.1) 1.8427 (-0.4) 1.8604 (0.6)

H11b···O3 1.7866 1.7879 (0.1) 1.7830 (-0.2) 1.7957 (0.5) 1.7850 (-0.1)

Average (-0.1) (-0.3) (0.2) (0.0)



!
Figure 1 

Non H-atom framework connectivity in MgSO4·11H2O, viewed approximately along b*, 

showing the atom-labelling scheme used in this work. Dashed and solid lines are used to 

distinguish the hydrogen-bonded contacts between water oxygens and sulfate oxygens in 

different planes. Ow7 through Ow11 are interstitial water molecules, not coordinated to 

Mg2+. Note that the Mg1 octahedron donates H-bonds to the sulfate oxyanions whereas the 

Mg2 octahedron is exclusively involved with interstitial waters [Symmetry codes: (i) −x+1, 

−y, −z+1; (ii) x−1, y, z; (iii) −x+2, −y, −z; (iv) −x+2, −y, −z+1; (v) −x+1, −y, −z]. 

!
Figure 2 

Overview of a typical batch of Co-doped meridianiite crystals growing from their parent 

solution in a 100 mm diameter petri dish at 270 K. 

!
Figure 3 

Representative photographs of heptahydrate and undecahydrate single crystals produced in 

this work. 

!
Figure 4 

Representative X-ray powder diffraction patterns of (a) M2+SO4·11H2O crystals compared 

with the calculated diffraction pattern of an ideal MgSO4·11H2O end-member, and (b) 

M2+SO4·7H2O crystals compared with the calculated diffraction pattern of an ideal 

CoSO4·7H2O end-member. Some samples contain small amounts of water ice, which is 

derived either from freezing of mother liquor trapped in the crystals or from condensation of 

ice onto the powder samples during preparation; the positions of Bragg peaks from water ice 

are indicated by the grey vertical bars. Other differences between the real and calculated 

diffraction patterns are due to shifts in cell parameters by virtue of the chemical substitution 

and often substantial amounts of preferred orientation from preparation of a pressed powder 

specimen using quite coarsely-powdered single crystal fragments. 

!
Figure 5 



Ternary solubility diagram at 270 K at the water-rich end of the system MgSO4–CoSO4–H2O. 

Plotted with ProSim Ternary Diagram 1.0 (http://www.prosim.net) 

!
!
Figure 6 

Measured partitioning of cobalt between liquid and meridianiite and of magnesium between 

liquid and bieberite at 270 K; dashed lines report the best fit distribution coefficients obtained 

by unweighted least-squares fitting in Origin Pro. 

!
Figure 7 

Ternary solubility diagram at 270 K at the water-rich end of the system MgSO4–MnSO4–

H2O. Plotted with ProSim Ternary Diagram 1.0 (http://www.prosim.net) 

!
Figure 8 

Measured partitioning of manganese between liquid and meridianiite at 270 K; the dashed 

line shows the best-fitting distribution coefficient obtained by unweighted least-squares 

fitting in Origin Pro. 

!
Figure 9 

(a) Partitioning of cobalt between liquid and two non-isotypic heptahydrate crystals at 298 K 

(Balarew et al., 1973): (b) Partitioning of manganese between liquid and two non-isotypic 

heptahydrate crystals at 273 K (Benrath & Blankenstein, 1933). As before, symbols are 

measured values and dashed lines are least-squares fits of distribution coefficients that we 

have done. 

!
Figure 10 

For hypothetical meridianite crystals containing 50 atom % Co or Mn, the calculated 

variation of enthalpy at 0 K (solid black line) and free-energy at 250 K (dashed red line) as 

the proportion of dopant cobalt (a) or manganese (b) on the 1b site varies from 0 to 100 %. 

!
Figure 11 



Unit-strain tensor representation glyphs indicating the structural response to changing either 

the 1a- or 1b-site cation from Mg to Co or Mn. Green portions of the tensor representation 

surface indicate positive strains whereas red areas indicate negative strains. Figures plotted 

using WinTensor (Kaminski, 2004) and post-processed with MeshConv (courtesy Patrick 

Min), and MeshLab (http://meshlab.sourceforge.net).
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