
Downloaded from:

Usage Guidelines:
Please refer to usage guidelines at contact lib-eprints@bbk.ac.uk. or alternatively
Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning

Bing Li, Chunfeng Yuan, Weihua Xiong, Weiming Hu, Houwen Peng, Xinmiao Ding, Steve Maybank

Abstract—In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (M^2IL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse ε-graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the M^2IL. Experiments and analyses in many practical applications prove the effectiveness of the M^2IL.

Index Terms—multi-instance learning, multi-view, sparse representation, dictionary learning

1 INTRODUCTION

As a variant of supervised learning, multi-instance learning (MIL) represents a sample by a bag of several instances instead of a single one. It only gives each bag, not each instance, a discrete or real-valued label. Starting from the original work of Dietterich et al [1], MIL has been used in many applications [1] [2] [3].

1.1 Related Work

Recent decades have witnessed great progress in MIL algorithms [5] [6] [7]. We roughly divide existing MIL methods into two categories, “independent MIL methods (IMIL)” and “contextual MIL methods (CMIL)”. These two categories differ in the way that the relations among instances in a bag are treated.

The IMIL methods treat all the instances from a bag as independently and identically distributed (i.i.d.). These methods can be further divided into generative IMIL and discriminative IMIL. Axis-Parallel Rectangles (APR) [1], DiVerse Density (DD) [8], Expectation-Maximization (EM) version of DiVerse Density (EM-DD) [9], Generalized EM-based DiVerse Density (GEM-DD) [10] are all in the generative IMIL category. MIL problems can also be tackled in a discriminative manner by adapting standard supervised learning approaches. The methods of this type learn a classifier that separates positive and negative bags. The work falling in this category can be traced back to the citation k-nearest neighbor (CKNN) method [11]. Wang et al [12] propose a maximum margin MIL algorithm based on a type of class-to-bag distance. The support vector machine (SVM) is also introduced to solve MIL, resulting in a plethora of SVM-based MIL algorithms, including multi-instance kernels (MI-kernel) [13], support vector machine for MIL (MI-SVM and mi-SVM) [14], DD-SVM [3], MIL via embedded instance selection (MILES) [2], MIL with instance selection (MILIS) [7], Fast Bundle Algorithm for MIL [15] and others [16] [17].

The CMIL methods differ from the IMIL ones in that they treat the instances in a bag as non-i.i.d by taking into account the interplay of the instances. Zhou and Xu [17] point out that the relations among instances in a bag convey important structural information in many applications. They propose two CMIL methods, MIGraph and miGraph [18], which define the relations among instances in a bag with a ε-graph [19] and apply SVM with two graph kernel functions to bag classification. Since then, CMIL has attracted many researchers attention. Song et al. [20] apply the miGraph to identify user attributes in social network services. Li et al [21] propose a CMIL algorithm by adding a contextual constraint on a Fuzzy SVM. Zhang et al [23] present a CMIL framework for structured data classification.
Although the existing MIL methods from both categories are claimed to achieve good performance in many tasks, they have two limitations:

(i) The relations among instances are defined to be either independent or contextual for all bags. However, in many applications, we cannot simply pre-define the instances in a bag as independent or not. Taking Figure 1 as an example, an image is viewed as a bag of objects (“instances”) and we would like to recognize the concept of “airplane” using MIL. In Figure 1(A), the background of “sky” can provide an important contextual cue and should not be neglected. The background of “mountain” in Figure 1(B) has no contextual relationship with “airplane”.

(ii) It is still a difficult problem to define the relations among instances in complex and varied environments. In most existing CMIL methods, the instances relations are described by a ε-graph with a fixed ε value. It is unreasonable for these methods to represent diverse contextual relations using only one type of graph.

1.2 Our Work

To circumvent the limitations of the existing MIL methods and inspired by the idea of multi-view learning [24], we propose a multi-view multi-instance learning algorithm (M²IL) based on a joint sparse representation. The contributions of this paper are summarized as follows:

(i) It proposes a sparse ε-graph model that integrates ε-graph and ℓ1-graph models into a unified framework, and can generate different graphs in a systematic way with different parameters.

(ii) It proposes a multi-view multi-instance learning model (M²IL) based on a joint sparse representation and graph structures. The “multi-view here is defined as a series of inherent contextual structures among instances in a bag. These structures are represented by undirected graphs generated via the proposed sparse ε-graph model, and are integrated into a unified multi-view joint sparse representation framework for bag classification.

(iii) It proposes a novel multi-view dictionary learning algorithm for the M²IL. Different from the existing dictionary learning algorithms [32] [33], the proposed algorithm learns a multi-view graph dictionary by considering cues from all views simultaneously.

2 OVERVIEW OF M²IL

Before giving an overview of the proposed M²IL, we briefly review the formal definition of the MIL. Let χ denote the instance space. We are given a data set \(\{ (X_1, y_1), ..., (X_N, y_N) \} \), where \(X_i = \{ x_{i,1}, x_{i,2}, ..., x_{i,n_i} \} \) ⊆ χ is called a bag and \(y_i \in \eta = \{ +1, -1 \} \) is the label of the bag \(X_i \). Here \(x_{i,j} \in \mathbb{R}^p \) (suppose that each \(x_{i,j} \) is normalized to have unit ℓ2 norm) is called an instance in bag \(X_i \). If there exists \(m \in \{ 1, ..., n_i \} \) such that \(x_{i,m} \) is a positive instance, then \(X_i \) is a positive bag and \(y_i = 1 \); otherwise \(X_i \) is a negative bag and \(y_i = -1 \). The value of \(m \) is always unknown. That is, for any positive bag, we only know that there is at least one positive instance in it, but cannot figure out which ones they are from. The goal of MIL is to learn a classifier to predict the labels of unseen bags.

In order to consider the relations among instances in a bag, this paper proposes a novel multi-view multi-instance learning (M²IL), in which a series of graphs are added to each bag to represent the contextual relations among the instances. Figure 2 illustrates the basic idea of the M²IL. It contains three key steps: view generation, multi-view joint sparse representation and dictionary learning, and classification.

View Generation. In M²IL, for any bag \(X_i \), we first construct a set of \(K \) undirected graphs \(\Gamma_i = \{ G_{i,1}, G_{i,2}, ..., G_{i,K} \} \) where each \(G_{i,k} \) is defined by \(G_{i,k} = \langle X_i, M_{i,k} \rangle \) with all the instances in \(X_i \) as the vertices and an edge set represented by an adjacency matrix \(M_{i,k} \in \mathbb{R}^{n_i \times n_i} \). If there is an edge between \(x_{i,a} \) and \(x_{i,b} \), then \(M_{i,k}(a, b) = M_{i,k}(b, a) = 1 \); otherwise \(M_{i,k}(a, b) = 0 \). All the \(K \) graphs are generated by the proposed sparse ε-graph model with \(K \) different choices of parameter values. The graphs can be viewed as different contextual structures among instances in the bag \(X_i \).

Multi-View Joint Sparse Representation and Dictionary Learning. Given a graph set \(\Gamma_i \), the traditional MIL is extended to the M²IL by explicitly including \(\Gamma_i \) in the training data as \(\{(X_1, \Gamma_1) = \langle G_{1,1}, ..., G_{1,K} \rangle, y_1\}, ..., (X_N, \Gamma_N) = \langle G_{N,1}, ..., G_{N,K} \rangle, y_N\} \). The labels in the M²IL can be binary or multiple, as \(y_i \in \{ 1, 2, ..., C \} \) for \(C \) classes.

To solve the M²IL problem, this paper proposes a multi-view joint sparse representation framework. It is essentially a sparse classifier aiming at reconstructing the \(k^{th} \) graph of a bag with the graphs from the \(k^{th} \) view of a learned dictionary. It has been observed that an effective dictionary usually leads to a more compact representation and better performance in many applications [27] [32] [33]. Therefore, we design a multi-view dictionary learning algorithm based on graph kernels to learn a discriminative dictionary for each class from training bags.

Classification. For a test bag with a set of graphs \(\Gamma_T \) and an unknown label \(y_T \) as \((X_T, \Gamma_T) = \langle G_{T,1}, ..., G_{T,K} \rangle, y_T \), each of the \(K \) graphs is reconstructed using the learned multi-view dictionary under the M²IL framework. The reconstruction residual from all the \(K \) views is used to predict the label \(y_T \).

3 SPARSE ε-GRAHAM FOR VIEW GENERATION

In the view generation step, the undirected graphs \(\Gamma_i = \{ G_{i,1}, G_{i,2}, ..., G_{i,K} \} \) are generated for each bag \(X_i \). Zhou et al. [18] use the ε-graph to model the local manifold structure among instances in a bag for MIL. The ε-graph is
3.1 Sparse ε-graph

This section discusses how to construct the graph $G_{i,k} = \langle X_i, M_{i,k} \rangle$ for each bag based on the sparse ε-graph model. Without loss of generality and for simplicity, we remove the index k in $G_{i,k} = \langle X_i, M_{i,k} \rangle$ and write it as $G_i = \langle X_i, M_i \rangle$.

Before detailing the sparse ε-graph, we briefly show how to define the structure of a bag X_i using the ℓ_1-graph [25]. Given a bag X_i, the ℓ_1-graph constructs the graph $G_i = \langle X_i, M_i \rangle$ based on the sparse representation [27]. Considering an vertex $x_{i,j}$ and its edges to the other vertices $U = \{u_1, u_2, \ldots, u_{n-1}\} = \{x_{1,1}, x_{1,2}, \ldots, x_{i,j-1}, x_{i,j+1}, \ldots, x_{i,n}\}$ in $R^p \times (n-1)$, the ℓ_1-graph is to find a sparse vector of coefficients $\alpha \in R^{n-1}$, such that $x_{i,j} \approx U\alpha = \sum_{k=1}^{n-1} u_k \alpha_k$.

The vector is obtained by solving the following sparse representation objective function,

$$\min_{\alpha} \|x_{i,j} - U\alpha\|^2 + \lambda\|\alpha\|_1,$$

(1)

where the first term of (1) is the linear reconstruction error, and the second term controls the sparsity of α through a regularization coefficient λ. Larger values of λ imply sparser values of α. The edges from $x_{i,j}$ to other instances are determined by values of α. If the coefficient $\alpha_k \neq 0$, then the element $M_{i,j,k} = 1$; otherwise, $M_{i,j,k} = 0$.

It is not guaranteed that the neighbors (that is $\alpha_k \neq 0$) to $x_{i,j}$ in the ℓ_1-graph are also near to $x_{i,j}$ in the Euclidean distance [26]. To circumvent this limitation, we add a Euclidean distance constraint to (1). We first define a weight matrix D based on the Euclidean distances from $x_{i,j}$ to the other vertices as:

$$D = \text{diag}(\varpi(||x_{i,j} - x_{i,1}||), \ldots, \varpi(||x_{i,j} - x_{i,j-1}||), \varpi(||x_{i,j} - x_{i,j+1}||), \ldots, \varpi(||x_{i,j} - x_{i,n}||)),$$

(2)

where $\varpi(||x_{i,j} - x_{i,k}||) > 0$ is a monotone increasing function of the Euclidean distance $||x_{i,j} - x_{i,k}||$. Then we add the weight matrix D into (1) as:

$$\min_{\alpha} \|x_{i,j} - U\alpha\|^2 + \lambda\|D\alpha\|_1,$$

(3)

where $\lambda\|D\alpha\|_1$ is the regularization item that considers both sparsity of α and the Euclidean distances from $x_{i,j}$ to the other vertices. The goal of (3) is to find those vertices with lower distance values to $x_{i,j}$ to reconstruct it. Although the function $\varpi(||x_{i,j} - x_{i,k}||)$ can be defined as any monotone increasing function, we define it as a piecewise constant one to simplify the optimization of (3), as:

$$\varpi(||x_{i,j} - x_{i,k}||) = \begin{cases}
1, & \text{if } ||x_{i,j} - x_{i,k}|| \leq \varepsilon \\
\infty, & \text{if } ||x_{i,j} - x_{i,k}|| > \varepsilon
\end{cases},$$

(4)

where ε is a threshold controlling the value of the corresponding element in $D(1 \text{ or } \infty)$. According to (3) and (4), if an instance $x_{i,j}$ has $||x_{i,j} - x_{i,k}|| > \varepsilon$, the weight for $x_{i,k}$ in matrix D is ∞, the instance $x_{i,k}$ will not be selected to reconstruct the instance $x_{i,j}$, and the corresponding coefficient value α_k will be 0. In other words, there is no edge linking $x_{i,j}$ and $x_{i,k}$ in the graph $G_i = \langle X_i, M_i \rangle$.

With the definition in (4), (3) can be simply solved by selecting those elements in U having distances less than ε from $x_{i,j}$ for sparsely representing $x_{i,j}$. It includes 3 major steps: (i) Set $\alpha_k = 0$, if $||u_k - x_{i,j}|| > \varepsilon$. (ii) The remaining elements ($\{u_k||u_k - x_{i,j}|| \leq \varepsilon\}$) are used to compose an instance matrix U', and then used to sparsely represent $x_{i,j}$ (min $\|x_{i,j} - U'\beta\|^2 + \lambda\|\beta\|_1$) based on (1). The coefficient vector β can be obtained using existing sparse representation algorithms. (iii) Finally, the value of α_k (where $||u_k - x_{i,j}|| \leq \varepsilon$) is set as the corresponding value in β. The detailed implement of the sparse ε-graph is given in Algorithm 1. More analysis about the sparse ε-graph can be found in Appendix A.

Algorithm 1 sparse ε-graph construction.

1: Input: A bag in MIL as $X_i = \{x_{i,1}, x_{i,2}, \ldots, x_{i,n_i}\}$, parameter $\theta < \lambda, \varepsilon >.$
2: Initialize: The matrix M_i for bag X_i, as $M_i = 0.$
3: for $j = 1 \rightarrow n_i, t = 1 \rightarrow n_i$ do
4: Set $U = \{x_{i,j}\}$.
5: Solve (3), obtain the value of sparse code α.
6: If $t < j$, set $M_i(j,t) = |\alpha_t|$;
7: If $t = j$, set $M_i(j,t) = 1$;
8: If $t > j$, set $M_i(j,t) = |\alpha_{t-1}|$;
9: end for
10: Set $M_i = (M_i + M_i^T)/2$.
11: for $j = 1 \rightarrow n_i, t = 1 \rightarrow n_i$ do
12: if $M_i(j,t) \neq 0$ then
13: set $M_i(j,t) = 1$.
14: end if
15: end for
16: Output: an undirected graph $G = \langle X_i, M_i \rangle$.

3.2 View Generation Using Sparse ε-graph

Using the proposed sparse ε-graph, we can generate different graphs with various parameters $<\lambda, \varepsilon>$, as:

(i) $\varepsilon = 0$, Independent Set. In this situation, all the elements in D are ∞, and the solution for $\alpha = 0$. The generated graph is a set of independent vertices without edges.

(ii) $\varepsilon \geq 2$, ℓ_1-graph. Since $||x_{i,j} - x_{i,k}|| \leq 2$, all the diagonal elements in D are 1. Now (3) is equivalent to (1), and the sparse ε-graph reduces to the ℓ_1-graph.

(iii) $0 < \varepsilon < 2$, $\lambda \rightarrow 0$, ε-graph. When λ is very small, the sparsity constraint in (3) is weak, and the coefficient vector α becomes dense. The resulting graph approximates to a ε-graph.

(iv) $0 < \varepsilon < 2$, $\lambda > 0$, sparse ε-graph. In this situation, the sparsity constraint in (3) is emphasized, resulting in a smaller number of vertices selected in reconstruction of $x_{i,j}$.

For each bag X_i, we can generate K different graphs $\Gamma_i = \{G_{i,1}, G_{i,2}, \ldots, G_{i,K}\}$ using different parameter set-
tings \(\{<\lambda_1, \varepsilon_1>, <\lambda_2, \varepsilon_2>, \ldots, <\lambda_K, \varepsilon_K>\}\) to represent the inner contextual structures of \(X_i\) from different views.

4 Multi-View Joint Sparse Representation and Dictionary Learning

4.1 Multi-View Joint Sparse Representation

The sparse representation-based classification (SRC) has been successfully used in many applications [27] [28]. We extend the SRC to a multi-view joint sparse representation-based classification model for MIL. After obtaining the \(K\) graphs for each bag, given any bag with \(K\) graphs and its label \((X_i, \Gamma_i = \{G_{i,1}, \ldots, G_{i,K}, y_i\})\), the multi-view joint sparse representation is to represent the \(k\)th graph of the bag sparsely, using the \(k\)th graphs of dictionaries. Since the graph structure cannot be directly used for sparse representation, we apply a feature mapping function \(\varphi : G \mapsto R^d\) to map a graph to a high dimensional feature space as: \(G \mapsto \varphi(G)\) and define the sparse representation in the mapped feature space. The feature vectors obtained from the \(k\)th graphs of all the training bags are arranged as the columns of a feature matrix \(V^k = [\varphi(G_{1,k}), \varphi(G_{2,k}), \ldots, \varphi(G_{N,k})] \in R^d \times N\). For convenience of description, we sort the graphs in \(V^k\) according to the corresponding bag labels, as \(V^k = [V^k_1, V^k_2, \ldots, V^k_{M^k}]\), where \(V^k_j = [\varphi(G_{1,j}), \varphi(G_{2,j}), \ldots, \varphi(G_{N,j})] \in R^d \times N\), denotes the graphs of all the training bags in the \(j\)th class, and \(N_j\) is the number of training bags in the \(j\)th class \((N_1 + N_2 + \ldots + N_C = N)\). Similar to SRC, we let \(D^k \in R^{d \times M}\) be a sought dictionary with \(M\) atoms for the \(k\)th view and let \(D = \{D^1, D^2, \ldots, D^K\}\) be the set of all the dictionaries for all the views that can be learned from all training samples \(V^k, (k = 1, \ldots, K)\). Each dictionary \(D^j \in R^{d \times M}\) is composed of all the class-specific sub-dictionaries as \(D^j = [D^j_1, D^j_2, \ldots, D^j_C]\) where \(D^j_k \in R^{d \times M_j}\) is the sub-dictionary of the \(j\)th class with \(M_j\) atoms and \(M_1 + M_2 + \ldots + M_C = M\). The sparse representation of the bag \((X_i, \Gamma_i = \{G_{i,1}, \ldots, G_{i,K}, y_i\})\) view can be written as

\[
\min_{W^k} \|\varphi(G_{i,k}) - D^k W^k\|_2^2 + \gamma \|W^k\|_1, \quad (5)
\]

where \(W^k \in R^M\) is the sparse representation coefficient vector for \(\varphi(G_{i,k})\) and \(\gamma\) is a regularization coefficient. Given the coefficient vector \(W^k\), (5) expresses how to sparsely reconstruct each of the \(K\) graphs of the bag \(X_i\). If we consider the sparse representations from all \(K\) views, the sparse representation can be written as

\[
\min_W \sum_{k=1}^K \left(\|\varphi(G_{i,k}) - D^k W\|_2^2 + \gamma \|W\|_1\right), \quad (6)
\]

where \(W = [W^1, \ldots, W^K] \in R^{M \times K}\) is the matrix obtained by stacking the \(K\) columns of coefficient vectors \(\{W^k\}\). Each row of the matrix \(W\) is the coefficient vector associated with a training bag over \(K\) views, while each column of the matrix \(W\) is the coefficient vector associated with all the \(M\) atoms in a dictionary over a view.

From the viewpoint of multi-task learning, the \(l_1\)-norm regularization in (6) is essentially defined on \(K\) independent sparse representations. It has two obvious drawbacks: (i) It does not take into account the relationships among the graph structures from different views. As a result, the solution does not benefit from any combination of multiple views. (ii) It uses all the atoms in the dictionaries independently and neglects the labels of them during the reconstruction procedure.

Yuan and Yan [29] show that reconstruction based on independent views and independent dictionary atoms is unreliable and sensitive to noise in many practical situations. They further point out that the reconstruction can benefit from prior knowledge about the relationships among dictionaries. To combine the strength of multiple views, we replace the \(l_1\)-norm regularization with a joint one by imposing a class-level sparsity-inducing \(\ell_2\)-norm regularization [29]. The intuition of this extension is that the introduced regularization can jointly select a few common classes to represent a bag over graph structures from multiple views in the task of bag classification. To this end, let \(W_j \in R^{M_j \times K}\) denote a sub-matrix of the coefficient matrix \(W\) corresponding to the dictionary \(D^j \in R^{d \times M}\) in the \(j\)th class. We now have \(W = [(W_1)^T, (W_2)^T, \ldots, (W_C)^T]^T \in R^{(M_1 + M_2 + \ldots + M_C) \times K}\). To combine the strength of all the dictionaries within the \(j\)th class over all views, we first apply the \(l_2\)-norm over \(W_j\) (i.e., \(\sum_{j=1}^C \|W_j\|_F\)) to promote sparsity to allow a small number of classes to be involved during the joint sparse representation. Thus, we arrive at the following class-level group joint sparse representation as

\[
\min_W \left\{\frac{1}{2} \sum_{k=1}^K \|\varphi(G_{i,k}) - D^k W^k\|_2^2 + \gamma \sum_{j=1}^C \|W_j\|_F\right\}. \quad (7)
\]

The class-specific multi-view joint sparse representation in (7) simultaneously considers both multiple views and class prior in reconstructing the bag \(X_i\).

4.2 Multi-View Dictionary Learning

According to the objective function in (7), we should first learn the dictionary \(D = \{D^1, D^2, \ldots, D^K\}\) from training data. Inspired by the success of the meta-face algorithm for face recognition [31] that learns a face dictionary for each class separately, we also learn the class-specific sub-dictionary \(D_j = \{D^1_j, D^2_j, \ldots, D^K_j\}\) for each class, separately.

The most important property of the class-specific sub-dictionary \(D_j = \{D^1_j, D^2_j, \ldots, D^K_j\}\) is self-expressiveness inner class [30] [31], meaning that the class-specific sub-dictionary provides a basis pool that can well sparsely represent all the training samples in the \(j\)th class over \(K\) views. Let \(\theta_j = \{X_i|y_i = j\}\) denote all the training bags in the \(j\)th class, and let \(P_i \in R^{M_j \times K}\) be the reconstruction coefficient matrix of the \(i\)th training bag in the \(j\)th class based on the dictionary \(D_j\). The objective function of the class-specific dictionary learning can be defined as [30] [31]:

\[
\arg \min_{P, D_j} \sum_{i=1}^{N_j} \left\{\frac{1}{2} \sum_{k=1}^K \|\varphi(G_{i,k}) - D^k_j [P_i]^k\|_2^2 + \gamma \|P_i\|_{2,1}\right\}, \quad (8)
\]

where \(P = \{P_1, P_2, \ldots, P_{N_j}\}\) is the list of coefficient matrices of all the training bags in the \(j\)th class, \([P_i]^k\) is the
the k^{th} column of P_i, indicating the coefficient vector associated with k^{th} view, and $||\bullet||_2$ is the ℓ_2-norm that applies the ℓ_2-norm over K views (each row of P_i) and the ℓ_1-norm to promote sparsity of P_i, that is $||P_i||_{2,1}=\sum_j||P_{ij}||_2$ ($\{P_{ij}\}$ denotes the j^{th} row of P_i). There are two problems in solving (8): (i) It is based on a non-linear mapping function $\varphi(\bullet)$ on graphs so that the dimension of the feature vector $\varphi(\bullet)$ can be infinitely large, and $\varphi(\bullet)$ may not be explicitly defined. The optimization of (8) is infeasible with any traditional algorithm, such as MOD or KSVD [32]. (ii) The dictionaries for different views D_j^k ($k = 1, 2, ..., K$) are completely independent. The information from multiple views is not effectively combined during dictionary learning.

Our solution to the first problem is inspired by Nguyen et al [33], who proved that the dictionary atoms lie within the subspace spanned by the input training samples. The dictionary D_j^k can be written as a linear combination of all the training bags as $D_j^k=V_j^kS_j^k$, where S_j^k is a linear transformation matrix. It is not necessary to learn the dictionary D_j^k directly. Instead, we now learn the matrix S_j^k. For the second problem, we set $S_j^1=S_j^2=...=S_j^K=S_j$ to ensure that the dictionaries from different views share a common transformation matrix S_j. Thus, the objective function (8) is rewritten as

$$\arg\min_{P,S_j} \sum_{i=1}^{N_j} \left\{ \frac{1}{2} \sum_{k=1}^{K} \left\| \varphi(G_i,k) - V_j^kS_j^k[P_i]_j \right\|_2^2 + \gamma \left\| P_i \right\|_{2,1} \right\}$$

(9)

In order to balance the sizes of dictionaries from different classes, we set $M_1=M_2=...=M_C=M'$, indicating that the number of atoms in the dictionary for each class is equal to M'. To avoid overfitting, the widely-used penalty regularization on the Frobenius norm of $S_j \in R^{N_j \times M'}$ with regularization coefficient ξ is added into (9), and the objective function becomes:

$$\arg\min_{P,S_j} \sum_{i=1}^{N_j} \left\{ \frac{1}{2} \sum_{k=1}^{K} \left\| \varphi(G_i,k) - V_j^kS_j^k[P_i]_j \right\|_2^2 + \gamma \left\| P_i \right\|_{2,1} + \xi \left\| S_j \right\|_F \right\}$$

(10)

The optimization of (10) contains two key steps: sparse representation and dictionary update. The implementation of the multi-view dictionary learning is summarized in Algorithm 2 and the details can be found in Appendix B.

The optimization involves the inner products of the vectors of the form $\varphi(\bullet)$ and the inner product in the Reproducing Kernel Hilbert Space (RKHS) can be defined using a kernel function. We use a graph kernel function proposed by Zhou [18]:

$$K_{\gamma}(G_h,G_q) = \sum_{h=1}^{n_h} \sum_{q=1}^{n_q} m_h,a m_q,b K_{\gamma}(x_h,a,x_q,b)$$

$$K_{\gamma}(x_h,a,x_q,b) = \exp(-\kappa \left\| x_h - a - x_q + b \right\|_2^2)$$

(11)

where $m_h,a=1/\sum_{b=1}^{n_b} M_h(a,u)$, $m_q,b=1/\sum_{a=1}^{n_a} M_q(b,u)$; M_h and M_q are the adjacency weight matrices for graphs G_h and G_q, respectively; and $m_h,a=1/\sum_{u=1}^{n_u} M_h(a,u)$ is a Gaussian radial basis function (RBF) kernel with a parameter κ.

Algorithm 2 Optimization algorithm for multi-view dictionary learning.

1. **Input:** the training bags in the j^{th} class, $\theta_j = \{X_i|y_i = j\}$, regularization coefficients γ and ξ, dictionary size M'.
2. **Initialize:** Initialize $t = 0$, initialize $[S_j]_t \in R^{N_j \times M'}$ as a normalized random matrix.
3. **repeat**
 1. **Sparse Representation Step:**
 1. For each $X_i \in \theta_j$
 2. Compute P_i by solving (10) with fixed $[S_j]_t$.
5. **Dictionary Update Step:**
 1. Set $t = t + 1$
 2. For $k = 1 \rightarrow K$, compute $P^k = \{[P_{1,i}]^k, [P_{2,i}]^k, ..., [P_{N_j,i}]^k\} \in R^{M \times N_j}$
 3. Update $[S_j]_t$ by solving (10).
 4. until convergence of $[S_j]_t$
6. **Output:** $S_j = [S_j]_t$.

5 Classification based on M2IL

After obtaining the dictionary $D = \{D^1, D^2, ..., D^K\}$ using the multi-view dictionary learning, given a test bag with K graphs and an unknown label $(X_T, \Gamma_T = \langle G_{T,1}, ..., G_{T,K}, y_T \rangle)$, we can obtain the coefficient matrix W for it by solving (7) with replacing $\varphi(G_{T,k})$ with $\varphi(G_{T,k})$. The details of optimization of (7) are given out in Appendix C. Then the reconstruction residual $E_j(X_T)$ of any test bag X_T in class $j \in \{1, 2, ..., C\}$ can be computed as:

$$E_j(X_T) = \sum_{k=1}^{K} \left\| \varphi(G_{T,k}) - D_j^kW_j^k \right\|_2$$

$$= \sum_{k=1}^{K} \left[1 + [S_jW_j^k]^T K_{V_j}^kV_j W_j^k - 2[W_j^k]^T K_{V_j}^kV_j S_j \right]$$

(12)

where $K_{V_j}^k$ is a kernel matrix between the test bag and all the training bags in class j from the k^{th} view, and $K_{V_j}^k$ is a kernel matrix among all the training bags in class j from the k^{th} view. The final class y_T that is assigned to the test bag X_T is the one that gives the smallest reconstruction residual:

$$y_T = \arg\min_{j \in \{1,2, ..., C\}} (E_j(X_T)).$$

6 Experiments

This section conducts extensive experiments to evaluate the proposed M2IL algorithm in many practical applications. Further analyses and results are presented in Appendix E.

6.1 Parameter Selection

According to the analysis in Section 3.2, we select 4 parameter settings $<\lambda_1, \varepsilon_1 >, <\lambda_2, \varepsilon_2 >, <\lambda_3, \varepsilon_3 >$; $<\lambda_4, \varepsilon_4 >$ corresponding to 4 typical graph structures for each bag. Specially, the graph generated by the proposed sparse ε-graph model with $<\lambda_1, \varepsilon_1 >$ has independent vertices (denoted as “View 1”); the graph with $<\lambda_2, \varepsilon_2 >$ is ε-graph with the parameter ε_2 (denoted as “View 2”); the graph with $<\lambda_3, \varepsilon_3 >$ is ℓ^1-graph with the parameter ε_3. The parameter settings for λ_1, ε_1, λ_2, ε_2, λ_3, ε_3, λ_4, ε_4 are respectively $<1, 10 >$, $<0.0001, 0.0001 >$, $<0.01, 2 >$, $<0.1, 0.1 >$. The detailed parameter settings are shown in Table 1.
6.2 Experiments on Benchmark Classification Tasks

The first experiment is classification on 5 benchmark data, Musk1, Musk2, Elephant, Fox, and Tiger, since they have been extensively used in the studies of MIL. Musk1 contains 47 positive and 45 negative bags, Musk2 contains 39 positive and 63 negative bags, and each of the other three data sets contains 100 positive and 100 negative bags. More details of these five data sets can be found in [1] [14].

We conduct ten-fold cross validations ten times using the procedure described in [18] on these five sets and compare the performance of the M2IL with some leading MIL algorithms, including MI-SVM, mi-SVM [14], MissSVM [17], DD [8], miGraph [18], EM-DD [9], MILIS [7], and MILES [2]. The dictionary size M' is selected from $\{20, 40, 60, 80\}$. The comparisons based on average accuracy and standard deviation values are given in Table 1. The best one for each set is shown in bold. The results of all the other methods are the best results reported in the literature [18], the standard deviations and the results of some algorithms on some sets are not available. The table shows that the M2IL achieves the best performance among all evaluated algorithms on Musk1, Elephant, Fox, and Tiger sets, and comparable performance to MILIS on Musk2. In addition, we notice that the proposed M2IL has lower standard deviations, indicating good stability. From these results, we believe that exploiting context among instances from multiple views can improve the classification accuracy and stability.

6.3 Experiment on Image Classification

The second experiment involves image classification on the COREL image set [3]. The COREL set includes two subsets: COREL-1000 and COREL-2000 that contain 10 and 20 categories of COREL images, respectively. Each category of the two subsets has 100 images. Each image is regarded as a bag, and the regions of interest (ROIs) in the image are regarded as instances described by 9 features [3]. We use the same experimental routine as that described in [3]. For each data set, we randomly partition the images within each category in half, and use one subset for training and leave the other one for testing. The experiment is repeated five times with five random splits, and the average results are recorded. The dictionary size M' in these two sets is selected from $\{20, 40, 60, 80\}$.

The overall accuracy and the 95% confidence intervals are provided in Table 2. For reference, the table also shows the best results of some other MIL methods reported in the literatures, including MI-SVM [14], mi-SVM [14], MissSVM [17], DD-SVM [3], miGraph [18], MILIS [7], MILES [2], and kmeans-SVM [34]. Table 2 shows that the M2IL outperforms all the other algorithms on this set. It shows that integration of multiple views, as in M2IL, is a good method for improving image classification performance.

6.4 Experiment on Image Retrieval

The third experiment evaluates M2IL's performance using an image retrieval task on the SIVAL set created by [35]. The set consists of 25 different objects placed in 10 different scenes. There are 6 different images taken for each object-scene pair, and a total of 1500 images in the set. There is one and only one target object in each image. All the images have been segmented into regions [35]. Each region is represented by a 3D visual feature vector, including the color and texture features, as well as the color and texture differences features [35].

The area under the receiver-operating characteristic (ROC) curve (AUC) [36] [37] is used in this experiment. As in [35], for each category, we use the “one-versus-the-rest” strategy to evaluate the performance. We randomly select 8 positive and 8 negative images to form the training set and let the remaining 1484 images form the test set. The procedure is repeated 30 times with different training samples selections. The dictionary size M' in this set is selected from $\{20, 40, 60\}$. The average AUC values with 95% confidence interval of the 30 rounds of independent tests for the 25 categories are reported in Table 3. For comparison, we also list the results of some leading MIL-based CBIR methods, including ACCIO! [35], MILES [2], DD-SVM [3], EC-SVM [36] and MISSL [37]. The performance of the first 4 algorithms is from [36] and the performance of MISSL is from [37].
slightly lower than that of the EC-SVM method. However, the M^2IL outperforms the existing methods with obvious performance improvements on the other 19 categories. The higher AUC values (larger than 90) of EC-SVM on the 6 categories indicate that the retrieval task on these 6 categories is relatively easier than the other categories. Besides obtaining comparable performance on the easy categories, the proposed M^2IL also achieve much better performance on the difficult categories. This performance improvement can be ascribed to the integration of the multi-view cues in the categories.

TABLE 3
Average AUC values with 95% confidence interval over 30 rounds of test on SIVAL image set.

<table>
<thead>
<tr>
<th>Category</th>
<th>M^2IL</th>
<th>EC-SVM</th>
<th>MIILES</th>
<th>ACCIO!</th>
<th>MISSL</th>
<th>DD-SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FabricSoftenerBox</td>
<td>95.0±1.3</td>
<td>97.9±0.3</td>
<td>97.1±0.7</td>
<td>86.6±2.9</td>
<td>97.7±0.3</td>
<td>95.7±1.8</td>
</tr>
<tr>
<td>WD40Can</td>
<td>93.8±1.7</td>
<td>94.3±0.6</td>
<td>88.1±2.2</td>
<td>82.0±2.4</td>
<td>93.9±0.9</td>
<td>86.3±2.6</td>
</tr>
<tr>
<td>CokeCan</td>
<td>92.8±0.8</td>
<td>94.6±0.8</td>
<td>92.4±0.8</td>
<td>81.5±3.4</td>
<td>93.3±0.9</td>
<td>94.0±0.9</td>
</tr>
<tr>
<td>FeltFlowerRug</td>
<td>93.4±1.0</td>
<td>94.2±0.8</td>
<td>93.9±0.7</td>
<td>86.9±1.6</td>
<td>90.5±1.1</td>
<td>91.4±0.7</td>
</tr>
<tr>
<td>AjaxOrange</td>
<td>93.7±2.3</td>
<td>93.8±2.1</td>
<td>90.2±2.3</td>
<td>77.0±3.4</td>
<td>90.0±2.1</td>
<td>84.1±3.2</td>
</tr>
<tr>
<td>CheckeredScarf</td>
<td>94.6±0.7</td>
<td>96.9±0.5</td>
<td>93.7±1.2</td>
<td>90.8±1.5</td>
<td>88.9±0.7</td>
<td>96.2±0.7</td>
</tr>
<tr>
<td>CandleWithHolder</td>
<td>89.7±0.9</td>
<td>88.1±1.1</td>
<td>84.0±2.3</td>
<td>68.8±2.3</td>
<td>84.5±0.8</td>
<td>77.3±2.8</td>
</tr>
<tr>
<td>GoldMedal</td>
<td>88.9±1.2</td>
<td>87.5±1.4</td>
<td>80.7±2.9</td>
<td>77.6±2.6</td>
<td>83.4±2.7</td>
<td>73.4±4.1</td>
</tr>
<tr>
<td>SpriteCan</td>
<td>87.7±1.5</td>
<td>85.1±1.2</td>
<td>80.4±2.0</td>
<td>71.9±2.5</td>
<td>81.2±1.5</td>
<td>81.1±2.4</td>
</tr>
<tr>
<td>SmileyFaceDoll</td>
<td>88.3±2.1</td>
<td>84.6±1.9</td>
<td>77.5±2.6</td>
<td>77.4±3.3</td>
<td>80.7±2.0</td>
<td>69.3±3.9</td>
</tr>
<tr>
<td>GreenTeaBox</td>
<td>89.4±2.3</td>
<td>86.9±2.2</td>
<td>91.2±1.7</td>
<td>87.3±3.0</td>
<td>80.4±3.5</td>
<td>86.9±3.1</td>
</tr>
<tr>
<td>DirtyRunningShoe</td>
<td>91.4±1.8</td>
<td>90.3±1.3</td>
<td>85.3±1.7</td>
<td>83.7±1.9</td>
<td>78.2±1.6</td>
<td>87.3±1.4</td>
</tr>
<tr>
<td>DataMiningBook</td>
<td>79.4±2.6</td>
<td>75.0±2.4</td>
<td>71.1±3.2</td>
<td>74.7±3.4</td>
<td>77.3±4.3</td>
<td>68.8±3.7</td>
</tr>
<tr>
<td>BlueScrunch</td>
<td>78.3±2.1</td>
<td>74.1±2.4</td>
<td>72.6±2.5</td>
<td>69.5±3.4</td>
<td>76.8±5.2</td>
<td>62.1±2.9</td>
</tr>
<tr>
<td>DirtyWorkGloves</td>
<td>85.1±1.7</td>
<td>83.0±1.3</td>
<td>77.1±3.1</td>
<td>65.3±1.5</td>
<td>73.8±3.4</td>
<td>72.3±2.2</td>
</tr>
<tr>
<td>StripedNotebook</td>
<td>78.9±2.0</td>
<td>75.6±2.3</td>
<td>68.7±2.4</td>
<td>70.2±3.2</td>
<td>70.2±2.9</td>
<td>67.3±3.0</td>
</tr>
<tr>
<td>CardboardBox</td>
<td>87.3±1.9</td>
<td>85.6±1.6</td>
<td>81.2±2.7</td>
<td>67.9±2.2</td>
<td>69.2±2.9</td>
<td>73.0±3.0</td>
</tr>
<tr>
<td>JuliesPot</td>
<td>84.3±2.3</td>
<td>67.3±3.3</td>
<td>78.7±2.9</td>
<td>79.2±2.6</td>
<td>86.0±5.2</td>
<td>74.3±3.0</td>
</tr>
<tr>
<td>TranslucentBowl</td>
<td>79.9±2.5</td>
<td>74.2±3.2</td>
<td>73.2±3.1</td>
<td>77.5±2.3</td>
<td>63.2±5.2</td>
<td>67.3±2.7</td>
</tr>
<tr>
<td>Banana</td>
<td>74.2±2.7</td>
<td>69.1±2.9</td>
<td>68.1±3.1</td>
<td>65.9±3.3</td>
<td>62.4±4.3</td>
<td>62.2±1.6</td>
</tr>
<tr>
<td>RapBook</td>
<td>76.2±2.1</td>
<td>68.6±2.3</td>
<td>61.7±2.4</td>
<td>62.8±1.7</td>
<td>61.3±2.8</td>
<td>66.2±2.0</td>
</tr>
<tr>
<td>WoodRollingPin</td>
<td>73.4±1.9</td>
<td>66.9±1.7</td>
<td>62.1±2.5</td>
<td>66.7±1.7</td>
<td>51.6±2.6</td>
<td>64.8±1.4</td>
</tr>
<tr>
<td>GlazedWoodPot</td>
<td>76.4±2.4</td>
<td>68.0±2.8</td>
<td>68.2±3.1</td>
<td>72.7±2.3</td>
<td>51.5±3.3</td>
<td>68.2±3.4</td>
</tr>
<tr>
<td>Apple</td>
<td>76.9±3.1</td>
<td>68.0±2.6</td>
<td>64.5±2.5</td>
<td>63.4±3.4</td>
<td>51.1±4.4</td>
<td>62.8±2.3</td>
</tr>
<tr>
<td>LargeSpoon</td>
<td>75.8±1.7</td>
<td>61.3±1.8</td>
<td>58.2±1.6</td>
<td>57.6±2.3</td>
<td>50.2±2.1</td>
<td>59.7±1.8</td>
</tr>
</tbody>
</table>

| Average | 85.0 | 81.3 | 78.4 | 74.6 | 74.8 | 75.7 |

6.5 Experiment on Horror Video Recognition

The final experiment is to test the M^2IL on a video recognition task. We investigate this task using the M^2IL on a horror video set [38]. This set contains 400 horror movie scenes and 400 non-horror movie scenes in total. Each movie scene is viewed as a “bag” and divided into a series of shots via shot detection. The key frame of each shot is extracted as an “instance” in the bag. Each frame is represented as a 153D feature vector, including color feature, audio feature, and affective feature [38].

The dictionary size M of this set is selected from {100, 200, 300}. For each algorithm, the average precision, recall, F-measure [38], and corresponding standard deviation values of ten times 10-fold cross validation are used as the final performance as shown in Table 4. The results of the MI-SVM, mi-SVM [14], CKNN [11], EM-DD [9] in Table 4 are from [38] by Wang et al. The standard deviations of these 4 algorithms are not reported in [38].

The results in Table 4 show that the M^2IL and miGraph methods outperform the other methods, which further indicates that the context is useful in horror video recognition. The fact that performance of M^2IL is much better than the performance of miGraph and MI-kernel shows that horror scene recognition can benefit from considering context from multiple views. According to this experiment, we can find that the multi-view contextual structures embedded in the M^2IL can effectively express the relations among frames in a video.

6.6 Single View vs. Multiple Views

We use 4 views in the M^2IL (denoted as “View_All” here) in previous experiments. The M^2IL can also use with only one view. We test such single view-based M^2IL methods using “View_1”, “View_2”, “View_3”, and “View_4”, respectively. The experimental settings and routines of these four single view-based methods are the same as the M^2IL with all views and the comparison results are shown in Figure 3. We can find that: (i) No single view consistently achieves obviously better performance than the others. It again indicates that it is difficult to well represent the relations among instances in a bag using a fixed structure for different tasks. (ii) The M^2IL integrating all views always outperforms the others, showing that considering multiple views can effectively improve the performance of MIL.

7 Conclusion

This paper proposes a multi-view multi-instance learning (M^2IL) algorithm where the “multi-view” is defined as a series of graphs to represent the inherent contextual structures among instances in a bag. We propose a sparse ε-graph model that can generate multiple undirected graphs
for different parameter values to represent different inner contextual structures among instances in a bag. Then all of these contextual structures are simultaneously considered under a proposed multi-view joint sparse representation framework for bag classification. A novel multi-view dictionary learning framework is also presented to improve the performance and robustness of the M2IL. Experimental results and analyses show that integrating multiple inner contextual structures from different views can improves the performance of MIL.

ACKNOWLEDGEMENTS

This work is partly supported by the Natural Science Foundation of China (Grant Nos. 61370038, U6147241, 61571045), the 973 basic research program of China (Grant No. 2014CB349303), the Strategic Priority Research Program of the CAS (Grant No. XDB02070003), and the CAS External cooperation key project. Bing Li is also supported by Youth Innovation Promotion Association, CAS.

REFERENCES
