BIROn - Birkbeck Institutional Research Online

    Scene segmentation based on IPCA for visual surveillance

    Yuan, Y. and Pang, Y. and Pan, J. and Li, Xuelong (2009) Scene segmentation based on IPCA for visual surveillance. Neurocomputing 72 (10-12), pp. 2450-2455. ISSN 0925-2312.

    Full text not available from this repository.


    This paper proposes a simple scene segmentation method based on incremental principal component analysis (IPCA). Instead of segmenting moving objects in a conventional frame by frame manner, the newly proposed method segments a scene into unchanged background zone (UBZ) and moving object zone (MOZ). As a result, moving objects normally appear in MOZs rather than UBZs, and therefore, detection and behaviours analysis can be performed in MOZs. In visual communication, UBZs do not need to be encoded and transmitted. Moreover, if an object is in UBZs, it can be linked to abnormal events. Experimental results demonstrate the contribution of the proposed method.


    Item Type: Article
    Keyword(s) / Subject(s): Incremental principal component analysis, visual surveillance, video surveillance, scene segmentation
    School: School of Business, Economics & Informatics > Computer Science and Information Systems
    Depositing User: Administrator
    Date Deposited: 07 Feb 2011 12:04
    Last Modified: 11 Oct 2016 15:27


    Activity Overview

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item