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Abstract

This paper proposes a model which allows for discrete stochastic breaks in the time-

varying transition probabilities of Markov-switching models with autoregressive dy-

namics. An extensive simulation study is undertaken to examine the properties of the

maximum-likelihood estimator and related statistics, and to investigate the implica-

tions of misspecification due to unaccounted changes in the parameters of the Markov

transition mechanism. An empirical application that examines the relationship be-

tween Argentinian sovereign bond spreads and output growth is also discussed.
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1 Introduction

Since the publication of Diebold, Lee, and Weinbach (1994) and Filardo (1994), time-series

models with parameters which are subject to changes governed by a finite-state Markov

chain with time-varying transition probabilities have attracted considerable attention in

the literature. Applications involving such models can be found in many areas of economics

and finance. Examples include, among many others, the study of business-cycle fluctua-

tions (Filardo (1994); Filardo and Gordon (1998); Ravn and Sola (1999)), exchange rates

(Diebold, Lee, and Weinbach (1994); Engel and Hakkio (1996)), interest-rate dynamics

(Bekaert and Harvey (1995); Gray (1996)), asset allocation (Bekaert and Harvey (1995);

Ang and Bekaert (2002); Guidolin and Timmermann (2006); Guidolin and Timmermann

(2008)), asset returns (Hall, Psaradakis, and Sola (1997); Schaller and van Norden (1997)),

and financial/exchange-rate crises (Jeanne and Masson (2000); Peria (2002); Alvarez-Plata

and Schrooten (2006); Brunetti, Scotti, Mariano, and Tan (2008)).

A question which is often addressed in empirical studies using regime-switching models

with time-inhomogeneous Markov transitions is which variables help to predict the tran-

sitions between different regimes (a period of relative calm and a financial crisis, say). In

such applications the sample typically includes data from all regimes and one of the objects

of the exercise is to separate the regimes on the basis of sample information. An implicit

assumption usually made is that the association between the information variables that

enter in the transition probabilities and the dependent variable of the model is not altered

by the regime changes, so that the parameters associated with the transition probabilities

are time invariant.

However, this may not necessarily be a plausible assumption in some empirical appli-

cations. Ravn and Sola (1999), for instance, observed that a change in the definition of M2

money stock in the U.S., and therefore in the correlation between M2 and output growth,

had a dramatic impact on regime separation. When they considered a short sample which

ended before the change in the definition of M2, they found the separation of regimes into

booms and recessions to be consistent with the National Bureau of Economic Research

(NBER) dating of business-cycle peaks and troughs, and M2 growth to have a statistically
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significant effect on the transition probabilities. When the sample was extended, M2 no

longer had a significant effect on the transition probabilities and the separation of regimes

was unrelated to the NBER dating. In view of the fact that in many applications the

reason for including exogenous variables in the transition mechanism is to use them as

leading indicators of a given event (e.g., a financial crisis), the problem just described

is likely to be the rule rather than the exception. As a result, it is likely that poten-

tial leading indicators may be found in applications to have no significant effect on the

transition probabilities, or may be found to be significant because of the strength of their

covariation with the dependent variable after the event (which could not justify their use

as leading indicators of the event). In addition, it is likely that the in-sample separation

of the regimes will be adversely affected and lead to misleading conclusions.

The contribution of this paper is to propose a regime-switching model which explicitly

allows for random breaks in the time-inhomogeneous transition probability matrices of the

hidden Markov regime sequence. We conjecture that a change in the (nonlinear) relation-

ship between the variable being modelled and the information variables that determine

the evolution of the transition matrices, is likely to result in changes in the covariance

between these variables as well as in the relationship between the information variables

and the transition probability matrices. Therefore, we propose to consider a multivari-

ate model (e.g., a vector autoregression with Markov regimes) in which both the noise

covariance matrix and the transition functions are subject to random breaks driven by

an exogeneous finite-state Markov process. In many applications in which an informa-

tion variable (e.g., money supply) is used as a leading indicator (e.g., of an exchange-rate

crisis), although the covariation between the information variable and the main variable

of interest (e.g., exchange rate) is likely to have changed over the sample period, the po-

tential resulting changes in the parameters associated with the transition mechanism and

the noise covariance matrix are rarely taken into account. The principal idea behind our

modelling strategy is to use such breaks to identify changes in the (indirect) relationship

between the time series of interest and the transition information variable(s). Our simula-

tion analysis demonstrates that ignoring breaks of this type has significant adverse effects
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on likelihood-based statistical inference.

The remainder of the paper is organized as follows. Section 1 recalls the structure of

a typical Markov-switching autoregressive model and motivates our modelling approach.

Section 2 introduces and discusses the proposed multivariate model. Section 3 contains

a simulation study that assesses the properties of estimators and test statistics in the

presence of parameter changes in the Markov transition functions. Section 4 presents

an illustrative empirical application that analyzes the relationship between Argentinian

sovereign bond spreads and output growth. Section 5 summarizes and concludes.

2 Markov-Switching Models and Motivation

A prototypical Markov-switching autoregressive model for a univariate time series {Yt} is
given by

Yt = μ(St) + φ0yt−1 + σ(St)εt, t = 1, 2, . . . , (1)

where yt−1 := (Yt−1, . . . , Yt−k)0 for some positive integer k, φ := (φ1, . . . , φk)
0 is an un-

known parameter, {εt} are independent, identically distributed (i.i.d.) standard normal
random variables, and {St} are random variables which take values in the set S := {0, 1}
and indicate the unobservable state, or regime, prevailing at each point t. Here and in the

sequel, we write

b(V ) := b0 + (b1 − b0)I{V=1},

for any real-valued quantity b(V ) whose values depends on the realization of an S-valued

random variable V , I{·} being an indicator variable (with I{A} = 1 if condition A is satisfied

and I{A} = 0 otherwise). The regime-determining variables {St} in (1) are assumed to
be independent of {εt} and to form a time-inhomogeneous Markov chain with transition

probabilities

P(St = 0|St−1 = 0, Zt−1) =: qt = Λ
¡
αq + βqZt−1

¢
, (2)

P(St = 1|St−1 = 1, Zt−1) =: pt = Λ(αp + βpZt−1). (3)

where Λ(u) := 1/(1 + e−u) is the standard logistic function and Zt−1 is an exogenous

variable on which the transition probabilities depend (see, e.g., Diebold, Lee, andWeinbach
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(1994)). Needless to say, such a model may be straightforwardly generalized to allow

for state-dependent autoregressive coefficients φ, more than two regimes, and more than

one information variable in (2)—(3); furthermore, Λ(·) may be replaced by some other
continuous, monotonic function whose range lies in the interval [0, 1].

Under the formulation in (1)—(3), the observable variable Zt−1 influences the prob-

ability with which {Yt} switches between the two states. This allows for a nonlinear

relationship between Yt and Zt, since Zt−1 affects Yt indirectly through the transition

probabilities pt and qt. Furthermore, the effect of Zt−1 on the transition probabilities

need not be symmetric, in the sense that βq and βp are not required to be equal or have

the same sign. A Markov-switching autoregressive model with a time-invariant transition

mechanism is, of course, a special case of (1)—(3) with βq = βp = 0.

An important issue which has not received much attention in the literature concerns the

effects on inference of potential changes in the parameters associated with the time-varying

transition probabilities. For example, a number of empirical studies have documented that

several monetary relationships display instability because of changes in monetary policy

and in innovations in the financial sector (see, e.g., Ravn and Sola (1999)). Such changes

may lead to instability in the parameters associated with the transition probabilities and

may have deleterious effects on inference if they are not accounted for.

A simple set-up, investigated in Psaradakis, Sola, Spagnolo, and Spagnolo (2013),

allows the Markov chain {St} in (1) to be governed by the transition probabilities

qt = Λ
¡
αq + βq,tZt−1

¢
, pt = Λ

¡
αp + βp,tZt−1

¢
, (4)

where, for some fixed integer t∗ > 1,

βi,t = βi + (β
∗
i − βi)I{t−t∗>0}, i = p, q, t > 1. (5)

Under the formulation (4)—(5), the relationship between the transition probabilities and

the variable Zt−1 undergoes an one-off change at t = t∗. In such a case, the transition

mechanism (2)—(3) is misspecified when β∗q − βq 6= 0 and/or β∗p − βp 6= 0, and inference

on the parameters of the model and the hidden regimes is affected adversely if (2)—(3) is

maintained erroneously.
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A more general formulation, which can accommodate stochastic changes in the tran-

sition probabilities at unspecified dates, may be obtained by allowing the parameters

(αq, αp, βq, βp) in (2)—(3) to vary as a time-homogeneous, finite-state Markov chain. Un-

der such a formulation, the relationship between the transition probabilities of {St} and
the variable Zt−1 undergoes discrete random changes. A multivariate model which allows

for such behavior is discussed next.

3 Modelling Breaks in the Markov Transition Mechanism

For simplicity and clarity of exposition, we will present and discuss in the sequel a bivariate

model. The model aims to capture changes in the relationship between Yt and Zt by

conjecturing that such changes would manifest as changes in the covariance structure

between Yt and Zt and in the transition mechanism of {St}. This covariance structure,
as well as the time-varying transition probabilities of {St}, are then modelled as being
subject to random breaks governed by an exogenous finite-state Markov process.

3.1 Model

Let {vt} be an unobservable sequence of i.i.d. random vectors having a bivariate standard
normal distribution and {ξt := (St,Xt)

0} be an unobservable sequence of random vectors

taking values in S× S. We consider the following model for the observable bivariate time
series {wt := (Yt, Zt)

0}:

Yt = μ(St) + φ0yt−1 + σ(St)εyt, t = 1, 2, . . . , (6)

Zt = μz +ψ0zt−1 + σzεzt, t = 1, 2, . . . , (7)

where yt−1 := (Yt−1, . . . , Yt−k)0 and zt−1 := (Zt−1, . . . , Zt−m)0 for some positive integers k

and m, φ := (φ1, . . . , φk)
0 and ψ := (ψ1, . . . , ψk)

0 are unknown parameters, and the noise

εt := (εyt, εzt)
0 satisfies

εt = R
1/2
t vt, (8)

with
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Rt =

⎡⎣ 1 ρ(Xt)

ρ(Xt) 1

⎤⎦ , (9)

and |ρi| < 1, i ∈ S. The model is completed by postulating that, conditionally on {Xt},
{St} is a time-inhomogeneous Markov chain whose transition probabilities depend on
(Zt−1,Xt) and have the following functional form:

P (St = 0|St−1 = 0, Zt−1,Xt) =: qt(Xt) = Λ
¡
αq(Xt) + βq(Xt)Zt−1

¢
, (10)

P (St = 1|St−1 = 1, Zt−1,Xt) =: pt(Xt) = Λ
¡
αp(Xt) + βp(Xt)Zt−1

¢
. (11)

In addition, {Xt} is a time-homogeneous Markov chain with transition probabilities

P(Xt = 0|Xt−1 = 0) = qx, P(Xt = 1|Xt−1 = 1) = px. (12)

Finally, {ξt}, {vt} andw0 := (y00, z00)0 are independent of each other, andXt is independent

of {Sr : r < t} for all t.
Under the formulation (6)—(12), the covariance structure of wt, as captured by the

covariance matrix Rt, is subject to Markov changes governed by {Xt}. At the same time,
the transition mechanism that governs the Markov process {St} driving the changes in the
conditional mean and variance of {Yt} is also dependent upon the state of nature implied
by {Xt}. The model may, of course, be generalized to allow for more than two states

and/or variables, as well as state-dependent parameters (φ,ψ, μz, σz).

3.2 Estimation and Inference

Given data w0,w1, . . . ,wT , statistical inference in the model defined by (6)—(12) can be

carried out by using a recursive algorithm analogous to that discussed in Hamilton (1994,

pp. 692—694). This entails iterating on the equations

δt|t = [10(δt|t−1 ¯ ηt)]
−1(δt|t−1 ¯ ηt), t = 1, 2, . . . , T, (13)

and

δt+1|t = Ptδt|t, t = 1, 2, . . . , T, (14)
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where

δt|τ :=

⎡⎢⎢⎢⎢⎢⎣
P[ξ0t = (0, 0)|Fτ ;θ]
P[ξ0t = (0, 1)|Fτ ;θ]
P[ξ0t = (1, 0)|Fτ ;θ]
P[ξ0t = (1, 1)|Fτ ;θ]

⎤⎥⎥⎥⎥⎥⎦ , ηt :=

⎡⎢⎢⎢⎢⎢⎣
f00(wt|ξ0t = (0, 0),Ft−1;θ)

f01(wt|ξ0t = (0, 1),Ft−1;θ)

f10(wt|ξ0t = (1, 0),Ft−1;θ)

f11(wt|ξ0t = (1, 1),Ft−1;θ)

⎤⎥⎥⎥⎥⎥⎦ ,

and

Pt :=

⎡⎢⎢⎢⎢⎢⎣
qt0qx qt0(1− px) (1− pt0)qx (1− pt0)(1− px)

qt1(1− qx) qt1px (1− pt1)(1− qx) (1− pt1)px

(1− qt0)qx (1− qt0)(1− px) pt0qx pt0(1− px)

(1− qt1)(1− qx) (1− qt1)px pt1(1− qx) pt1px

⎤⎥⎥⎥⎥⎥⎦ .

Here, θ denotes the (column) vector of all parameters of the model, Ft := {wr : r 6 t} is
the information set available at time t, fij(wt|ξ0t = (i, j),Ft−1;θ) is the conditional density

of wt given ξ0t = (i, j), i, j ∈ S, and Ft−1, 1 is a four-dimensional all-ones column vector,

and ¯ denotes element-wise multiplication.
Note that, under the Gaussianity assumption for vt, fij(wt|ξ0t = (i, j),Ft−1;θ), i, j ∈ S,

is the bivariate normal density with mean vector

¡
μ0 + (μ1 − μ0)i+ φ0yt−1, μz +ψ0zt−1

¢0
and covariance matrix⎡⎣ σ20 + (σ

2
1 − σ20)i σz{σ0 + (σ1 − σ0)i}{ρ0 + (ρ1 − ρ0)j}

σz{σ0 + (σ1 − σ0)i}{ρ0 + (ρ1 − ρ0)j} σ2z

⎤⎦ .
Also note that one may think of the model (6)—(12) as allowing for four Markov states,

which may be indexed by the state-indicator variable

ζt :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if ξ0t = (0, 0),

2, if ξ0t = (0, 1),

3, if ξ0t = (1, 0),

4, if ξ0t = (1, 1).

Then, {Pt} may be regarded as the time-inhomogeneous transition probability matrices
of the Markov chain {ζt}, the (i, j)-th element of Pt being the transition probability

P
¡
ζt = i|ζt−1 = j

¢
, for i, j ∈ {1, 2, 3, 4}.

8



The algorithm based on the iteration of (13)—(14) yields as a by-product the conditional

log-likelihood of (w1, . . . ,wT ), given (w0, ξ0):

c(θ) :=
TX
t=1

ln[10(δt|t−1 ¯ ηt)]. (15)

The maximum-likelihood (ML) estimator bθ of the parameter θ can then be obtained as
the maximizer of (15) with respect to θ. Furthermore, inference about the hidden regimes

{ξt} may be made on the basis of the smoothed state probabilities δt|T or the filtered state
probabilities δt|t (evaluated at θ = bθ).

Asymptotic results relating to consistency and local asymptotic normality of the ML

estimator of the parameters of Markov-switching autoregressive models with time-varying

transition probabilities were recently established in Pouzo, Psaradakis, and Sola (2016).

Under the assumption of correct model specification and suitable stationarity, ergodicity,

identification and moment conditions, the usual asymptotic theory for the ML estimator

holds in a model like (6)—(12). In particular, bθ is consistent and asymptotically efficient for
the true parameter θ0 (say), and [−c̈(bθ)]1/2(bθ − θ0) has a Gaussian limiting distribution
with zero mean vector and identity covariance matrix, as T tends to infinity, where c̈(bθ)
is the Hessian matrix of c(θ) evaluated at θ = bθ. In the presence of specification errors,
and under certain regularity conditions, bθ is consistent for the parameter that provides
the best approximating model, in the sense of minimizing the Kullback—Leibler divergence

from the true data-generating process (DGP).

4 Monte Carlo Simulations

Simulation experiments are carried out to assess the properties of the ML estimator and of

related test statistics both in correctly specified models and in misspecified models which

ignore changes in the parameters associated with the Markov transition functions. We

begin by describing the experimental design and simulations, and proceed to report and

discuss the results of the experiments.
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4.1 Experimental Design and Simulation

The DGP used in the experiments is the bivariate model defined by (6)—(12), with first-

order dynamics (k = m = 1) and the following parameter values:

μ0 = 3, μ1 = 0.5, φ = 0.9, σ0 = 0.5, σ1 = 1,

μz = 0.1, ψ = 0.8, σz = 1, ρ0 = 0.8, ρ1 = −0.8,

px = qx = 0.95, αp0 = αp1 = 1, αq0 = αq1 = 2,

βq0 = −1.5, βq1 = 3, βp0 = 2.5, βp1 = −5.

Figure 1 shows the regime-specific marginal densities of wt, that is, bivariate normal

densities having mean vector µ
μ0 + (μ1 − μ0)i

1− φ
,

μz
1− ψ

¶0
and covariance matrix⎡⎢⎢⎢⎢⎣

σ20 + (σ
2
1 − σ20)i

1− φ2
{ρ0 + (ρ1 − ρ0)j}

s
{σ20 + (σ21 − σ20)i}σ2z
(1− φ2)(1− ψ2)

{ρ0 + (ρ1 − ρ0)j}
s
{σ20 + (σ21 − σ20)i}σ2z
(1− φ2)(1− ψ2)

σ2z
1− ψ2

⎤⎥⎥⎥⎥⎦ ,
with i, j ∈ S.

In each of 1000 Monte Carlo replications, we generate 100 + T data points for wt,

with T ∈ {100, 200, 400, 800, 1600, 3200, 6400} and w00 = (0.5, 0.40118), but only the last
T data points of each realization are used in order to attenuate start-up effects. For each

realization, we compute ML estimates of the parameters of three bivariate models for

(Yt, Zt): (i) a model defined by (6)—(9), with ρ(Xt) = ρ for all t, coupled with the state-

independent Markov-switching mechanism associated with (2)—(3) (model M-1); (ii) the

model defined by (6)—(12) with both {St} and {Xt} treated as unobservable (model M-2);
(iii) a model defined by (6)—(12), but with the additional assumption that the realization

of the Markov process {Xt} driving the changes in the transition probabilities qt(Xt) and

pt(Xt) of {St} and the covariance matrix Rt is observable (model M-3). We set k = m = 1

in all three cases.
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Model M-1 is evidently misspecified since it ignores the breaks in the covariance matrix

of εt and in the transition probabilities of {St}. Model M-3 accounts for the Markov
breaks in qt(Xt), pt(Xt) and ρ(Xt) correctly, but an observable regime sequence {Xt} is
not typically available in situations involving real-world data. However, a comparison of

parameter estimates obtained from model M-3 and the empirically relevant model M-2

will reveal whether the ML estimator suffers as a result of the additional randomness

introduced by the Markov process {Xt}.
For all three models, the maximizer of the relevant ML objective function is found

by means of a quasi-Newton algorithm that approximates the Hessian according to the

Broyden—Fletcher—Goldfarb—Shanno (BFGS) update with numerically computed deriva-

tives. A grid of seven initial values for each parameter is used to initialize the BFGS

iterations; those initial values which result in the highest value of the objective function

are then selected.1

Figure 2 shows plots of: a typical realization of {Yt} and {Zt}; the time-varying transi-
tion probabilities pt(Xt) and qt(Xt) and their estimated values (the latter are computed as

p̄t = P(Xt = 0|Ft)p0t + P(Xt = 1|Ft)p1t and q̄t = P(Xt = 0|Ft)q0t + P(Xt = 1|Ft)q1t); the

associated realizations of the Markov chains {St} and {Xt}; the filtered state probabilities
P(St = 1|Ft; bθ) and P(Xt = 1|Ft; bθ); all quantities depending on the unknown parameter
θ are computed using the ML estimator bθ from model M-2. For this typical realization,

model M-2 is remarkably successful at capturing the changes in regime and the movements

in the transition probabilities of {St}. It is interesting to compare results for the same
realization of {Yt} and {Zt} when model M-1 is used instead. The relevant plots, shown in
Figure 3, reveal that, although model M-1 is equally successful in identifying the changes

in regime associated with {St}, it fails dramatically in describing the dynamics of pt(Xt)

and qt(Xt). This suggests that it is unlikely that Zt−1 would be found to be useful in

predicting the shifts implied by the regime sequence {St}. As we shall see below, this is
not a peculiar feature of the particular realization used in Figure 3 but is true in general.

1We note that estimation results were found to be fairly robust with respect to the choice of initial

values.
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4.2 Simulation Results

Table 1a records some of the characteristics of the finite-sample distribution of the ML

estimator of the parameters of the equation for Yt in model M-1. Specifically, we re-

port the estimated bias and conventional measures of skewness and kurtosis based on the

standardized third and fourth empirical central moments. We also report the ratio of

the sampling standard deviation of the ML estimators to the estimated standard errors

(computed from the empirical Hessian) averaged across Monte Carlo replications for each

design point. Note that in Table 1a (as well as in Tables 1b and 1c) the figures reported

under αp(i), βp(i), αq(i) and βq(i), i ∈ S, refer to deviations of the ML estimates of the para-
meters (αp, βp, αq, βq) in (2)—(3) from the true regime-specific values of the corresponding

parameters. The most noteworthy finding is the significant bias in the estimation of para-

meters associated with the transition probabilities, especially βq and βp. Such biases are

clearly not a small-sample issue and are present even in the largest of the samples under

consideration (T = 6400). For small sample sizes (T 6 200), the distributions of the

estimators of many parameters tend to be asymmetric and leptokurtic, but the situation

improves with increasing sample sizes. Finally, the estimated standard errors are down-

wards biased in most cases; however, the bias is not generally substantial and decreases

as the sample size increases.

Table 1b contains information on the sampling distributions of conventional t-type

statistics, computed as the ratio of the estimation error to the corresponding asymptotic

standard error, and are typically treated as having an approximate standard normal dis-

tribution (which is true under the assumption of a correctly specified likelihood function).

It is immediately obvious that the mean of these distributions can differ substantially from

zero, something which is especially true for t-statistics associated with the parameters of

the transition functions. The studentized statistics generally tend to have skewed distrib-

utions and, in the case of βq and βp, highly leptokurtic (especially for the larger sample

sizes).

To examine the implications of these results for hypothesis testing, we report in Ta-

ble 1c the empirical rejection frequencies (based on standard normal critical regions of
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nominal size 0.05 and 0.10) of: (i) a t-type test of H0 : ϑj = ϑ∗j versus H1 : ϑj 6= ϑ∗j , where

ϑj is the j-th element of the parameter vector ϑ of the model under consideration and

ϑ∗j is its true value; (ii) a t-type test of H0 : ϑj = 0 versus H1 : ϑj 6= 0; we refer to the

estimated rejection frequencies as ‘size’ and ‘power’, respectively.2 It can be seen that the

hypothesis that βq or βp is equal to either of the two regime-specific true values is rejected

either very rarely or very frequently. Furthermore, tests for the statistical significance of

these parameters have very low power. As a result, one may be wrongly led to conclude

that a significant leading indicator has no effect on the Markov transition probabilities.

Table 2a records some of the characteristics of the finite-sample distribution of the ML

estimator of the parameters of the equation for Yt in the well-specified model M-2. In

sharp contrast to the results obtained under model M-1, the ML estimator exhibits some

bias only in small samples and, even for the parameters associated with the transition

probabilities, bias is insignificant for T > 400. The distributions of the estimators of

some parameters tend to be asymmetric and leptokurtic, but the situation improves with

increasing sample sizes. Finally, the bias in the estimated standard errors is not generally

substantial and decreases as the sample size increases.

Encouraging results are also contained in Table 2b, in which information on the empir-

ical distributions of conventional t-type statistics is recorded. The studentized statistics

tend to have distributions with mean and variance that do not differ substantially from

their expected values in most cases. Rather surprisingly, the mean of the studentized

statistics associated with βq1 and βp1 is significantly different from zero when T > 1600.

This, however, does not appear to have an adverse effect on the size and power proper-

ties of t-type tests, the empirical rejection frequencies of which are reported in Table 2c.

Unlike the case of model M-1, tests in model M-2 tend to have an empirical Type I error

probability which is generally close to the nominal level of the test, especially for T > 200.

In terms of power, tests involving the parameters associated with the time-varying transi-

tion probabilities tend to fare somewhat worse than tests involving other parameters, but

rejection frequencies improve with an increasing sample size.

2We note that results should be interpreted with caution in the case of H0 : σj = 0, j ∈ S, because the
null value of σj is on the boundary of the maintained hypothesis.
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The simulation results reported in Tables 3a—3c for model M-3 are generally quite sim-

ilar to those obtained under model M-2. Perhaps the only noteworthy difference concerns

the mean of the studentized statistics associated with βq1 and βp1, which is closer to zero

under model M-3. It is worth emphasizing that model M-3 is not empirically relevant

since it assumes that the changes in the Markov transition probabilities and the noise

covariance matrix are observable. The simulation results, however, do suggest that not

much is lost by treating the aforementioned breaks as unobservable random events driven

by an exogeneous Markov process.

To sum up, the results from the Monte Carlo experiments suggest that, in the pres-

ence of unaccounted changes in the parameters of the transition functions and the noise

covariance matrix, ML produces severely biased estimates, especially for the parameters

that appear in the transition probabilities. Such biases are present even for what are very

large sample sizes by the standards of empirical applications. Hypothesis tests based on

such ML estimates also have unsatisfactory properties. By contrast, the ML estimator in

a correctly specified model that allows for hidden breaks in the transition functions and

the noise covariance matrix has very good finite-sample properties and performs almost

as well as a ML estimator which has full knowledge of the number and location of such

breaks.

5 Empirical Application

To illustrate the practical use of the proposed model, we analyze the relationship between

Argentinian sovereign bond spreads over U.S. Treasury rates and output growth. These

variables are generally expected to be negatively correlated since the higher output growth

is, the higher is the capacity of a country to repay debt, leading to lower bond spreads.

However, if a structural break occurs as a result of a default on sovereign debt, then

correlation will typically change because the economy may start to grow after the default,

as resources are no longer used to service the debt, while the country’s risk continues to

increase, resulting in higher bond spreads. It is likely that such a change in correlation

took place at the beginning of 2002 following Argentina’s default on sovereign debt.
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The data set consists of quarterly observations, from 1995:1 to 2010:1, on the J. P.

Morgan Emerging Markets Bond Index (EMBI) of dollar-denominated sovereign bonds

issued by Argentina (denoted by Yt) and the real GDP growth rate (denoted by Zt). The

focus of the analysis is on whether output growth has predictive content for regime changes

associated with the bond spread in the presence of a potential break in the relationship

between the two variables associated with the sovereign default.

We consider two models. Model 1 is the standard model, à la Diebold, Lee, and

Weinbach (1994), given by (1)—(3). Model 2 is given by (6)—(12), and allows for stochastic

discrete breaks in the noise covariance matrix and in the transition functions. In both

cases, we set k = m = 4.

Model 1 is used because of its popularity in applied work. It should be borne in

mind, however, that, even in the absence of breaks in the transition mechanism and

the noise covariance matrix, the use of such a specification is problematic if Yt and Zt

are contemporaneously correlated, as the analysis in Pouzo, Psaradakis, and Sola (2016)

demonstrates.

ML estimates of the parameters of the two models are reported in Table 4. The esti-

mated coefficients for the Markov transition functions for Model 1, show that an increase

(decrease) in output growth increases (decreases) the probability of remaining in a high-

volatility regime (high output growth and high spread volatility) since both βq and βp

are positive and would appear to be statistically significant at the 10% level. We note,

however, that inference based on these ML estimates is potentially misleading because of

the likely bias of the parameter estimator and the inconsistency of the empirical Hessian

covariance estimator in the presence of changes in the parameters of the Markov transition

functions and/or endogeneity of the transition information variable.

The results for Model 2 show that the estimated values of βq0 and βq1 have different

signs, so one would expect the evolution of qt implied by Model 1 and Model 2 to be quite

different. A similar result is obtained for βp0 and βp1, the main difference being that in

this case the estimates are both positive and thus one would not expect the evolution of

pt implied by the two models to be substantially different. Finally, note that that the
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estimated ρ0 and ρ1 have opposite signs, which suggests that the model is capable of

identifying the expected characteristic of pre-default and post-default periods mentioned

earlier.

Figure 4 shows plots of the estimated time-varying transition probabilities qt and pt

associated with the regimes {St}, as well as the filtered state probabilities P(St = 1|Ft; bθ),
for Model 1. We also compute the estimate of the quantity κt := (1 − qt)/(2 − qt − pt),

which may be thought of as a proxy for the probability that St = 1, given currently avail-

able information on Zt−1, and gives an indication of the contribution of Zt−1 in predicting

regime changes. It is immediately obvious that the evolution of qt and pt mimics the

movements in the output growth rate and does not seem to be particularly informative

regarding shifts to the regime that is associated with high EMBI. Furthermore, the move-

ments in κt appear to be unrelated to the movements in P(St = 1|Ft; bθ), suggesting that
output growth does not have much predictive ability for regime changes.

For Model 2, Figure 5 shows plots of the estimated time-varying transition probabilities

p̄t = P(Xt = 0|Ft)p0t + P(Xt = 1|Ft)p1t and q̄t = P(Xt = 0|Ft)q0t + P(Xt = 1|Ft)q1t

(evaluated at θ = bθ) associated with the regime sequence {St}, the quantity κ̄t := (1 −
q̄t)/(2 − q̄t − p̄t), and the filtered probabilities P(St = 1|Ft; bθ) and P(Xt = 1|Ft; bθ). The
main difference with Model 1 is that both q̄t and κ̄t now seem to be informative about the

regime changes associated with EMBI, tracking the movements of P(St = 1|Ft; bθ) more
closely and preceding its changes on several occasions.

The filtered probabilities P(St = 1|Ft; bθ) associated with high EMBI values are very
similar for both models. For Model 1 (Model 2), the (implied) variance of EMBI in the

regime associated with St = 1 (which includes the default on sovereign debt) is approxi-

mately 12 times (11 times) larger than it is in the regime associated with St = 0. For Model

1, the (implied) long-run mean of EMBI is 0.7618 (761.8 points since the series was divided

by 1000 prior to estimation) in the regime associated with St = 0 and 3.69997 (3699.9

points) in the regime associated with St = 1; the corresponding figures for Model 2 are

0.3795 (379.5 points) and 1.9083 (1908.3 points), respectively. Finally, the filtered prob-

abilities P(Xt = 1|Ft; bθ) shown in Figure 5 reveal several transitions between a regime
16



associated with positive correlation between output growth and EMBI (Xt = 1) and a

regime that is characterized by negative correlation (Xt = 0).

6 Summary

We have considered a class of Markov-switching models with time-varying transition prob-

ability matrices in which the parameters associated with the latter are subject to random

changes driven by an exogenous Markov process. Such changes will typically be related to

changes in the covariance structure between the time series of interest and the information

variables which drive the evolution of the Markov transition probabilities. A simulation

study has demonstrated the pitfalls of ignoring such changes, pitfalls which include biased

parameter estimates and hypotheses tests which exhibit level distortions and low power.

The simulations have also shown that the proposed model and related parameter estimator

share the same desirable characteristics with a model which incorporates perfect informa-

tion about the number and location of the breaks associated with the Markov transition

functions. As an illustration of the practical use of the proposed class of models, we have

analyzed the relationship between sovereign bond spreads and output growth in Argentina.

The correlation structure between these two variables, and hence the parameters associ-

ated with the time-varying transition probabilities of a related regime-switching model,

are likely to have changed as a result of the 2001 economic and financial crisis, a regime

shift which the proposed model is well equipped to handle.
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Table 1a: Characteristics of the empirical distribution of ML (Model M-1)

μ0 μ1 αp(0) βp(0) βp(1) αq(0) βq(0) βq(1) σ0 σ1 φ1

T Mean

100 0.080 0.073 0.134 -1.311 -0.689 0.133 -0.689 -1.311 -0.044 -0.044 -0.015

200 0.051 0.048 0.105 -1.293 -0.707 0.090 -0.666 -1.334 -0.018 -0.023 -0.009

400 0.031 0.033 0.069 -1.347 -0.653 0.076 -0.641 -1.359 -0.009 -0.013 -0.006

800 0.020 0.021 0.048 -1.292 -0.708 0.054 -0.685 -1.315 -0.003 -0.007 -0.004

1600 0.012 0.015 0.061 -1.349 -0.651 0.068 -0.651 -1.349 -0.002 -0.002 -0.004

3200 0.012 0.010 0.072 -1.373 -0.627 0.070 -0.634 -1.366 -0.003 -0.002 -0.004

6400 0.008 0.010 0.065 -1.346 -0.654 0.065 -0.658 -1.342 -0.002 -0.002 -0.003

Skewness

100 0.267 0.570 2.110 0.389 0.389 1.628 1.245 1.245 0.580 0.274 -0.672

200 0.972 0.086 2.925 3.054 3.054 2.560 -1.173 -1.173 0.386 0.267 -0.066

400 -0.282 -0.017 0.654 -0.016 -0.016 1.506 -0.316 -0.316 0.624 0.388 -0.221

800 0.010 0.001 0.338 -0.003 -0.003 0.441 0.258 0.258 0.154 0.199 -0.236

1600 -0.010 -0.039 0.016 0.292 0.292 0.065 0.125 0.125 0.411 0.250 0.038

3200 0.050 0.120 0.162 0.345 0.345 0.087 0.165 0.165 0.121 0.318 -0.190

6400 0.005 -0.105 0.261 -0.217 -0.217 0.140 -0.086 -0.086 0.216 0.072 -0.034

Kurtosis

100 6.808 8.049 12.868 19.083 19.083 8.734 17.098 17.098 6.545 5.148 5.461

200 9.706 4.068 32.717 49.995 49.995 17.849 10.751 10.751 4.545 3.530 3.463

400 4.369 3.310 4.388 3.444 3.444 11.501 4.885 4.885 5.200 3.563 3.374

800 3.217 3.093 3.756 3.315 3.315 3.659 3.109 3.109 2.859 3.634 3.113

1600 3.199 2.957 3.104 3.335 3.335 2.965 3.303 3.303 3.664 3.327 3.541

3200 2.977 2.986 2.967 3.876 3.876 3.251 3.691 3.691 3.137 3.803 2.874

Ratio of sampling standard deviations to estimated standard errors

100 1.333 1.487 1.516 1.622 1.622 1.419 1.520 1.520 1.273 1.262 1.409

200 1.248 1.184 1.412 1.587 1.587 1.421 1.326 1.326 1.155 1.100 1.165

400 1.073 1.047 1.157 1.137 1.137 1.231 1.154 1.154 1.102 1.036 1.059

800 1.025 1.048 1.075 1.115 1.115 1.113 1.118 1.118 1.051 1.007 1.032

1600 0.980 0.991 1.075 1.121 1.121 1.045 1.043 1.043 1.037 1.027 0.956

3200 1.056 0.993 0.970 0.934 0.934 1.005 0.962 0.962 1.070 1.051 1.000

6400 0.967 1.001 0.965 0.882 0.882 0.943 0.979 0.979 1.035 1.097 0.982
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Table 1b: Empirical moments of t-statistics (Model M-1)

α0 α1 αp(0) βp(0) βp(1) αq(0) βq(0) βq(1) σ0 σ1 φ1

T Mean

100 0.406 -0.368 -0.092 -0.976 0.643 -0.090 0.618 -1.015 -0.551 -0.533 -0.383

200 0.367 -0.356 0.049 -1.516 0.854 0.005 0.874 -1.516 -0.311 -0.373 -0.373

400 0.310 -0.332 0.142 -2.329 1.242 0.161 1.246 -2.382 -0.231 -0.286 -0.339

800 0.282 -0.295 0.211 -3.303 1.923 0.240 1.900 -3.387 -0.134 -0.202 -0.348

1600 0.246 -0.293 0.461 -5.060 2.757 0.537 2.762 -5.064 -0.107 -0.114 -0.470

3200 0.323 -0.289 0.848 -6.918 3.472 0.807 3.630 -6.990 -0.167 -0.141 -0.668

6400 0.327 -0.375 1.114 -9.682 5.095 1.124 5.548 -10.195 -0.132 -0.147 -0.863

Standard deviation

100 1.239 1.213 1.137 1.203 1.231 1.096 1.237 1.181 1.174 1.149 1.161

200 1.239 1.213 1.137 1.203 1.231 1.096 1.237 1.181 1.174 1.149 1.161

400 1.070 1.049 1.100 1.389 1.506 1.119 1.641 1.531 1.109 1.051 1.052

800 1.040 1.064 1.064 1.769 1.916 1.071 2.055 1.909 1.064 1.007 1.033

1600 0.978 0.993 1.080 2.736 3.107 1.059 3.274 2.932 1.033 1.029 0.949

3200 1.054 0.999 1.012 3.516 3.824 1.039 4.293 3.878 1.070 1.047 0.995

6400 0.970 0.999 1.019 5.009 5.251 0.989 6.256 6.043 1.036 1.100 0.977

Skewness

100 -0.089 0.282 -1.290 0.286 -0.007 -0.591 0.091 0.254 -0.752 -0.963 0.606

200 0.615 0.215 -0.905 0.015 0.378 -0.291 0.302 -0.025 -0.147 -0.256 0.492

400 -0.117 -0.079 -0.420 -1.130 1.794 -0.389 2.483 -1.950 -0.054 -0.095 0.110

800 -0.017 0.020 -0.317 -2.396 3.091 -0.208 4.104 -3.705 -0.197 -0.221 -0.104

1600 -0.019 -0.068 -0.470 -4.605 4.508 -0.356 4.896 -5.040 0.098 -0.089 0.142

3200 0.052 0.093 -0.062 -5.476 6.263 -0.235 6.156 -5.690 -0.053 0.041 -0.149

6400 0.016 -0.106 0.116 -5.510 6.756 0.046 6.444 -5.976 0.102 -0.070 0.012

Kurtosis

100 6.559 5.939 11.735 2.357 2.299 3.295 2.185 2.281 5.218 7.661 5.349

200 6.662 4.819 5.697 3.276 3.709 3.027 4.037 3.386 3.841 3.667 4.353

400 3.693 2.972 3.089 11.105 12.300 3.227 16.975 15.445 3.544 3.140 3.007

800 3.128 3.172 3.210 17.651 20.531 2.969 32.036 32.150 2.963 3.294 2.957

1600 3.044 2.881 3.444 38.746 31.972 3.115 35.700 41.810 2.995 3.330 3.375

3200 2.888 2.987 2.998 50.413 54.917 3.498 50.968 49.428 3.122 3.272 2.859

6400 2.996 3.011 3.262 48.070 58.308 2.901 54.950 52.825 2.842 2.964 2.891
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Table 1c: Empirical size and power of t-tests (Model M-1)

α0 α1 αp(0) βp(0) βp(1) αq(0) βq(0) βq(1) σ0 σ1 φ1

T Size at 0.05

100 0.058 0.165 0.096 0.318 0.020 0.102 0.020 0.340 0.169 0.172 0.158

200 0.044 0.128 0.069 0.499 0.012 0.066 0.017 0.490 0.125 0.124 0.136

400 0.027 0.102 0.064 0.708 0.003 0.067 0.010 0.712 0.103 0.094 0.101

800 0.031 0.098 0.054 0.828 0.004 0.055 0.001 0.858 0.083 0.077 0.113

1600 0.035 0.082 0.039 0.965 0.000 0.033 0.000 0.971 0.065 0.065 0.104

3200 0.033 0.093 0.014 0.986 0.000 0.016 0.000 0.992 0.082 0.072 0.180

6400 0.022 0.119 0.004 0.993 0.000 0.002 0.000 0.996 0.070 0.088 0.218

Size at 0.10

100 0.084 0.249 0.151 0.449 0.045 0.153 0.050 0.472 0.256 0.244 0.253

200 0.079 0.206 0.115 0.596 0.031 0.122 0.042 0.587 0.186 0.198 0.218

400 0.070 0.175 0.106 0.766 0.018 0.109 0.017 0.767 0.175 0.158 0.191

800 0.067 0.173 0.090 0.891 0.009 0.088 0.003 0.910 0.134 0.143 0.188

1600 0.063 0.158 0.064 0.981 0.000 0.060 0.000 0.986 0.124 0.119 0.192

3200 0.059 0.152 0.020 0.989 0.000 0.031 0.000 0.997 0.148 0.145 0.257

6400 0.044 0.181 0.009 0.995 0.000 0.007 0.000 1.000 0.141 0.156 0.346

Power at 0.05

100 0.985 0.977 0.678 0.064 0.064 0.677 0.067 0.067 1.000 1.000 1.000

200 0.999 0.997 0.917 0.071 0.071 0.924 0.082 0.082 1.000 1.000 1.000

400 1.000 1.000 0.992 0.117 0.117 0.985 0.107 0.107 1.000 1.000 1.000

800 0.999 0.999 0.999 0.114 0.114 0.999 0.141 0.141 1.000 1.000 1.000

1600 1.000 1.000 1.000 0.228 0.228 0.999 0.228 0.228 1.000 1.000 1.000

3200 1.000 1.000 0.997 0.404 0.404 0.998 0.378 0.378 1.000 1.000 1.000

6400 1.000 1.000 1.000 0.603 0.603 1.000 0.636 0.636 1.000 1.000 1.000

Power at 0.10

100 0.989 0.979 0.775 0.150 0.150 0.772 0.160 0.160 1.000 1.000 1.000

200 0.999 1.000 0.952 0.153 0.153 0.952 0.162 0.162 1.000 1.000 1.000

400 1.000 1.000 0.997 0.191 0.191 0.988 0.195 0.195 1.000 1.000 1.000

800 1.000 0.999 0.999 0.210 0.210 0.999 0.226 0.226 1.000 1.000 1.000

1600 1.000 1.000 1.000 0.339 0.339 0.999 0.326 0.326 1.000 1.000 1.000

3200 1.000 1.000 0.997 0.526 0.526 0.998 0.488 0.488 1.000 1.000 1.000

6400 1.000 1.000 1.000 0.603 0.603 1.000 0.636 0.636 1.000 1.000 1.000
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Table 2a: Characteristics of the empirical distribution of ML (Model M-2)

μ0 μ1 αp0 βp0 βp1 αq0 βq0 βq1 σ0 σ1 φ1

T Bias

100 0.017 0.017 0.165 0.130 0.456 0.683 1.101 0.530 -0.019 -0.013 -0.011

200 0.002 -0.001 0.021 0.021 0.113 0.731 0.661 0.118 -0.009 -0.006 -0.007

400 0.003 0.007 0.028 0.013 0.089 0.161 0.210 0.055 -0.003 -0.006 -0.004

800 0.001 -0.001 0.003 0.001 -0.016 0.079 0.062 -0.031 -0.004 -0.003 -0.004

1600 0.001 0.000 0.002 -0.001 -0.056 -0.020 0.022 -0.062 0.000 0.001 -0.001

3200 0.001 0.000 0.004 0.004 -0.066 -0.034 -0.012 -0.063 -0.001 -0.001 -0.002

6400 0.000 0.000 0.002 0.001 -0.067 -0.033 -0.029 -0.066 -0.001 0.000 -0.002

Skewness

100 0.049 0.336 1.958 0.113 -0.630 1.252 2.108 -0.195 0.016 -0.244 0.055

200 0.074 0.191 1.175 0.722 2.697 4.039 4.363 -0.331 0.074 0.052 0.104

400 -0.042 -0.058 0.928 0.349 -0.916 4.166 1.162 -0.929 -0.007 0.081 -0.021

800 0.028 -0.015 0.174 0.017 -0.292 1.243 1.095 -0.092 -0.080 -0.090 -0.047

1600 0.003 -0.093 0.184 0.014 -0.197 0.586 0.309 -0.108 -0.029 -0.023 0.083

3200 -0.030 -0.007 0.020 -0.143 -0.088 0.248 0.462 -0.030 -0.041 0.199 -0.085

6400 -0.119 0.078 0.111 0.104 -0.192 0.047 0.207 -0.050 -0.003 0.068 0.128

Kurtosis

100 3.572 4.975 12.816 11.959 17.634 12.821 11.870 15.796 4.712 4.854 2.774

200 3.380 3.706 8.914 6.254 93.858 29.665 35.396 24.948 3.468 3.162 3.117

400 3.071 3.035 7.037 3.930 8.137 38.679 5.450 9.473 3.053 3.104 3.033

800 2.981 2.895 3.059 3.047 3.244 9.285 5.939 3.448 3.318 3.113 2.906

1600 3.261 3.016 3.012 2.868 3.192 3.995 3.236 3.042 2.456 2.569 2.828

3200 3.050 2.782 3.199 3.197 3.185 2.960 3.391 2.938 2.472 2.704 3.136

6400 2.634 3.300 3.005 3.178 3.123 3.453 2.860 2.886 2.572 2.778 2.607

Ratio of sampling standard deviations to estimated standard errors

100 1.220 1.211 1.327 1.369 1.183 0.881 0.880 1.216 1.141 1.105 1.036

200 1.057 1.088 1.138 1.105 1.538 1.509 1.517 1.257 1.064 1.030 1.026

400 1.032 1.013 1.039 1.019 1.090 1.390 1.092 1.063 0.928 0.951 1.002

800 0.980 1.006 1.016 0.976 0.988 1.059 1.041 0.980 0.948 0.959 0.974

1600 0.965 1.015 0.969 0.946 0.969 1.028 1.023 0.939 0.942 0.868 0.942

3200 0.990 0.989 1.002 0.937 1.010 1.037 0.957 0.951 0.994 1.002 1.006

6400 1.055 1.006 0.939 0.963 0.935 0.893 0.882 0.946 1.015 1.015 1.027
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Table 2b: Empirical moments of t-statistics (Model M-2)

μ0 μ1 αp0 βp0 βp1 αq0 βq0 βq1 σ0 σ1 φ1

T Mean

100 0.158 -0.136 0.089 0.061 -0.084 -0.171 -0.116 -0.096 -0.301 -0.237 -0.228

200 0.017 0.009 -0.079 -0.062 0.027 0.037 0.020 -0.020 -0.199 -0.157 -0.192

400 0.066 -0.129 0.065 -0.005 -0.049 -0.106 -0.040 -0.006 -0.099 -0.172 -0.160

800 0.015 0.033 -0.032 -0.041 0.086 -0.024 -0.074 0.115 -0.151 -0.112 -0.189

1600 0.035 -0.008 -0.021 -0.051 0.205 -0.171 -0.046 0.225 -0.022 -0.007 -0.083

3200 0.070 0.003 0.029 0.048 0.314 -0.165 -0.089 0.299 -0.069 -0.087 -0.189

6400 -0.028 0.039 0.018 0.005 0.434 -0.191 -0.160 0.431 -0.083 -0.068 -0.215

Standard deviation

100 1.050 1.085 1.017 1.023 1.042 1.083 1.078 0.989 1.100 1.079 1.052

200 1.050 1.085 1.017 1.023 1.042 1.083 1.078 0.989 1.100 1.079 1.052

400 1.031 1.016 0.966 0.989 1.083 1.056 1.212 0.978 0.982 0.989 1.030

800 0.983 1.011 1.007 0.986 1.031 1.130 1.218 1.057 1.025 1.046 1.019

1600 0.969 1.016 0.971 0.943 0.993 1.466 1.131 0.984 1.082 1.023 1.024

3200 0.989 0.993 0.999 0.936 1.000 1.058 0.954 0.941 1.069 1.055 1.043

6400 1.055 1.006 0.939 0.963 0.935 0.893 0.882 0.946 1.015 1.015 1.027

Skewness

100 0.030 0.346 -1.687 -0.560 0.264 -0.539 -0.511 0.214 -0.774 -1.471 -0.339

200 0.074 0.058 -0.198 -0.453 0.341 -0.949 -1.130 0.198 -0.252 -0.363 -0.255

400 -0.054 -0.053 -0.105 -0.221 1.674 -1.008 -2.496 0.495 -0.278 -0.182 -0.249

800 0.020 -0.002 -0.176 -0.234 0.904 -2.152 -3.299 1.465 -0.320 -0.307 -0.225

1600 0.022 -0.092 -0.060 -0.156 0.142 -9.461 -1.950 1.205 -0.156 -0.163 -0.001

3200 -0.037 -0.007 -0.136 -0.259 -0.051 -0.272 0.136 -0.015 -0.124 0.062 -0.171

6400 -0.097 0.072 -0.018 -0.057 -0.174 -0.096 0.046 0.048 -0.091 -0.064 0.059

Kurtosis

100 3.145 4.029 16.760 2.981 2.397 2.812 2.896 2.257 5.272 13.632 2.877

200 3.193 3.375 2.833 3.153 3.038 4.812 6.125 2.668 3.336 3.427 3.301

400 2.997 3.015 2.920 3.204 16.777 6.712 20.069 4.767 3.048 3.204 3.233

800 2.988 2.900 2.794 2.986 10.654 19.872 31.557 14.029 3.777 3.349 3.096

1600 3.284 3.074 3.050 2.809 3.791 178.316 19.547 15.149 2.545 2.697 2.893

3200 3.029 2.820 3.204 3.247 3.049 4.576 3.125 2.746 2.459 2.510 3.283

6400 2.632 3.295 3.028 3.079 2.870 2.988 2.855 3.041 2.460 2.529 2.817
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Table 2c: Empirical size and power of t-tests (Model M-2)

μ0 μ1 αp0 βp0 βp1 αq0 βq0 βq1 σ0 σ1 φ1

T Size at 0.05

100 0.073 0.105 0.039 0.063 0.030 0.111 0.094 0.035 0.114 0.112 0.112

200 0.047 0.062 0.062 0.070 0.039 0.079 0.075 0.041 0.093 0.086 0.082

400 0.052 0.068 0.041 0.062 0.054 0.082 0.061 0.042 0.061 0.076 0.079

800 0.046 0.039 0.057 0.057 0.043 0.054 0.043 0.033 0.067 0.068 0.081

1600 0.042 0.052 0.052 0.049 0.031 0.052 0.060 0.022 0.063 0.054 0.064

3200 0.049 0.045 0.056 0.045 0.037 0.075 0.045 0.019 0.077 0.059 0.091

6400 0.072 0.044 0.042 0.042 0.025 0.061 0.050 0.017 0.127 0.125 0.108

Size at 0.10

100 0.124 0.167 0.085 0.101 0.119 0.180 0.153 0.115 0.178 0.161 0.167

200 0.103 0.111 0.117 0.118 0.100 0.127 0.110 0.100 0.163 0.137 0.148

400 0.096 0.128 0.073 0.093 0.108 0.115 0.092 0.099 0.121 0.125 0.136

800 0.094 0.099 0.111 0.117 0.085 0.100 0.082 0.077 0.118 0.130 0.138

1600 0.100 0.106 0.096 0.106 0.058 0.128 0.115 0.061 0.149 0.106 0.123

3200 0.086 0.103 0.096 0.075 0.065 0.135 0.101 0.054 0.138 0.138 0.136

6400 0.144 0.094 0.083 0.108 0.042 0.111 0.094 0.039 0.194 0.199 0.188

Power at 0.05

100 1.000 0.997 0.757 0.733 0.078 0.039 0.029 0.065 1.000 0.999 1.000

200 1.000 1.000 0.953 0.949 0.168 0.094 0.082 0.160 1.000 0.999 1.000

400 1.000 1.000 1.000 0.999 0.369 0.154 0.197 0.339 1.000 1.000 1.000

800 1.000 1.000 0.999 1.000 0.608 0.445 0.409 0.596 1.000 1.000 1.000

1600 1.000 1.000 1.000 1.000 0.860 0.743 0.750 0.875 1.000 1.000 1.000

3200 1.000 1.000 1.000 1.000 0.983 0.944 0.969 0.986 1.000 1.000 1.000

6400 1.000 1.000 1.000 1.000 1.000 0.989 0.986 0.997 1.000 1.000 1.000

Power at 0.10

100 1.000 1.000 0.847 0.822 0.191 0.093 0.101 0.175 1.000 0.999 1.000

200 1.000 1.000 0.976 0.967 0.284 0.194 0.181 0.272 1.000 0.999 1.000

400 1.000 1.000 1.000 0.999 0.513 0.270 0.323 0.465 1.000 1.000 1.000

800 1.000 1.000 0.999 1.000 0.719 0.603 0.573 0.723 1.000 1.000 1.000

1600 1.000 1.000 1.000 1.000 0.919 0.830 0.831 0.936 1.000 1.000 1.000

3200 1.000 1.000 1.000 1.000 0.993 0.963 0.986 0.991 1.000 1.000 1.000

6400 1.000 1.000 1.000 1.000 1.000 0.992 0.994 1.000 1.000 1.000 1.000
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Table 3a: Characteristics of the empirical distribution of ML (Model M-3)

μ0 μ1 αp0 βp0 βp1 αq0 βq0 βq1 σ0 σ1 φ1

T Bias

100 0.010 0.013 0.092 0.929 0.545 0.088 0.333 0.772 -0.011 -0.009 -0.006

200 0.008 0.011 0.044 0.403 0.253 0.029 0.180 0.465 -0.002 -0.006 -0.003

400 0.001 0.004 0.017 0.123 0.119 0.015 0.082 0.189 -0.001 -0.003 -0.001

800 0.001 0.002 0.000 0.074 0.025 0.001 0.039 0.087 0.001 -0.001 0.000

1600 0.000 0.001 -0.004 0.043 0.011 0.000 0.014 0.038 0.001 -0.001 0.000

3200 0.000 0.000 0.003 0.012 0.016 0.002 0.013 0.002 0.000 -0.002 0.000

6400 0.001 0.000 0.000 0.013 0.006 0.001 0.010 0.005 -0.001 -0.001 0.000

Skewness

100 -0.027 0.107 1.531 2.889 -1.940 -0.023 -0.066 1.983 0.286 -0.161 -0.391

200 0.163 -0.008 1.246 5.213 -2.769 1.210 -0.762 3.020 -0.028 -0.096 -0.077

400 0.173 -0.082 0.536 1.817 -0.566 0.303 -0.315 3.170 0.061 0.083 -0.049

800 0.047 0.024 0.346 0.449 -0.294 0.219 -0.169 0.698 0.089 0.036 -0.150

1600 0.094 -0.136 0.133 0.436 0.022 0.049 -0.212 0.300 0.012 0.009 -0.017

3200 -0.006 -0.119 0.045 0.402 -0.084 -0.014 -0.108 0.227 -0.010 0.122 -0.082

6400 0.035 -0.175 0.023 0.199 -0.064 -0.004 -0.057 0.188 0.127 -0.048 -0.099

Kurtosis

100 3.390 4.456 21.320 16.278 19.050 15.175 25.660 18.308 5.197 3.801 3.857

200 3.366 3.208 13.404 59.420 41.460 7.481 6.852 18.633 2.893 3.357 3.326

400 2.955 2.957 5.208 14.381 5.000 3.378 4.661 34.489 3.119 3.155 2.890

800 3.000 3.013 3.444 3.737 3.706 3.288 3.174 5.248 2.998 2.932 3.435

1600 3.017 3.066 3.287 3.528 2.888 3.203 3.174 3.173 2.602 2.784 3.072

3200 2.914 3.002 3.045 3.539 3.057 3.023 3.092 2.964 3.073 2.930 2.804

Ratio of sampling standard deviations to estimated standard errors

100 1.094 1.149 1.342 0.512 1.354 1.183 0.990 0.705 1.083 1.090 1.113

200 1.061 1.017 1.155 0.539 1.441 1.100 1.177 1.440 0.999 1.045 1.059

400 1.016 1.022 1.029 1.169 1.125 1.048 1.054 1.191 1.012 0.993 1.021

800 0.982 1.026 1.016 1.039 1.049 0.998 1.015 1.079 0.988 0.990 1.039

1600 0.991 1.023 1.023 1.011 1.035 1.002 1.022 1.015 0.993 1.004 0.977

3200 1.000 1.024 0.991 1.016 0.995 1.038 1.092 1.039 0.964 0.972 0.969

6400 0.995 1.020 1.016 0.977 1.005 1.034 1.064 0.984 0.985 1.017 1.001
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Table 3b: Empirical moments of t-statistics (Model M-3)

μ0 μ1 αp0 βp0 βp1 αq0 βq0 βq1 σ0 σ1 φ1

T Mean

100 0.095 -0.111 -0.009 -0.048 -0.100 0.037 -0.089 -0.087 -0.215 -0.188 -0.279

200 0.107 -0.154 0.033 -0.039 -0.115 -0.033 -0.061 0.008 -0.084 -0.156 -0.210

400 0.026 -0.083 0.009 -0.031 -0.081 0.004 -0.045 0.031 -0.060 -0.113 -0.141

800 0.044 -0.056 -0.048 0.033 -0.017 -0.042 -0.033 0.025 -0.006 -0.072 -0.035

1600 0.003 -0.050 -0.083 0.044 -0.019 -0.037 -0.025 0.036 0.012 -0.080 -0.025

3200 0.023 0.003 0.019 0.004 -0.061 0.011 -0.047 -0.040 -0.036 -0.113 -0.102

6400 0.055 -0.039 -0.008 0.042 -0.031 -0.002 -0.057 -0.005 -0.109 -0.103 -0.049

Standard deviation

100 1.060 1.020 1.029 1.108 1.081 0.963 1.049 1.041 1.021 1.056 1.049

200 1.060 1.020 1.029 1.108 1.081 0.963 1.049 1.041 1.021 1.056 1.049

400 1.022 1.019 0.983 1.026 1.179 1.015 1.120 1.047 1.017 1.001 1.029

800 0.985 1.029 0.993 1.037 1.067 0.987 1.131 1.225 0.989 0.995 1.038

1600 0.991 1.027 1.014 1.016 1.028 1.000 1.010 0.996 0.992 1.006 0.977

3200 1.000 1.026 0.987 0.996 0.986 1.036 1.079 1.033 0.964 0.972 0.969

6400 0.994 1.020 1.018 0.971 1.003 1.033 1.064 0.979 0.985 1.019 1.001

Skewness

100 -0.058 0.155 -1.096 -0.435 0.329 -0.349 0.227 -0.459 -0.548 -0.550 0.133

200 0.134 -0.106 -0.398 -1.002 0.555 -0.219 0.563 -0.646 -0.372 -0.348 0.217

400 0.152 -0.047 -0.233 -0.503 1.829 -0.163 1.472 -0.797 -0.215 -0.192 0.099

800 0.048 0.046 0.021 -0.896 0.512 -0.051 2.100 -4.302 -0.092 -0.158 0.005

1600 0.105 -0.149 -0.117 -0.715 0.172 -0.187 -0.024 -0.139 -0.087 -0.092 0.057

3200 -0.013 -0.125 -0.098 0.076 0.020 -0.149 0.021 -0.024 -0.091 0.048 -0.038

6400 0.030 -0.174 -0.076 -0.008 -0.009 -0.117 0.010 -0.021 0.063 -0.106 -0.050

Kurtosis

100 3.089 3.266 7.335 2.644 2.668 2.626 2.545 2.683 4.502 3.622 3.235

200 3.204 3.222 3.092 5.353 4.437 2.755 4.865 3.587 3.104 3.065 3.193

400 2.891 2.915 2.875 3.775 17.591 2.815 10.901 4.892 3.138 3.258 2.911

800 2.971 3.060 2.750 7.763 6.274 2.999 21.472 64.288 3.065 2.992 3.475

1600 3.029 3.097 3.162 8.711 3.054 3.176 3.236 2.904 2.599 2.743 3.006

3200 2.886 3.036 3.054 3.185 2.952 3.028 3.048 2.859 3.077 2.901 2.817

6400 2.842 3.042 3.113 3.086 2.970 3.117 2.787 2.933 2.925 3.029 3.116
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Table 3c: Empirical size and power of t-tests (Model M-3)

μ0 μ1 αp0 βp0 βp1 αq0 βq0 βq1 σ0 σ1 φ1

T Size at 0.05

100 0.054 0.088 0.068 0.075 0.048 0.053 0.045 0.091 0.094 0.111 0.098

200 0.047 0.075 0.061 0.075 0.069 0.059 0.055 0.084 0.075 0.092 0.081

400 0.042 0.055 0.058 0.061 0.066 0.064 0.050 0.055 0.057 0.062 0.069

800 0.040 0.058 0.056 0.038 0.057 0.054 0.057 0.053 0.050 0.064 0.058

1600 0.041 0.070 0.064 0.044 0.051 0.056 0.057 0.052 0.046 0.066 0.048

3200 0.041 0.052 0.048 0.043 0.055 0.062 0.077 0.061 0.052 0.053 0.056

6400 0.038 0.059 0.056 0.035 0.054 0.062 0.063 0.052 0.054 0.059 0.063

Size at 0.10

100 0.103 0.147 0.104 0.128 0.116 0.099 0.114 0.147 0.156 0.153 0.174

200 0.091 0.139 0.094 0.141 0.140 0.108 0.123 0.133 0.123 0.146 0.148

400 0.100 0.110 0.104 0.094 0.130 0.102 0.115 0.092 0.107 0.115 0.128

800 0.084 0.111 0.116 0.096 0.101 0.113 0.116 0.103 0.103 0.107 0.114

1600 0.094 0.119 0.125 0.089 0.104 0.114 0.105 0.099 0.105 0.113 0.098

3200 0.099 0.105 0.101 0.100 0.104 0.101 0.131 0.115 0.096 0.112 0.111

6400 0.091 0.108 0.106 0.079 0.106 0.110 0.120 0.098 0.110 0.121 0.105

Power at 0.05

100 1.000 1.000 0.760 0.038 0.084 0.779 0.103 0.036 1.000 1.000 1.000

200 1.000 1.000 0.962 0.103 0.225 0.978 0.208 0.106 1.000 1.000 1.000

400 1.000 1.000 1.000 0.224 0.416 1.000 0.419 0.260 1.000 1.000 1.000

800 1.000 1.000 1.000 0.559 0.693 1.000 0.695 0.560 1.000 1.000 1.000

1600 1.000 1.000 1.000 0.879 0.927 1.000 0.938 0.864 1.000 1.000 1.000

3200 1.000 1.000 1.000 0.990 0.999 1.000 0.995 0.991 1.000 1.000 1.000

6400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Power at 0.10

100 1.000 1.000 0.850 0.117 0.177 0.852 0.197 0.101 1.000 1.000 1.000

200 1.000 1.000 0.972 0.217 0.345 0.990 0.321 0.218 1.000 1.000 1.000

400 1.000 1.000 1.000 0.374 0.539 1.000 0.550 0.402 1.000 1.000 1.000

800 1.000 1.000 1.000 0.691 0.777 1.000 0.783 0.674 1.000 1.000 1.000

1600 1.000 1.000 1.000 0.926 0.962 1.000 0.963 0.923 1.000 1.000 1.000

3200 1.000 1.000 1.000 0.996 1.000 1.000 0.999 0.997 1.000 1.000 1.000

6400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: ML Estimates

Model 1 Model 2

μ0 0.0354

(0.0182)

μ1 0.1721

(0.2429)

αq 1.4795

(0.5250)

βq 0.1028

(0.0724)

μp 0.2243

(0.7814)

βp 0.2412

(0.1117)

φ1 1.1497

(0.0234)

φ2 -0.1194

(0.0370)

φ3 -0.077

(0.0376)

φ4 0.0002

(0.0198)

σ0 0.0742

(0.0089)

σ1 1.1046

(0.1713)

μ0 0.0178

(0.0187)

μ1 0.0895

(0.2022)

αq0 1.6310 φ1 1.1936

(0.8900) (0.0276)

αq1 1.6310 φ2 -0.1478

(0.8900) (0.0385)

αp0 0.2072 φ3 -0.1048

(0.7846) (0.0358)

αp1 0.2072 φ4 0.0121

(0.7846) (0.0182)

βq0 -2.0462 μz 0.8179

(2.9853) (0.2799)

βq1 0.2430 ψ1 1.4522

(0.1380) (0.1107)

βp0 0.1925 ψ2 -0.5034

(0.1931) (0.1980)

βp1 0.2489 ψ3 -0.1048

(0.1343) (0.0358)

σ0 0.0908 ψ4 0.0797

(0.0142) (0.1077)

σ1 1.0033

(0.1237) px 0.9103

σz 2.1650 (0.0550)

(0.2023) qx 0.8135

ρ0 -0.5741 (0.1023)

(0.1532)

ρ1 0.7078

(0.1103)

Log-likelihood: -9.33121 -129.6105
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Figure 1: Regime-Specific Marginal Densities
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Figure 2: Artificial Data and Estimated Probabilities from Model M-2
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Figure 3: Artificial Data and Estimated Probabilities from Model M-1
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Figure 4: Empirical Results from Model 1
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Figure 5: Empirical Results from Model 2
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