BIROn - Birkbeck Institutional Research Online

    Frontal alpha oscillations and attentional control: a virtual reality neurofeedback study

    Berger, A. and Davelaar, Eddy J. (2018) Frontal alpha oscillations and attentional control: a virtual reality neurofeedback study. Neuroscience 378 , pp. 189-197. ISSN 0306-4522.

    [img]
    Preview
    Text
    19304.pdf - Author's Accepted Manuscript
    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (650kB) | Preview

    Abstract

    Two competing views about alpha oscillations suggest that cortical alpha reflect either cortical inactivity or cortical processing efficiency. We investigated the role of alpha oscillations in attentional control, as measured with a Stroop task. We used neurofeedback to train 22 participants to increase their level of alpha amplitude. Based on the conflict/control loop theory, we selected to train prefrontal alpha and focus on the Gratton effect as an index of deployment of attentional control. We expected an increase or a decrease in the Gratton effect with increase in neural learning depending on whether frontal alpha oscillations reflect cortical idling or enhanced processing efficiency, respectively. In order to induce variability in neural learning beyond natural occurring individual differences, we provided half of the participants with feedback on alpha amplitude in a 3-dimensional (3D) virtual reality environment and the other half received feedback in a 2D environment. Our results showed variable neural learning rates, with larger rates in the 3D compared to the 2D group, corroborating prior evidence of individual differences in EEG-based learning and the influence of a virtual environment. Regression analyses revealed a significant association between the learning rate and changes on deployment of attentional control, with larger learning rates being associated with larger decreases in the Gratton effect. This association was not modulated by feedback medium. The study supports the view of frontal alpha oscillations being associated with efficient neurocognitive processing and demonstrates the utility of neurofeedback training in addressing theoretical questions in the non-neurofeedback literature.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): neurofeedback, electroencephalography, virtual reality, cognitive control
    School: School of Science > Psychological Sciences
    Research Centres and Institutes: Cognition, Computation and Modelling, Centre for
    Depositing User: Eddy Davelaar
    Date Deposited: 04 Aug 2017 11:11
    Last Modified: 11 Feb 2021 11:09
    URI: https://eprints.bbk.ac.uk/id/eprint/19304

    Statistics

    Downloads
    Activity Overview
    421Downloads
    146Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item