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LOCALISATION IN THE BOUCHAUD–ANDERSON MODEL

STEPHEN MUIRHEAD1 AND RICHARD PYMAR2

Abstract. It is well-known that both random branching and trapping mechanisms can induce
localisation phenomena in random walks; the prototypical examples being the parabolic Ander-
son and Bouchaud trap models respectively. Our aim is to investigate how these localisation
phenomena interact in a hybrid model combining the dynamics of the parabolic Anderson and
Bouchaud trap models. Under certain natural assumptions, we show that the localisation ef-
fects due to random branching and trapping mechanisms tend to (i) mutually reinforce, and (ii)
induce a local correlation in the random fields (the ‘fit and stable’ hypothesis of population
dynamics).

Minor revision to published version. This is an updated version of [23] containing the
following minor revisions:

• A typo in the statement of Proposition 3.14 has been corrected;
• The coupling used in Section 5 has been slightly modified to fix a gap in its original
statement; we thank Renato Soares dos Santos for pointing this out to us;

• A slight correction has been made to the proof of Proposition 4.11; and
• The bibliography has been updated.

1. Introduction

1.1. The Bouchaud–Anderson model. This paper studies a certain random walk model on Z
d

that is a hybrid of the well-known parabolic Anderson (PAM) and Bouchaud trap (BTM) models.
To introduce this model, first recall the PAM, which describes the evolution of a diffusive particle in
a random potential field (or, equivalently, a random branching environment; see below). Precisely,
the PAM is the Cauchy problem on the lattice Z

d

∂u(t, z)

∂t
= (∆ + ξ)u(t, z) , (t, z) ∈ [0,∞)× Z

d ; (1)

u(0, z) = 1{0}(z) , z ∈ Z
d ;

where ξ = {ξ(z)}z∈Zd is a collection of independent identically distributed (i.i.d.) random variables
known as the (random) potential field and ∆ is the discrete Laplacian defined by (∆f)(z) =
∑

|y−z|=1(2d)
−1(f(y) − f(z)), where | · | denotes the ℓ1-norm. For a large class of potential field

distributions,1 equation (1) has a unique non-negative solution defined for all time t. For general
background information on the PAM, including its origins in the statistical physics literature and
its interpretation in terms of a system of branching diffusive particles, see [13].
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Recall also the BTM, which describes the evolution of a diffusive particle in a random trapping
landscape. Precisely, the BTM is the continuous-time Markov chain on Z

d defined by the jump
rates

wz→y :=

{

(2dσ(z))−1 , if |y − z| = 1 ,

0 , otherwise ,
(2)

where σ = {σ(z)}z∈Zd is a collection of strictly-positive i.i.d. random variables known as the
(random) trapping landscape. Remark that the density of the BTM satisfies the equation

∂u(t, z)

∂t
= ∆σ−1 u(t, z) , (t, z) ∈ [0,∞)× Z

d , (3)

where, for clarity, we stress that the operator ∆σ−1 acts as

(∆σ−1f)(z) =
∑

|y−z|=1

(2dσ(y))−1f(y)− σ−1(z)f(z) .

For general background information on the BTM, including its origins in the study of spin-glasses
dynamics and its broad utility as a simple model for a variety of trapping behaviour, see [4].

The PAM and BTM are of great interest in the theory of random processes because they
exhibit intermittency, that is, unlike other commonly studied models of diffusion, their long-term
behaviour cannot, in general, be described with a simple averaging principle (see [13] and [4] for a
general overview of the PAM and BTM respectively.) Instead, extremes in the respective random
environments may create concentration effects, which can result in the eventual localisation of the
solution to equations (1) and (3) respectively over long periods of time. In the most extreme cases,
the solution localises on just a few sites.

Our aim is to study how the localisation phenomena in the PAM and the BTM interact. To do
this, we consider the Cauchy problem on the lattice Z

d

∂u(t, z)

∂t
= (∆σ−1 + ξ)u(t, z) , (t, z) ∈ [0,∞)× Z

d ; (4)

u(0, z) = 1{0}(z) , z ∈ Z
d ;

derived by replacing the discrete Laplacian in equation (1) with the generator of the BTM in
equation (3). We refer to equation (4) as the Bouchaud–Anderson model (BAM).

By analogy with the PAM (see [13], Section 1.2), the solution to equation (4) has a natural
interpretation as the expected number of particles in a system of continuously-branching diffusive
particles on the lattice Z

d specified by:

• Initialisation: A single particle at the origin;
• Branching: The local branching rate for a particle at a site z is given by ξ(z);
• Trapping: Each particle evolves as an independent BTM, that is, the waiting time at each
visit to a site z is independent and distributed exponentially with mean σ(z), with the
subsequent site chosen uniformly from among the nearest neighbours.

This interpretation can be formalised in the Feynman-Kac representation of the solution to (4):

u(t, z) := E0

[

exp

{
∫ t

0

ξ(Xs)ds)

}

1{Xt=z}

]

, (5)

where X is the BTM and, for z ∈ Z
d, Ez denotes the expectation over X given that X0 = z. As

we shall see, the interaction between the random branching and trapping mechanisms makes the
localisation behaviour of the BAM highly non-trivial.

1.2. Localisation in the PAM and BTM. The PAM and BTM are said to localise if, as t→ ∞,
the solution of equations (1) and (3) respectively are eventually concentrated on a small number
of sites with overwhelming probability, i.e. if there exists a (random) localisation set Γt such that,
as t→ ∞, |Γt| = to(1) and

∑

z∈Γt
u(t, z)

U(t)
→ 1 in probability , (6)
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where U(t) :=
∑

z∈Zd u(t, z) is the total mass of the solution (in the BTM, this is identically one);
see Section 1.8 for the definition of the asymptotic notation used here and throughout the paper.

Naturally, the primary measure of the strength of localisation in the PAM and BTM is the
cardinality of the localisation set Γt. As such, the most extreme form of localisation is complete
localisation, which occurs if the total mass is eventually concentrated at just one site, i.e. if Γt

can be chosen in equation (6) such that |Γt| = 1. A finer measure of the strength of localisation
is the radius of influence, which measures the extent to which localisation sites themselves are
determined by purely local features of the random environment. More precisely, the radius of
influence ρ is the smallest integer for which the localisation sites can be determined by maximising
a functional on Z

d that depends on the random environments only through their values in balls
of radius ρ around each site.

Broadly speaking, localisation in the PAM and BTM is generated by the structure-forming
effects of extremes in the respective random environment. If these extremes are both sufficiently
pronounced and sufficiently regular, over long periods of time the model will come to adopt the
structure present in the environment, with localisation the most extreme manifestation of this.
Naturally then, the strength of localisation in the PAM and BTM should depend on (i) the
asymptotic rate of decay, and (ii) the regularity of the upper-tail of the random variables ξ(0)
and σ(0). In this context, it is convenient to restrict ξ(0) and σ(0) to be strictly-positive and to
characterise these random variables by their exponential tail decay rate function

gξ(x) := − log(P(ξ(0) > x)) and gσ(x) := − log(P(σ(0) > x))

for then (i) and (ii) translate to the asymptotic growth and regularity of the non-decreasing
functions gξ and gσ.

We briefly outline some known results on localisation in the PAM and BTM. For simplicity, we
shall assume all necessary regularity conditions without further specification.

1.2.1. Localisation in the parabolic Anderson model. The conditions under which the PAM com-
pletely localises in the sense of equation (6) has been the subject of intense and ongoing research
over the last 25 years. The current understanding is that double-exponential tail decay (gξ(x) ≈ ex)
forms the boundary of the complete localisation universality class. More precisely, it is conjec-
tured that the PAM exhibits complete localisation as long as log gξ(x) ≪ x. This has been proven
(in [20]) in the extremal2 case of Pareto-like tail decay (gξ(x) ∼ γ log x, for γ > d), and more
recently (in [26] and [10]) in the case of Weibull-like tail decay (gξ(x) ∼ xγ). On the other hand,
if log gξ(x) ≫ x, then complete localisation is known not to hold (see [12]). What occurs in
the interface regime of double-exponential tail decay (log gξ(x) ∼ cx, for c > 0) is not currently
well-understood.

As for the radius of influence of the potential field, ρPAM, in the case of Pareto-like tail decay
it has been shown (see [20]) that ρPAM = 0, in other words, the localisation site can be deter-
mined by maximising a functional that depends on the potential field ξ only through its value at
individual lattice sites, with interactions between neighbouring lattice sites having no influence on
localisation. On the other hand, in the case of Weibull-like tail decay (gξ(x) ∼ xγ), the radius

of influence has been shown (see [10]) to be ρPAM = [(γ − 1)/2]+, where [x] and x+ denote the
integer and positive parts of x respectively. Clearly this implies that ρPAM = 0 if and only if
γ < 3, and also that ρPAM → ∞ in the γ → ∞ limit.

1.2.2. Localisation in the Bouchaud trap model. The study of localisation in the Bouchaud trap
model has also received considerable attention over the last 10 years. A notable feature of the
BTM is that localisation can only occur in dimension one. In higher dimensions, the traps either
have negligible effect in the limit (if the tail is integrable, by virtue of the law of large numbers),
or are visited in such a way that their overall effect is spatially-homogeneous (see [11] and [4] for
a proof of this result in the case of Pareto-like tail decay, although the result is thought to hold
more generally for arbitrary non-integrable tail decay).

2This case is extremal in the sense that if gξ(x) ∼ γ log x for γ > d or γ = d = 1 then the solution to equation (1)

‘blows-up’ in finite time, see [13].
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On the other hand, it is known that in dimension one, Pareto-like tail decay (gσ(x) ∼ c logx,
c > 0) forms the boundary of the localisation universality class. More precisely, if log x = O(gσ(x)),
it is known that the BTM does not localise in the sense of equation (6) (although it does localise in
a certain weaker sense; see, e.g. [11]). On the other hand, it was proven in [22] that for sub-Pareto
tail decay (gσ(x) ≪ log x), the BTM localises on exactly two-sites in the limit, with a radius of
influence (i.e. of the trapping landscape) equal to 0.

1.3. Overview of our results. Before detailing our results in full, we first provide a brief
overview to highlight salient features; this section is for exposition only, and is not intended
to be mathematically rigorous. A complete description of our results follows in Section 1.7 below.

In this initial study of localisation in the BAM, we focus on the case where both potential
distribution ξ(0) and trap distribution σ(0) have Weibull tail decay

P(ξ(0) > x) = e−x
γ

and P(σ(0) > x) = e−x
µ

γ, µ > 0 .

Our results also hold in the γ, µ → 0 limit (with some caveats; see Section 1.6). As we shall see,
the BAM with Weibull tail decay turns out to be a natural regime to study, since the interaction
between the potential field and trapping landscape exhibits certain phase transitions in (γ, µ).

1.3.1. Complete localisation. Our first main result establishes the complete localisation of the
BAM across the entire regime (see Theorem 1.7 below).

Theorem 1.1. There exists a (random) site Zt such that, as t→ ∞,

u(t, Zt)

U(t)
→ 1 in probability .

That the BAM completely localises for some (γ, µ) is expected, since the PAM with Weibull
potential also exhibits complete localisation. More surprising, however, is that complete localisa-
tion occurs regardless of the presence of very large traps, even in dimension one, since a priori it
might be thought that large traps would draw probability mass away from the localisation site.

1.3.2. Mutual reinforcement of localisation effects due to the PAM and the BTM. Since complete
localisation holds in the entire regime, in order to probe the interaction between the potential field
and trapping landscape we need a finer measure of localisation. Such a measure is provided by the
radius of influence ρ, which as described above is the smallest integer for which the localisation
site Zt can be determined by maximising a functional on Z

d that depends on ξ and σ only through
their values in balls of radius ρ around each site. Our second main result is to determine the radius
of influence ρ, and to prove its optimality (see Theorem 1.7 and part (a) of Theorem 1.10 below).

Theorem 1.2. The radius of influence is

ρ :=

[

γ − 1

2

µ

µ+ 1
+

1

2

]+

.

Note that ρ is a decreasing function of the strength of both the potential field and trapping
landscape (i.e. an increasing function of γ and µ), in other words, the localisation effects due to
the PAM and BTM are mutually reinforcing.

1.3.3. Reducibility of the BAM to the PAM. We next ask whether the BAM is ‘reducible’ to the
PAM. There are actually two distinct notions of reducibility that are relevant. Strong reducibility
describes the situation in which the trapping landscape σ plays no role in determining the localisa-
tion site Zt, and the macroscopic behaviour of the system is adequately approximated by the PAM
with potential ξ. Weak reducibility describes the situation in which all necessary information to
determine Zt is contained in the ‘net growth rate’ η := ξ − σ−1, and moreover, the macroscopic
behaviour of the BTM is adequately approximated by the PAM with potential replaced with η.
The term ‘net growth rate’ comes from the interpretation of the BAM as a trapped, branching
random walk (see Section 1.5 below). Our third main result is to determine the regimes in which
the BAM is strongly and weakly reducibility to the PAM (see parts (c) and (d) of Theorem 1.10
below). These regimes are depicted in Figure 1.
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Figure 1. Partition of the parameter space of the BAM according to the whether
the BAM is ‘strongly reducible’ to the PAM with the usual potential ξ (left of the
dashed line) or ‘weakly reducible’ to the PAM with the potential replaced with
the ‘net growth rate’ η (left of the bold curve). The boundary curve is µ =
1/(γ − 2).

Theorem 1.3. The BAM is strongly reducible to the PAM if and only if γ < 1. The BAM is
weakly reducible to the PAM if and only if ρ = 0 and γ ≥ 1.

1.3.4. Local correlation between the potential field and trapping landscape: The ‘fit and stable’
hypothesis. Our final result is to establish the local correlation between the potential field and
trapping landscape (where ‘local’ is from the perspective of the localisation site); this is the so-
called ‘fit and stable’ hypothesis that has been predicted numerically in the mathematical biology
literature (see, e.g., [6]), but never rigorously confirmed (see Section 1.5 below). Interestingly,
the correlation that we observe is positive at the localisation site, but negative away from the
localisation site, providing an unexpected extension to the ‘fit and stable’ hypothesis.

To describe this correlation, we shall need to define a second, possibly smaller, radius of influence

ρξ :=

[

γ − 1

2

µ

µ+ 1

]+

∈ {ρ− 1, ρ} ,

which is the the smallest integer for which the localisation site Zt can be determined by a max-
imising a functional on Z

d that depends on ξ only through its values in balls of radius ρξ around
each site (note, the functional must still depend on σ through balls of radius at least ρ). For
simplicity, we exclude here the ‘interface cases’, i.e. the points of discontinuity of ρξ.

Theorem 1.4. Assume that γ ≥ 1, so that the BAM is not strongly reducible to the PAM. Let Zt

denote the site of complete localisation. Then, as t→ ∞ eventually almost surely: (i) the random
variables ξ(Zt) and σ(Zt) are positively correlated; and (ii) for all z such that 0 < |z − Zt| ≤ ρξ,
the random variables ξ(z) and σ(z) are negatively correlated.

In Theorem 1.9 below we make explicit the nature of this correlation, as well as providing a full
description of the localisation site, determining its asymptotic distance from the origin, the local
profile of the potential field and trapping landscape, and its ageing behaviour.

1.4. Methods and techniques. Our approach to proving localisation in the BAM is loosely
based on existing techniques to prove localisation in the PAM (see, e.g., [1, 12, 26]), although
the complex interaction between the potential field and the trapping landscape means that these
techniques cannot be trivially adapted. Instead, the presence of the trapping landscape requires
the development of existing techniques on two main fronts.
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First, proving localisation in the BAM requires the development of the spectral theory of op-
erators of the form ∆σ−1 + ξ, including path expansions and Feynman-Kac representations for
the principal eigenvalue and eigenfunction respectively. To our knowledge this theory has not
appeared in the literature before, and may be of independent interest, including in the study of
position-dependent mass Schrödinger operators (see Section 1.5 below). In the particular case of
the BAM with Weibull tails, we also extend existing techniques to establish the max-class of local
eigenvalues; this is necessary in order to extract extra information about the local correlation in
the potential field and trapping landscape.

Second, in order to analyse the ‘screening effect’ of heavy traps, standard percolation estimates
are insufficient: in dimension one, because of the geometry; in dimensions higher than one, because
of complex dependencies between the potential field, the trapping landscape, and the localisation
site Zt. In dimension one we analyse heavy traps using coarse graining methods; in higher dimen-
sions, we implement new ideas that allow us to apply percolation estimates in the presence of the
dependencies.

In addition, our methods provide a new approach to working with ‘cluster expansions’. Al-
though these expansions have appeared in the literature before (see, e.g., [1, 10]), the standard
approach has been to access them via resolvent formalism. Our techniques provides a purely
probabilistic approach to ‘cluster expansion’, which avoids many of the technicalities of the resol-
vent formalism. One application would be a simpler, purely probabilistic proof of the localisation
results on the PAM found in [10].

1.5. Connections to the literature. Although this is the first work to consider the BAM, there
are clear connections between the BAM and other models in the literature. First, the BAM
can be interpreted as the thermodynamic limit of a particle system with random branching and
trapping mechanisms (given, respectively, by the potential field ξ and the trapping landscape σ).
In the probability literature there have been several other analyses of models combining random
branching and trapping mechanisms – in particular, trapping mechanisms given by asymmetric
transition probabilities [3] and random conductances [28] – although these have not considered
the localisation properties of the model, focusing instead on the growth of the total population.

Similar models have also appeared in the mathematical biological literature, where they find
an application in the study of population dynamics. Here the branching and trapping rates
are recast as the fitness (‘adaptedness’) and stability (‘adaptability’) respectively of individual
states (e.g. geographic locations, genetic configurations etc.). While the literature contains several
models which allow for randomness in either the fitness [19, 24] or stability [18, 21, 27], most
relevant is [6] which considers a model in which both these characteristics vary. Indeed, the model
considered in [6] is essentially identical to the BAM, except it is defined in a domain without any
geometry: when an individual’s state changes, the fitness and stability are re-sampled according
to their respective distributions.3 The primary observation in [6] (obtained numerically) is the
tendency of populations to concentrate on states which are both fit and stable: the ‘fit and stable’
hypothesis. Our results provide the first rigorous analysis of this phenomenon. Indeed, our results
actually suggest a refinement of the hypothesis (for our model with geometry): that populations
concentrate on states which are fit and stable, but also for which neighbouring states are both fit
and unstable.

Second, operators of the form ∆σ−1 + ξ have important applications in quantum mechanics,
since their eigenvalues give the energy levels of a particle whose effective mass is position-dependent
(see, e.g., [7, 8, 25]). To make the connection, consider the position-dependent mass Schrödinger
equation for a particle with effective mass σ in a potential field ξ. This equation has a Hamiltonian
of general form (see [25])

1

2

(

σ−α∇σ−β∇σ−γ + σ−γ∇σ−β∇σ−α
)

+ ξ , α, β, γ ≥ 0, α+ β + γ = 1 .

3A second minor difference is that the population size is kept constant by the deletion of a uniformly chosen
individual at each replication event.
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Although there is no canonical choice for α, β, γ, in the discrete setting a natural restriction is
β = 0, which avoids symmetry breaking in the definition of∇. Specialising to the case α = γ = 1/2
gives the Hamiltonian

σ−
1
2∆σ−

1
2 + ξ = σ−

1
2

(

∆σ−1 + ξ
)

σ
1
2 . (7)

We remark that the Hamiltonian in (7) is the ‘symmetrised’ form of the operator ∆σ−1 + ξ, and
hence has equivalent spectral theory. In Section 3 we develop general theory for operators of
the form ∆σ−1 + ξ, including deriving path expansions and Feynman-Kac representations for the
principal eigenvalue and eigenfunction respectively. This section is entirely self-contained, and is
completely deterministic, and we expect that it will be of independent interest.

Third, there are connections between the BAM and the PAM in the case where the potential
field distribution ξ(0) is allowed to take on highly negative (or even infinitely negative) values,
which may be interpreted as ‘traps’. Previous work has noted the minimal influence of such ‘traps’
in d ≥ 2 (see, e.g. [13, Section 2.4]), essentially due to percolation estimates, an observation that
finds echoes in our results and methods. However, there are clear differences between this model
and the BAM, primarily due to the fact that the traps in the BAM may coexist with sites of
high potential; this coexistence underlies the phenomena of mutual reinforcement and correlation
that we observe in the BAM. On the other hand, in dimension one the effect of highly negative
potential values in the PAM is significant (see [5]). Indeed, since such sites cannot be avoided,
their effect is to ‘screen’ off the growth that would otherwise occur from sites of high potential, and
so the asymptotic growth of the solution depends heavily on the relationship between the upper
and lower tails of ξ(0). Again, this is reminiscent of our results in dimension one, which are only
valid if the trap distribution decays sufficiently fast to ensure ‘screening’ effects are negligible.

1.6. The formal set-up for the paper. For the rest of the paper, we make the following
assumptions on the potential field ξ and the trapping landscape σ:

Assumption 1.5 (Assumption on the potential field distribution).
The random variable ξ(0) is strictly-positive and satisfies

F̄ξ(x) = e−x
γ

,

for some γ > 0, where F̄ξ(x) := 1− Fξ(x) := P(ξ(0) > x).

Assumption 1.6 (Assumptions on the trap distribution).
The random variable σ(0) satisfies:

(a) No quick sites: The quantity

δσ := essinf σ(0)

is strictly positive;
(b) Regularity: The quantity

µ := lim
x→∞

log gσ(x)

log x

exists and is finite. If µ > 0, then σ(0) has a continuous density function fσ(x) with a Weibull
upper-tail, i.e. for sufficiently large x,

F̄σ(x) = exp{−xµ} ,

where F̄σ(x) := 1 − Fσ(x) := P(σ(0) > x). If µ = 0, then σ(0) has a continuous density
function fσ(x), with the property that

fσ(ax) ∼ fσ(bx)

for any ax, bx → ∞ such that ax ∼ bx (see Section 1.8 for the asymptotic notation). In both
cases, the lower-tail of fσ satisfies, as x→ 0,

fσ(x+ δσ) = o(e−1/x) .

Furthermore, if d = 1, then additionally σ(0) satisfies the following two extra conditions:
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(c) Sufficiently fast tail decay: As x→ ∞ eventually, for some ε > 0,

gσ(x) > (1 + ε) log log x ;

(d) Regularity: There exists a c ∈ (1,∞] such that

lim
x→∞

gσ(x)

log log x
= c ,

with the convergence eventually monotone in the case c = ∞.

We wish to briefly comment on the nature of the above assumptions on ξ(0) and σ(0). First,
we claim that the BAM with Weibull potential field is a natural regime in which to observe the
interaction between the localisation effects in the PAM and the BTM. If the potential field is any
stronger (indeed if γ < 1), the BAM is strongly reducible to the PAM4. On the other hand, if
the potential field is any weaker, the effect of the trapping landscape, while present, is harder
to measure. To see why, recall that the PAM with Weibull potential field has been shown to
completely localise with a certain finite radius of influence ρPAM; it is on the level of this radius
that we measure the impact of the trapping landscape σ. Since ρPAM → ∞ in the γ → ∞ limit,
the effect of changes to ρPAM become harder to quantify, and we leave this study to future work.

Second, the regularity assumption on ξ(0) is imposed mainly for simplicity; weaker regularity
assumptions (like those found in [1] and [2] for instance) are possible, although they introduce
certain technical difficulties that we wish to avoid. Finally, note that equivalent results for the
BAM with Pareto-like potential field can be naturally deduced by considering our results in the
γ → 0 limit.

Turning to the assumptions on σ(0), first note that the quantity µ measures the ‘Weibull-
ness’ of the upper-tail of σ(0), with the case µ = 0 corresponding to a stronger-than-Weibull
trapping landscape. For simplicity, we have chosen not to consider weaker-than-Weibull trapping
landscapes in this paper; equivalent results can be naturally deduced by considering our results in
the µ → ∞ limit. As with ξ(0), the regularity assumptions on σ(0) are certainly not optimal for
our results to hold; they are chosen mainly for simplicity. On the other hand, our assumption that
σ(0) is bounded away from zero is essential. Indeed we expect that the nature of the localisation
behaviour will change if ‘quick’ sites are present. Finally, the additional tail decay assumption
in dimension one is also essential, and our results and methods break down completely without
it. Note, however, that this condition is only violated for trap distributions with extremely heavy
tails, such as if σ(0) is a log-Pareto random variable.

1.7. Full description of our results. Here we describe our results in full, expanding on the
exposition given in Section 1.3. In order to state our results explicitly, we shall need to intro-
duce some notation. Recall the parameter µ ∈ [0,∞) from Assumption 1.6, which describes the
‘Weibull-like’ decay parameter of the upper-tail of σ(0). Recall also from Section 1.3 the radius of
influence

ρ :=

[

γ − 1

2

µ

µ+ 1
+

1

2

]+

and the, possibly smaller, radius of influence of the potential field ξ,

ρξ :=

[

γ − 1

2

µ

µ+ 1

]+

∈ {ρ− 1, ρ} ≤ ρ .

The relationship between ρ and ρξ is depicted in Figure 2; we defer further discussion on ρ and
ρξ to Remark 1.11.

Next we describe explicitly the localisation site. For each z ∈ Z
d and n ∈ N, define the ball

B(z, n) := {y ∈ Z
d : |y − z| ≤ n}. For each z ∈ Z

d, define the Hamiltonian

H(z) := ∆σ−1 + ξ1B(z,ρξ)

4Note however that, because of Assumption 1.6, this conclusion does not apply in dimension one if the trapping
landscape is sufficiently strong.
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Figure 2. Partition of the parameter space of the BAM according to the values
of ρ (bold lines) and ρξ (dashed lines). The boundary curves are of the form
µ = (2i− 1)/(γ − 2i) and µ = (2i)/(γ − 2i− 1), for i ∈ N \ {0}.

restricted to the domain B(z, ρ) with Dirichlet boundary conditions, denoting by λ(z) its principal
eigenvalue. Note that each λ(z) is real since the Hamiltonian H(z) is similar to the Hermitian
operator

σ−
1
2 H(z)σ

1
2 = σ−

1
2∆σ−

1
2 + ξ1B(z,ρξ) .

We refer to λ(z) as the local principal eigenvalue at z, and remark that it is a certain functional
of the sets ξ(ρξ)(z) := {ξ(y)}y∈B(z,ρξ) and σ(ρ)(z) := {σ(y)}y∈B(z,ρ). Note that the random
variables {λ(z)}z∈Zd are identically distributed, and have a dependency range bounded by 2ρ, i.e.
the random variables λ(y) and λ(z) are independent if and only if |y− z| > 2ρ. Remark also that
in the special case ρ = 0, λ(z) reduces to the ‘net growth rate’ η(z) = ξ(z)− σ−1(z).

For any sufficiently large t, define a penalisation functional Ψt : Z
d → R by

Ψt(z) := λ(z)−
|z|

γt
log log t .

Note that Ψt has a similar form to the penalisation functional introduced in [10] to prove complete
localisation in the PAM with Weibull potential field, representing the trade-off between energetic
forces (given by the local principal eigenvalue λ(z)) and entropic forces (given by a probabilistic
penalty which is linear in |z| and decaying in t); see Remark 1.8.

Define a large ‘macrobox’ Vt := [−Rt, Rt]
d ∩ Z

d, with Rt := t(log t)
1
γ . Fix a constant 0 <

θ < 1/2 and define the macrobox level Lt := ((1 − θ) log |Vt|)
1
γ . Let the subset Π(Lt) :=

{

z ∈ Z
d : ξ(z) > Lt

}

∩Vt consist of sites in Vt at which ξ-exceedances of the level Lt occur. Finally,
define the random site

Zt := argmax
z∈Π(Lt)

Ψt(z) .

The site Zt is well-defined eventually almost surely since, as we show in Lemma 4.1, the set Π(Lt)

is non-empty and finite eventually almost surely. Moreover, for t sufficiently large, Zt almost
surely does not depend on the particular choice of θ. We present again (see Theorem 1.1) our
main theorem:

Theorem 1.7 (Complete localisation). As t → ∞,

u(t, Zt)

U(t)
→ 1 in probability .
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Remark 1.8. In order to determine Zt explicitly, a finite approximation is available for λ(z) (see
Proposition 5.1 for a precise formulation):

λ(z) ≈ η(z) + σ−1(z)
∑

2≤k≤2j

∑

p∈Γk(z,z)
pi 6=z, 0<i<k
Set(p)⊆B(z,ρ)

∏

0<i<k

(2d)−1
σ−1(pi)

λ(z)− ηz(pi)
, (8)

where j := [γ − 1] and ηz := ξ1B(z,ρξ) − σ−1; see Section 1.8 for the definition of the path set
Γk(z, z). This path expansion can be iteratively evaluated to approximate Ψt(z) as an explicit
function of ξ(ρξ)(z), σ(ρ)(z), |z| and t, which, as we show, is sufficiently precise to determine the
localisation site Zt with overwhelming probability.

Before stating our second and third main results we shall introduce some more notation. First we
define exponents that explicitly describe the correlation of the fields ξ and σ around the localisation
site Zt. To this end, define the function qξ : N → [0, 1] and the non-negative constant qσ by

qξ(x) :=







(

1− 2x
γ−1 − 1

µ+1

)+

if γ > 1 ,

(1− x)+ else,
and qσ :=

(

γ − 1

µ+ 1

)+

.

We shall also need the concept of ‘interface cases’, which correspond to the values of (γ, µ) where ρ,
and respectively ρξ, are transitioning from one integer to the next. To this end define the sets

B :=

{

(γ, µ) :
γ − 1

2

µ

µ+ 1
+

1

2
= ρ

}

and Bξ :=

{

(γ, µ) :
γ − 1

2

µ

µ+ 1
= ρξ

}

.

Note that these sets correspond, respectively, to the bold and dashed curves in Figure 2. Finally,
define the random time Tt := inf{s > 0 : Zt+s 6= Zt} and the scales

rt :=
t(d log t)

1
γ
−1

log log t
and at := (d log t)

1
γ . (9)

The scales rt and at describe, respectively, the scale of the distance from the origin of the locali-
sation site and the scale of the height of the potential field at the localisation site.

Theorem 1.9 (Description of the localisation site). As t→ ∞ the following hold:

(a) (Localisation distance)
Zt

rt
⇒ X in law ,

where X is a random vector whose coordinates are independent and distributed as Laplace
(two-sided exponential) random variables with absolute-moment one.

(b) (Local correlation of the potential field) If (γ, µ) /∈ Bξ, then for each z ∈ B(0, ρξ) there exists
a c > 0 such that

ξ(Zt + z)

a
qξ(|z|)
t

→ c in probability . (10)

If (γ, µ) ∈ Bξ, then (10) holds for each z ∈ B(0, ρξ − 1), and moreover, for each z such that
|z| = ρξ there exists a c > 0 such that,

fξ(Zt+z)(x) →
ecxfξ(x)

E[ecξ(0)]
,

uniformly over x ∈ (0, Lt), where fξ(z) is the density of the potential field at site z (see
Assumption 1.5).

(c) (Correlation of the trapping landscape at Zt) If µ > 0 and γ > 1, then there exists a c > 0
such that

σ(Zt)

aqσt
→ c in probability .
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If µ = 0 and γ > 1 then, for each ν > 0,

P

(

log σ(Zt)

log at
> qσ − ν

)

→ 1 .

If γ = 1 then,

fσ(Zt)(x) →
e−1/xfσ(x)

E[e−1/σ(0)]
,

uniformly over x, where fσ(Zt) is the density of the trapping landscape at site Zt.
(d) (Local correlation of the trapping landscape) If (γ, µ) /∈ B, then for each z ∈ B(0, ρ) \ {0}

σ(Zt + z) → δσ in probability . (11)

If (γ, µ) ∈ B, then (11) holds for each z ∈ B(0, ρ) \ {0} and moreover, for each z such that
|z| = ρ, there exists a c > 0 such that

fσ(Zt+z)(x) →
ec/xfσ(x)

E[ec/σ(0)]
,

uniformly over x, where fσ(z) is the density of the trapping landscape at site z (see Assump-
tion 1.6).

(e) (Ageing)
Tt
t

⇒ Θ in law ,

where Θ is a non-degenerate almost surely positive random variable.

Theorem 1.10 (Optimality results). As t→ ∞ the following hold:

(a) (Optimality of the radius of influence) The radius of influence ρ is optimal, in other words,
there does not exist a functional ψt, depending on ξ and σ only through their values in balls
of radius ρ− 1 around each site z, such that

P

(

Zt = argmax
z∈Zd

ψt(z)

)

→ 1 . (12)

(b) (Optimality of the radius of influence with respect to the potential field) The radius of influ-
ence of the potential field ρξ is optimal, in other words, there does not exist a functional ψt,
depending on ξ only through its values in balls of radius ρξ − 1 around each site z, such that

P

(

Zt = argmax
z∈Zd

ψt(z)

)

→ 1 . (13)

(c) (Criterion for reduction to the potential ξ) The localisation site is independent of the trapping
landscape σ if and only if γ < 1, in other words, if and only if γ < 1, there exists a random
site zt ∈ Z

d, independent of σ, such that,

P (Zt = zt) → 1 . (14)

(d) (Criterion for reduction to the ‘net growth rate’ η) The localisation site Zt depends on ξ and
σ only through the value of η if and only if ρ = 0, in other words, if and only if ρ = 0, there
exists a random site zt ∈ Z

d, dependent on ξ and σ only through η, such that,

P (Zt = zt) → 1 . (15)

Remark 1.11. We note several interesting features of the radius of influence ρ. As remarked above,
ρ is an increasing function of both γ and µ. Moreover, surprisingly it is not necessarily the case
that ρ → ρPAM := [(γ − 1)/2]+ in the µ → ∞ limit; indeed, if γ ∈ (2i, 2i + 1) for i ∈ N \ {0},
then in fact ρ→ ρPAM + 1, meaning that influence of the BTM on the BAM is not continuous in
the degenerate limit (i.e. as σ(z) → 1 simultaneously for each z). On the other hand, ρξ → ρPAM

in the µ → ∞ limit, i.e. there is no discontinuity in the effect of the BTM on the BAM on the
level of the radius of influence of the potential field ξ. The relationship between ρ, ρξ and ρPAM

is depicted in Figure 3.
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Figure 3. Partition of the parameter space of the BAM according to the rela-
tionship between ρ (bold lines) and ρPAM (dashed lines), and ρξ (bold lines) and
ρPAM (dashed lines) respectively, where ρPAM denotes the radius of influence in
the equivalent PAM with identical potential field. The boundary curves are of
the form µ = (2i−1)/(γ−2i) and µ = (2i)/(γ−2i−1) respectively, for i ∈ N\{0}.

Remark 1.12. The shape of the local profile of the potential field and trapping landscape in parts
(b)–(d) of Theorem 1.9 is derived by considering the path expansion in equation (8) and determin-
ing the values of ξ and σ that appropriately balance: (i) the increase in λ gained from favourable
realisations of ξ and σ; and (ii) the probabilistic penalty that results from such favourable realisa-
tions of ξ and σ if they are too unlikely. This balance is expressed through a convex function whose
integral is asymptotically concentrated in the regions specified in Theorem 1.9. This computation
is carried out in the proof of Proposition 5.3, identifying the constants in Theorem 1.9 explicitly.

We also give some heuristic reasons why we must distinguish the cases (γ, µ) ∈ B,Bξ in the
correlation results. If (γ, µ) /∈ Bξ, then the value of ξ(Zt+ z) is growing (with high probability) as
t→ ∞ for each z ∈ B(0, ρξ). However, if (γ, µ) ∈ Bξ, this only occurs for z ∈ B(0, ρξ − 1); at the
interface of the radius, where |z| = ρξ, the value of ξ(Zt+z) instead converges to a certain random
variable with law distinct from the law of ξ(0). Similarly, for (γ, µ) /∈ B, σ(Zt + z) converges to δσ
for each z ∈ B(0, ρ) \ {0}. However, if (γ, µ) ∈ B, then this is only true for z ∈ B(0, ρ− 1) \ {0}.
If |z| = ρ, the value of σ(Zt + z) instead converges to a certain random variable with law distinct
from the law of σ(0). These properties are reflective of the fact that the correlation in the fields
ξ and σ induced by the localisation site Zt decays away from the site.

We also explain why the cases γ ≤ 1 and µ = 0 must be further distinguished in our profile
for σ(Zt). If γ > 1 then the value of σ(Zt) is growing, and indeed growing with a deterministic
leading order. However, if γ = 1, this is no longer true and instead σ(Zt) converges to a certain
random variable with law distinct from the law of σ(0).5 The case µ = 0 must be distinguished
for a different reason; in this case, the extremes of σ are so large that there are many sites z for
which σ−1(z) is smaller than the gap in the top statistics of Ψt. Past this threshold, differences
in the magnitude of σ no longer materially influence the determination of Zt, and so we lose a
degree of certainty about the order of growth of σ(Zt).

Note finally that if (γ, µ) is not in B and Bξ respectively, then the probabilities in equations
(12) and (13) actually converge to 0 for any such ψt; otherwise, the respective probability will
converge to a constant c ∈ (0, 1). Similarly, if (γ, µ) lies to the right of the dashed or bold line
in Figure 1, the probabilities in (14) and (15) respectively converge to 0 for any such zt; if (γ, µ)

5Of course, in the case γ < 1, with overwhelming probability σ is independent of the localisation site Zt (cf.
part (c) of Theorem 1.9) and so σ(Zt) has the same law as σ(0).
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lies on either line, the repective probability instead converges to a constant c ∈ (0, 1). We do not
prove these additional results here.

1.8. Notation. Here we list notation that will be commonly used for the remainder of the paper.
Asymptotic notation: For functions f and g we use f ∼ g to denote that

lim
x→∞

f(x)/g(x) = 1 ,

and f = o(g) or f ≪ g to denote that

lim
x→∞

f(x)/g(x) = 0 .

We use f = O(g) to denote that, as x→ ∞, eventually for some constant c > 0,

|f(x)| < c|g(x)| .

Notation for paths: For an integer k and sites y, z ∈ Z
d, let Γk(y, z) be the set of nearest

neighbour paths in Z
d of length k running from y to z, with each p ∈ Γk(y, z) indexed as

y =: p0 → p1 → p2 → . . .→ pk := z .

Similarly, denote

Γk(y) :=
⋃

z∈Zd

Γk(y, z) , Γ(y, z) :=
⋃

k∈N

Γk(y, z) ,

Γ(y) :=
⋃

k∈N

Γk(y) , Γ :=
⋃

y∈Zd

Γ(y) .

For a site z ∈ Z
d, let n(z) denote the number of shortest paths from the origin to z, i.e.

n(z) := |Γ|z|(0, z)| .

For a path p ∈ Γk(y, z) denote Set(p) := {p0, p1, . . . , pk} and |p| := k. For a nearest neighbour
random walk X let p(Xt) ∈ Γ(X0) denote the geometric path associated with the trajectory of
{Xs}s≤t and let pk(X) ∈ Γk(X0) denote the geometric path associated with the random walk
{Xs}s≥0 up to and including its kth jump.

Notation for sets: For a domain D ∈ Z
d, denote by

∂D = {y ∈ Dc : there exists x ∈ D such that |x− y| = 1} .

For a set S ∈ Z
d define B(S, n) :=

⋃

z∈S B(z, n) and sep (S) := minx 6=y∈S{|x− y|}.

Notation for solutions of the BAM: For each y, z ∈ Z
d define uy(t, z) to be the solution of

the Cauchy problem

∂uy(t, z)

∂t
= (∆σ−1 + ξ)uy(t, z) , (t, z) ∈ [0,∞)× Z

d ;

uy(0, z) = 1{y}(z) , z ∈ Z
d ;

and, for z ∈ Z
d and p ∈ Γ, define

up(t, z) := Ep0

[

exp

{
∫ t

0

ξ(Xs) ds

}

1{Xt=z}1{p(Xt)=p}

]

, Up(t) :=
∑

z∈Zd

up(t, z) .

Notation for local principal eigenvalues: For each z ∈ Z
d and n ∈ N define the n-local

principal eigenvalue λ(n)(z) to be the principal eigenvalue of the Hamiltonian

H(n)(z) := ∆σ−1 + ξ

restricted to the domain B(z, n) with Dirichlet boundary conditions.
Other notation: For a, b ∈ R define a ∧ b := min{a, b}.
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2. Outline of proof

The main idea of the proof of Theorem 1.7 is that the solution u(t, z) can be decomposed
into disjoint components by reference to the trajectories of the underlying BTM in the Feynman-
Kac representation in (5). Using such a path decomposition, we prove complete localisation by
establishing that: (i) a single component carries the entire non-negligible part of the solution; and
(ii) the non-negligible component is localised at Zt.

To assist in the proof, we introduce the scale

dt :=
1

γ
(d log t)

1
γ
−1 (16)

which is the derivative (on the log scale) of the height scale at, and naturally examines the gaps in
the maximisers of ξ in growing boxes. We also introduce auxiliary scaling functions ft, ht, et, bt → 0
and gt, st → ∞ as t → ∞ that are convenient placeholders for negligibly decaying (respectively
growing) functions. For technical reasons, we shall need to choose these functions to satisfy certain
relationships, as follows. First, let st be such that

(log st)
2 ≪ log log t .

Then, choose ft, ht, et, bt and gt satisfying

max{F̄σ(st), (log st)
2/ log log t, 1/ log log st} gt ≪ bt ≪ ftht ≪ gtht ≪ et . (17)

It is easy to check that such a choice is always possible.

Path decomposition. We explain here how to construct the path decomposition. Recall the defi-
nition of Vt from Section 1.7. For a path p ∈ Γ(0) such that Set(p) ⊆ Vt, let

z(p) := argmax
z∈Set(p)

λ(z)

which is well-defined almost surely. Abbreviate

Bt := B (0, |Zt|(1 + ht)) ∩ Vt .

We partition the path set Γ(0) into the following five disjoint components

Ei
t :=































{

p ∈ Γ(0) : Set(p) ⊆ Bt, z
(p) = Zt

}

, i = 1 ; (non-negligible component)
{

p ∈ Γ(0) : Set(p) ⊆ Vt, z
(p) ∈ Π(Lt) \ Zt

}

, i = 2 ; (path does not hit best site)
{

p ∈ Γ(0) : Set(p) ⊆ Vt, Set(p) 6⊆ Bt, z
(p) = Zt

}

, i = 3 ; (path travels far)
{

p ∈ Γ(0) : Set(p) ⊆ Vt, z
(p) /∈ Π(Lt)

}

, i = 4 ; (path avoids all high sites)

{p ∈ Γ(0) : Set(p) 6⊆ Vt} , i = 5 ; (path leaves macrobox)

and associate each component Ei
t with a portion of the total mass U(t) of the solution. As such,

for each 1 ≤ i ≤ 5, let

ui(t, z) :=
∑

p∈Ei
t

up(t, z) and U i(t) =
∑

z∈Zd

ui(t, z) .

Our strategy is to establish that each of U2(t), U3(t), U4(t) and U5(t) are negligible with respect
to the total mass U(t) of the solution, in other words that,

U i(t)

U(t)
→ 0 in probability, for i = 2, 3, 4, 5 .

To complete the proof of localisation, we also prove that U1(t) is localised at Zt, i.e. that,

u1(t, Zt)

U1(t)
→ 1 in probability.

Note that this strategy requires a balance to be struck in how Bt is defined; it must be large
enough that U3(t) is negligible, but small enough to ensure localisation. The scale ht has been
fine-tuned in (17) precisely to ensure this balance is struck correctly.
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Negligible paths. The negligibility of U4(t) and U5(t) are simple to establish; the main difficulty is
establishing the negligibility of U2(t) and U3(t). Our proof is based on formalising two heuristics.
First heuristic: Recall the constant j := [γ − 1] ≥ ρ and the definition of the j-local principal
eigenvalue λ(j) from Section 1.8. We expect that, for a path p ∈ Γ(0) \ E5

t ,

Up(t) ≈ exp
{

tλ(j)(z(p))
}

a
−|p|
t , (18)

which represents the balance between (i) the exponential growth of the solution at each site, and
(ii) the probabilistic penalty for travelling each step along the path p.

The accuracy of this heuristic relies on some subtle observations about the BAM (and indeed
the PAM) which we shall briefly discuss further. First is the claim that the j-local principal
eigenvalues closely approximate the exponential growth rate of the solution at a site (note that
here we could take a slightly smaller constant in place of j, but j will turn out to be convenient
for another reason; see immediately below). This approximation, in turn, is based on the fact that
there is a lack of resonance between the top eigenvalues of the operator ∆ + ξ restricted to any
finite domain.

Second is the claim that it is never beneficial for a path to visit other sites of high potential,
other than z(p). This is proved by way of a ‘cluster expansion’ (see Lemma 3.13) which bounds
the contribution to Up(t) between the time p visits a site z of high potential until it leaves the ball
B(z, j). Crucially, j is chosen precisely to be the smallest integer for which this ‘cluster expansion’
bound is smaller than the probabilistic penalty associated with the path getting from outside the
ball B(z, j) to z (see the proof of Proposition 6.7).

Third is the claim that the probabilistic penalty for travelling along the path p is approximately
1/at for each step of the path. Implicit in this claim is the highly non-trivial fact that the trapping
landscape σ is not an obstacle to the diffusivity of the particle, in other words, that a sufficiently
‘quick’ path exists from 0 to the site z(p). If d ≥ 2, this is essentially due to percolation estimates;
if d = 1, then this relies crucially on the additional tail decay assumption on the distribution of
σ(0), and our proofs and methods break down without it.
Second heuristic: We expect that, for i = 1, 2, 3,

U i(t) ≈ max
p∈Ei

t

Up(t) , (19)

which represents the idea that U i(t) should be dominated by the contribution from just a single
path in the path set Ei

t . This is essentially due to the fact that the number of paths of length k
grows exponentially in k, whereas the probabilistic penalty associated with a path of length k
decays as a−kt , which dominates since at → ∞.

Let us consider what these heuristics imply for U(t). Recall the definition of Π(Lt) from Sec-
tion 1.7. By analogy with Ψt and Zt, define

Ψ
(j)
t (z) = λ(j)(z)−

|z|

γt
log log t

and Z
(j)
t := argmaxz∈Π(Lt) Ψ

(j)
t . Note that it will turn out that Z

(j)
t = Zt with overwhelming

probability (see Corollary 5.11), so we will interchange between these freely in the discussion that
follows. Clearly, by the two heuristics, the dominant contribution to U(t) will come from a path
p ∈ Γ(0) that goes directly from the origin to z(p), and so we expect that

U(t) ≈ max
p∈Γ(0)

{

exp
{

tλ(j)(z(p))
}

a
−|z(p)|
t

}

≈ exp

{

tmax
z∈Zd

Ψ
(j)
t (z)

}

= exp
{

tΨ
(j)
t (Z

(j)
t )
}

.

Indeed, we formalise this approximation as a lower bound

logU(t) ≥ tΨ
(j)
t (Z

(j)
t ) +O(tdtbt) . (20)

Similarly for U2(t), the heuristics imply that the dominant contribution will come from the
path p ∈ E2

t that goes directly from the origin to the site

Z
(j,2)
t = argmax

z∈Π(Lt)\{Z
(j)
t }

Ψ
(j)
t (z) ,
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and so

U2(t) ≈ exp
{

tλ(j)(Z
(j,2)
t )

}

a
−|Z

(j,2)
t |

t ≈ exp
{

tΨ
(j)
t (Z

(j,2)
t )

}

.

We formalise this approximation as an upper bound

logU2(t) ≤ tΨ
(j)
t (Z

(j,2)
t ) +O(tdtbt) ,

which, together with equation (20), implies that

logU2(t)− logU(t) ≤ −t
(

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Z

(j,2)
t ) +O(dtbt)

)

.

Remark that the negligibility of U2(t) is then a consequence of the gap in the top order statistics

of Ψ
(j)
t being larger than the error (of order O(dtbt)) in these bounds.

Finally, the heuristics imply that the dominant contribution to U3(t) will come from a path p
that visits Zt but that also ventures outside Bt, and so

U3(t) ≈ exp
{

tλ(j)(Zt)
}

a
−|Zt|(1+ht)
t .

We formalise this approximation as an upper bound

logU3(t) ≤ tλ(j)(Zt)−
1

γ
|Zt|(1 + ht) log log t+O(tdtbt) (21)

which, together with equation (20), implies that

logU3(t)− logU(t) ≤ −
1

γ
|Zt|ht log log t+O(tdtbt) .

Remark that the negligibility of U3(t) is then a consequence of |Zt|ht log log t being larger than
the error (also of order O(tdtbt)) in these bounds.

In Section 5 we study extremal theory for λ(j) and Ψ
(j)
t , demonstrating, in particular, that

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Z

(j,2)
t ) > dtet and |Z

(j)
t |ht log log t > tdtet

both hold eventually with overwhelming probability. We also show that Z
(j)
t = Zt with over-

whelming probability. In the process, we establish the description of the localisation site Zt that
is contained in Theorem 1.9, as well as the optimality results in Theorem 1.10. In Section 6, we
show how to formalise the heuristics in equations (18) and (19) into the bounds in equations (20)
and (21), and so complete the proof of the negligibility of U2(t) and U3(t).

Throughout, we draw on the preliminary results established in Sections 3 and 4. Section 3
contains a compilation of general results on operators of the form ∆σ−1 + ξ. Section 4 contains
general results on the random fields ξ and σ. Of particular concern here is the existence of ‘quick’
paths through the trapping landscape σ.

Localisation. In Section 7 we complete the proof of Theorem 1.7 by showing that u1(t, z) is localised
at the site Zt. The main idea is the same as in [12] and [26], namely that: (i) the solution u1(t, z)
is asymptotically approximated by the principal eigenfunction of the operator ∆σ−1+ ξ restricted
to the domain Bt; and (ii) the principal eigenfunction decays exponentially away from the site Zt.
Underlying this reasoning is the fact that the domain Bt has been constructed to ensure that
λ(j)(Zt) is the largest j-local principal eigenvalue in the domain. This in turn allows us to give
a Feynman-Kac representation of the principal eigenfunction vt (see Proposition 7.3), which we
analyse probabilistically to establish exponential decay.

3. General theory for the BAM

In this section we develop general theory for operators of the form ∆σ−1 + ξ which is valid
for arbitrary ξ and positive σ. This section will be entirely self-contained and is completely
deterministic, and may be of independent interest. We have chosen to develop the theory in full
generality so as to take advantage of the results in future work.
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Throughout this section, letD ⊂ Z
d be a bounded domain and let ξ and σ be arbitrary functions

ξ : Zd → R and σ : Zd → R
+, with η := ξ − σ−1. Denote by H the Hamiltonian

H := ∆σ−1 + ξ

restricted to the domain D with Dirichlet boundary conditions, and let {λi}i≤|D| and {ϕi}i≤|D| be
respectively the (finite) set of eigenvalues and eigenfunctions of H, with eigenvalues in descending
order and eigenfunctions ℓ2 normalised. Finally, recall that Xs denotes the BTM and define the
stopping times

τz := inf{t ≥ 0 : Xt = z} and τDc := inf{t ≥ 0 : Xt /∈ D} .

We start by presenting representations and deriving simple bounds for λ1 and ϕ1.

Lemma 3.1 (Principal eigenvalue monotonicity). For each z ∈ D and δ > 0, let λ̄1 be the
principal eigenvalue of the operator H+ δ1{z}. Then λ̄1 > λ1.

Moreover, for each strictly smaller domain D̄ ⊂ D, let λ̄1 be the principal eigenvalue of H
restricted to the domain D̄ with Dirichlet boundary conditions. Then λ̄1 < λ1.

Proof. These are general properties of elliptic operators. �

Lemma 3.2 (Bounds on the principal eigenvalue).

max
z∈D

{η(z)} ≤ λ1 ≤ max
z∈D







η(z) +
∑

|y−z|=1

1

2d
σ−1(y)







.

Proof. The lower bound follows from the min-max theorem for the principal eigenvalue; the upper
bound follows from the Gershgorin circle theorem. �

Proposition 3.3 (Feynman-Kac representation for the principal eigenfunction). For each y, z ∈ D
the principal eigenfunction ϕ1 satisfies the Feynman-Kac representation

ϕ1(y)

ϕ1(z)
=
σ(y)

σ(z)
Ey

[

exp

{
∫ τz

0

(ξ(Xs)− λ1) ds

}

1{τDc>τz}

]

. (22)

Proof. Consider z fixed and define vz(y) := ϕ1(y)/ϕ1(z). Note that the function vz satisfies the
Dirichlet problem

(∆σ−1 + ξ − λ1) v
z(y) = 0 , y ∈ D \ {z} ;

vz(y) = 1{z}(y) , y /∈ D \ {z} .

It is easy to check (for instance, by integrating over the first holding time) that the Feynman-Kac
representation on the right-hand side of equation (22) also satisfies this Dirichlet problem; hence
we are done if there is a unique solution. So assume another non-trivial solution w exists. Then
the difference q := vz − w satisfies the Dirichlet problem

(∆σ−1 + ξ − λ1) q(y) = 0 , y ∈ D \ {z} ;

q(y) = 0 , y /∈ D \ {z} ;

which is nonzero if and only if λ1 is an eigenvalue of the operator ∆σ−1 + ξ restricted to the
domain D \ {z} with Dirichlet boundary conditions. By the domain monotonicity of the principal
eigenvalue in Lemma 3.1, this is impossible. �

Lemma 3.4 (Path-wise evaluation). For each k ∈ N, y, z ∈ D, p ∈ Γk(z, y) such that pi 6= y for
i < k and Set(p) ⊆ D, and ζ > max0≤i<k η(pi), we have

Ez

[

exp

{
∫ τy

0

(ξ(Xs)− ζ) ds

}

1{pk(X)=p}

]

=

k−1
∏

i=0

1

2d

σ−1(pi)

ζ − η(pi)
.

Proof. This follows by integrating over the holding times at the sites {pi}0≤i≤k−1, which are
independent. The restriction on ζ ensures that the resulting integrals are finite. �
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Proposition 3.5 (Path expansion for the principal eigenvector). For each y, z ∈ D the principal
eigenfunction ϕ1 satisfies the path expansion

ϕ1(y)

ϕ1(z)
=
σ(y)

σ(z)

∑

k≥1

∑

p∈Γk(y,z)
pi 6=z, 0≤i<k
Set(p)⊆D

∏

0≤i<k

1

2d

σ−1(pi)

λ1 − η(pi)
.

Proof. The expectation on the right-hand side of equation (22) can be expanded path-wise using
Lemma 3.4, which is valid by the lower bound in Lemma 3.2. �

Remark 3.6. Note that the initial factor σ(y) in the above path expansion cancels with the term
σ−1(p1) appeaing in each component of the sum. This turns out to be crucial in establishing the
localisation of the eigenfunctions in Sections 6 and 7, since a priori σ(y) could be arbitrarily large.

Proposition 3.7 (Path expansion for the principal eigenvalue). For each z ∈ D the principal
eigenvalue has the path expansion

λ1 = η(z) + σ−1(z)
∑

k≥2

∑

p∈Γk(z,z)
pi 6=z, 0<i<k
Set(p)⊆D

∏

0<i<k

1

2d

σ−1(pi)

λ1 − η(pi)
.

Proof. Recalling that the eigenfunction relation evaluated at a site z gives

λ1 = η(z) +
∑

|y−z|=1

σ−1(y)
ϕ1(y)

ϕ1(z)
,

the result follows from Proposition 3.5. �

We now study the solution uz(t, y) to the Cauchy problem

∂uz(t, y)

∂t
= H u(t, y) , (t, y) ∈ [0,∞)×D ; (23)

uz(0, y) = 1{z}(y) , y ∈ Z
d .

In particular, we give the spectral representation of uz(t, y) and deduce upper and lower bounds.

Proposition 3.8 (Feynman-Kac representation of the solution). For each y, z ∈ D,

uz(t, y) = Ez

[

exp

{
∫ t

0

ξ(Xs)ds

}

1{Xt=y}1{τDc>t}

]

.

Proof. It can be directly verified that the Feynman-Kac representation satisfies (23). �

Lemma 3.9 (Time-reversal). For each y, z ∈ D,

uz(t, y)σ(z) = uy(t, z)σ(y) .

Proof. Consider the Hermitian operator

H̃ := σ−
1
2Hσ

1
2 = σ−

1
2∆σ−

1
2 + ξ

which can be viewed as the ‘symmetrised’ form of H. Since,

eH̃t = eσ
− 1

2Hσ
1
2 t = σ−

1
2 eHtσ

1
2 ,

we have, by the fact that H̃ is Hermitian,

uz(t, y) = eHt
1{z}(y) =

(

σ(y)

σ(z)

)
1
2

eH̃t
1{z}(y) =

(

σ(y)

σ(z)

)
1
2

eH̃t
1{y}(z)

=
σ(y)

σ(z)
eHt

1{y}(z) =
σ(y)

σ(z)
uy(t, z) . �
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Proposition 3.10 (Spectral representation for the solution). For each y, z ∈ D, the solution
uz(t, y) satisfies the spectral representation

uz(t, y) = σ−1(z)
∑

i

eλitϕi(z)ϕi(y)

||σ−
1
2ϕi||2ℓ2

.

Proof. Recall the Hermitian operator H̃ from the proof of Lemma 3.9. Note that each (ℓ2 nor-

malised) eigenfunction ϕ̃i of H̃ satisfies the relation

ϕ̃i =
σ−

1
2ϕi

||σ−
1
2ϕi||ℓ2

with λi the corresponding eigenvalue for ϕ̃i. The proof then follows by applying the spectral
theorem to H̃. �

Corollary 3.11 (Bounds on the solution). For each z ∈ D we have the bounds

eλ1tσ−1(z)ϕ2
1(z)

||σ−
1
2ϕ1||2ℓ2

≤ uz(t, z) ≤ eλ1t .

Proof. The lower bound follows directly from Proposition 3.10. For the upper bound, first use
Proposition 3.10 to write

uz(t, z) ≤ eλ1tσ−1(z)
∑

i

ϕ2
i (z)

‖σ−
1
2ϕi‖2ℓ2

.

Then, since uz(0, z) = 1, Proposition 3.10 also implies that

σ−1(z)
∑

i

ϕ2
i (z)

‖σ−
1
2ϕi‖2ℓ2

= 1

and the result follows. �

Proposition 3.12 (Bound on the total mass of the solution). For each y, z ∈ D,

∑

y∈D

uz(t, y) ≤ eλ1t
∑

y∈D

ϕ1(y)

ϕ1(z)
.

Proof. We write Fτz for the σ-algebra generated by the stopping time τz. First decompose the
Feynman-Kac representation for uy(t, z) in Proposition 3.8 by conditioning on Fτz and using the
strong Markov property:

uy(t, z) = Eτz

[

eλ1τz Ey

[

exp

{
∫ τz

0

(ξ(Xs)− λ1) ds

}

1{τz<τDc}

∣

∣

∣

∣

Fτz

]

×Ez

[

exp

{
∫ t−τz

0

ξ(X ′s) ds

}

1{X′
t−τz

=z,τ ′
Dc>t−τz}

∣

∣

∣

∣

Fτz

]

1{τz≤t}

]

= Eτz

[

eλ1τz Ey

[

exp

{
∫ τz

0

(ξ(Xs)− λ1) ds

}

1{τz<τDc}

∣

∣

∣

∣

Fτz

]

uz(t− τz, z)1{τz≤t}

]

,

where Eτz denotes expectation taken over τz, X
′
t is an independent copy of Xt, and τ ′Dc :=

inf{t ≥ 0 : X ′t /∈ D}. Using the upper bound in Corollary 3.11 combined with the Feynman-Kac
representation for the principal eigenfunction in Proposition 3.3, we have that

uy(t, z) ≤ eλ1tEy

[

exp

{
∫ τz

0

(ξ(Xs)− λ1) ds

}

1{τz<τDc}

]

= eλ1t
ϕ1(y)

ϕ1(z)

σ(z)

σ(y)
.

Finally, applying the time-reversal Lemma 3.9, we have

uz(t, y) = uy(t, z)
σ(y)

σ(z)
≤ eλ1t

ϕ1(y)

ϕ1(z)
,

which, after summing over y ∈ D, yields the result. �
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Next we prove a ‘cluster expansion’ that is useful for bounding expectations of the ‘Feynman-
Kac type’. It is similar in spirit to [12, Lemma 4.2] and [14, Lemma 2.18], however we will need
an additional form of the bound to accommodate the impact of the trapping landscape (see the
proof of Lemma 7.4).

Lemma 3.13 (Cluster expansion). For each z ∈ D and for any ζ > λ1,

Ez

[

exp

{
∫ τDc

0

(ξ(Xs)− ζ) ds

}]

≤ 1 +
maxw∈D{σ−1(w)} |D|

ζ − λ1

and

Ez

[

exp

{
∫ τDc

0

(ξ(Xs)− ζ) ds

}]

≤
σ−1(z)

ζ − λ1

(

1 +
maxw∈D{σ−1(w)} |D|

ζ − λ1

)

.

Proof. We proceed by modifying the proofs of [12, Lemma 4.2] and [14, Lemma 2.18]. First
abbreviate

u(y) := Ey

[

exp

{
∫ τDc

0

(ξ(Xs)− ζ) ds

}]

and remark that u solves the boundary value problem

(σ−1∆+ ξ − ζ)u(y) = 0 , y ∈ D ; (24)

u(y) = 1 , y /∈ D .

Note that, in contrast to in the proof of Proposition 3.3, in the above boundary value problem the
relevant operator is the adjoint of H, since here we have not weighted the expectation by σ. We
make the substitution w := u− 1, where 1 denotes the vector of ones, which turns (24) into

(σ−1∆+ ξ − ζ)w(y) = −(σ−1∆+ ξ − ζ)1(y) = ζ − ξ(y) , y ∈ D ;

w(y) = 0 , y /∈ D .

Since ζ > λ1, the solution exists and is given by

w(y) = (Rζ(ξ − ζ)) (y)

where Rζ is the resolvent of σ−1∆ + ξ at ζ. By Lemma 3.2 and since ζ > λ1 we have that
ξ(y) − ζ ≤ σ−1 for all y ∈ D, and so by the positivity of the resolvent (guaranteed since H is
elliptic and ζ > λ1) we obtain

w(z) ≤
(

Rζσ
−1
)

(y) =
(

σ−
1
2 R̃ζσ

− 1
2

)

(y) ≤ max
z∈D

{σ−1(z)}|D| ‖R̃ζ‖ ,

where R̃ζ is the resolvent of the Hermitian operator H̃ = σ−
1
2∆σ−

1
2 + ξ at ζ and ‖ · ‖ denotes

the operator norm. By considering the spectral representation of R̃ζ we have ‖R̃ζ‖ ≤ (ζ − λ1)
−1

which gives the first bound. For the second bound, consider that (24) implies the identify

u(y) =
σ−1(y)

ζ − ξ(y) + σ−1(y)

∑

|x−y|=1

1

2d
u(x) . (25)

Applying the first bound to each u(x) in the sum in (25), the result follows by bounding ξ(y) −
σ−1(y) in the denominator of (25) from above by λ1, valid by the lower bound in Lemma 3.2. �

Finally, we give a general way to bound the contribution to the solution uz(t, y) from paths that
hit a certain site x ∈ D and then stay within a subdomain E ⊆ D that contains x. In particular,
we show that this contribution is proportional to the principal eigenfunction of H restricted to E.
This is similar in spirit to [12, Theorem 4.1], and it crucial to establishing complete localisation
of the solution.

So fix a domain E ⊆ D, a site x ∈ E, and define the operator HE to be the restriction of H
to the domain E with Dirichlet boundary conditions, with λE1 and ϕE

1 respectively its principal
eigenvalue and eigenfunction. Define the stopping time

τx,Ec := inf{t ≥ τx : Xt /∈ E} .
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Then the contribution to the solution uz(t, y) from paths that hit x and then stay within E can
be written

ux,Ez (t, y) := Ez

[

exp

{
∫ t

0

ξ(Xs) ds

}

1{Xt=y,τx≤t,τx,Ec>t,τDc>t}

]

.

Proposition 3.14 (Link between solution and principal eigenfunction; see [12, Theorem 4.1]).
For each x ∈ E, y ∈ E \ {x} and z ∈ D,

ux,Ez (t, y)
∑

y∈D uz(t, y)
≤
σ(x)‖σ−

1
2ϕE

1 ‖
2
ℓ2

(ϕE
1 (x))

3
ϕE
1 (y) .

Proof. We proceed by modifying the proof of [12, Theorem 4.1]. The first step is to make use of
the time-reversal in Lemma 3.9, suitably adapted to ux,Ez (t, y). In particular, defining

u
←−−
x,E
y (t, z) := Ey

[

exp

{
∫ t

0

ξ(Xs) ds

}

1{Xt=z,τx≤t,τx<τEc ,τDc>t}

]

we can write

ux,Ez (t, y)
∑

y∈D uz(t, y)
≤
ux,Ez (t, y)

uz(t, x)
=
σ(y)

σ(x)

u
←−−
x,E
y (t, z)

ux(t, z)
. (26)

Next we decompose the Feynman-Kac formula for u
←−−
x,E
y (t, z) as in the proof of Proposition 3.12,

by conditioning on the σ-algebra generated by the stopping time τx, and using the strong Markov
property. More precisely, we write

u
←−−
x,E
y (t, z) = Eτx

[

eτxλ
E
1 Ey

[

exp

{
∫ τx

0

(

ξ(Xs)− λE1
)

ds

}

1{τx<τEc}

∣

∣

∣

∣

Fτx

]

(27)

×Ex

[

exp

{
∫ t−τx

0

ξ(X ′s) ds

}

1{X′
t−τx

=z,τ ′
Dc>t−τx}

∣

∣

∣

∣

Fτx

]

1{τx≤t}

]

,

where Eτx , X
′
t and τ ′Dc are defined as in the proof of Proposition 3.12. Next, note that an

application of Corollary 3.11 gives the bound

1 ≤ ux,Ex (w, x)
σ(x)‖σ−

1
2ϕE

1 ‖
2
ℓ2

(ϕE
1 (x))

2
e−wλE

1 , (28)

and recall the representation

ux,Ex (w, x) = Ex

[

exp

{
∫ w

0

ξ(X ′s) ds

}

1{X′
w=x,τ ′

Ec>w}

]

.

Combining the bound in (28) with equation (27) (setting w = τx), gives

u
←−−
x,E
y (t, z) ≤

σ(x)‖σ−
1
2ϕE

1 ‖
2
ℓ2

(ϕE
1 (x))

2
Eτx

[

Ey

[

exp

{
∫ τx

0

(

ξ(Xs)− λE1
)

ds

}

1{τEc>τx}

∣

∣

∣

∣

Fτx

]

× Ex

[

exp

{
∫ τx

0

ξ(X ′s) ds

}

1{X′
τx

=x,τ ′
Ec>τx}

∣

∣

∣

∣

Fτx

]

×Ex

[

exp

{
∫ t−τx

0

ξ(X ′s) ds

}

1{X′
t−τx

=z,τ ′
Dc>t−τx}

∣

∣

∣

∣

Fτx

]

1{τx≤t}

]

≤
σ(x)‖σ−

1
2ϕE

1 ‖
2
ℓ2

(ϕE
1 (x))

2
Eτx

[

Ey

[

exp

{
∫ τx

0

(

ξ(Xs)− λE1
)

ds

}

1{τEc>τx}

∣

∣

∣

∣

Fτx

]

×Ex

[

exp

{
∫ t

0

ξ(X ′s) ds

}

1{X′
t=z,τ ′

Dc>t}

∣

∣

∣

∣

Fτx

]

1{τx≤t}

]

≤
σ(x)2‖σ−

1
2ϕE

1 ‖
2
ℓ2

σ(y)(ϕE
1 (x))

3
ϕE
1 (y) ux(t, z) ,

where the inequality in the second step results from deleting the condition thatX ′τx = x, and where
the last inequality results from deleting the condition that τx ≤ t, and where we have used the
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Feynman-Kac representation for ϕE
1 given by Proposition 3.3. Combining this with equation (26)

gives the result. �

4. Properties of the random environments

In this section we establish properties of the i.i.d. fields ξ and σ. In the first part we give
asymptotics for the upper order statistics of ξ and σ. The second part is devoted to proving the
existence of ‘quick paths’, which are an essential part of our proof that the trapping landscape
does not prevent complete localisation in the BAM.

4.1. Almost sure asymptotics for ξ and σ. For each a ≤ 1, define the macrobox level Lt,a :=

((1− a) log |Vt|)
1
γ and let the subset Π(Lt,a) :=

{

z ∈ Z
d : ξ(z) > Lt,a

}

∩ Vt consist of sites in Vt at
which ξ-exceedances of the level Lt,a occur. Recall that Lt := Lt,θ.

Lemma 4.1 (Almost sure asymptotics for ξ). Denote by ξt,i the i
th highest value of ξ in Vt. Then

for a ∈ [0, 1) and a′ ∈ (0, 1], as t→ ∞,

ξt,[|Vt|a] ∼ Lt,a and |Π(Lt,a′ )| ∼ |Vt|
a′

hold almost surely.

Proof. These follow from well-known results on sequences of i.i.d. random variables; they are
proved in a similar way as [17, Lemma 4.7]. �

Recall that for a set S ∈ Z
d we denote by sep (S) := minx 6=y∈S{|x− y|}.

Lemma 4.2 (Almost sure separation of high points of ξ). For any a > 0 and n ∈ N let

Π(Lt,a)
n := {z ∈ B(Vt, n) : ξ(z) > Lt,a}

be the set of Lt,a exceedences of ξ in the n-extended macrobox B(Vt, n). Then, for any a′ < a, as
t→ ∞

sep
(

Π(Lt,a)
n ∪ {0}

)

> |Vt|
1−2a′

d

eventually almost surely.

Proof. This result is proved as in [1, Lemma 1]. �

Remark 4.3. Note that we need the almost sure separation of high points in the n-extended
macrobox B(Vt, n) rather than just in Vt because each λ

(n)(z), for z ∈ Vt, depends on the random
environments ξ and σ in the ball B(z, n) ⊆ B(Vt, n). This result implies that, eventually almost
surely, each z ∈ Π(Lt,a) has the property that ξ(y) < Lt,a for all y ∈ B(z, n) \ {z}.

Corollary 4.4 (Paths cannot always remain close to high points of ξ). There exists a c ∈ (0, 1)
such that, for each n ∈ N, all paths p ∈ Γ(0, z) such that Set(p) ⊆ Vt satisfy, as t→ ∞,

∣

∣

∣

{

i : pi /∈ B(Π(Lt), n)
}∣

∣

∣
≥ |z| −

|z|

tc
,

eventually almost surely.

Proof. Abbreviate N := sep(Π(Lt) ∪ {0}) and

Q :=
∣

∣

∣

{

i : pi /∈ B(Π(Lt), n)
}
∣

∣

∣
.

Suppose a path p passes through m distinct B(x, n) with x ∈ Π(Lt). Then, since there is a
minimum distance of (N − 2n) between each such ball, the path p satisfies

Q ≥ m(N − 2n) .

On the other hand, it is clear that that Q ≥ |z| − (2n+ 1)m. Therefore

Q ≥ min
m∈N

max {m(N − 2n− 1), |z| − (2n+ 1)m} ≥
(N − 2n− 1)|z|

N
= |z| −

(2n+ 1)|z|

N

and the result follows from Lemma 4.2. �
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Lemma 4.5 (Almost sure asymptotics for σ). Denote by σ1
n the largest value among n i.i.d. copies

of σ(0). Then, under Assumption 1.6, for any c > 1, as n→ ∞,

gσ(σ
1
n) ≤ c logn

eventually almost surely.

Proof. By [9, Theorem 3.5.1] we have equivalence of the statements

{

P
(

gσ(σ
1
n) ≤ c logn ev.

)

= 1
}

and
{

∞
∑

n=1

P
(

gσ(σ(0)) > c logn
)

<∞
}

.

The proof is complete by noticing that, since gσ is continuous by Assumption 1.6, the random
variable F̄σ(σ(0)) is uniformly distributed over (0, 1). Hence, for any c > 1,

∞
∑

n=1

P
(

gσ(σ(0)) > c logn
)

=

∞
∑

n=1

n−c <∞ . �

4.2. Existence of quick paths. In this section we prove the existence of paths p ∈ Γ(0, z) for
certain z ∈ Vt that have the property that (i) all σ(pi) are relatively small, and (ii) p is not much
longer than a direct path to z; what we mean by ‘relatively small’ and ‘not much longer’ will
depend on the dimension. We shall informally refer to such paths as quick paths. The reason we
are interested in quick paths is that they are intimately related to the probability that a particle
undertaking the BAM reaches a certain site z by time t.

In dimension higher than one, we will additionally require that such paths do not travel too
close to a certain well-separated set St. The reason for this additional requirement is that we will
eventually seek to apply our results to the site Zt, which depends in a complicated way on σ(z)
for z ∈ B(Π(Lt), ρ). We will wish to avoid this dependence, hence our insistence on the fact that
the paths do not travel too close to St.

4.2.1. Dimension one. In dimension one, there is only one shortest path from 0 to z and this must
pass through all intermediate sites. Hence, we seek to show that not too many traps on this path
are too large. Clearly, the ability to do this depends on the tail decay of σ, which is the origin of
the extra tail decay condition for d = 1 in Assumption 1.6.

To proceed, we must undertake a rather delicate analysis of the trapping landscape σ in the
region between 0 and z. We simplify this using coarse graining, essentially placing each site y
into a certain ‘bin’ depending on the value of σ(y). We then seek to bound the number of sites
in each bin, weighted by the depth of the traps corresponding to each bin. To assist in the coarse
graining, we state and prove a technical lemma on the regularity of the upper-tail of σ(0).

Lemma 4.6 (Regularity of the upper-tail of σ(0)). Under Assumption 1.6, let xt be such that

gσ(exp{exp{xt}}) = t ,

which is well-defined by the continuity of gσ. Then, for constants c1 and c2 such that c2 > c1 ≥ 1,
as t→ ∞,

gσ(exp{exp{c2xt}}) > c1t

eventually.

Proof. Let c be the constant in part (d) of Assumption 1.6. In the case where c < ∞, for any
ε > 0, as t→ ∞,

t = gσ(exp{exp{xt}}) < xt (c+ ε)

eventually. Choosing the 0 < ε < c(c2 − c1)/(c1 + c2), we have that, as t→ ∞,

gσ(exp{exp{c2xt}}) > c2xt (c− ε) > t
c2(c− ε)

c+ ε
> c1t

eventually. On the other hand, in the case where c = ∞, then by Assumption 1.6,

t = gσ(exp{exp{xt}}) = xtκxt
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for some κt ↑ ∞. Similarly

gσ(exp{exp{c2xt}}) = c2xtκc2xt
> c1xtκxt

= c1t

eventually, which completes the proof. �

We now define the coarse graining scales that we will use. Let nt and σt be arbitrary functions
tending to ∞ as t→ ∞.

Lemma 4.7 (Existence of well-spaced coarse graining scales). Let ε < 1 be a constant that satisfies
part (c) of Assumption 1.6. Then there exist constants 0 < δ1 < δ2 < ε < 1 < c1, an integer
It = O(log lognt) and a set of scaling functions {σi

t}0≤i≤It such that, as t→ ∞, the following are
all satisfied eventually:

(a) σ0
t = 0 ,

log log σ1
t

log log σt
∈ [1 + δ1, 1 + δ2] ,

log log σi
t

log log σi−1
t

∈ [1 + δ1, 1 + δ2] for 2 ≤ i ≤ It ;

(b) gσ(σ
It−1
t ) ≤ c−11 lognt ; and

(c) gσ(σ
It
t ) ≥ c1 lognt .

Proof. Choose c1, δ1 and δ2 such that 1 < c21 < 1 + δ2 and 1 + δ1 < (1 + δ2)/c
2
1. Suppose that we

define a sequence {σ̄i
t}i≥0 such that

σ̄0
t = 0 ,

log log σ̄1
t

log log σt
= 1 + δ1 and

log log σ̄i
t

log log σ̄i−1
t

= 1 + δ1 for each i ≥ 2 ,

and let It be the maximum integer such that

gσ(σ̄
It−1
t ) ≤ c−11 lognt .

This satisfies

It = O(log lognt) ,

since if It > 1, then eventually

(1 + δ1)
It−2 log log σ̄1

t = log log σ̄It−1
t < gσ(σ̄

It−1
t ) ≤ c−11 lognt .

Now set σi
t = σ̄i

t for all 0 ≤ i ≤ It − 1, and choose σIt
t by

{

log log σIt
t = (1 + δ2) log log σ

It−1
t , It > 1 ;

log log σIt
t = (1 + δ2) log log σt , It = 1 .

It remains to check that gσ(σ
It
t ) ≥ c1 lognt. By definition,

log log σIt
t =

1 + δ2
1 + δ1

log log σ̄It
t .

Then by Lemma 4.6, and the fact that 1 + δ1 < (1 + δ2)/c
2
1, as t→ ∞,

gσ(σ
It
t ) > c21gσ(σ̄

It
t )

eventually. Finally, by the definition of It,

gσ(σ̄
It
t ) > c−11 log nt

which completes the proof. �

Finally, we prove the existence of a quick path. Let c1, δ1, δ2, It and {σi
t}0≤i≤It satisfy the

conditions in Lemma 4.7. Moreover, for a path p ∈ Γk define

Ni =
∑

0≤j<k

1{σ(pj)∈(σ
i−1
t ,σi

t]}
for each 1 ≤ i ≤ It .

The following proposition essentially bounds the number of sites in each coarse graining scale,
weighted by the log of the scale. This will turn out to be the correct definition of a ‘quick path’
in Section 6.
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Proposition 4.8 (Existence of quick paths; d = 1). As t → ∞, each path p ∈ Γ|z|(0, z) with
|z| < nt, satisfies

P

(

It
∑

i=1

Ni log σ
i
t < nt max

{

(log σt)
2, log lognt/ log log σt

}

)

→ 1

and

max
0≤i<|z|

σ(pi) < σIt
t ,

eventually almost surely.

Proof. We first prove that the event

Nt :=

It
⋃

i=1

{

Ni ≤ 2nt F̄σ(σ
i−1
t )

}

satisfies P(Nt) → 1 as t→ ∞. Note that each Ni is stochastically dominated by

N̄i
d
= Binom(nt, F̄σ(σ

i−1
t )) ,

with EN̄i = ntF̄σ(σ
i−1
t ) and VarN̄i ≤ ntF̄σ(σ

i−1
t ). By the union bound and Chebyshev’s inequal-

ity,

P

(

⋃

i

{N̄i > 2EN̄i}
)

≤
∑

i

P(N̄i > 2EN̄i) ≤
∑

i

VarN̄i

(EN̄i)2
≤
∑

i

(

ntF̄σ(σ
i−1
t )

)−1
. (29)

Since the σi
t are increasing in i, for any 1 ≤ i ≤ It,

F̄σ(σ
i−1
t ) ≥ F̄σ(σ

It−1
t ) ≥ n

−c−1
1

t ,

by condition (b) of Lemma 4.7. Combining with (29), by the union bound, as t→ ∞, eventually

P(Nt) > 1− It n
c−1
1 −1

t → 1 ,

since c1 > 1 and It = O(log lognt).
So assume the event Nt holds and split the sum

It
∑

i=1

Ni log σ
i
t = N1 log σ

1
t +

It
∑

i=2

Ni log σ
i
t .

For the first term, on the event Nt and by condition (a) in Lemma 4.7 we have

N1 log σ
1
t ≤ 2ntF̄σ(σ

0
t ) log σ

1
t = 2nt log σ

1
t ≤ 2nt(log σt)

1+δ2 < nt(log σt)
2/2

eventually. Hence it suffices to show that each of the other terms, for 2 ≤ i ≤ It, satisfy

ItNi log σ
i
t <

1

2
nt log lognt/ log log σt

eventually. Recall that by condition (a) in Lemma 4.7, log σi
t ≤ (log σi−1

t )1+δ2 for 2 ≤ i ≤ It.
Then, on the event Nt and by part (c) of Assumption 1.6, eventually,

Ni log σ
i
t ≤ 2ntF̄σ(σ

i−1
t ) log σi

t ≤ 2nt(log σ
i−1
t )−ε+δ2

≤ nt(log σ
i−1
t )−c2 ,

for some c2 > 0, since δ2 < ε. So by monotonicity in i and condition (a) in Lemma 4.7,

ItNi log σ
i
t ≤ Itnt(log σ

1
t )
−c2 < nt log lognt(log σt)

−c3

eventually, for any 0 < c3 < c2(1 + δ1) which proves the claim.
Finally, the fact that, eventually almost surely,

max
0≤i<|z|

σ(pi) < σIt
t

follows from combining condition (c) in Lemma 4.7 with Lemma 4.5. �
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4.2.2. Dimension higher than one. In dimensions higher than one we use percolation-type esti-
mates to prove the existence of a path p ∈ Γ(0, z) with z ∈ St for some well-separated set St that
(i) avoids all the deep traps, (ii) has |p| not much more than |z|, and (iii) does not travel too close
to sites in St. Because we use percolation-type arguments, it will turn out that we need no extra
assumption on the tail decay of σ(0).

So let us start with the relevant percolation-type estimates; for background on percolation
theory see [15]. Consider site percolation on Z

d with P(v open) = q independently for every
v ∈ Z

d. We say that a subset of Zd is ∗-connected if it is connected with respect to the adjacency
relation

v
∗
∼ w ⇔ max

1≤i≤d
|vi − wi| = 1 ,

where vi and wi denote the coordinate projections of v and w respectively. If v
∗
∼ w we say that

w is a ∗-neighbour of v. A ∗-connected subset of Zd is referred to as a ∗-cluster. The relevance of
∗-clusters is that they represent the blocking clusters for open paths in Z

d. For v ∈ Z
d a closed

site, denote by C(v) the largest ∗-cluster of closed sites containing v.
For two sites u, v in Z

d denote by d∞(u, v) their chemical distance (also known as the graph
distance) with respect to site percolation, defined to be the length of the shortest open path from
u to v (and defined to be infinite if no such path exists).

Lemma 4.9 (Expected size and maximum of closed ∗-clusters). Let q ∈ (1 − (3d)−1, 1) and
suppose u1, . . . , uM are M ∈ N distinct closed sites in Z

d. Then

(i) E[|C(u1)|] ≤ (1− 3d(1− q))−1, and so in particular E[|C(u1)|] → 1 as q → 1; and
(ii) For every x ∈ N,

P(max{|C(u1)|, . . . , |C(uM )|} < x) ≥ 1−M(3d(1− q))[log3d
x] .

Proof. Consider performing a breadth-first search on C(u1) starting from the site u1, by first
discovering the closed ∗-neighbours v1, . . . , vk of u1, and then in turn discovering the closed ∗-
neighbours of each of the vj , 1 ≤ j ≤ k, iterating this procedure to explore C(u1). Suppose that
the site w has just been explored in this procedure. Then the number of closed ∗-neighbours of
w that have not already been discovered is stochastically dominated by a Binom(3d − 1, 1 − q)
random variable. It follows that |C(u1)| is stochastically dominated by the total progeny of a
branching process with offspring distribution Binom(3d, 1 − q). Since the expected total progeny
of this branching process is (1− 3d(1− q))−1, this proves the first statement.

For the second statement, note that by the union bound we have

P(max{|C(u1)|, . . . , |C(uM )|} ≥ x) ≤
M
∑

i=1

P(|C(ui)| ≥ x) =M P(|C(u1)| ≥ x) .

Again by exploring C(u1) we have

P(|C(u1)| ≥ x) ≤ P(Z ≥ x) ,

where Z is the total progeny of a branching process with offspring distribution Binom(3d, 1− q).
To complete the proof, note that by Markov’s inequality we have

P(Z ≥ x) ≤ P(Z(⌊log3d x⌋) > 0) ≤ (3d(1− q))[log3d
x] ,

where Z(n) denotes number of individuals in generation n of the branching process. �

Lemma 4.10 (Chemical distance). Fix two sites u, v in Z
d and a function c := c(q) with c→ ∞

as q → 1. Then, as q → 1,

P

(

d∞(u, v)

|u− v|
< 1 + c(1− q)

)

→ 1 .

Proof. Denote by C∞ the unique infinite open cluster, which exists almost surely for all q suffi-
ciently close to 1 (see [15]). Let p̂ ∈ Γ|u−v|(u, v) be any shortest path, denote by K the subset of
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Set(p̂) consisting only of closed sites, and define

S :=
∣

∣

∣

⋃

x∈K

C(x)
∣

∣

∣
≤
∑

x∈K

|C(x)| . (30)

By part (i) of Lemma 4.9 and the FKG inequality (see [15], Section 2.2), we have the bound

E[S|{u, v ∈ C∞}] ≤
E[ |K|

∣

∣{u, v ∈ C∞}]

1− 3d(1− q)
≤

|u− v|(1− q)

1− 3d(1− q)
.

We now claim that, on the event {u, v ∈ C∞}, it is possible to find a path p ∈ Γk(u, v) for some
k ≤ |u− v|+ (3d − 1)S such that every site in Set(p) is open. To obtain the required path p take
the direct path p̂ and divert it around C(u) for each closed u ∈ Set(p̂), so that every site in Set(p)
is either in Set(p̂) or in the outer boundary of some C(u), where by outer boundary we mean the

set of sites {v /∈ C(u) : ∃u ∈ C(u), u
∗
∼ v}. This procedure is possible since u, v ∈ C∞. Then Set(p)

will consist of just open sites since the outer boundary of each C(u) is a path of open sites. The
bound on |p| follows from the fact that the size of the outer boundary of a ∗-cluster A is at most
(3d − 1)|A|.

We complete the proof of the Lemma with Markov’s inequality:

P

(

d∞(u, v)

|u− v|
≥ 1 + c(1− q)

)

≤ P

(

|S| >
c(1− q)|u − v|

(3d − 1)

∣

∣

∣

∣

{u, v ∈ C∞}

)

+ P ({u, v ∈ C∞}c)

≤
3d

c(1− 3d(1 − q))
+ P ({u, v ∈ C∞}c) .

Since P(u, v ∈ C∞) → 1 as as q → 1, this completes the proof. �

We are now ready to show the existence of a quick path in dimensions higher than one. Let
St ⊆ Z

d be such that
sep(St) > tε and min

u∈St

|u| > tε

eventually for some ε > 0. Recall the definition of j := [γ − 1]. Let σt be an arbitrary function
tending to infinity as t→ ∞. Define the set

Z
d(σt, St) := {z ∈ Z

d : σ(z) ≤ σt, z /∈ B(St, j)} .

For a site z ∈ Z
d, let |z|chem be the chemical distance of the ball B(z, j) in this set, that is,

the length of the shortest path from the origin to ∂B(z, j) that lies exclusively in this subgraph
(setting it as ∞ if such a path does not exist).

Proposition 4.11 (Existence of quick paths; d > 1). Let zt ∈ St ∩ Vt and let ct be a function
such that ct → ∞ as t → ∞ and F̄σ(σt)ct ≪ 1. Then, there exists a constant c > 0 such that, as
t→ ∞,

P

(

|zt|chem
|zt|

≤ 1 + F̄σ(σt)ct + t−c
)

→ 1 .

Proof. Let q := 1− F̄σ(σt). By Lemma 4.10, with probability tending to 1 as t→ ∞ there exists
a path p̂ ∈ Γℓt(0, zt) for some

ℓt ≤ |zt|(1 + F̄σ(σt)ct)

such that σ(p̂i) ≤ σt for all 0 ≤ i < ℓt. Let i = min{0 ≤ j < ℓt : p̂j ∈ ∂B(zt, j)} and define
vt := p̂i to be the first site in ∂B(zt, j) visited by path p̂. We show how to modify p̂ so that we
obtain a new path p ∈ Γ(0, vt) for some vt ∈ ∂B(Zt, j) with Set(p) ⊆ Z

d(σt, St).
The modification is done by diverting p̂ around the balls of radius j centred on sites in St. In

doing so, we may encounter new closed sites v, and these too must be avoided if we wish to find
a path p with Set(p) ⊆ Z

d(σt, St). Formally, the set of these new closed sites is precisely

{x ∈ ∂B (St ∩B(Set(p̂), j), j) : σ(x) > σt} .

Denote by Mt the size of this set and its elements as w1, . . . , wMt
, and choose 0 < c1 < ε where ε

is the constant appearing in the definition of St. Then by the separation of sites in St, we have

|St ∩B(Set(p̂), j)| ≤ 2ℓtt
−ε,
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and so

Mt ≤ 3d|B(0, j)|ℓtt
−ε < |zt|t

−c1 (31)

for all t sufficiently large. Choose now 0 < c2 < c1, α < −1− (1 − c1)/c2, and t sufficiently large
so that

F̄σ(σt) < 3dα .

Applying part (ii) of Lemma 4.9, we deduce that

max{|C(w1)|, . . . , |C(wMt
)|} ≤ tc2

with probability tending to 1 as t → ∞. We claim this implies that, by the separation of sites in
St and the fact that c2 < ε, with overwhelming probability there exists a path p ∈ Γ(0, vt) which
avoids all j-balls centred on sites in St and all closed sites. Indeed to obtain this path we take
path p̂ and then divert around j-balls centred on sites in St and then further divert around any
new closed ∗-clusters we encounter. Since we know that no such cluster is too large, they cannot
cut the origin off from vt in Z

d(σt, St), and furthermore we will not encounter any more sites in
St on the new path.

We can now bound |p|. The number of additional sites we must visit to obtain p from p̂ is at
most 3dMt(|B(0, j)|+ tc2) with probability tending to 1 as t → ∞; this comes from counting the
diversions around each j-ball and the diversions around each closed cluster we then encounter.
Using (31), we can thus choose 0 < c < c1 − c2 to yield the result. �

5. Extremal theory for local eigenvalues

In this section, we use point process techniques to study the random variables Z
(j)
t and

Ψ
(j)
t (Z

(j)
t ), and generalisations thereof; the techniques used are similar to those found in [2, 10, 26],

although we strengthen the results available in those papers. In the process, we complete the proof
of Theorems 1.9 and 1.10. Throughout this section, let ε be such that 0 < ε < θ.

5.1. Upper-tail properties of the local principal eigenvalues. The first step is to give upper-
tail asymptotics for the distribution of the local principal eigenvalues λ(n)(z) for z ∈ Π(Lt) and

n ∈ N. These will allow us to study the random variables Z
(j)
t and Ψ

(j)
t (Z

(j)
t ) via point process

techniques. For technical reasons, we shall actually consider an i.i.d. set of punctured versions of
λ(n)(0) which can be coupled to coincide with λ(n)(z) eventually almost surely for each z ∈ Π(Lt).

To this end, let {ξ̃z}z∈Vt
be an independent collection of i.i.d. potential fields ξ̃z : Zd → R

distributed as

ξ̃z(y)
d
=

{

ξ(0) , if y = z ;

ξ(0)1{ξ(0)<Lt} , otherwise ,
(32)

and define

Π̃(Lt) := {z ∈ Vt : ξ̃z(z) > Lt} and Π̃(Lt,ε) := {z ∈ Vt : ξ̃z(z) > Lt,ε}

by analogy with Π(Lt) and Π(Lt,ε). Similarly, let {σ̃z}z∈Vt
be an independent collection of i.i.d.

trapping landscapes σ̃z : Zd → R distributed as σ̃z(y)
d
= σ(0), and abbreviate η̃z(z) = ξ̃z(z) −

σ̃−1z (z). Then, for each z ∈ Vt and n ∈ N, let λ̃(n)(z) be the principal eigenvalue of the punctured
Hamiltonian

H̃(n)(z) := ∆σ̃−1z + ξ̃z

restricted to the domainB(z, n) with Dirichlet boundary conditions, and observe that {λ̃(n)(z)}z∈Vt

are i.i.d. by construction. Note that we have suppressed the explicit t-dependence in ξ̃z (and hence

λ̃(n)(z) etc.).

We now proceed to study the upper-tail asymptotics for the distribution of each λ̃(n)(z).
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Proposition 5.1 (Path expansion for λ̃(n)). For each n ∈ N and z ∈ Π̃(Lt,ε) uniformly, as t→ ∞,

λ̃(n)(z) = η̃z(z) + σ̃−1z (z)
∑

2≤k≤2j

∑

p∈Γk(z,z)
pi 6=z, 0<i<k
Set(p)⊆B(z,n)

∏

0<i<k

(2d)−1
σ̃−1z (pi)

λ̃(n)(z)− η̃z(pi)
+ o(dtet) ,

= η̃z(z) +O(a−1t ) .

Proof. Applying Proposition 3.7 we have that

λ̃(n)(z) = η̃z(z) + σ̃−1z (z)
∑

k≥2

∑

p∈Γk(z,z)
pi 6=z, 0<i<k
Set(p)⊆B(z,n)

∏

0<i<k

(2d)−1
σ̃−1z (pi)

λ̃(n)(z)− η̃z(pi)
.

Now observe that, by Lemma 3.2 and the truncation in ξ̃z, for each pi ∈ B(z, n) \ {z},

λ̃(n)(z)− η̃z(pi) > Lt,ε − Lt − δ−1σ ∼ (θ − ε)at .

Moreover, each σ̃−1z (pi) is bounded above by δ−1σ . Finally, as t→ ∞,

a
−(2j+2)
t = o(dtet) ,

by the definition of j. This means that, up to the error o(dtet), we can truncate the sum at paths
with 2j steps. It also means that the total contribution from the sum over paths p ∈ Γk(z, z) is
O(a−1t ). �

Proposition 5.2 (Extremal theory for λ̃(n); see [2, Section 6], [10, Proposition 4.2]). For each
n ∈ N, there exists a scaling function At = at + O(1) such that, as t → ∞ and for each fixed
x ∈ R,

td P
(

λ̃(n)(0) > At + xdt

)

→ e−x .

Moreover, there exists a c > 0 such that, as t→ ∞ and uniformly for x > 0,

td P
(

λ̃(n)(0) > At + xdt

)

< e−cx
min{1,γ}

.

Proof. To ease notation, we abbreviate the fields ξ̃0 and σ̃0 by ξ and σ respectively (although these

should not be confused with the original fields ξ and σ, since the law of ξ̃0(z) has been truncated
at z 6= 0). First remark that, by Lemma 3.2, as t→ ∞,

λ̃(n)(0) > At + xdt implies that ξ(0) > Lt,ε ,

eventually, which means that we can apply the path expansion in Proposition 5.1 to λ̃(n)(0). Let
At be an arbitrary scale such that At = at +O(1), and define the function

Q(At; ξ, σ) := σ−1(0) + σ−1(0)
∑

2≤k≤2j

∑

p∈Γk(0,0)
pi 6=0, 0<i<k
Set(p)⊆B(z,j)

∏

0<i<k

(2d)−1
σ−1(pi)

At − η(pi)
,

if ξ(y) < Lt for each y ∈ B(0, j)\{0} and Q(At; ξ, σ) := 0 otherwise. Then, since λ̃(n)(0) is strictly
increasing in ξ(0) we have that, as t→ ∞,

P

(

λ̃(n)(0) > At + xdt

)

∼ P

(

ξ(0) > At + xdt +Q(At + xdt; ξ, σ)

)

∼ P

(

ξ(0) > At + xdt +Q(At; ξ, σ)

)

(33)

∼ t−de−x
∫

ξ,σ

exp

{

aγt −

(

At +Q(At; ξ, σ)

)γ}

dµξ dµσ (34)

where the first asymptotic accounts for the error in the path expansion Proposition 5.1, the
second and third asymptotics result from Taylor expansions, and are uniform in ξ and σ, and
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where µξ and µσ stand for the joint probability densities of {ξ(y)}y∈B(0,n)\{0} and {σ(y)}y∈B(0,n)

respectively. Consider then the integral in (34), which we abbreviate as

I(At) :=

∫

ξ,σ

f(At; ξ, σ) dµξ dµσ , f(At; ξ, σ) := exp

{

aγt −

(

At +Q(At; ξ, σ)

)γ}

.

Note that Q(At; ξ, σ) is uniformly bounded as t → ∞ (by 2δ−1σ for instance) . Hence, for C
sufficiently large, as t→ ∞ eventually

f(at + C; ξ, σ) < 1 < f(at − C; ξ, σ)

uniformly in {ξ(y)}y∈B(0,n)\{0} and {σ(y)}y∈B(0,n). This implies that I(At − C) < 1 < I(at +
C). Moreover, since f(At; ξ, σ) is continuous in At uniformly for each {ξ(y)}y∈B(0,n)\{0} and
{σ(y)}y∈B(0,n), the function I(At) is continuous in At. Hence, by the intermediate value theorem
function, there exists an At = at + O(1) such that, as t → ∞ eventually I(At) = 1, which gives
the first result. For the second, instead of (33) we bound Q(At + xdt; ξ, σ) above, uniformly in
x > 0, by Q(At; ξ, σ), which produces the bound

t−d
∫

ξ,σ

exp

{

aγt −

(

At +Q(At; ξ, σ)

)γ(

1 +
x

γ
(log t)−1

)γ}

dµξ dµσ .

In the case γ ≥ 1, we bound this expression above uniformly in x > 0 by

t−d
∫

ξ,σ

exp

{

aγt −

(

At +Q(At; ξ, σ)

)γ(

1 +
x

γ
(log t)−1

)}

dµξ dµσ ∼ e−
x
γ
(1+o(1)) ,

using the definition of At and the fact that At +Q(At; ξ, σ) ∼ at in the last step. The case γ < 1
is simpler, since then we have simply

P

(

ξ(0) > At + xdt + σ−1(0)

)

= P

(

ξ(0) > at + xdt +O(1)

)

and the bound follows from the regularity of Weibull tail of ξ(0) in Assumption 1.5. �

We now define the set-up we shall need to examine the correlation of the potential field and
trapping landscape near sites of high λ̃(n); since the nature of this correlation differs depending
on (γ, µ), so does our set-up. Fix a constant ν ∈ (0, 1). Recalling the definition of the ‘interface
cases’ B and Bξ, define the ‘interface sites’

F :=

{

y ∈ Z
d : |y| = ρ , if (γ, µ) ∈ B ,

∅ , else ,
and Fξ :=

{

y ∈ Z
d : |y| = ρξ , if (γ, µ) ∈ Bξ ,

∅ , else .

Recalling the definition of n(y), for each y ∈ Z
d define the positive constants

cσ :=







(

γ
µ

)
1

µ+1

, if qσ > 0 ,

0 , else ,
, cξ(y) :=

{

(

n(y)2(2d)−1δ−1σ c−1σ

)
1

γ−1 , if qξ(|y|) > 0 ,

0 , else ,
,

c̄σ(y) := n(y)2(2d)−1γc−1σ and c̄ξ(y) := c̄σ(y) δ
−1
σ .

For each n ∈ N, if µ > 0 and γ > 1, define the rectangles

Eξ :=
∏

y∈(B(0,n∧ρξ)\{0})\Fξ

(−ft, ft) ×
∏

y∈(B(0,n)\B(0,n∧ρξ))∪Fξ

(ft, gt) ,

Eσ := (−ft, ft) ×
∏

y∈(B(0,n)\{0})\F

(0, ft) ×
∏

y∈(B(0,n)\B(0,n∧ρ))∪F

(0, gt) ,

Sξ :=
∏

y∈(B(0,n∧ρξ)\{0})\Fξ

a
qξ(|y|)
t (cξ(y)− ft, cξ(y) + ft) ×

∏

y∈(B(0,n)\B(0,n∧ρξ))∪Fξ

(ft, gt) ,

and

Sσ := aqσt (cσ − ft, cσ + ft) ×
∏

y∈(B(0,n)\{0})\F

(δσ, δσ + ft) ×
∏

y∈(B(0,n)\B(0,n∧ρ))∪F

(0, gt) .
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If µ = 0 and γ > 1, define instead

Eσ := (a−νt ,∞) ×
∏

y∈B(0,n)\{0}

(0, gt) and Sσ := aγ−1t (a−νt ,∞) ×
∏

y∈B(0,n)\{0}

(0, gt) ,

whereas if γ ≤ 1, maintain the definition of Eσ but define instead

Sσ :=
∏

y∈B(0,n)

(0, gt) .

For each n ∈ N and z ∈ Z
d, define the event

S
(n)
t (z) :=

{

{ξ̃z(y)}y∈B(z,n)\{z} ∈ Sξ , {σ̃z(y)}y∈B(z,n) ∈ Sσ

}

,

and, for each x ∈ R and the scaling function At from Proposition 5.2, further define the event

At :=
{

λ̃(n)(0) > At + xdt

}

.

Proposition 5.3 (Correlation of potential field and trapping landscape). For each n ∈ N, as
t→ ∞,

P

(

S
(n)
t (0)

∣

∣At

)

→ 1 .

Moreover, as t→ ∞,

fξ̃0(y)|At
(x) →

ec̄ξ(y)xfξ(x)

E[ec̄ξ(y)ξ(0)]
, for each y ∈ Fξ, (35)

uniformly over x ∈ (0, Lt), and

fσ̃0(y)|At
(x) →

ec̄σ(y)/xfσ(x)

E[ec̄σ(y)/σ(0)]
, for each y ∈ F , (36)

uniformly over x. Finally, if γ = 1, then for each x ∈ R
+, as t→ ∞,

fσ̃0(0)|At
(x) →

e−1/xfσ(x)

E[e−1/σ(0)]
, (37)

uniformly over x.

Proof. Once again, we abbreviate ξ̃0 and σ̃0 as ξ and σ respectively. Define a field s : B(0, n) \
{0} ∪ B(0, n) → R with projections sξ and sσ onto B(0, n) \ {0} and B(0, n) respectively. For a
scale Ct ∼ at define the function

Qt(Ct; s) := a−qσt (cσ + sσ(0))
−1 − a−qσt (cσ + sσ(0))

−1

×
∑

2≤k≤2j

∑

p∈Γk(0,0)
pi 6=0, 0<i<k
Set(p)⊆B(0,n)

∏

0<i<k

(2d)−1 (δσ + sσ(pi))
−1

Ct − a
qξ(|pi|)
t (cξ(pi) + sξ(pi)) + (δσ + sσ(pi))−1

,

if, for each y ∈ B(0, n) \ {0},

a
qξ(|y|)
t (cξ(y) + sξ(y)) ∈ (0, Lt) , sσ(y) > 0 and aqσt (cσ + sσ(0)) > 0

are satisfied, and Qt(Ct; s) := 0 otherwise. Define further the function

Rt(Ct; s) := aγt − (Ct +Qt(Ct; s))
γ +

∑

y∈B(0,n)

(

log fξ

(

a
qξ(|y|)
t (cξ(y) + sξ(y))

)

+ log a
qξ(|y|)
t

)

+ log fσ (a
qσ
t (cσ + sσ(0)) + log aqσt +

∑

y∈B(0,n)\{0}

log fσ (δσ + sσ(y)) .

To motivate these definitions, consider that, similarly to the above, we can write

P

(

λ̃(n)(0) > At + xdt

)

∼ t−de−x
∫

R2|B(0,n)|−1

exp {Rt(At; s)} ds . (38)

It remains to show that the integral in (38) is asymptotically concentrated on the set Eξ × Eσ

and that equations (35)–(37) are satisfied. This fact can be checked by a somewhat lengthy
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computation which we only sketch here. We shall treat separately three cases: (i) γ > 1 and
µ > 0; (ii) γ > 1 and µ = 0; and (iii) γ ≤ 1. We begin with case (i), which is the most delicate.

We must analyse the variables sσ(0), {sσ(y)}y∈B(0,n)\{0}, and {sξ(y)}y∈B(0,n)\{0} separately;
we start with sσ(0). In what follows abbreviate Rt(At; s) by Rt(s). Fix an arbitrary choice of the
components of s and consider how Rt(s) varies with sσ(0). Notice that the function Rt(s) can be
decomposed into two parts, one of which decreases as sσ(0) increases (through Qt) and another
which increases as sσ(0) increases (through fσ). The first part is analysed by Taylor expanding
(At +Qt(At; s))

γ , from which it can be seen that the dependence on sσ(0) is, as t→ ∞,

γ a−qσt aγ−1t (cσ + sσ(0))
−1 (1 + o(1))

where the error term o(1) is uniform in s. The second part is given by − log fσ(a
qσ
t (cσ + sσ(0)))

which is, if µ > 0, eventually

aqσµt (cσ + sσ(0))
µ .

Hence, since we defined qσ precisely so that

−qσ + γ − 1 = qσµ ,

the function Rt has the asymptotic form, as t → ∞,

Rt(s) = f1(t; s) + aκ1
t (g1(sσ(0) + o(1))

where f1(t; s) is some function not depending on sσ(0), κ1 is some positive constant, the function
g1(x) satisfies

g1(x) := −γ(cσ + x)−1 − (cσ + x)µ ,

and the error term o(1) is uniform in s. Then we have, uniformly in s, as t→ ∞,
∫

R

eRt(s) dsσ(0) ∼ ef1(t;s)
∫

R

exp {aκ1
t g1(sσ(0))} dsσ(0) . (39)

Remark that g1(x) achieves a unique maximum at 0 (by the construction of cσ). Therefore, by
the Laplace method, the above integral is eventually asymptotically concentrated around 0 on the
order aκ1

t , and hence the integral is concentrated on the domain sσ(0) ∈ (−ft, ft).
Consider now the variables {sσ(y)}y∈B(0,n)\{0}. Fix an sσ(0) ∈ (−ft, ft) and an arbitrary

choice of the remaining components of s. Again, similarly to the above, the function Rt(s) can be
decomposed into two parts, one whose dependence on sσ(y) is, as t→ ∞,

n(y)2 (2d)−1 γ c−1σ a
γ−2|y|
t a−qσt (δσ + sσ(y))

−1 (1 + o(1))

uniformly in s, and another whose dependence is

− log fσ(δσ + sσ(y)) .

Then we have, uniformly in s, as t→ ∞,
∫

R

eRt(s) dsσ(y) ∼ ef2(t;s)
∫

R

exp
{

γc−1σ aκ2
t (δσ + sσ(y))

−1
}

fσ(δσ + sσ(y)) dsσ(y) ,

where f2(t; s) is some function not depending on sξ(y), κ2 is some non-negative constant with
κ2 > 0 if and only if y ∈ B(0, ρ) \ F , and where the error term o(1) is uniform in s. Hence, if
y ∈ B(0, ρ)\F , then along with the lower-tail assumption in 1.6, it is clear that the above integral
is asymptotically concentrated on sσ(y) ∈ (0, ft). On the other hand, if y ∈ F , then the integrand
is asymptotically

ec̄σ(y)/(sσ(y)+δσ)fσ(sσ(y) + δσ) ,

uniformly over sσ(y), which establishes (36). Trivially, if y /∈ B(0, ρ), then the integral is concen-
trated on sσ(y) ∈ (ft, gt).

Finally, consider the variables {sξ(y)}y∈B(0,n)\{0} and fix sσ(0) ∈ (−ft, ft), sσ(y) ∈ (0, ft) for
each y ∈ B(0, ρ) \ F , and an arbitrary choice of the remaining components of s. The function
Rt(s) can be decomposed into two parts, one whose dependence on sξ(y) is of order, as t→ ∞,

n(y)2 (2d)−1(δσ + sσ(y))
−1γc−1σ a

qξ(|y|)
t a

γ−1−2|y|
t a−qσt (cξ(y) + sξ(y)) (1 + o(1)) ,
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uniformly in s, another whose dependence is

a
qξ(|y|)γ
t (cξ(y) + sξ(y))

γ .

Hence, since we defined qξ(|y|) precisely so that

qξ(|y|) + γ − 1− 2|y| − qσ = qξ(|y|)γ ,

if y ∈ B(0, ρξ), the function Rt has the asymptotic form, as t→ ∞,

Rt(s) = f3(t; s) + aκ3
t (g3(sξ(y)) + o(1))

where f3(t; s) is some function not depending on sξ(y), κ3 is some non-negative constant with
κ3 > 0 if any only if y ∈ B(0, ρξ) \ Fξ, the function g3(x) satisfies

g3(x) := γ n(y)2 (2d)−1 δ−1σ c−1σ (cξ(y) + x)− (cξ(y) + x)γ ,

and where the error term o(1) is uniform in s. Then we have, uniformly in s, as t→ ∞,
∫

R

eRt(s) dsξ(y) ∼ ef3(t;s)
∫

R

exp {aκ3
t g3(sξ(y))} dsξ(y) .

If y ∈ B(0, ρξ)\Fξ, and since g3(x) achieves a unique maximum at 0 (by the construction of cξ(y)),
again by the Laplace method this integral is also asymptotically concentrated on sξ(y) ∈ (−ft, ft).
On the other hand, if y ∈ Fξ, then the integrand is asymptotically

ec̄ξ(y)sξ(y)fξ(sξ(y)) ,

uniformly over sξ(y), which establishes (35). Trivially, if y /∈ B(0, ρξ), then the integral is concen-
trated on sξ(y) ∈ (ft, gt). Since we have now shown that each component of (38) is asymptotically
concentrated on the respective component of the set Eξ×Eσ, integrating first over sξ(y) and sσ(y)
for y ∈ B(0, n) \ {0}, and then over sσ(0), we have the result.

We now turn to case (ii). In this case the integral over sσ(0) in (39) becomes

ef1(t;s)
∫

R

e−γs
−1
σ (0)fσ

(

Aγ−1
t sσ(0)

)

dsσ(0) ∼ ef1(t;s)
∫

R

e−γs
−1
σ (0)fσ

(

aγ−1t sσ(0)
)

dsσ(0) ,

where we used the regularity in 1.6 in the last step. On the region (0, a−νt ), this integral can be
bounded above as

∫ a−ν
t

0

e−γs
−1
σ (0)fσ

(

aγ−1t sσ(0)
)

dsσ(0) ≤

∫ a−ν
t

0

e−γs
−1
σ (0) dsσ(0) ≤ e−γa

ν
t .

On the other hand, for any 0 < c < ν, the integral is bounded below by
∫ ∞

a−c
t

e−γs
−1
σ (0)fσ

(

aγ−1t sσ(0)
)

dsσ(0) ≥ e−γa
c
t F̄σ

(

aγ−1−ct

)

≫ e−γa
ν
t

with the final asymptotic following since µ = 0. Hence the integral in (39) is asymptotically
concentrated on sσ(0) ∈ (a−νt ,∞). Finally, notice that for fixed sσ(0) ∈ (a−νt ,∞) we have that,
as t→ ∞,

Qt(At; s) = a1−γt s−1σ (0) + o(dt)

since ν < 1, with the error uniform in sσ(0). Hence, for sσ(0) ∈ (a−νt ,∞), as t→ ∞,

exp{Rt(At; s)} ∼ t−daγ−1t e−γs
−1
σ (0)

∏

sξ

fξ(sξ)
∏

sσ

fσ(sσ)

and so the integral in (38) is asymptotically concentrated on Eξ × Eσ.
Case (iii) is easier to handle. Now the integral in (39) becomes

ef1(t;s)
∫

R

exp{−γaγ−1t s−1σ (0) + o(1)} fσ(sσ(0)) dsσ(0) ,

with the error uniform in s. If γ < 1, then this integral is clearly concentrated on sσ(0) ∈ (0, gt).
If γ = 1, then the integrand of this integral is asymptotically

es
−1
σ (0)fσ(sσ(0)) ,

uniformly over sσ(0), which establishes (37). The remainder of the proof is identical. �
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5.2. Constructing the point process. The existence of asymptotics for the (punctured) local

principal eigenvalues allows us to establish scaling limits for the penalisation functional Ψ
(j)
t . We

start by constructing a point set from the pair (z,Ψ
(j)
t (z)) which will converge to a point process in

the limit. Here we make use of the length scale rt defined in equation (9), and the first and second
order scales At and dt for the extremes of the local principal eigenvalues defined in Proposition 5.2
and equation (16) respectively. Note that the appropriate rescaling functions for the point set are
actually Art and drt , although since drt ∼ dt we shall eventually end up substituting these.

For technical reasons, we shall actually need to consider a certain generalisation of the func-

tional Ψ
(j)
t . More precisely, for each c ∈ R, define the functional Ψ

(j)
t,c : Vt → R by

Ψ
(j)
t,c (z) := λ(j)(z)−

|z|

γt
log log t+ c

|z|

t
.

For each z ∈ Π(Lt) define

Y
(j)
t,c,z :=

Ψ
(j)
t,c (z)−Art

drt
and M

(j)
t,c :=

∑

z∈Π(Lt)

1

(zr−1
t ,Y

(j)
t,c,z)

.

Finally, for each τ ∈ R and α > −1 let

Ĥα
τ := {(x, y) ∈ Ṙ

d+1 : y ≥ α|x|+ τ}

where Ṙ
d+1 is the one-point compactification of Rd+1.

Proposition 5.4 (Point process convergence). For each τ, c ∈ R and α > −1, as t → ∞,

M
(j)
t,c |Ĥα

τ
⇒ M in law ,

where M is a Poisson point process on Ĥα
τ with intensity measure ν(dx, dy) = dx⊗ e−y−|x|dy.

Proof. The idea of the proof is to replace the set {λ(j)(z)}z∈Π(Lt) with the set of i.i.d. punctured

principal eigenvalues {λ̃(j)}z∈Vt
and then apply standard results in i.i.d. extreme value theory to

show convergence to M in Ĥα
τ .

To this end, define Ψ̃
(j)
t,c (z) and Ỹ

(j)
t,c,z equivalently to Ψ

(j)
t,c (z) and Y

(j)
t,c,z after replacing λ(j)(z)

everywhere with λ̃(j)(z) and further define

M̃
(j)
t,c =

∑

v∈Vt

1

(zr−1
t ,Ỹ

(j)
t,c,z)

.

Recall that {λ̃
(j)
t }z∈Vt

are i.i.d. with tail asymptotics and uniform tail decay governed by Propo-
sition 5.2. By applying an identical argument as in [26, Lemma 3.1] and [16, Lemma 4.3], we have
that, as t→ ∞,

M̃
(j)
t,c

∣

∣

Ĥα
τ

⇒ M in law .

Note that the uniform tail decay is necessary for the point process convergence to hold since Ĥα
τ

is a non-compact set (see [16, Lemma 4.3]). We claim that if z ∈ Vt is such that

(zr−1t , Ỹ
(j)
t,c,z) ∈ Ĥα

τ ,

then z ∈ Π̃(Lt) eventually almost surely. This is since (zr−1t , Ỹ
(j)
t,c,z) ∈ Ĥα

τ is equivalent to

λ̃(j)(z) ≥ Art +
α|z|drt
rt

+
|z|

γt
log log t−

c|z|

t
+ τdrt

which implies that, as t→ ∞,

λ̃(j)(z) ≥ at(1 + o(1)) + (α+ 1 + o(1))
|z|

γt
log log t+O(dt)

≥ at(1 + o(1)) +O(dt)
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since Art ∼ art ∼ at, drt ∼ dt and α > −1. The claim then follows by the upper bound in
Lemma 3.2. As a consequence, we have that, as t→ ∞,

∑

z∈Π̃(Lt)

1

(zr−1
t ,Ỹ

(j)
t,c,z)

∣

∣

Ĥα
τ

⇒ M in law . (40)

To complete the proof we show how to construct a coupling, valid eventually almost surely,
with the property that

{

λ(j)(z)
}

z∈Π(Lt)
=
{

λ̃(j)(z)
}

z∈Π̃(Lt)
. (41)

To do this, note that by Lemma 4.2 there almost surely exists a t0 such that, for all t > t0,
we have r(Π(Lt)) > 2j and, for each z ∈ Π(Lt) and y ∈ B(z, j) \ {z}, it holds that ξ(y) < Lt.

For such t we define the coupling as follows: for z ∈ Π(Lt) and y ∈ B(z, j) set ξ̃z(y) = ξ(y)

and σ̃z(y) = σ(y); for z /∈ Π(Lt) independently sample ξ̃z(z) as ξ(0) conditioned on ξ(0) < Lt;

and otherwise independently sample ξ̃z(y) and σ̃z(y) according to their respective law. By the

separation guaranteed for t > t0, {ξ̃z}z∈Vt
and {σ̃z}z∈Vt

are indeed i.i.d. fields with law as in (32),
and moreover (41) holds by construction. Combining with (40) completes the proof. �

Remark 5.5. Although we state Proposition 5.4 for arbitrary c ∈ R, we shall only apply it to c = 0
and one other value of c that will be determined in Section 6.

We now use the point process M to analyse the joint distribution of top two statistics of the

functional Ψ
(j)
t,c . So let

Z
(j)
t,c := argmax

z∈Π(Lt)

Ψ
(j)
t,c (z) and Z

(j,2)
t,c := argmax

z∈Π(Lt)

z 6=Z
(j)
t,c

Ψ
(j)
t,c .

Note that eventually these are well-defined almost surely, since Π(Lt) is finite and non-zero by
Lemma 4.1.

Corollary 5.6. For each c ∈ R, as t→ ∞,
(

Z
(j)
t,c

rt
,
Z

(j,2)
t,c

rt
,
Ψ

(j)
t,c (Z

(j)
t,c )−Art

drt
,
Ψ

(j)
t,c (Z

(j,2)
t,c )−Art

drt

)

converges in law to a random vector with density

p(x1, x2, y1, y2) = exp{−(y1 + y2)− |x1| − |x2|)− 2de−y2}1{y1>y2} .

Proof. This follows from the point process density in Proposition 5.4 using the same computation
as in [26, Proposition 3.2]. �

5.3. Properties of the localisation site. In this subsection we use the results from the previous

subsection to analyse the localisation sites Z
(j)
t,c and Zt, and in the process complete the proof of

Theorems 1.9 and 1.10. For each c ∈ R, introduce the events

Gt,c := {Ψ
(j)
t,c (Z

(j)
t,c )−Ψ

(j)
t,c (Z

(j,2)
t,c ) > dtet} ,

Ht := {rtft < |Z
(j)
t | < rtgt} and It := {at(1− ft) < Ψ

(j)
t (Z

(j)
t ) < at(1 + ft)} ,

and the event

Et,c := S
(j)
t (Z

(j)
t ) ∩ Gt,0 ∩ Gt,c ∩Ht ∩ It (42)

which acts to collect the relevant information that we shall later need.

Proposition 5.7. For each c ∈ R, as t → ∞,

P(Et,c) → 1 .

Proof. This follows from Proposition 5.2, Corollary 5.6, the coupling in the proof of Proposition 5.4,
and since Art ∼ at and drt ∼ dt. �
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In the next few propositions, we prove that the sites Z
(j)
t,c and Z

(j)
t are both equal to the

localisation site Zt with overwhelming probability.

Proposition 5.8. For each c ∈ R, on the event Et,c, as t→ ∞,

Z
(j)
t,c = Z

(j)
t

holds eventually.

Proof. Assume that Z
(j)
t,c 6= Z

(j)
t and recall that 1/ log log t < et/gt eventually by (17). On the

event Et,c, the statements

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Z

(j)
t,c ) > dtet and Ψ

(j)
t,c (Z

(j)
t,c )−Ψ

(j)
t,c (Z

(j)
t ) > dtet

and, eventually,

|Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t,c (Z

(j)
t )| = |c|

|Z
(j)
t |

t
< γ

dtgt
log log t

< dtet

all hold, giving a contradiction. �

Lemma 5.9. For each c ∈ R, on the event Et,c, as t→ ∞,

λ(j)(Z
(j)
t ) ≥ λ(Z

(j)
t ) and λ(j)(Zt) ≥ λ(Zt)

and
λ(j)(Z

(j)
t )− λ(Z

(j)
t ) < dtet

all hold eventually.

Proof. The first two statements follow from the domain monotonicity of the principal eigenvalue

in Lemma 3.1. For the third statement, remark that the event Et,c implies that Z
(j)
t ∈ Π(Lt,ε),

that ξ(y) < Lt for all y ∈ B(Z
(j)
t , ρ), that ξ(y) < gt for all y such that j ≥ |y − Z

(j)
t | > ρξ, and

that σ(Z
(j)
t ) > aqσt ft. Hence, by considering the path expansion in Proposition 5.1 (valid by the

coupling in the proof of Proposition 5.4), we have that for some C > 0,

λ(j)(Z
(j)
t )− λ(Z

(j)
t ) <

Ca
−( γ−1

µ+1 )
+

t gt
ft(Lt,ǫ − Lt)2ρ+1

< dtet (43)

eventually, with the last equality holding since

− 2ρ− 1−

(

γ − 1

µ+ 1

)+

< 1− γ . (44)
�

Remark 5.10. Note that ρ is precisely the smallest integer such that (44) holds.

Corollary 5.11 (Equivalence of Z
(j)
t and Zt). For each c ∈ R, on the event Et,c, as t→ ∞,

Z
(j)
t = Zt

eventually.

Proof. Assume that Z
(j)
t 6= Zt. On the event Et,c, Lemma 5.9 implies that
(

Ψ
(j)
t (Z

(j)
t )−Ψt(Z

(j)
t )
)

−
(

Ψ
(j)
t (Zt)−Ψt(Zt)

)

=
(

λ(j)(Z
(j)
t )− λ(Z

(j)
t )
)

−
(

λ(j)(Zt)− λ(Zt)
)

< dtet

holds eventually. On the other hand, on the event Et,c, and by the definition of Zt and Z
(j)
t as the

argmax of Ψt and Ψ
(j)
t respectively,

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Zt) > dtet and Ψt(Zt)−Ψt(Z

(j)
t ) > 0

also hold, giving a contradiction. �

Finally, we prove a criterion for the independence of Zt from the trapping landscape σ. Define

ψt(z) := ξ(z)− |z|γt log log t, and let zt := argmaxz∈Π(Lt) ψt(z). Note that zt is independent of σ.
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Proposition 5.12 (Criterion for the independence of Zt from the trapping landscape σ). If γ < 1,
then as t→ ∞,

P (Zt = zt) → 1 .

Proof. By Proposition 5.7 we may assume Et,c holds. Observe that, on Et,c and by Proposition 5.1,

any z ∈ Π(Lt,ε) \ {Z
(j)
t } satisfies

ψt(Z
(j)
t ) > Ψ

(j)
t (Z

(j)
t ) > Ψ

(j)
t (z) + dtet > ψt(z) +O(1) + dtet .

Moreover, by Lemma 3.2 and on Et,c, any z ∈ Π(Lt) \Π(Lt,ε) also satisfies

ψt(Z
(j)
t ) > Ψ

(j)
t (Z

(j)
t ) > ψt(z) +O(1) + dtet .

Since dtet → ∞ if γ < 1, this implies that Z
(j)
t = argmaxz∈Π(Lt) ψt(z) =: zt. Corollary 5.11

completes the proof. �

5.4. Proof of Theorem 1.9. We prove Theorem 1.9 on the event Et,c, since by Proposition 5.7
this event holds with overwhelming probability eventually. Part (a) is implied directly by the
definition of the event Et,c. Parts (b)–(d) follow by combining the definition the event Et,c with
Proposition 5.3 and applying the coupling in the proof of Proposition 5.4. Finally, part (e) is
a consequence of the point process convergence, and is proved in an identical manner to the
corresponding results in [10, 26].

5.5. Proof of Theorem 1.10. Consider parts (a) and (b). By definition, Zt depends only on
the values of ξ and σ in balls of radius ρξ and ρ respectively around each site, and so the radii
ρξ and ρ are certainly sufficient. To show necessity, consider that the results in parts (b)–(d) of
Theorem 1.9 establish the correlation of the fields ξ and σ at a distance ρξ and ρ respectively
around Zt. Hence these radii are necessary as well.

Consider then part (c). The sufficient condition for the reduction to ξ follows directly from
Proposition 5.12. To show necessity, consider that the results in part (c) of Theorem 1.9 establish
that, if γ ≥ 1, the value of σ(Zt) is not an independent copy of σ(0), and hence Zt must depend
on σ.

It remains to prove part (d). If ρ = 0 then Zt depends only on η by definition. On the other
hand, suppose ρ ≥ 1 and, for the purposes of contradiction, that there exists a random site zt,
depending only on ξ and σ through η, such that, as t→ ∞,

P(Zt = zt) → 1 .

Fix a site y and a constant c > δσ. We establish a contradiction by considering two bounds on
the probability of the event

{σ(y) < c, |Zt − y| = 1}.

We first consider the case (γ, µ) /∈ Bσ. Then by part (d) of Theorem 1.9, conditionally on event
{|Zt − y| = 1}, we have that σ(y) → δσ in probability as t → ∞. This implies that there exists
some c1 > 0 such that

P(σ(y) < c, |Zt − y| = 1) > (P(σ(y) < c) + c1) P(|Zt − y| = 1) (45)

eventually. In the case (γ, µ) ∈ Bσ, conditionally on event {|Zt − y| = 1} and again by part (d) of
Theorem 1.9,

fσ(y)(x) → c2e
c̄σ/xfσ(x)

for some c2 > 0, and so (45) holds in this case as well.
We now work on the event {Zt = zt} and show how to obtain a lower bound on the probability

of the event {σ(y) < c, |zt − y| = 1}. Let η̄ = {η(v) : v 6= y}. Remark first that, since zt ∈ Π(Lt),
by Proposition 5.1 we have that λt(zt) is increasing in η(y) for |y − zt| = 1. Hence there exists a
function βt : η̄ → R ∪ {∞} such that, conditionally on η̄,

{|zt − y| = 1} and {η(y) ≥ βt(η̄)}

agree almost surely. To see this, set βt(η̄) to be the minimum η(y) such that with such a value of
η(y), we have |zt − y| = 1 (and setting it to be infinity if no such value exists). Then clearly, if
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η(y) < βt(η̄) we cannot have |zt − y| = 1, and on the other hand we claim that if η(y) ≥ βt(y) we
have |zt − y| = 1. This follows by the almost-sure separation of Lemma 4.2, which ensures that
{y = zt} has probability 0. Denote by Fη̄ the σ-algebra generated by η̄. Then, eventually almost
surely,

P(σ(y) < c, |zt − y| = 1) = Eη̄

[

E[1{|zt−y|=1}1{σ(y)<c}| Fη̄]
]

= Eη̄

[

E[1{η(y)>βt(η̄)}1{σ(y)<c}| Fη̄]
]

≤ Eη̄

[

E[1{η(y)>βt(η̄)}| Fη̄]E[1{σ(y)<c}| Fη̄]
]

= P(σ(y) < c)P(|zt − y| = 1) ,

where the second equality uses the fact that zt depends on σ only through η, and the inequal-
ity holds since, conditionally on Fη̄, the events {η(y) > βt(η̄)} and {σ(y) < c} are negatively
correlated. Since zt = Zt with probability going to one, combining with (45) gives the required
contradiction.

6. Negligible paths

In this section we show that the contribution to the total mass U(t) from the components U2(t),
U3(t), U4(t) and U5(t) are all negligible. We proceed in two parts: first we prove a lower bound
on the total mass U(t), and then we bound from above the contribution to the total mass from
each U i(t). Throughout this section, let ε be such that 0 < ε < θ.

6.1. Preliminaries. We begin by proving a general result on eigenfunction decay around sites of
high potential, which will be used in both the lower and upper bound. For each z ∈ Π(Lt,ε), let
ϕ1 denote the principal eigenfunction of the Hamiltonian H(j)(z).

Proposition 6.1. For each z ∈ Π(Lt,ε) uniformly, as t→ ∞, almost surely

∑

y∈B(z,j)\{z}

ϕ1(y) → 0 and
∑

y∈B(z,j)\{z}

σ(y)−
1
2ϕ1(y)

||σ−
1
2ϕ1||ℓ2

→ 0 .

Proof. By Proposition 3.5, we have the path expansion

ϕ1(y)

ϕ1(z)
=
σ(y)

σ(z)

∑

k≥1

∑

p∈Γk(y,z)
pi 6=z, 0≤i<k
Set(p)⊆B(z,j)

∏

0≤i<k

(2d)−1
σ−1(pi)

λ(j)(z)− η(pi)
, y ∈ B(z, j) \ {z} . (46)

Since, by Lemmas 4.2 and 3.2, for each y ∈ B(z, j) \ {z}, almost surely

λ(j)(z)− η(yi) > Lt,ε − Lt − δ−1σ ,

and moreover since σ−1(y) < δ−1σ for all y ∈ B(z, j), the result follows. �

Corollary 6.2 (Bound on total mass of the solution). For each z ∈ Π(Lt,ε) uniformly and any
c > 1, as t→ ∞, almost surely

Ez

[

e
∫

t

0
ξ(Xs) ds

1{τB(z,j)c>t}

]

< c etλ
(j)(z)

eventually.

Proof. This follows by combining Propositions 6.1 and 3.12. �

6.2. Lower bound on the total mass U(t). Recall that by the discussion in Section 2, the
total mass U(t) can be approximated by considering both the benefit of being near a site of high
potential and the probabilistic penalty from diffusing to that site. To formalise a lower bound for
U(t) we need a bound on both of these terms.

We begin by bounding from below the benefit to the solution from paths that start and end at
a site of high potential.
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Lemma 6.3. For each z ∈ Π(Lt,ε) uniformly,

log uz(t, z) ≥ tλ(j)(z) + o(1)

eventually almost surely.

Proof. Recall the Feynman-Kac formula for the solution uz(t, z) (see, e.g., Proposition 3.8), and
note that the expectation is larger than the corresponding expectation taken only over paths that
do not leave B(z, j). Using Corollary 3.11, we then have that

uz(t, z) ≥
eλ

(j)(z)tσ−1(z)ϕ2
1(z)

||σ−
1
2ϕ1||2ℓ2

,

where ϕ1 denotes the principal eigenfunction of the Hamiltonian H(j)(z). Since the domain B(z, j)

is finite, the fact that the eigenfunction σ−
1
2ϕ1 is localised at z (by Proposition 6.1) ensures that

the square eigenfunction σ−1ϕ2
1 is also localised at z, and the result follows. �

The next step is to bound from above the probabilistic penalty incurred by diffusing to a certain
site. This will be a function both of the distance of the site from the origin, as well as the size of
the traps on paths from the origin to the site. Here we use the existence of quick paths that we
established in a general setting in Section 4.

Recall the scaling function st, which satisfies the properties in (17). If d = 1, for σt := st and
nt := rtgt, recall the definitions of It and {σi

t} from Proposition 4.8. Let p ∈ Γ|Zt|(0, Zt) be the
(unique) shortest path from 0 to Zt and define

Np
i :=

∑

0≤l<|Zt|

1{σ(pl)∈(σ
i−1
t ,σi

t]}
, i = 1, . . . , It .

If d ≥ 2, for zt := Zt, σt := st and St := Π(Lt), recall the definition of |Zt|chem from Proposi-
tion 4.11. Denote by Θd

t the event

Θd
t :=

{

{

∑It
i=1N

p
i log σi

t < tdtbt , max0≤l<|Zt| σ(pl) < σIt
t

}

, d = 1 ;

{|Zt|chem < |Zt|+ rtbt} , d ≥ 2 .

Proposition 6.4 (Existence of quick paths). For each c ∈ R, as t→ ∞,

P(Θd
t , Et,c) → 1 .

Proof. Recall that on event Et,c we have that |Zt| < rtgt. Suppose d = 1. Then the result follows
immediately from Proposition 4.8 and the properties of the scaling function st in (17), since

log log rtgt ∼ log log t .

Suppose then d ≥ 2. Note that conditioning on ξ determines Π(Lt) and also that, by Lemma 4.2,
eventually almost surely Π(Lt) satisfies the properties required by the set St. Since Zt ∈ Π(Lt),
conditioning on the values of σ in B(Π(Lt), j) therefore determines Zt. Given Zt and Π(Lt),
the event Θd

t is fully determined by the values of σ in Z
d \ B(Π(Lt), j). Hence we can apply

Proposition 4.11 with zt = Zt, σt = st and St = Π(Lt), to deduce that there exists a c1 < 1 such
that, for all functions ct → ∞ such that F̄σ(st)ct ≪ 1,

|Zt|chem < |Zt|(1 + F̄σ(st)ct + t−c1)

with probability tending to 1. By (17), we can pick a ct such that

rtgtF̄σ(st)ct ≪ rtbt ,

and so we have the result. �

We are now ready to prove the lower bound.

Proposition 6.5. For each c ∈ R, on the events Et,c and Θd
t , as t→ ∞,

logU(t) ≥ tλ(j)(Zt)−
|Zt|

γ
log log t+O(tdtbt)

almost surely.
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Proof. In the following proof set z = Zt and abbreviate τ = τz. We first consider the case of
d ≥ 2. By the Feynman-Kac formula (5), the total mass U(t) can be written as

U(t) = E0

[

exp

{
∫ t

0

ξ(Xs)ds

}]

.

Using the non-negativity of ξ and by the strong Markov property, we have, for each r ∈ (0, 1),

U(t) ≥ E0

[

exp
{

∫ t

0

ξ(Xs)ds
}

1{τ<rt}

]

≥ E0

[

exp
{

∫ t−(rt−τ)

τ

ξ(Xs)ds
}

1{τ<rt}

]

= E0

[

exp
{

∫ t−(rt−τ)

τ

ξ(Xs)ds
}

]

P0(τ < rt)

≥ uz((1 − r)t, z)P0(τ < rt) . (47)

We now seek to bound P0(τ < rt). Since we are on event Θd
t , there exists a path

p ∈
⋃

y∈∂B(z,j)

Γℓt(0, y)

for some ℓt < |z| + rtbt such that σ(x) < st for all x ∈ Set(p). Moreover, since we are on event
Et,c, each σ(x) ∈ B(z, j) \ {z} is such that σ(x) < aνt for some ν ∈ (0, 1). We shall denote by

{X̃t}t∈R+ a random walk with generator ∆σ̃−1, where σ̃(x) = st for all x ∈ Set(p), σ̃(x) = aνt for
all x ∈ B(z, j) \ {z}, and σ̃(x) = σ(x) otherwise. By a simple coupling argument we have that

P0(τ < rt) ≥ P0(τ̃ < rt) , (48)

where τ̃ is the first hitting time of z by X̃. Using a similar calculation as in [20][Proposition 4.2],
for any r1 + r2 ≤ r,

P0(τ̃ < rt) > (2d)−ℓt−j P
(

Poi(r1ts
−1
t ) = ℓt

)

P
(

Poi(r2ta
−ν
t ) = j

)

= (2d)−ℓt−je−r1ts
−1
t

(r1ts
−1
t )ℓt

(ℓt)!
e−r2ta

−ν
t

(r2ta
−ν
t )j

j!
.

Applying Stirling’s formula, we obtain

logP0(τ̃ < rt) ≥ −r1ts
−1
t − r2ta

−ν
t − ℓt log

(

2d ℓt

er1ts
−1
t

)

+ j log r2 +O(log t) . (49)

Now note that on the event Et,c we have that Zt ∈ Π(Lt,ε). Hence we can combine equations
(47)–(49) and Lemma 6.3 to get that

logU(t) ≥ (1− r1 − r2)tλ
(j)(z)− r1ts

−1
t − r2ta

−ν
t − ℓt log

(

2d ℓt

er1ts
−1
t

)

+ j log r2 +O(log t) .

Use the bound ℓt < |z|+ rtbt and choose r = r1 + r2 to maximise this equation, that is, set

r1 :=
|z|+ rtbt

t(λ(j)(z) + s−1t )
and r2 :=

j

t(λ(j)(z) + a−νt )
.

It is clear that on event Et,c we have r ∈ (0, 1). With these values of r1 and r2 we obtain

logU(t) ≥ tλ(j)(z)− (|z|+ rtbt)
{

log
(λ(j)(z) + s−1t

s−1t

)

+O(1)
}

+O(log t) .

On event Et,c we have that λ(j)(z) < at(1 + ft). Since also |z| < rtgt on event Et,c we find that

logU(t) ≥ tλ(j)(z)− |z| log(λ(j)(z))− rtbt log(λ
(j)(z)) +O (rtgt log(st))

≥ tλ(j)(z)−
|z|

γ
log log t+O (tdtbt)

by the choice of the scaling functions st in equation (17).
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Next, we turn to the case d = 1. Denote by {X̄t}t∈R+ a random walk with generator ∆σ̄−1

where σ̄(x) = σi
t if σ(x) ∈ (σi−1

t , σi
t]. Again, by a simple coupling argument

P0(τ < rt) ≥ P0(τ̄ < rt) ,

where τ̄ is the first hitting time of z by X̄ and r ∈ (0, 1). Furthermore, we have

P0(τ̄ < rt) > 2−|Zt|
It
∏

i=1

P(Poi(rit(σ
i
t)
−1) = Np

i ),

for any {ri}1≤i≤It satisfying
∑

i ri ≤ r. By a similar calculation to the d ≥ 2 case, we have

logU(t) ≥ t(1− r)λ(j)(z) +

It
∑

i=1

(

−rit(σ
i
t)
−1 −Np

i log(2Np
i /(erit(σ

i
t)
−1)
)

+O(log t) .

Choose r and {ri} to maximise this equation, that is, set

ri =
Np

i

t(λ(j)(z) + (σi
t)
−1)

and r =
∑

i

rt

noting that r ∈ (0, 1) for the same reason as in the d ≥ 2 case. Then,

logU(t) ≥ tλ(j)(z) +

It
∑

i=1

(

−Np
i

(

log
(

λ(j)(z)σi
t

))

+O(1)
)

+O(log t)

= tλ(j)(z)− |z| log
(

λ(j)(z)
)

−
It
∑

i=1

(

Np
i log σi

t +O(|z|)
)

+O(log t) .

The result follows since we are on event Θd
t . �

6.3. Contribution from each U i(t) is negligible. In this section we prove that the contribution
to U(t) from the each of the components U i(t), for i = 2, 3, 4, 5, is negligible. The most difficult
step is bounding the contribution from the components U2(t) and U3(t).

The difficulty with these components is that paths are permitted to visit sites of high potential
that are not Zt. Away from these sites, there is a probabilistic penalty associated with each step
of the path; this is easy to bound. However, close to these sites, the maximum contribution from
the path may come from a complicated sequence of return cycles to the site. This motivates our
set-up, which groups paths into equivalence classes depending only on their trajectory away from
sites of high potential.

For each t, we define a partition of paths into equivalence classes as follows. Suppose p, p̄ ∈ Γ
are two finite paths in Z

d. Define inductively, r0 = 0, and

sℓ := min{i ≥ rℓ−1 : pi ∈ Π(Lt)} and rℓ := min{i > sℓ : pi ∈ ∂B(psℓ , j)}

for each ℓ ∈ N, setting each to be ∞ if no such minimum i exists, and define similarly (s̄ℓ, r̄ℓ)ℓ≥1
for path p̄. Then we say that p and p̄ are in the same equivalence class if and only if, for all ℓ ≥ 0,

sℓ+1 − rℓ = s̄ℓ+1 − r̄ℓ and prℓ+i = p̄r̄ℓ+i , for each i ∈ {0, 1, . . . , sℓ+1 − rℓ} .

Note that although sℓ and rℓ depend on t (through the set Π(Lt)), we suppress this dependence
for clarity. If p and p̄ are in the same equivalence class at time t we write p ∼ p̄. Denote by
P (p) := {p̄ ∈ Γ : p ∼ p̄}. Informally, the equivalence class P (p) consists of paths that have
identical trajectory except for when they are in balls of radius j around sites z ∈ Π(Lt) (or, more
accurately, when they first hit a site z ∈ Π(Lt) until when they leave the ball B(z, j)).

It is natural to group these equivalence classes P (p) according to (i) how many balls of radius
j around sites z ∈ Π(Lt) the path visits; and (ii) the total length of the path outside such balls.
So for m,n ∈ N, let Pn,m be the set of equivalence classes P (p) of paths p that satisfy

max{ℓ : rℓ <∞} = m and

m−1
∑

ℓ=0

(sℓ+1 − rℓ) + sm+1
1{sm+1<∞} + |p|1{sm+1=∞} − rm = n .
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Note that if a path p satisfies these two properties for some m and n then any other path p̄ ∈ Pp

will also satisfy these properties for the samem and n and hence Pn,m is well-defined. The quantity

m counts the number of balls of radius j around z ∈ Π(Lt) that the path exits (which is easier to
work with than the number of balls the path enters); the quantity n counts the total length of the
path between leaving each of these balls and hitting the next site z ∈ Π(Lt).

Recalling the definitions of p(Xt), define the event

{p(X) ∈ P (p)} :=
⋃

s≥0

{p(Xs) ∈ P (p)} ,

and remark that we have the relationship

{p(Xt) ∈ P (p)} ⊆ {p(X) ∈ P (p)} . (50)

Denote by

UP (p)(t) = E0

[

exp

{
∫ t

0

ξ(Xs) ds

}

1{p(Xt)∈P (p)}

]

.

the contribution to the total solution U(t) from the path equivalence class P (p).
The following lemma bounds the contribution of each P (p) ∈ Pn,m in terms of m and n. The

key fact motivating our set-up is that the contribution is decreasing in n.

Lemma 6.6 (Bound on the contribution from each equivalence class). Let m,n ∈ N and p ∈
Γ(0) such that Set(p) ⊆ Vt and P (p) ∈ Pn,m. Define z(p) := argmaxz∈Set(p) λ

(j)(z) and let

ζ > max{λ(j)(z(p)), Lt,ε}. Then there exist constants c1, c2 > 0 such that, uniformly in m,n, p
and ζ, as t→ ∞,

UP (p)(t) ≤ eζt
(

c1(ζ − Lt)
)−n

(

1 + c2

(

ζ − λ(j)(z(p))
)−1

)m

eventually almost surely.

Proof. The strategy of the proof is to split UP (p)(t) into three components, corresponding to the
contribution: (i) from when Xs is outside B(Π(Lt), j) until Xs hits a site z ∈ Π(Lt); (ii) from when
Xs hits z ∈ B(Π(Lt), j) until when Xs leaves the ball B(z, j); and (iii) if Xs hits z ∈ Π(Lt) and
does not subsequently leave B(z, j), from this component separately. To bound the contribution
from these components, we make use of Corollary 6.2, Lemma 3.13 and Lemma 3.4 respectively.

There are two cases to consider, depending on whether the event described in (iii) occurs, that
is, if sm+1 <∞. We begin with this case. To simplify notation in the following we abbreviate

Iba := exp

{

∫ b

a

(ξ(Xs)− ζ) ds

}

.

Recall the definition of (sℓ, rℓ)ℓ∈N and define the stopping times

R0 := 0 , Sℓ := inf{s ≥ Rℓ−1 : Xs = psℓ} and Rℓ := inf{s ≥ Sℓ : Xs = prℓt}

for each ℓ ∈ {1, . . . ,m}, and similarly define Sm+1 since sm+1 <∞. We can then write

UP (p)(t) = E0

[

e
∫

t

0
ξ(Xs) ds

1{p(Xt)∈P (p)}

]

= eζt E0

[

It0 1{p(Xt)∈P (p)}

]

= eζt E0

[(

m
∏

ℓ=0

IS
ℓ+1

Rℓ

)(

m
∏

ℓ=1

IR
ℓ

Sℓ

)

ItSm+11{p(Xt)∈P (p)}

]

.

Note that, conditionally on FSm+1 (the σ-algebra generated by Sm+1), the quantity ItSm+1 is

independent of all other Iba in this expectation. Thus we have

UP (p)(t) = eζt E

{

E0

[(

m
∏

ℓ=0

IS
ℓ+1

Rℓ

)(

m
∏

ℓ=1

IR
ℓ

Sℓ

)

1{p(Xt)∈P (p)}

∣

∣

∣
FSm+1

]

× E0

[

ItSm+11{p(Xt)∈P (p)}

∣

∣FSm+1

]

}

. (51)
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We use Corollary 6.2 to bound the expectation on the second line of (51); in the calculation that
follows, abbreviate s := sm+1 and S := Sm+1. We obtain, for some C > 1,

E0

[

ItS1{p(Xt)∈Pt(p)}

∣

∣S
]

≤ 1{S≤t} Eps

[

It−S0 1{τB(ps,j)>t−S}

∣

∣

∣
S
]

≤ Ce(t−S)(λ(j)(ps)−ζ) ≤ C

almost surely, since ζ > λ(j)(ps). Combining with (51) and using equation (50) we obtain

UP (p)(t) ≤ C eζt E0

[(

m
∏

ℓ=0

IS
ℓ+1

Rℓ

)(

m
∏

ℓ=1

IR
ℓ

Sℓ

)

1{p(X)∈P (p)}

]

= Ceζt E0

[(

m
∏

ℓ=0

IS
ℓ+1

Rℓ

)

1{p(X)∈P (p)}

]

E0

[(

m
∏

ℓ=1

IR
ℓ

Sℓ

)

1{p(X)∈P (p)}

]

. (52)

Let ξ
(ℓ)
max = maxrℓ≤k<sℓ+1 ξ(pk), for ℓ = {0, 1, . . . ,m}. By Lemma 3.4, which we can apply here

since ζ > Lt,ε > Lt ≥ max0≤l≤m ξ
(ℓ)
max ,

E0

[(

m
∏

ℓ=0

IS
ℓ+1

Rℓ

)

1{p(X)∈P (p)}

]

≤ (2d)−n
m
∏

ℓ=0

sℓ+1−1
∏

k=rℓ

(

1 + σ(pk)(ζ − ξ(ℓ)max )
)−1

(53)

≤ (2d)−n (1 + δσ(ζ − Lt))
−n ,

almost surely, using the definition of n and the lower bound on σ. Making the new abbreviation
s := sℓ, we have

E0

[(

m
∏

ℓ=1

IR
ℓ

Sℓ

)

1{p(X)∈P (p)}

]

=

m
∏

ℓ=1

Eps

[

I
τB(ps,j)

0 1{p(X)∈P (p)}

]

≤
m
∏

ℓ=1

Eps

[

I
τB(ps,j)

0

]

.

Since ζ > λ(j)(z(p)), we can apply the first bound in the cluster expansion in Lemma 3.13 to
deduce that

m
∏

ℓ=1

Eps

[

I
τB(ps,j)

0

]

≤

(

1 +
δ−1σ |B(0, j)|

ζ − λ(j)(z(p))

)m

. (54)

Using these two estimates, we obtain from equation (52) the desired bound.
We now deal with the case that sm+1 = ∞. Similarly to the above, we condition on FRm (the

σ-algebra generated by Rm) to write UP (p)(t) as

eζt E

{

E0

[(

m
∏

ℓ=0

IS
ℓ+1

Rℓ

)(

m
∏

ℓ=1

IR
ℓ

Sℓ

)

1{p(X)∈P (p)}

∣

∣

∣
FRm

]

E0

[

ItRm1{Rm≤t}

∣

∣FRm

]

}

.

Set l := |p|−rm > 0 and τend := inf{s > 0 : Xs = Xt}. Observe that, since ζ > Lt,ε > Lt ≥ ξ(Xt),
almost surely

E0

[

ItRm1{p(Xt)∈P (p)}

∣

∣FRm

]

≤ E0

[

IτendRm 1{p(Xt)∈P (p)}

∣

∣FRm

]

and applying Lemma 3.4 (valid by Lemma 3.2) we get that

E0

[

ItRm1{p(Xt)∈P (p)}

∣

∣FRm

]

≤ (2d)−l(1 + δσ(ζ − Lt))
−l

almost surely. The rest of the proof proceeds similarly to the previous case. �

We can use Lemma 6.6 to bound the contribution to the total mass U(t) from U2(t) and U3(t).

Proposition 6.7 (Upper bound on U2(t)). There exists a constant c such that, as t→ ∞,

logU2(t) ≤ t max
z∈Π(Lt)\{Zt}

Ψ
(j)
t,c (z) +O(tdtbt)

almost surely.
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Proof. Recall the path set E2
t , and for each m,n ∈ N define

P2
n,m :=

⋃

p∈E2
t

Pt(p) ∩ Pn,m .

Note that |P2
n,m| ≤ κn+m, with κ = max{2d, |∂B(0, j)|}. We observe that

U2(t) =
∑

n,m

UP
2
n,m(t) ≤

∑

n,m

κn+m max
P∈P2

n,m

{

UP (t)
}

=
∑

n,m

κ−n−m max
P∈P2

n,m

{

κ2(n+m)UP (t)
}

≤ max
n,m

max
P∈P2

n,m

{

κ2(n+m)UP (t)
}

∑

n,m

κ−n−m .

For each P ∈ P2
n,m, denote by z(P ) the site y ∈ Π(Lt) on a given path p ∈ P which maximises

λ(j)(y), remarking that this a class property of P eventually almost surely by Lemma 4.2. Using
Lemma 6.6, for each P ∈ P2

n,m and for any ζ > max{λ(j)(z(P )), Lt,ε}, we have that there exist
constants c1, c2, c3 > 0 such that, eventually almost surely,

κ2(n+m) UP (t) ≤ eζt (c1(ζ − Lt))
−n
(

c2 + c3(ζ − λ(j)(z(P )))−1
)m

.

Set ζ = max{λ(j)(z(P )), Lt,ε}+ dtbt. To lower bound n, observe that the number of steps between

exiting a j-ball and hitting another site in Π(Lt) is at least j + 1. We apply Corollary 4.4 to the
balls B(Π(Lt), j + 1) to deduce that, eventually almost surely

n > m(j + 1) + |z(P )| − |z(P )|c4 , (55)

for some c4 < 1. Then, by monotonicity in n,

κ2(n+m) UP (t) ≤ et(λ
(j)(z(P ))+dtbt)(c1(Lt,ε − Lt))

−|z(P )|+|z(P )|c4

×
(

c1(Lt,ε − Lt))
−j−1(c2 + c3dtbt)

−1)
)m

eventually almost surely. Note that j was chosen precisely to be the smallest integer such that

(j + 1) log at + log(dt) → ∞ (56)

which implies, since bt ≫ 1/ log log t by (17), that

(j + 1) log at + log(c2 + c3dtbt) → ∞ .

By Lemma 4.2, for z ∈ Π(Lt), as t→ ∞,

|z|c4 < tdtbt

eventually almost surely. Moreover,

log (Lt,ε − Lt) > log at + c5

eventually for some positive c5. So there exists a constant c such that

2(n+m) log κ+ logUP (t) ≤ c|z(P )|+ λ(j)(z(P ))t−
1

γ
|z(P )| log log t+ tdtbt

eventually almost surely, which yields the result. �

Proposition 6.8 (Upper bound on U3(t)). There exists a constant c such that, as t→ ∞,

logU3(t) ≤ tΨ
(j)
t,c (Zt)− ht

1

γ
|Zt| log log t+O (tdtbt)

almost surely.

Proof. Recall the set of paths E3
t and define P3

n,m by analogy with P2
n,m. The proof then follows

as for Proposition 6.7 after strengthening the bound in (55) to give that for each p ∈ E3
t and for

some c1 < 1, eventually almost surely

n > m(j + 1) + (1 + ht)
1

γ
|Zt| log log t− |Zt|

c1 . �
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Proposition 6.9 (Upper bound on U4(t)). For all t ≥ 0,

U4(t) ≤ etLt .

Proof. This follows trivially from the definition of U4(t). �

Proposition 6.10 (Negligibility of U5(t)). As t→ ∞, almost surely,

U5(t)

U(t)
→ 0 .

Proof. The equivalent statement for the PAM with Weibull potential is proved in [14, Section 2.5],
and is a consequence of a large probabilistic penalty for diffusing outside the macrobox Vt. The
assumption that σ(0) > δσ ensures that the proof applies equally well in our case. �

Corollary 6.11. There exists a constant c such that, as t→ ∞,

U2(t) + U3(t) + U4(t) + U5(t)

U(t)
1Et,c1Θd

t
→ 0

almost surely.

Proof. Let c be the maximum of the constants appearing in Propositions 6.7 and 6.8. Combining

Propositions 6.5 and 6.7, and recalling that Z
(j)
t,c = Zt eventually by Proposition 5.8 and Corollary

5.11, we have that, on the events Et,c and Θd
t , eventually almost surely

logU2(t) − logU(t) ≤ t
(

Ψ
(j)
t,c (Z

(j,2)
t,c )−Ψ

(j)
t,c (Z

(j)
t,c )
)

+ c|Zt|+O(tdtbt) .

Using the gap in the maximisers of Ψ
(j)
t,c and since |Zt| < rtgt, we have that, as t→ ∞,

logU2(t)− logU(t) ≤ −tdtet +O(rtgt) +O(tdtbt) → −∞

by the properties of the scaling functions in (17). Similarly, combining Propositions 6.5 and 6.8,
we have that, on the events Et,c and Θd

t , eventually almost surely

logU3(t)− logU(t) ≤ −ht
1

γ
|Zt| log log t+ c|Zt|+O(tdtbt)

and so, using that |Zt| > rtft on the event Et,c, as t→ ∞,

logU3(t)− logU(t) ≤ −rtftht
1

γ
log log t+O(tdtbt) → −∞

by the properties in (17). Finally, combining Propositions 6.5, 6.9 and 6.10, we get the result. �

7. Localisation

In this section we complete the proof of Theorem 1.7; that is, we show that the non-negligible
component of the total solution, u1(t, z), is eventually localised at Zt. Recall the idea of the
proof that was outlined in Section 2, that: (i) the solution u1(t, z) is closely approximated by the
principal eigenfunction of ∆σ−1 + ξ restricted to the domain

Bt := B (0, |Zt|(1 + ht)) ∩ Vt

and; (ii) the principal eigenfunction decays exponentially away from Zt. Throughout this section,
fix the constant c > 0 from Corollary 6.11.
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7.1. Approximating the solution with the principal eigenfunction. Let λt and vt denote,
respectively, the principal eigenvalue and eigenfunction of the Hamiltonian ∆σ−1 + ξ restricted to
the domain Bt with Dirichlet boundary conditions, renormalising vt so that vt(Zt) = 1.

Lemma 7.1 (Gap in j-local principal eigenvalues in Bt). On the event Et,c, each z ∈ Bt \ {Zt}
satisfies

λ(j)(Zt)− λ(j)(z) > dtet + o(dtet) .

Proof. On the event Et,c, we have that λ(j)(Zt) > at(1− ft) and so the claim is true for z /∈ Π(Lt)

by Lemma 3.2. On the other hand, if z ∈ Π(Lt) then

dtet < Ψ
(j)
t (Zt)−Ψ

(j)
t (z) = λ(j)(Zt)− λ(j)(z) +

|z| − |Zt|

γt
log log t .

To complete the proof, notice that, for each z ∈ Bt,

|z| − |Zt|

γt
log log t <

rtgtht
γt

log log t = dtgtht ≪ dtet

since gtht ≪ et by (17). �

Corollary 7.2. Eventually on the event Et,c, each z ∈ Bt \ {Zt} satisfies

λt > λ(j)(z) + dtet + o(dtet) .

Proof. First note that, on the event Et,c, the ball B(Zt, j) ⊆ Bt. Hence, by the domain mono-

tonicity in Lemma 3.1, we have λt ≥ λ(j)(Zt), and so the result follows from Lemma 7.1. �

Proposition 7.3 (Feynman-Kac representation for the principal eigenfunction). Eventually on
the event Et,c,

vt(z) =
σ(z)

σ(Zt)
Ez

[

exp

{
∫ τZt

0

(ξ(Xs)− λt) ds

}

1{τBc
t
>τZt}

]

,

where

τZt
:= inf{t ≥ 0 : Xt = Zt} and τBc

t
:= inf{t ≥ 0 : Xt /∈ Bt} .

Proof. This is an application of Proposition 3.3, valid precisely because of Corollary 7.2. �

7.2. Exponential decay of the principal eigenfunction. Recall the partition of paths into
equivalence classes in Section 6, the quantities rℓ and sℓ associated to each equivalence class, and,
for m,n ∈ N, the set of equivalence classes Pn,m. Recall also the event {p(X) ∈ P (p)}.

Define the path set

Ē1
t :=

{

p ∈ E1
t : |p| = min {i : pi = Zt}

}

,

and for each m,n ∈ N define

P̄1
n,m :=

⋃

p∈Ē1
t

Pt(p) ∩ Pn,m .

Further, for each P ∈ P̄1
n,m and y ∈ Bt define

vPt (y) :=
σ(y)

σ(Zt)
Ey

[

exp

{
∫ τZt

0

(ξ(Xs)− λt) ds

}

1{p(X)∈P}

]

. (57)

For each P ∈ P̄1
n,m denote by z(P ) the site y ∈ Π(Lt) on a given path p ∈ P , excluding the site Zt,

which maximises λ(j)(y), setting z(P ) = ∅ (and λ(j)(∅) = 0) if no such y exists. Remark that,
whenever z(P ) is defined, it is a class property of P eventually almost surely, by Lemma 4.2.

Lemma 7.4 (Bound on the contribution from each equivalence class). Letm,n ∈ N and P ∈ P̄1
n,m.

Then there exist constants c1, c2 > 0 such that, for each m,n, P and y ∈ Bt \Π(Lt) uniformly, as
t→ ∞,

vPt (y)σ(Zt) ≤ (c1(λt − Lt))
−n
(

1 + c2(λt − λ(j)(z(P )))−1
)m−1
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and, for every y ∈ Π(Lt) uniformly,

vPt (y)σ(Zt) ≤
(

λt − λ(j)(z(P ))
)−1

(c1(λt − Lt))
−n
(

1 + c2(λt − λ(j)(z(P )))−1
)m−1

both hold eventually almost surely.

Proof. Starting with the Feynman-Kac representation for vPt (y) in equation (57), the proof follows
similarly as in Lemma 6.6 for ζ = λt, which is a valid setting for ζ because of Corollary 7.2. Two
modifications are necessary to adapt the proof.

The first modification comes from the observation that, for any p ∈ P , the final site Zt gives
no contribution to the expectation, and hence we have m− 1 instead of the m in Lemma 6.6.

The second modification is necessary to take into account the additional σ(y) factor present in
the Feynman-Kac representation in equation (57), which a priori could be arbitrarily large. How
we take this into account depends on whether p starts at a site of high potential. If y /∈ Π(Lt), we
simply modify equation (53) by pulling out the factor σ(y) and bounding the right-hand side by

(2d)−nσ−1(y)(λt − Lt)
−1 (1 + δσ(λt − Lt))

−n+1
,

and the claimed result follows. If y ∈ Π(Lt), we instead modify equation (54) by using the second
bound in Lemma 3.13 on the product factor for ℓ = 1, which yields (abbreviating s := sℓ)

Ey[I
τB(y,j)

0 ]

m−1
∏

ℓ=2

Eps

[

I
τB(ps,j)

0

]

≤ σ−1(y)(λt − λ(j)(z))−1
(

1 +
δ−1σ |B(0, j)|

λt − λ(j)(z(P ))

)m−1

,

and again the claimed result follows. �

Proposition 7.5 (Exponential decay of principal eigenfunction). On the event Et,c there exists a
constant C > 0 such that, for each y ∈ Bt uniformly, as t→ ∞,

log vt(y) + log σ(Zt) ≤ −C|y − Zt| log log t

eventually almost surely.

Proof. As in Proposition 6.7, we observe that there exists κ > 1 such that

vt(y) =
∑

n,m

∑

P∈P̄1
n,m

vPt (y) ≤ max
n,m

max
P∈P1

n,m

{

κ2(n+m)vPt (y)
}

∑

n,m

κ−n−m .

Suppose y ∈ Bt \ Π(Lt). Then for each P ∈ P̄1
n,m, by Lemma 7.4 there exist c1, c2, c3 > 0 such

that

κ2(n+m)σ(Zt)v
P
t (y) ≤ (c1(λt − Lt))

−n(c2 + c3(λt − λ(j)(z(P )))−1)m−1

eventually almost surely. Note also that by Corollary 4.4 (similarly to (55)), eventually almost
surely

n > (m− 1)(j + 1) + c4|y − Zt|

for any c4 < 1. Then, for any 0 < ε < θ,

κ2(n+m)σ(Zt)v
P
t (y) ≤ (c1(Lt,ε − Lt))

−c4|y−Zt|
(

(c1(Lt,ε − Lt))
−j−1(c2 + c3(dtet)

−1)
)m−1

eventually almost surely by monotonicity in n and Corollary 7.2, and so, applying equation (56),
there exists a C > 0 such that

2(n+m) log κ+ log vPt (y) + log σ(Zt) ≤ −C|y − Zt| log log t

eventually almost surely. Suppose then that y ∈ Π(Lt). Here we proceed similarly, but we now
need the stronger bound n > m(j + 1) + c4|y − Zt| for any c4 < 1, valid eventually almost surely
for y ∈ Π(Lt) by Lemma 4.2. Then,

κ2(n+m)σ(Zt)v
P
t (y) ≤

(

(c1(Lt,ε − Lt))
−j−1(dtet)

−1
)

(c1(Lt,ε − Lt))
−c4|y−Zt|

×
(

(c1(Lt,ε − Lt))
−j−1(c2 + c3(dtet)

−1)
)m−1

,

and the rest of the proof follows as before. �
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7.3. Completion of the proof of Theorem 1.7. We are now in a position to establish Theo-
rem 1.7. First, remark that Proposition 7.5 implies that, as t→ ∞,

1Et,c σ(Zt)
∑

z∈Bt\{Zt}

vt(z)
2 → 0

almost surely, and so in particular 1Et,c‖vt‖
2
ℓ2

→ 1, since we know σ(Zt) > δσ. Hence since

1Et,c σ(Zt) ‖σ
− 1

2 vt‖
2
ℓ2

∑

z∈Bt\{Zt}

vt(z) ≤ 1Et,c δ
−1
σ ‖vt‖

2
ℓ2 σ(Zt)

∑

z∈Bt\{Zt}

vt(z) , (58)

the left-hand side of equation (58) also converges to zero almost surely. To finish the proof, we
apply Proposition 3.14, which gives that

1Et,c

1

U(t)

∑

z∈Bt\{Zt}

u1(t, z) → 0

almost surely. Combining the above with the negligibility results already established in Corol-
lary 6.11 on events Et,c and Θd

t , and the fact that the events Et,c and Θd
t hold eventually with

overwhelming probability by Proposition 6.4, we have established Theorem 1.7. �
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[13] J. Gärtner and S.A. Molchanov. Parabolic problems for the Anderson model. I. Intermittency and related
topics. Comm. Math. Phys., 132:613–655, 1990.
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