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Abstract

A defining feature of dentitions in modern sharks and rays is the regulated pattern order that generates

multiple replacement teeth. These are arranged in labio-lingual files of replacement teeth that form in

sequential time order both along the jaw and within successively initiated teeth in a deep dental lamina. Two

distinct adult dentitions have been described: alternate, in which timing of new teeth alternates between two

adjacent files, each erupting separately, and the other arranged as single files, where teeth of each file are

timed to erupt together, in some taxa facilitating similarly timed teeth to join to form a cutting blade. Both

are dependent on spatiotemporally regulated formation of new teeth. The adult Angel shark Squatina

(Squalomorphii) exemplifies a single file dentition, but we obtained new data on the developmental order of

teeth in the files of Squatina embryos, showing alternate timing of tooth initiation. This was based on micro-CT

scans revealing that the earliest mineralised teeth at the jaw margin and their replacements in file pairs (odd

and even jaw positions) alternate in their initiation timing. Along with Squatina, new observations from other

squalomorphs such as Hexanchus and Chlamydoselachus, together with representatives of the sister group

Galeomorphii, have established that the alternate tooth pattern (initiation time and replacement order)

characterises the embryonic dentition of extant sharks; however, this can change in adults. These character

states were plotted onto a recent phylogeny, demonstrating that the Squalomorphii show considerable

plasticity of dental development. We propose a developmental-evolutionary model to allow change from the

alternate to a single file alignment of replacement teeth. This establishes new dental morphologies in adult

sharks from inherited alternate order.
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Introduction

In modern-grade elasmobranch fishes, Neoselachii (includ-

ing all living sharks, rays and skates), replacement tooth

positions along the jaw have been described as two distinct

arrangements, single file or alternate file (e.g. Reif, 1980;

Smith et al. 2013; Underwood et al. 2015; Fig. 1A,C), or

modifications of these basic patterns, producing, for exam-

ple, a single cutting blade of imbricated teeth across the

jaw (Strasburg, 1963; Underwood et al. 2015). During devel-

opment, an asynchronous timed series of tooth germs is

initiated along the jaw (Smith et al. 2009), at alternate posi-

tions, as labio-lingual files of replacement teeth (Figs 1D

and 2). In this arrangement of replacement teeth, two adja-

cent files form (Smith 2003; Smith et al. 2013: figs 1, 2),

from the first rudimentary teeth, as sequentially added

teeth (SAT unit), proposed as a clonal unit of differentially

timed teeth [SAT unit tf 6 + 7; Fig. 2]. In these, timing and

position alternate within each pair of tooth files (tf 6 + 7)

to provide closely spaced teeth in alternately timed labio-

lingual addition (Fig. 1B). Each pair of files is added disto-

proximally along the jaw (Fig. 2, 1–12), developmentally

linked as iteratively timed ‘SAT units’ (Fig. 2, stages 1–9;

Smith, 2003; Smith et al. 2013: figs 1A, 2), so that in the

adult, the teeth erupt at different times. By comparison, the

single file arrangement in the adult is composed of teeth in

adjacent files at the same developmental phase, recognised

by the youngest teeth in adjacent files being at the same
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stage of development and the oldest at the same position

relative to the jaw margin, erupting together (Fig. 1A). In

this arrangement, timing of eruption at the jaw margin

could be as single teeth or simultaneously for all teeth,

forming a blade (Fig. 1A; Underwood et al. 2016), and as

alternate teeth (Fig. 1B). Dentitions may also have disto-

proximally staggered times (Fig. 2, 1–12) and many rows of

erupted (functional) teeth together (Fig. 1C). Until recently,

it was unclear how these different adult morphologies

developed and if neoselachian dentitions showed develop-

mental plasticity, through transformation of tooth order

from embryo to adult, and whether alternate or single file

addition is the primitive state for skates and rays

Within the Batoidea (skates and rays), the sister group to

modern sharks (Squalomorphii + Galeomorphii, Fig. 3),

both embryos and adults possess the alternate pattern for

arrangement of successor teeth. Within many batoids, teeth

in alternating order are close-packed, forming continuous

surfaces, for crushing dentitions (Underwood et al. 2015).

In sharks, all members of the Galeomorphii so far studied

(Carcharhiniformes, Orectolobiformes and Heterodontif-

ormes; see Smith et al. 2013; Fig. 1B,D) have alternate tooth

replacement in adults, from alternate developmental order

in embryos. The status of the Lamniformes has been consid-

ered uncertain (Smith et al. 2013). In Squalomorphii, many

taxa have distinctive single-file successor teeth demon-

strated to be the result of developmental modification of

an embryonic alternate pattern (Underwood et al. 2016;

Fig. 1A). The alternate pattern can also be present in the

upper jaw, or both jaws, as an example of developmental

independence (plasticity) of upper and lower jaws, as in

Hexanchidae (lower dentition single file, but an alternate

pattern in the upper jaw and teeth that lie closest to the

jaw hinges).

Several other clades of squalomorph sharks appear to

have a single file tooth replacement order in adults, with

well-spaced tooth files, including Squatina (angel shark),

the Hexanchidae (six- and seven-gilled sharks) and Chlamy-

doselachus (frilled shark) as well as the Lamniformes within

the Galeomorphii (Mako, Thresher and White sharks and

relatives), but in each case their developmental order is

unknown. Our study of the embryonic and adult dentitions

of Squatina, along with examination of dentitions of Hex-

anchus, Chlamydoselachus and Isurus (Galeomorphii),

allows the early stages of tooth development to be com-

pared and contrasted with the embryonic alternate pattern-

ing in Heterodontus (Heterodontiformes), as detailed by

Reif (1976). These data are used to explore the hypothesis

that the alternate pattern can be transformed into a single

file during development through both alteration of tooth

BA

DC

Fig. 1 Adult and embryonic jaws with tooth arrangement at the jaw margin. Single file (A) vs. alternate dentitions (B,C), with (D) unknown timed

order in embryo. (A) Scymnodon ringens (Knifetooth dogfish), lower jaw in labial view with single, symmetrical tooth across the jaw symphysis (S). (B)

Prionace glauca (Blue shark), upper jaw in lingual view with replacement row teeth including symmetrical symphyseal tooth, other teeth are polarised

left–right (modified from Smith et al. 2013; figs 1B, 5C; photos Tom Diekwisch). (C) Triaenodon obesus (White tip reef shark) adult dentition with alter-

nate dentition, reduced symphyseal teeth. (D) Carcharhinus leucas (Blacktip shark) embryonic lower jaw (lingual epithelium removed, tissues stained)

with tooth files central cusp-aligned but all successor teeth appear in single file arrangement from rudimentary cusp of first tooth (volumetric data not

available) with space for attachment bases to increase in size (from Smith, 2003: fig. 9A; Smith et al. 2013: fig. 4D). Scale bars: 1.0 cm.
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germ timing and loss of individual tooth files, with these

being two different potential mechanisms for evolutionary

transformation. We propose that the alternate addition of

teeth is plesiomorphic for the Neoselachii, retained in

embryonic and adult rays, and present in fossil relatives, but

can be modified to single file from the embryonic condition

in some adult sharks (Galeomorphii and Squalomorphii).

Embryonic Squatina is an excellent model to test this

hypothesis in squalomorphs along with Chlamydoselachus

and Hexanchus as basal members of the group (Fig. 3), all

with putatively single file dentitions in the adult.

To determine the plesiomorphic state, fossils of taxa clo-

sely related to extant sharks and rays were studied, includ-

ing Acrodus (Hybodontoidea) and Synechodus. The

phylogenetic relationships of Synechodus are uncertain

(Maisey, 1985; Klug, 2010; Fig. 3, where ‘Neoselachii’

includes Synechodus + Elasmobranchii), although they

shares many characters with extant sharks and rays, includ-

ing that of a complex tooth histology (e.g. Enault et al.

2015). These two taxa were investigated with the aim of

testing whether the alternate arrangement of teeth in

adults is the basal state for modern sharks as well as rays

(Fig. 3) and to determine where clades with the derived

state (single file replacement) occurred on the phylogeny.

Materials and methods

Materials

Wet specimens

Squatina californica, embryo (Natural History Museum, Life Sciences

collection, BMNH 91.5.19.240)

Isurus oxyrhinchus, embryo (BMNH 1961.11.2.3)

Chlamydoselachus anguineus, adult jaw (BMNH 2016.4.11.1)

Lamna nasus, adult head, jaw sections (BMNH 2015.3.13 1–3)

Hexanchus sp. (?H. nakamurai), embryo (BMNH 1973.7.12.4–6)

Fossil specimens

Synechodus dubrisiensis, jaw (Booth Museum, Brighton, BMB

008523)

Acrodus anningae, jaw (Natural History Museum, Earth Sciences

collection, NHMUK PV P2732)

Dried specimens (Birkbeck reference collection)

Squatina spp. (Squatina guggenheim, Squatina argentina, Squatina

tergocellata, Squatina ?caillaiti)

Echinorhinus brucus

Hexanchidae (four species; Hexanchus griseus, Hexanchus

nakamurai, Heptranchias perlo, Notorynchus cepidianus)

Fig. 2 Developmental model of dentition in alternate file order in Grey reef sharks. Carcharhinidae, single cusp teeth are first initiated along the jaw,

formed as mineralised tissue in embryos with one tooth row (stage 1), then two rows (stage 2) and, later in development, nine tooth rows (stage 9). Jaw

positions (distal to proximal) numbered 1–12 from the symphyseal tooth (S), first as even number positions, then odd in the second row. Smallest teeth

(black, stage 1) then larger alternate teeth with polarised shape (grey, stage 2); later, larger teeth with lateral cusps form by row 3 (Smith et al. 2013:

fig. 2). Sequential tooth initiation in a clonal set (arrows, direction of timing for teeth 1–9) shows the alternate timing of tooth initiation order in adjacent

tooth files 6 and 7 (SAT unit tf 6 + 7), with the next putative tooth germ (pg) to form in odd number row position. An example as if it was a single file, a

sequential addition model is superimposed on this alternate model at file position 2 (SAT tf 2; Smith et al. 2013: fig. 2; modified from Reif, 1978).

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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Lamniformes (eight species; Lamna nasus, Isurus oxyrinchus,

Pseudocarcharias kamoharai, Carcharias taurus, Odontaspic ferox,

Alopias pelagicus, Alopias superciliosus, Alopias vulpinus)

Cleared and stained specimens

Chlamydoselachus anguineus embryos and juvenile [Nos. 1984/5/6/

6, 1984/9/2/3 and 1985/5/3C: total length (TL) 28.6 cm; 40.1 cm].

These were stained with Alizarin red, Alcian blue, from the Tokai

University Museum, Shimizu, Japan (TMFE), courtesy of Sho Tanaka.

Also studied were Nos. 1984/5/6/6, 1984/9/2/3, and 1985/5/3C: TL

28.6 cm; 40.1 cm).

Methods

Imaging

We used X-ray computed tomography to examine the head region

of whole embryos [micro-CT, Nikon Metrology HMX ST 225, Image

and Analysis Centre, Natural History Museum, London (NHM)] to

visualise the teeth present within the jaws of specimens, especially

the earliest teeth (mineralised cusps) from the 3D volume-rendered

models. Photomacrographs were taken with a Nikon Coolpix cam-

era in natural light; drawings made with the software INKSCAPE and

the X11 WINDOW System.

Terminology

For use of directional terms such as distal and proximal, see Under-

wood et al. (2016). The systematic terminology follows Compagno

(1973, 1977) and Nelson (2006).

Measurements

In embryonic Squatina, measurements were taken when the first

initiated teeth were set iteratively along the jaw (Fig. 4, 1–8, distal

to proximal) with three to four labio-lingual successive teeth and

none shed from the jaw margin (Figs 4 and 5, stages 1–3). We com-

pared these data with embryos of Chlamydoselachus and Isurus

Fig. 3 Neoselachian phylogeny with character state distribution. Alternate and single tooth file replacement in embryos and adults, with these charac-

ter states plotted on a recent phylogeny (Naylor et al. 2012). The basal position and monophyly of the Synechodontiformes, including Synechodus, fol-

lows Klug (2010). All neoselachians, as well as the Hybodontoidea, show alternate tooth replacement in some part of their dentition in the embryo,

even if this is not retained in the adult (state 1). Within the Lamniformes (Galeomorphii) some tooth files are lost to produce the appearance of single

file tooth addition, found in only certain parts of the jaw, reflecting irregular tooth file loss (state 2). Within the Squalomorphii, the single file tooth

replacement pattern is developed from secondary modification of an alternate pattern (state 3). Within Chlamydoselachus an alternate pattern may be

present in the embryo but not in the adult (except proximally); the majority of the dentition shows a single file arrangement. In Hexanchus (Hexanchi-

dae), single file addition is present in early development and is retained in the adult, whereas in other adult hexanchids (e.g. Notorhychus) the alternate

pattern is only retained in proximal rudimentary teeth. In Squatina an alternate pattern is present in the embryo, whereas the adult dentition possesses

a single file arrangement but has retained alternate addition in proximal tooth files. In these three taxa, state 3 (single file) may be related to a fixed

number of tooth files and independent jaw growth, allowing in Squatina interdigitation of upper with lower jaw teeth.

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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(taxa also with apparent single file tooth replacement). We also

investigated various adult galeomorph and squalomorph taxa,

along with fossil dentitions, selected from key positions on a neose-

lachian phylogeny (Fig. 3).

Tooth size was measured in two different ways, depending on

the overall morphology of the tooth. The first focused on cusp

height, as the distance between the tip of the central cusp to the

crown/base boundary. Distances between the selected points were

calculated using AVIZO 9.2 software measurement tools. A 3D-ren-

dered image was used for Squatina (embryo and adult) and

Chlamydoselachus (adult), with the distance between the two

points being recorded for each tooth in the file, starting at the first

file next to the symphysis. Thus each tooth file includes separate

measurements of tooth cusp height from the oldest tooth (labial)

to the youngest developing mineralised tooth (lingual).

The second method, where tooth file size differed along the jaw,

as in the Isurus embryo, and where the central cusp was asymmetri-

cal relative to the base, used a different approach. Here, tooth vol-

ume was estimated to overcome problems such as the wide range

of asymmetrical variation of each tooth file (Supporting Informa-

tion Fig. S4). Measuring volume required individually segmented

tooth elements (AVIZO 9.2), performed slice by slice, selecting miner-

alised regions of each tooth. A label analysis tool was then used to

acquire an individual tooth volume metric (9 mm3).

The histograms produced (Figs 5G–I and 6H, Supporting Informa-

tion Fig. S4, Video S2) used a colour code indicating the develop-

mental order for each tooth; darker colours represent the oldest

tooth, grading to the lightest colours for the developmentally

youngest teeth. Also, within each tooth file, red and green repre-

sent odd and even tooth files, respectively, beginning at the sym-

physeal region.

Results

Developmental interpretation of tooth replacement

In chondrichthyans, the developmental dental lamina

restricts tooth induction (odontogenic potential) to the tis-

sues in the lamina (Reif, 1982; Smith et al. 2009; and refer-

ences therein; Martin et al. 2016; Rasch et al. 2016), which

is present along the lingual face of the jaw cartilage. Here,

tooth files are established in the embryo from the initiator

teeth, ordered sequentially along the jaw margins, where

morphogenesis gradually assumes the adult shape, and

new teeth are continually initiated in the adult (Figs 1B,D

and 2, pg). Because of this, developmental interpretations

can be made from observations of static morphology, with

teeth effectively suspended in a time sequence (Reif, 1980,

1982). Hence the smallest, oldest teeth are at the jaw mar-

gin, whereas the newest teeth are in various stages of

development deep in the lingual furrow (Figs 1D and 2).

The newest or youngest teeth are visible only as the miner-

alised central cusp tip, but in each tooth file they form in a

sequentially timed developmental order with increasing

morphological differentiation (e.g. cusps joined to base) to

become the largest in the tooth file. These observations

from tooth germs in the dental lamina can be used to

assign a relative timed order to sequential stages of the

developing teeth within two adjacent files (Figs 1D and 2,

arrows).

Squalomorphii

Squatina embryonic dentition. In embryos, as in adults,

teeth are arranged in well-spaced single files, with 10 files

in the upper jaw and 11 in the lower, in each half (Figs 4

and 5, Supporting Information Fig. S2C). In the embryonic

lower jaw, the youngest developing teeth occur lingually as

small cusps (no. 8, Figs 4 and 5B,D,E, asterisks), with the old-

est teeth labially, towards the jaw symphysis. These have a

single central cusp joined to a small tooth base (nos 1 and 2

in Figs 4 and 5D). A single rudimentary symphyseal tooth is

present in one specimen (red, Figs 4and 5E,F) but is not

observed in others. This is only present in the first tooth

row, with subsequent rows lacking symphyseal teeth. When

all tooth files along the jaw are established (disto-proxi-

mally, Fig. 4) it was apparent that the oldest (first) teeth are

the smallest and the nearest to the labial jaw margin, and

are located in even positions relative to the symphyseal

tooth [Fig. 5 (sy t, red t)1,t2, B,D]. These teeth are about to

erupt, or be shed (purple, Fig. 4; Fig. 5A,C, alternate pink).

Fig. 4 Schematic drawing of timed developmental order of first dentition teeth. Left lower jaw of Squatina californica embryo

(BMNH91.5.19.240), teeth in apparent single file arrangement (from xCT render, Fig. 5) with odd (green) and even number (purple) tooth files

and symphyseal tooth (red); timing order of clonal units shows successional tooth initiation (1–8) between first two adjacent files (based on size

and morphology of files t1–7 and t2–8 in Fig. 5A–E). Teeth at the labial jaw margins are rudimentary, first to form on the jaw cartilage at the even

numbered jaw positions and closer to eruption and shedding. The newest lingual tooth (8) is smallest in odd numbers, representing mineralised

central cusp tip. Arrows indicate labio-lingual tooth addition and disto-proximal tooth file addition.

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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Fig. 5 Spaced tooth files in lower jaw of Squatina californica embryo. BMNH 91.5.19.240, comparison of micro-CT 3D-renders using VGSTUDIO MAX

(B,D,E) and AVIZO (A,C,F). (A) Labial view of right jaw, alternate position of rudimentary teeth at the jaw margin (pink). The nearest are even number

positions.White box indicates field in (B,D). Labial view from symphysis (B,E) and lingual view (D) indicate developmental series of replacement teeth

in time series from 1–8 (D). (B) The first file (t2–8) and second file (t1–7), at even tooth positions (t1–7) is first rudimentary tooth; at odd position

(t2–8) are youngest (asterisk, 8). (C) Oblique anterior view shows left jaw with alternate positions of shedding teeth (pink), right jaw central cusp-

aligned file (short pink line), alternate cusp-aligned file (long pink line). (D) Tooth files 1 and 2 as in (B,E) with sequence of initiation time order t1–8,

with tooth tip 8 the latest to form (see Fig. 4). (E) Symphyseal region, labial view of tooth files in (B,D), symphyseal tooth at jaw margin (red), the

newest tooth in replacement series of file 1 (asterisk, 8 in D). (F) First four files segmented as alternate odd (red) and even positions (green) from

symphyseal tooth (sy t), volume of central cusps measured. (G) Colour profiles of first four teeth shown in each file in histogram, the darkest is first

in the file (I). (H) Histogram showing relative sizes of individual teeth in rows (labio-lingual) first row smallest. (I) Histogram shows relative heights of

each tooth in each alternate file; the first is the smallest in even numbers (colours as in G). Scale bars: 5 mm (B,C,F).

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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Fig. 6 Single file dentition of embryo and adult of Chlamydoselachus angineus. (A) Micro-CT scan through dissected symphyseal segment of the

embryo lower jaw dentition, tissue contrast-enhanced with phosphotungstic acid. Symphyseal file with three tooth files either side, each with five

tooth germs, separately encapsulated in connective tissue; the last has three developing cusps, as in adult teeth (G). (B) Two views, lower jaw

region across the symphysis of alcohol-dried, younger embryo, isosurface render of three tooth files, symphyseal with the smallest, single cusp,

nearest of the three files to the labial margin as first tooth formed; tooth files left and right also have single cusp first, but larger than the first

symphyseal. The second teeth (in all three) are larger single cusps and two small lateral cusps. (C,D,E) Photomicrographs of cleared and stained

embryos (Alcian Blue, Alizarin Red). (C) Upper jaw symphysis lacking symphyseal tooth file, first file (left) has small rudimentary first tooth of one

cusp, a second with two cusps, a third with three cusps, with base outlined, a fourth with three large cusps not joined at base. (D) Files 2 and 3

of lower jaw may show the smallest first tooth in even files (asterisk), and in same file the fourth tooth has developing central cusps (arrow), larger

than in adjacent file. (E) Juvenile, proximal eight files, reducing tooth numbers proximally, first teeth in all files rudimentary, increasing overall size

distally. (F, G) Rendered and segmented adult lower jaw (BMNH2016.4.11.1) (F) Lingual view, smallest, but most proximal ordered tooth files (1–4

used for volume meacurements, (H) Contrast seen with small cluster of oro-pharyngeal denticles lacking organisation and demal denticles, top,

(see (G), and Fig. S3B). (G) Lingual view, four more distal files in which all teeth are above the jaw cartilage (no separate bullae), only loosely held

in connective tissue (see Fig. S3A). (H) histograms of most proximal tooth files (coloured inset; files 1–4 in F); labial tooth is darkest colour in each

set), insignificant size differences seen between first tooth in green files relative to red. Scale bars: 3 mm (A).

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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Thus, teeth in even positions indicate the first initiation

time in each pair of alternate files and of first loss from the

jaw margin. Similarly, those at odd positions (Fig. 4, green)

are the second teeth to be initiated; then alternate sequen-

tial tooth initiation within the pairs (odd and even files,

Fig. 2) occurs with the latest to form, the newest tooth

germ, visible as a cusp tip (Figs 4, 5D, no. 8 and 5B,E, aster-

isk).

The first four teeth of the four files were compared, with

the fourth still a developing tooth (Fig. 5G,I). When repre-

sented as graphs comparing cusp volumes in rows parallel

to the jaw margin, even first teeth are smaller up to row 3

(green, Fig. 5H). In row 1, as noted, the first teeth are small-

est in even files (2 and 4) representing the first to form. In

row 4, all developing teeth have only the central cusp, and

in even files (green) cusps are larger than odd files because

these are the first file teeth to develop and are now further

advanced morphologically at this stage of development

(row 4, Fig. 5H).

All teeth are central cusp-aligned (Fig. 5C, short pink

line), in progressive states of morphological development

of central cusp and the tooth base in file numbers t1–7, t2–

8 (Fig. 4). Each file contains four teeth, with two in the

most proximal files (presumed to be the newest files added

proximally to the jaw, Fig. 4).

Interpretation of developmental timing in embryonic

tooth files. As described above, teeth in files 1 and 2 on

the lower right jaw illustrate relative sizes and morpholo-

gies, and therefore developmental order of timing for

sequential tooth addition, alternating between these files

(Fig. 5B,D–F). The first tooth of the series is the most

labial and the smallest formed tooth with an attachment

base; sequential addition starts from file 2 (Fig. 5B,t1–7),

tooth number 1 being formed before the morphogenetic

program was perfected (Fig. 5B,D,E). The sequential time

series ends with the newly initiated tooth tip of tooth

number 8, as a mineralised but incomplete central cusp

(Fig. 5B,E, asterisk). This alternate file developmental set

represents the SAT unit (Fig. 2, SAT tf 6 + 7). A single file

is equivalent to one even set (Fig. 2, SAT tf2). Order of

initiation (t1–8, Figs 4 and 5D) may also determine timing

of shedding, as the labial positions of first teeth in each

alternate file indicated an alternate shedding order (pink,

Fig. 5A,C). In each separate file, central cusps are aligned

(Fig. 5C, short pink line); in addition, only alternate tooth

cusps are aligned with a straight disto-proximal line

along the jaw, showing that adjacent files are offset

(Fig. 5C, long pink line).

Measurements of central cusp heights and align-

ment. Morphological evidence of progressive, develop-

mental tooth order as clonal SAT units (paired odd and

even files) was tested with measurements of tooth size,

both along the jaw in rows parallel to the jaw margin and

within files (Fig. 5C, pink lines). These are represented as

histograms (Fig. 5H,I) taken from tooth files 1–4 (alternate

red and green, Fig. 5F,G vignettes of two alternate files).

The comparative central cusp heights, represented by the

graphs, confirm that the smallest, complete first teeth are

in the even files (green, Fig. 5G,I), whereas the first tooth in

odd files is larger (red, Fig. 5H, row 1). When represented

as graphs comparing cusp heights in rows parallel to the

jaw margin, again even first teeth are smaller up to row 3

(green, Fig. 5H); in row 4 teeth the central cusp is just devel-

oping and even numbers are larger than odd because, as

these are the first of the teeth to develop, they are further

advanced in morphology at this stage of development (row

4, Fig. 5H).

Adult jaws of S. guggenheim

In the early adult dentition, occlusion of upper jaws with

lower jaws show teeth fitting between lower jaws, with

teeth organised in widely spaced files along the jaw

(Fig. S2B–D) so that tooth file spacing allows upper teeth to

fit between lower ones. From the relative cusp heights it

appears that the alternate initiation of teeth seen in an

embryo does not continue in the adult (Fig. S2F); measure-

ments in the adult dentition were taken, as for the embry-

onic teeth, from the first teeth of each of four files; these

showed little difference between alternate positions [the

fifth and sixth teeth are smaller (partially developed) and so

cannot be compared with the four fully formed main cusp

volumes]. However, in proximal files closer to the jaw artic-

ulation (Fig. S2C, white box, D, file numbers 6–10), the posi-

tion of the oldest teeth located at the jaw margins seems to

alternate and suggests they still show different times of

origination, as in the embryonic alternate developmental

pattern.

Other Squalomorphii

Chlamydoselachus anguineus embryo and adult

dentitions. In the embryo, at the four-tooth stage

(Fig. 6A–D) teeth are superficial and encapsulated in indi-

vidual sheaths of connective tissue, separate for each file

(Fig. 6A, contrast-enhanced density). A symphyseal file is

fully expressed in the lower jaw (Fig. 6A,B) but absent in

the upper jaw (Fig. 6C). In the dried specimen (Fig. 6B),

the symphyseal file has a rudimentary single cusp tooth

that is the nearest of all files to the jaw margin, and as

such is the initiator tooth of the lower jaw dentition; to

either side is also a single cusp first tooth, and each file

then acquires morphological competence as three-cusped

teeth. This morphology (Fig. 6C–G) is demonstrated with

calcium-positive staining (red, Fig. 6C–E), first as separate

cusps (Fig. 6D, arrow, 6C) and later joined to the base. In

the lower jaw, files 3 and 4 (Fig. 6D), the smallest first

tooth (oldest, asterisk) is positioned in the even number
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file 4, whereas the file 3 first tooth is slightly larger (i.e.

began developing later). The third and fourth teeth of

file 4 have developing, mineralised cusps (fourth tooth

largest, as latest and most morphogenetically competent).

These size differences in adjacent files suggest the pres-

ence of alternate tooth initiation timing. In the upper

jaw at the four-tooth stage in each file, teeth are absent

from the symphysis, the first tooth of each has only one

cusp and the base has formed. Measurements of tooth

sizes were not possible in these embryos, as they were

only soft tissue preparations or were long-term fixed

specimens and had lost mineralisation.

The lower jaw of a more mature embryo has tooth

files proximally that have not completed morphogenesis

(Fig. 6E), as all files have a rudimentary first labial tooth,

so the embryo has not shed the first teeth in these proxi-

mal files and had not reached maturity (see Fig. 6F).

These gradually reduce in total tooth number in files to

four or three, all diminishing in size (Fig. 6E). In all files,

tooth number 6 is the youngest, with only cusp tips min-

eralised, but teeth in older positions have all cusps joined

and the first four teeth also have cusps joined to miner-

alised bases. In the adult lower jaw these proximal files

still have minute teeth but the first tooth is three-cusped

(Fig. 6E), is on the labial side of the jaw and is not rudi-

mentary. We segmented and measured the teeth of these

last four files (Fig. 6F) to test whether we could show

size differences that represented ordered, alternate files

created by alternate timing, as in the embryo. The gen-

eral tooth sizes of the four measured files (1–4 in Fig. 6F,

H) decreases proximally; nevertheless, the first teeth are

smaller in green files than in red files (Fig. 6F,H). We

interpret this as resulting from the alternate developmen-

tal program seen in the embryo, still present in adult

proximal teeth; however, this needs to be tested on more

suitable material.

Considering the fully formed teeth of the adult lower

jaw, distal to these proximal files (Fig. 6G, Supporting

Information Fig. S3), each file has similarly sized teeth,

four teeth fully erupted and locked together as a func-

tional unit, a fifth tooth lingually with an incomplete

base and a sixth tooth forming as three separate cusps

lingual to the completed teeth (Fig. 6G). These develop-

ing successional teeth are located on a lingual shelf on

Meckel’s cartilage deep to the oral surface (not in a sepa-

rate bulla); older teeth are held in the connective tissue

of the skin, as in the virtual section next to one of the

tooth files (Fig. S3A). In the symphyseal file and three

files either side, tooth size differences between odd and

even files were inconspicuous (Fig. S3C, histogram). It

would seem that any evidence for timing difference

between tooth files seen in the embryos was not present

in the adult dentition but might be present in the small-

est, most proximal tooth files.

Hexanchidae: Hexanchus spp. embryo and adult

dentitions; N. cepedianus, adult dentitions

A single embryo of Hexanchus was studied, in which the

teeth are well developed, but with those in the first row of

the lower jaw only starting to rotate into a pre-functional

position (Fig. 7A,C). Thus, most teeth have not been lost, as

bulk-shedding only occurs after the replacement teeth are

in their functional positions (Underwood et al. 2016). The

lower teeth are large and distinct, but no obvious alterna-

tion or overlapping of tooth bases could be observed there

or in the upper jaw (Fig. 7B).

In the embryo, individual replacement teeth in seven

adjacent single files, including the symphyseal file, are obli-

quely arranged within disto-proximal rows (Fig. 7C, red

lines). Although tooth size decreased to the most proximal,

7th tooth file, equivalent individual teeth in files were of

approximately equal size. This oblique, developmental

alignment of teeth in a disto-proximal row has also been

recognised in the Squalomorphii, demonstrated to be as a

result of realignment of teeth to form a single file arrange-

ment, altered from the embryonic alternate arrangement

of the first teeth (Underwood et al. 2016). By comparison,

in Hexanchus, embryonic teeth are aligned as single file

and no detectable alternation of replacement teeth is

apparent. This arrangement is retained in the adult, where

teeth are also single file, aligned labio-lingually (e.g. Smith

et al. 2013: fig. 4G).

An abrupt change in tooth form and arrangement occurs

in the lower dentition of adult hexanchid genera, where

the most proximal teeth are very reduced in size, and

appear to show an irregular but alternating pattern (Notor-

hynchus, Fig. 7D). These reduced teeth in the adult are sug-

gested to be a ‘remnant’ of the ancestral developmental

alternate pattern (as described above for Chlamy-

doselachus) but are not observed in Hexanchus, where

alternate tooth addition was absent even in the embryo.

This suggests that dental arrangement in the hexanchids is

highly plastic, which appears to be a general feature of

Squalomorphii, as discussed below (Fig. 3).

Galeomorphii

As the sister group to the Squalomorphii, we also consid-

ered the distribution of alternate file vs. single file tooth

addition for Galeomorphii, focusing on the Lamniformes

(Fig. 3) and one embryo of Heterodontiformes but exclud-

ing Orectolobiformes and Carcharhiniformes, both of which

have alternate tooth replacement, as previously described

(see Smith et al. 2013).

Isurus oxyrinchus, embryo (Lamniformes). The dentition

in the embryo of Isurus comprises teeth of adult-like mor-

phology (Fig. 8A–E) in the oldest and smallest fully
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mineralized teeth; however, none has rotated into a func-

tional position (except two teeth, see below). Tooth files 1–

3 are held within a small, distal bulla next to the jaw symph-

ysis, and more proximal files within a longer bulla, the two

being separated by a space, or diastema (between files 3

and 4, Fig. 8C,E). In the adult of Lamna (Fig. 8F) the disto-

proximal number of tooth files (1–13) is the same as in the

embryo (Fig. 8C–E, 1–13), indicating that the latter is a fully

formed, unerupted dentition.

Despite tooth size varying dramatically along the jaw, size

measurements of the first five files on either side of the jaw

symphysis (taken as in Squatina) did not show differences

between teeth in odd vs. even files (Fig. S4). However, this

analysis did indicate the presence of a developmentally

missing file (number 3 on each side). As mentioned above,

alternate timing of tooth development in adjacent files can

also be assessed via the relative position of the oldest teeth

in each file relative to the jaw margin, and the overlap of

root base lobes. This was far less problematic in the upper

jaws than in the lower, in part due to the more oval cross-

section of the Meckel’s cartilage, making assessment of

tooth proximity to the jaw margin less certain; assessment

was therefore done on the upper dentition.

In the upper dentition, the tooth in file 2 is the oldest

(Fig. 8E, red), as the only representative of the most labial

disto-proximal tooth row, but without other teeth; evi-

dence of shedding is shown by a tooth of identical

morphology that has become lodged in the branchial

region (Fig. 8A, white circle). The second row of alternating

teeth includes teeth in files 1, 5, 7, 10 and 12 (Fig. 8C–E, yel-

low). The third tooth row includes teeth in files 2, 3, 4, 6, 8,

9, 11 and 13. This pattern is irregular (i.e. teeth in files 3

and 4 and in files 8 and 9 do not alternate in position) and

as such forms a partial single file dentition because both

alternating tooth replacement and some regions of single

file tooth replacement occur at this stage of development.

The most likely explanation for the highly specific regional

lack of alternating files (corroborating the graphic data,

Fig. S4A,C) is that files have been developmentally lost. For

example, the diastema between distal and more proximal

teeth could mark the position of one of the missing tooth

files.

Lamna nasus, adult (Lamniformes). In the upper denti-

tion in adults of Lamna, tooth files are also held in proximal

and distal bullae, with an intervening diastema (between 3

and 4) even more prominent than in the Isurus embryo. In

the upper jaw, the oldest teeth in files 3 and 4 are at the

same position relative to the jaw margin (Fig. 8F). Although

the relative positions of the distal tooth files are not clear,

teeth in files 8 and 9 do not appear to alternate and like-

wise have their oldest teeth at the same position relative to

the jaw margin and their youngest teeth at the same stage

of development. The teeth in the upper jaw of an adult

A B

C D

Fig. 7 Single file dentition of embryo of Hexanchus. (A–C) Hexanchus ?nakamurai (BMNH1973.7.12.4–6), micro-CT renders of late stage embryo,

upper and lower jaws. (A) Lower jaw dentition labial view, compared with (B) upper jaw dentition. (C) Lower right, lingual view (of A), three teeth

in each file (file 7 has two), teeth are aligned in a single file replacement pattern, but within each file they are arranged at an oblique angle rela-

tive to the jaw margin (red line). (D) Proximal teeth of adult Notorynchus cepedianus, adult lower dentition, adjacent to last tooth of typical blade-

like morphology, tiny rudimentary teeth showing and alternate arrangement. Scale bars: 5 mm (A,B), 2.5 mm (C), 10 mm (D).
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Fig. 8 Single file embryonic dentitions of Isurus, adult Lamna and Alopias (Lamniformes). (A–E) Isurus oxyrinchus late stage embryo

(BMNH1961.11.2.3), 3D-rendered micro-CT images. (A) Braincase, jaws, anterior vertebral column, lateral view. Developing teeth are visible in sin-

gle file organisation and a loose tooth (upper right, white circle) in the gill region demonstrates that teeth are being shed at this stage. (B) Upper

jaw region, internal view, partially erupted teeth, red. Tooth loss is confirmed by comparison between the fully erupted second tooth (black arrow),

with a gap in the corresponding position on the right (black asterisk). (C) Left upper dentition, oldest teeth in adjacent files are at different posi-

tions relative to the jaw margin (see colour scheme, E). (D) Upper jaw, tooth rows in oblique lateral view, note the youngest teeth are in alternate

evened files. (E) Upper left dentition with the oldest teeth colour coded to show their relative timing of development (see above). The tooth in file

2 is the most developed (red) and probably the oldest (relates to adjacent odd number files being the younger of each alternate pair, as in alter-

nate model). Yellow teeth represent the next oldest with blue teeth being younger. Note the lack of alternation between files 3–4 (diastema) and

8–9 as presumed missing files. (F) Lamna nasus adult, upper dentition, diastema between files 3–4. Teeth in most adjacent files alternate, but this

is not seen in files 8–9. (G,H) Alopias pelagicus, macrophotos of adult, upper dentition. (G) Right upper dentition showing the typical lamniform

arrangement of three teeth within an anterior bulla. (H) Part of the left upper jaw of the same individual; extra tooth file present in position 3.

Scale bars: 10 mm.
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Lamna thus resemble the Isurus embryo, with an alternate

file differential in timing but with small portions of the

dentition showing single file replacement due to probable

regional loss of intervening tooth files (e.g. at the dia-

stema).

Alopias pelagicus, adult (Lamniformes). The upper denti-

tion of adult A. pelagicus has the lamniform arrangement

of three tooth files positioned within an anterior bulla,

although this bulla is smaller and less distinct than in Isurus

and Lamna. In Alopias, tooth files show an alternate pat-

tern of eruption times, or tooth bases, relative to the jaw

margin (Fig. 8G,H, files 1 and 3, and 2 and 4). Also, the old-

est teeth in files 5 and 7 (Figs 8H, 4 and 6, and 5 and 7) are

in the same position relative to the jaw margin, evidence of

alternate timing events.

Heterodontus sp. (Heterodontiformes). In a late-stage

embryo (labial view, Fig. 9A), teeth have rolled over the

jaw margin, with the symphyseal tooth and one tooth pre-

sent from file 2 in the initial row, these being the earliest to

form. Here arrangement is alternate (Fig. 9A), but file 2 on

the right jaw may have shed a tooth, consistent with tooth

shedding in the earliest embryos, as described previously

(Reif, 1976: fig. 8F). Teeth with cusped morphology in distal

files have a bilateral symmetry (as in symphyseal teeth) and

alternate in their position with respect to the jaw margin,

as do the more proximal molariform teeth with broad bases

and low cusps (tooth positions 7–9) in the less curved part

of the jaw (Fig. 9B–D). New teeth are added proximally to

molariform teeth at jaw position 10, as a large, open base

to the developing but narrow crown (Fig. 9E, arrows). In

the adult (Smith et al. 2013: fig. 3A,B), the close packing of

both tooth morphologies seems to present as ‘single file’,

but in the embryo the molariform teeth are slightly stag-

gered in each file to accommodate wide teeth formed in an

alternate pattern.

Fossil taxa

Synechodus (Synechodontiformes). The fossil shark genus

Synechodus is generally considered to be part of a mono-

phyletic clade of neoselachians (Synechodontiformes; Klug,

2010), although this is not universally accepted (e.g. Maisey,

1985). Although most specimens of Synechodus and other

Synechodontiformes comprise isolated teeth, several skulls

and well-preserved skeletons are known (Maisey, 1985).

Within these, however, dentitions are commonly poorly

exposed or partly disarticulated. In contrast, a dentition

from the Late Cretaceous of SE England (Fig. 10A–I) com-

prises an articulated suite of teeth with no jaw cartilages

preserved. This shows a high degree of heterodonty (exam-

ples of isolated teeth, Fig. 10J–L) with erect and cuspate

teeth distally (Fig. 10D,G–I) and wide, low cusped teeth in

more proximal positions (Fig. 10A–C,E,F,L), but all are

arranged with bases and crowns in close-packed, alternate

arrangement. At the symphysis (Fig. 10D,H) two files of rel-

atively small, close-packed parasymphyseal teeth clearly

alternate in their positions labio-lingually. This alternate

packing of in situ teeth in all positions of this fossil speci-

men indicates that the dentition derives from an alternat-

ing tooth addition pattern at their initiation.

Acrodus (Hybodontoidea). The extinct Hybodontoidea

are a clade forming a sister group to Neoselachii (Maisey,

1987; Lane, 2010; Fig. 3). Observations were made on an

exceptionally well-preserved dentition of Acrodus from the

Early Jurassic of southern England (Fig. 10M,N). This speci-

men preserves an entire dentition but, as with the Syne-

chodus specimen, no jaw cartilages are preserved. CT-

renders revealed some additional teeth (unprepared from

the fossil matrix) on the labial margin of the dentition and

in the process of shedding. They also showed the presence

of pyrite, an iron sulphide that forms early in the fossilisa-

tion process, between the teeth, suggesting that teeth have

not shifted relative to each other postmortem. The exposed

biting surface of the dentition reveals wide, low teeth on

either side of a file of smaller teeth at the jaw symphysis.

The extended tooth bases in adjacent files overlap, demon-

strating an alternate pattern of replacement teeth. Obser-

vations of other hybodont sharks such as Asteracanthus

(Rees & Underwood, 2006) show that a similar alternating

pattern was present across the clade.

Discussion

The aims of our study were focused on the spatio-temporal

order of initiation of replacement teeth in the Neoselachii.

The relative timing of successive teeth in the files was deter-

mined from observations and measurements of relative size

differences of teeth, compared both within and between

adjacent tooth files, in adults and embryos wherever possi-

ble.

Focusing on embryos of the Angel shark Squatina (Sup-

porting Information Figs S1 and S2), we have proposed a

model for all neoselachians (i.e. iterative sequence of tooth

addition), from a structural pattern of the dentition that

we interpret as timed developmental differences based on

a clonal generative unit (SAT tf unit) that comprises two

adjacent tooth files (Fig. 2). This developmental model with

alternate timing and sequential spatial arrangement

explains the development of the alternate tooth pattern

(Smith, 2003; Smith et al. 2013). It is proposed that the alter-

nate pattern of tooth addition [based on Reif’s observations

(1978): Fig. 2] is plesiomorphic for the Neoselachii (Fig. 3);

as a phylogenetically basal neoselachian developmental

pattern that operates in the first stages of the embryonic

dentition, it results in alternately timed eruption and shed-

ding. We examined specific taxa in the Squalomorphii and

Galeomorphii to see how this model may be altered during
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development to arrange teeth as a single file tooth pattern

in adults, including simultaneous eruption into a cutting

blade (Underwood et al. 2016).

In Squatina (Squalomorphii), we have demonstrated that

the earliest dentition shows alternate timing (clonal SAT

units, Figs 4 and 5) and although tooth size differences are

not apparent in the adult (suggesting a shift to a single file

pattern), an alternate arrangement appears to be retained

in the young adult, indicated by their positions at the proxi-

mal jaw margins (Fig. S2C,D). Although well-separated sin-

gle files are present in the adult of Chlamydoselachus,

similarly rudimentary proximal tooth files in the adult retain

an alternate arrangement (Fig. 6F,H); however, we have

only scarce data to show that embryos exhibit alternate

tooth addition in their early development. A better under-

standing of how tooth addition timing changed from

embryo to adult in these taxa requires gene expression

data, including how co-ordination and alignment of tooth

files between upper and lower jaws is programmed.

The Hexanchidae, closely related to Chlamydoselachus

(Fig. 3), have a unique and highly distinctive dentition, with

tooth morphology very different from that of Chlamy-

doselachus and Squatina. The lower teeth of adult Hex-

anchidae are arranged in a single file order, as in the

embryo of Hexanchus, but each tooth is wide and abuts the

next, so together they form a ‘saw blade’ at the jaw margin

(see Smith & Johanson, 2015: fig. 1.7), as in other Squali-

formes (Underwood et al. 2016). But unlike the Squali-

formes and Squatina (Fig. 3), in Hexanchus this

arrangement does not appear to derive from an alternate

arrangement in the embryo. However, in hexanchid adults

such as Notorhynchus, the most proximal rudimentary teeth

do retain a developmental alternate arrangement (Fig. 7D:

as in the adults of Squatina and Chlamydoselachus), evi-

dence of an underlying, persistent inherited alternate tooth

order.

The mode of tooth replacement in the Lamniformes, a

very specialised group of sharks including both

A

C

E

D

B

Fig. 9 Heterodontus sp. late stage embryo, 3D-rendered micro-CT images. (A) Lower dentition, labial view, file 2 of the right jaw shows a lost

tooth (black arrow) from same row as symphyseal tooth (S). (B) Lingual view. (C) Left jaw, lingual view showing high-cusped distal teeth (jaw posi-

tions 1–6) and molariform teeth (jaw positions 1–9), all in alternate arrangement. (D) Close-up of lower jaw, lingual view, tooth files showing alter-

nate pattern, both sides of symphyseal tooth file. (E) Lower jaw, oblique lingual view, latest tooth position (10) with tooth germs added proximally

(white arrows). Scale bars: 5 mm (A,C–E), 1 cm (B).
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Fig. 10 Articulated dentition of Synechodus dubrisiensis (Cretaceous, Chalk). (A–I, BSB008523, Booth Museum, Brighton). (A,E,H) Macrophotos

(B–D,F,G,I) 3D-rendered micro-CT images. (A) Occlusal view, teeth are articulated as in situ but no cartilages are preserved. (B) Rock surrounding

tooth files removed virtually. (C) Oblique lingual view showing the general arrangement of the teeth. (D) Detail of the symphyseal region showing

alternating small teeth. (E) Lingual view, wide, low crown shape and alternating arrangement. (F) Same region, with pseudocoloured crowns to

show close-packed alternating pattern of adjacent files. (G) Teeth with high cusps (as in H–K) close to the symphysis show an alternating pattern

of adjacent files in contrast to those more proximally. (H) Symphyseal region with alternation of parasymphyseal teeth and large teeth on adjacent

files. (I) Oblique view of the dentition, showing that several tooth rows would have been simultaneously functional. Scale bars: 10 mm (A–C,I),

5 mm (D–H). (J–L) Synechodus dubrisiensis isolated teeth (Early Cretaceous, Underwood et al. 1999: pl. 1.1, 1.4, 1.5), SEM images, demonstrating

the high degree of heterodonty. (J) Symphyseal tooth. (K) High cusped anterior tooth. (L) Low crowned posterior tooth. Scale bars: 1 mm. (M,N)

Acrodus anningae (NHMUK PV P2732), articulated dentition, as prepared (M) compared with segmented micro-CT image with rock removed virtu-

ally showing new teeth lingually (N). Pyrite is indicated in yellow. Note the alternating pattern of the tooth bases.
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macropredators and planktivores with diverse dentitions

reflecting their differing trophic roles, has been unclear

(Supporting Information Videos S1 and S2; Smith et al.

2013) due to the widely spaced tooth files and high degree

of curvature of the jaw cartilages towards the symphysis.

They are unique in that the dentition of some species is

functional long before birth and is used during intrauterine

oophagy and cannibalism, so that the earliest stages of the

tooth order are uncertain (e.g. Shimada, 2002; Tomita et al.

2017). In predatory lamniforms the upper dentition is dis-

tinctive (Fig. 8F), with tooth files originating in deep proxi-

mal and distal bulla, the latter comprising a suite typically

of three files. Between these is a raised cartilage bar, which

developmentally may relate to a diastema formed by the

loss of tooth files (in the Lamniformes), or they may have

one or more files of very reduced teeth (Mitsukurina, Car-

charias), varying between individuals or between the jaws

of the same individual.

We noted that the development of teeth within lamni-

forms is a two-stage process, and only the second phase of

tooth growth is addressed here. Embryos develop an early

suite of teeth (Shimada, 2002; Tomita et al. 2017) that is

shed prior to the eruption of the adult-type teeth (Fig. 8A,

white circle). Although the tooth arrangement in the first

dental set is as yet unclear (in part due to the rarity of these

embryos) we have shown that the tooth size differs in adja-

cent files and therefore has an alternate timing of tooth

addition (Figs 8 and S4). Overall, Isurus and other Lamni-

formes show an alternate pattern that is modified in early

development through loss of tooth files near the diastema

in the upper jaw and elsewhere, resulting in portions of the

jaw possessing single file tooth replacement (Fig. 3, state 2).

Phylogenetic relationships

Recent molecular phylogenies of extant sharks support the

sister group relationship between the major clades Squalo-

morphii and Galeomorphii, with these forming a sister

group to the Batoidea (e.g. V�elez-Zuazo & Agnarsson, 2011;

Fig. 3). Phylogenetically, Synechodus has been resolved as a

sister taxon to extant sharks and rays (Klug et al. 2009;

Klug, 2010) but is also assigned to the Galeomorphii (Mai-

sey, 2012; Fig. 3). Although teeth of Synechodus are organ-

ised in close-packed files (central cusp labio-lingually

aligned), the tooth bases overlap, reflecting alternate tooth

initiation and eruption. An alternate replacement was also

demonstrated for the hybodont Acrodus (Hybodontoidea,

also resolved as being a sister taxon to extant sharks and

rays; Fig. 3). Clearly defined alternate tooth replacement

patterns are also present in embryos and adults of both the

Galeomorphii (Smith et al. 2013) and Squalomorphii (e.g.

Pristiophoridae; Underwood et al. 2016). Along with this,

dentitions in the batoids show alternate tooth addition,

within both the embryo and adult (Underwood et al. 2015;

Fig. 3). These observations suggest that the alternate

pattern of tooth addition is plesiomorphic for the Neosela-

chii as a whole.

Single file tooth replacement in certain dentitions of

Squaliformes has been recognised as a derived modification

of this alternate pattern during development (Underwood

et al. 2016; Fig. 3, state 3). Squatina and Chlamydoselachus

show separate tooth files in the adult but retain an alter-

nate pattern of tooth addition, at least proximally (Fig. 3,

state 3). Separation of tooth files may have resulted from a

fixed number of tooth files (new files not added proximally)

combined with jaw growth, or from tooth file loss; never-

theless, these taxa show a markedly different mechanism

than that suggested in the Squaliformes (Underwood et al.

2016).

By comparison, in the Hexanchidae, single file tooth

replacement is present in both the embryo and adult of

Hexanchus, although remnants of an alternate dentition

are preserved in files of reduced teeth in adult hex-

anchids such as Notorhynchus. Isurus and other Lamni-

formes show a different developmental pattern for

replacement, involving modification through loss of

whole tooth files near the diastema, resulting in single

file tooth replacement limited to this region (e.g. previ-

ously alternate files at the same developmental stage are

now adjacent to one another).

These modified patterns are uncommon in the

neoselachians, representing a derived state acquired from

the embryonic alternate dentition, but by different mecha-

nisms: in the Lamniformes by loss of tooth files (Fig. 3, state

2) and within squalomorph clades by independent modifi-

cation of the alternate differential timing along the jaw

(Fig. 3, state 3; see also Strasburg 1963 for dentition modifi-

cation from an alternate tooth arrangement). These taxa

appear to have sufficient developmental plasticity to allow

the formation of single file tooth replacement by re-order-

ing of tooth production from an embryonic pattern of

sequential, alternate timing of tooth initiation. Heterodon-

tiformes, as the most basal taxon in the Galeomorphii, exhi-

bit distinct alternate arrangement in the embryo and

retention of this in the adult (Fig. 9).

Conclusions

This study has investigated the initial development of tooth

replacement patterns in a number of shark taxa where suc-

cessional tooth order was previously poorly understood. We

speculate that a change in timing of replacement tooth

addition, or loss of tooth files, resulted in the shift from

embryonic to adult dentitions and loss of the alternate pat-

tern in some taxa. These changes allowed teeth to emerge

simultaneously at the jaw margin, forming a continuous

cutting edge either as an adaptation to a specific feeding

mode or as a functionally driven adaptation.

In addition, we studied tooth replacement series in adults

of two extinct species of sharks, representing sister taxa to
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extant groups. We mapped characters onto a recent phy-

logeny based on transformation or retention of a develop-

mental process (interpreted for fossil species) into ‘single

file’ or ‘alternate file’ ordering of replacement teeth in the

adult. In this way we have predicted the basal (alternate)

and derived (single file) phylogenetic states and suggested

how this evolved through ‘tinkering’ with developmental

mechanisms, although by differing methods in the Squalo-

morphii and the Galeomorphii.

Thus, the combination of fossil and extant phylogenetic

data suggests that the alternate tooth pattern is plesiomor-

phic for the Neoselachii, with modification in adult sharks,

although achieved differently in the two major clades.

Squalomorphs modified an embryonic alternate tooth

replacement pattern using developmental plasticity of tim-

ing to generate a single file pattern in the adult, and galeo-

morphs by loss of tooth files. We postulate that these

groups have the developmental plasticity to allow the for-

mation of single file tooth replacement via the re-ordering

of tooth production. This was not a substantial mechanism

within the Neoselachii, which otherwise were dominated

by alternate patterning of the dentition.

Hence, we propose a developmental-evolutionary model

from the alternate pattern to achieve a single file align-

ment of replacement teeth, one with co-equal eruption

times at the functional edge of the jaws.
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Fig. S1. Single file dentition in occlusion in late stage embryo of

Squatina californica.

Fig. S2. Single file dentition of Squatina guggenheim small

adult.

Fig. S3. Single file dentition of Chlamydoselachus anguineus,

adult.

Fig. S4. Dentition of lower jaw of Isurus embryo.

Video S1. Adult Lamna nasus (BMNH2015.3.13 1–3), movie gen-

erated from 3D rendered micro-CT scan. Rotating whole head

dissected down to show dentition of teeth only.

Video S2. Adult Lamna nasus (BMNH2015.3.13 1–3), movie gen-

erated from 3D-rendered micro-CT scan, rotating dissection of

teeth organised in a whorl showing order of eruption and

developing cusps.
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