BIROn - Birkbeck Institutional Research Online

    Multi-prover proof of retrievability

    Paterson, M.B. and Stinson, D.R. and Upadhyay, J. (2018) Multi-prover proof of retrievability. Journal of Mathematical Cryptology 12 (4), pp. 203-220. ISSN 1862-2976.

    MSPORBIRON.pdf - Author's Accepted Manuscript

    Download (460kB) | Preview


    There has been considerable recent interest in “cloud storage” wherein a user asks a server to store a large file. One issue is whether the user can verify that the server is actually storing the file, and typically a challenge-response protocol is employed to convince the user that the file is indeed being stored correctly. The security of these schemes is phrased in terms of an extractor which will recover the file given any “proving algorithm” that has a sufficiently high success probability. This forms the basis of proof-of-retrievability (PoR) systems. In this paper, we study multiple server PoR systems. We formalize security definitions for two possible scenarios: (i) when a threshold of servers succeed with high enough probability (worst-case) and (ii) when the average of the success probability of all the servers is above a threshold (average-case). We also motivate the study of confidentiality of the outsourced message. We give MPoR schemes which are secure under both these security definitions and provide reasonable confidentiality guarantees even when there is no restriction on the computational power of the servers. We also show how classical statistical techniques used by Paterson, Stinson and Upadhyay (Journal of Mathematical Cryptology: 7(3)) can be extended to evaluate whether the responses of the provers are accurate enough to permit successful extraction. We also look at one specific instantiation of our construction when instantiated with the unconditionally secure version of the Shacham-Waters scheme (Asi- acrypt, 2008). This scheme gives reasonable security and privacy guarantee. We show that, in the multi-server setting with computationally unbounded provers, one can overcome the limitation that the verifier needs to store as much secret information as the provers.


    Item Type: Article
    Keyword(s) / Subject(s): Proof of retrievability, multiple users, secret sharing
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences
    Depositing User: Maura Paterson
    Date Deposited: 04 Jul 2018 14:25
    Last Modified: 09 Aug 2023 12:44


    Activity Overview
    6 month trend
    6 month trend

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item