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Strongly Real Beauville Groups III

Ben Fairbairn

Abstract Beauville surfaces are a class of complex surfaces defined by letting a
finite group G act on a product of Riemann surfaces. These surfaces possess many
attractive geometric properties several of which are dictated by properties of the
group G. A particularly interesting subclass are the ‘strongly real’ Beauville surfaces
that have an analogue of complex conjugation defined on them. In this survey we
discuss these objects and in particular the groups that may be used to define them.
En route we discuss several open problems, questions and conjectures and in places
make some progress made on addressing these.

1 Introduction

The reader asking ‘where are the first two instalments of this series?’ should note the
following. Morally the first instalment of this series (i.e. ‘Strongly Real Beauville
Groups I’) is [29] whilst its sequel (i.e. ‘Strongly Real Beauville Groups II’) is [30].
Each instalment is fairly self-contained (to the point of having a fair amount of
overlap in their introductory sections) and so hopefully the reader will lose little if
they have neither read nor have to hand copies of these.

Roughly speaking (precise definitions will be given in the next section), a
Beauville surface is a complex surface S defined by taking a pair of complex
curves, i.e. Riemann surfaces, C1 and C2 and letting a finite group G act freely
on their product to define S as a quotient (C1 ×C2)/G. These surfaces have a
wide variety of attractive geometric properties: they are surfaces of general type;
their automorphism groups [53] and fundamental groups [7, 23] are relatively easy
to compute (being closely related to G); they are rigid surfaces in the sense of ad-
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2 Ben Fairbairn

mitting no nontrivial deformations [9] and thus correspond to isolated points in the
moduli space of surfaces of general type [42].

Much of this good behaviour stems from the fact that the surface (C1×C2)/G
is uniquely determined by a particular pair of generating sets of G known as a
‘Beauville structure’. This converts the study of Beauville surfaces to the study of
groups with Beauville structures, i.e. Beauville groups.

Beauville surfaces were first defined by Catanese in [19] as a generalisation of
an earlier example of Beauville [13, Exercise X.13(4)] (native English speakers
may find the English translation [14] somewhat easier to read and get hold of) in
which C1 = C2 and the curves are both the Fermat curve defined by the equation
X5 +Y 5 + Z5 = 0 being acted on by the group (Z/5Z)× (Z/5Z) (this choice of
group may seem somewhat odd at first, but the reason will become clear later).
Bauer, Catanese and Grunewald went on to use these surfaces to construct examples
of smooth regular surfaces with vanishing geometric genus [10]. Early motivation
came from the consideration of the ‘Friedman-Morgan speculation’ — a techni-
cal conjecture concerning when two algebraic surfaces are diffeomorphic which
Beauville surfaces provide counterexamples to. More recently, they have been used
to construct interesting orbits of the absolute Galois group Gal(Q/Q) (connections
with Gothendeick’s theory of dessins d’enfants make it possible for this group to
act on the set of all Beauville surfaces). Indeed one of the more impressive appli-
cations of these surfaces is the proof by González-Diez and Jaikin-Zapirain in [44]
that Gal(Q/Q) acts faithfully on the set of regular dessins by showing that it acts
regularly on the set of Beauville surfaces.

Furthermore, Beauville’s original example has also been used by Galkin and
Shinder in [40] to construct examples of exceptional collections of line bundles.

Like any survey article, the topics discussed here reflect the research interests
of the author. Slightly older surveys discussing related geometric and topological
matters are given by Bauer, Catanese and Pignatelli in [11, 12]. Other notable works
in the area include [6, 28, 54, 67, 73].

In Section 2 we provide preliminary information and in particular give specific
definitions for the concepts we have only talked about very vaguely until now. In
Section 3 we will discuss the finite simple groups before considering the more gen-
eral case of characteristically simple groups in Section 4. In Section 5 we move to
the opposite extreme by considering abelian and nilpotent groups. In Section 6 we
will discuss recent work on Doubly Hurwitz Beauville groups and related construc-
tions before finally in Section 7 discussing a number of smaller and more minor
matters.
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2 Preliminaries

We give the main definition.

Definition 1. A surface S is a Beauville surface of unmixed type if

• the surface S is isogenous to a higher product, that is, S ∼= (C1×C2)/G where
C1 and C2 are complex algebraic curves of genus at least 2 and G is a finite group
acting faithfully on C1 and C2 by holomorphic transformations in such a way that
it acts freely on the product C1×C2, and

• each Ci/G is isomorphic to the projective line P1(C) and the corresponding cov-
ering map Ci→ Ci/G is ramified over three points.

There also exists a concept of Beauville surfaces of mixed type in which the
action of G interchanges the two curves C1 and C2 but these are much harder to
construct and we shall not discuss these here. (For further details of the mixed case,
the most up-to-date information at the time of writing may be found in the work of
the author and Pierro in [36].)

In the first of the above conditions the genus of the curves in question needs to be
at least 2. It was later proved by Fuertes, González-Diez and Jaikin-Zapirain in [38]
that in fact we can take the genus as being at least 6. The second of the above con-
ditions implies that each Ci carries a regular dessin in the sense of Grothendieck’s
theory of dessins d’enfants (children’s drawings) [47]. Furthermore, by Belyı̆’s The-
orem [15] this ensures that S is defined over an algebraic number field in the
sense that when we view each Riemann surface as being the zeros of some poly-
nomial we find that the coeffcients of that polynomial belong to some number field.
Equivalently they admit an orientably regular hypermap [58], with G acting as the
orientation-preserving automorphism group. A modern account of dessins d’enfants
and proofs of Belyı̆’s theorem may be found in the recent book of Girondo and
González-Diez [43].

These constructions can also be described instead in terms of uniformization and
using the language of Fuchsian groups [46, 71].

What makes this class of surfaces so good to work with is the fact that all of the
above definition can be ‘internalised’ into the group. It turns out that a group G can
be used to define a Beauville surface if and only if it has a certain pair of generating
sets known as a Beauville structure.

Definition 2. Let G be a finite group. For x,y ∈ G let

Σ(x,y) :=
|G|⋃
i=1

⋃
g∈G

{(xi)g,(yi)g,((xy)i)g}.

An unmixed Beauville structure for the group G is a set of pairs of elements
{{x1,y1},{x2,y2}} ⊂ G×G with the property that 〈x1,y1〉= 〈x2,y2〉= G such that

Σ(x1,y1)∩Σ(x2,y2) = {e}.
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If G has a Beauville structure we say that G is a Beauville group. Furthermore we
say that the structure has type

((o(x1),o(y1),o(x1y1)),(o(x2),o(y2),o(x2y2))).

In some parts of the literature authors have defined the above structure in terms
of so-called ‘spherical systems of generators of length 3’, meaning {x,y,z} ⊂ G
with xyz = e, but we omit z = (xy)−1 from our notation in this survey. (The reader
is warned that this terminology is a little misleading since the underlying geometry
of Beauville surfaces is hyperbolic thanks to the below constraint on the orders of
the elements.) Furthermore, many earlier papers on Beauville structures add the
condition that for i = 1,2 we have that

1
o(xi)

+
1

o(yi)
+

1
o(xiyi)

< 1,

but this condition was subsequently found to be unnecessary following Bauer,
Catanese and Grunewald’s investigation of the wall-paper groups in [8]. A triple
of elements and their orders satisfying this condition are said to be hyperbolic. Ge-
ometrically, the type gives us considerable amounts of geometric information about
the surface: the Riemann-Hurwitz formula

g(Ci) = 1+
|G|
2

(
1− 1

o(xi)
− 1

o(yi)
− 1

o(xiyi)

)
tells us the genus of each of the curves used to define the surface S and by a theorem
of Zeuthen-Segre this in turn gives us the Euler number of the surface S since

e(S ) = 4
(g(C1)−1)(g(C2)−1)

|G|

which in turn gives us the holomorphic Euler-Poincaré characteristic of S since
4χ(S ) = e(S ) (see [19, Theorem 3.4]). On a more practical and group theo-
retic note, the type is often useful for verifying that the critical condition that
Σ(x1,y1)∩Σ(x2,y2)= {e} is satisfied since this will clearly hold whenever the num-
ber o(x1)o(y1)o(x1y1) is coprime to the number o(x2)o(y2)o(x2y2).

The abelian Beauville groups were essentially classified by Catanese in [19, page
24.] and the full argument is given explicitly in [8, Theorem 3.4] where the following
is proved.

Theorem 1. Let G be an abelian group. Then G is a Beauville group if, and only if,
G = (Z/nZ)× (Z/nZ) where n > 1 is coprime to 6.

This explains why Beauville’s original example used the group (Z/5Z)×(Z/5Z)
— it is the smallest abelian Beauville group.

Given any complex surface S it is natural to consider the complex conjugate
surface S . In particular, it is natural to ask whether or not these two surfaces are
biholomorphic.
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Definition 3. Let S be a complex surface. We say that S is real if there exists a
biholomorphism σ : S →S such that σ2 is the identity map.

(We remark that strictly speaking the above definition is not quite right, it being
impossible to compose σ with itself. It is more accurate to talk of the composition
σ ◦σ where σ : S →S .)

As is often the case with Beauville surfaces, the above geometric condition can
be translated into purely group theoretic terms.

Definition 4. Let G be a Beauville group and let X = {{x1,y1},{x2,y2}} be a
Beauville structure for G. We say that G and X are strongly real if there exists
an automorphism φ ∈ Aut(G) and elements gi ∈ G for i = 1,2 such that

giφ(xi)g−1
i = x−1

i and giφ(yi)g−1
i = y−1

i

for i = 1,2.

In practice we can always replace one generating pair by some generating pair
that is conjugate to it and so we can take g1 = g2 = e and this is often what is done
in practice.

In [8] Bauer, Catanese and Grunewald show that a Beauville surface is real if,
and only if, the corresponding Beauville group and structure are strongly real. This
all comes from the study of the following related concept in the theory of Rie-
mann surfaces. In Singerman’s nomenclature of [66], a Riemann surface with a
function behaving like the function σ in Definition 3 is said to be symmetric. The
relationship with automorphisms of the corresponding group critically depends on
the main result of [66]. The reader is warned, however, that some notable errors in
[66] were subsequently found and are corrected by Jones, Singerman and Watson in
[59]. More specifically, the condition that an automorphism like the above exists is
sufficient but it is not necessary. This is corrected by Jones, Singerman and Watson
by giving a complete list of conditions that are both necessary and sufficient in [59,
Theorem 1.1]. We thus repeat the question first posed by the author as [30, Question
1].

Question 1. Are there interesting strongly real Beauville surfaces arising from the
conditions given in [59, Theorem 1.1] but not [66, Theorem 2]?

We remark that symmetric Riemann surfaces are also connected to the theory
of Klein surfaces. Real algebraic curves and compact Klein surfaces are equiva-
lent in the same way that the categories of complex algebraic curves and compact
Riemann surfaces are equivalent. Indeed, just as a compact, connected, orientable
surface admits the structure of a complex analytic manifold of dimension 1 (this is,
a Riemann surface structure) then a compact connected surface that is not necessar-
ily orientable admits the structure of a complex dianalytic manifold of dimension
1, that is, a Klein surface structure. See [65] for an introductory discussion and [17]
for a recent survey of these surfaces.

By way of immediate easy examples, note that the function x 7→ −x is an au-
tomorphism of any abelian group and so every Beauville group given by Theorem
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1 is an example of a strongly real Beauville group. More generally the following
question is the main subject of this article.

Question 2. Which groups are strongly real Beauville groups?

3 The Finite Simple Groups

Naturally, a necessary condition for being a strongly real Beauville group is being a
Beauville group. Furthermore, a necessary condition for being a Beauville group is
being 2-generated: we say that a group G is 2-generated if there exist two elements
x,y ∈G such that 〈x,y〉= G. It is an easy exercise for the reader to show that the al-
ternating groups An for n≥ 3 are 2-generated (see the work of Miller in [63]). In [68]
Steinberg proved that all of the simple groups of Lie type are 2-generated and in [1]
Aschbacher and Guralnick used cohomological methods to show that the larger of
the sporadic simple groups are 2-generated, the smaller ones having been dealt with
by numerous previous authors. These results rely heavily on the classification of fi-
nite simple groups. We thus have that all of the non-abelian finite simple groups are
2-generated making them natural candidates for Beauville groups. This led Bauer,
Catanese and Grunewald to conjecture that aside from A5, which is easily seen to
not be a Beauville group, every non-abelian finite simple group is a Beauville group
— see [8, Conjecture 1] and [9, Conjecture 7.17]. This suspicion was later proved
correct [26, 27, 41, 48], indeed the full theorem proved by the author, Magaard and
Parker in [27] is actually a more general statement about quasisimple groups (recall
that a group G is quasisimple if it is generated by its commutators and the quotient
by its center G/Z(G) is a simple group.). A sketch of the proof of this Theorem is
given by the author in [28, Section 3].

Having found that all but one of the non-abelian finite simple groups are Beauville
groups, it is natural to ask which of the finite simple groups are strongly real
Beauville groups. In [8, Section 5.4] Bauer, Catanese and Grunewald wrote

There are 18 finite simple nonabelian groups of order ≤ 15000. By computer calculations
we have found strongly [real] Beauville structures on all of them with the exceptions of A5,
PSL2(7), A6, A7, PSL3(3), U3(3) and the Mathieu group M11.

On the basis of this they made the following conjecture.

Conjecture 1 (The Weak Strongly Real Conjecture). All but finitely many of the fi-
nite simple groups are Strongly Real Beauville Groups.

In addition to the above, further ‘circumstantial evidence’ for this conjecture
come from the following recent theorem of Malcolm [62] which suggests that if
x and y can be simultaneously inverted by an inner automorphism, then we have
plenty of control over Σ(x,y).

Theorem 2. Every element of every non-abelian finite simple group is a product of
two strongly real elements.
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Subsequently, various infinite families of simple groups were shown to satisfy
Conjecture 1 (including some alluded to above) and computations performed by the
author lead to the following [29, Conjecture 1].

Conjecture 2 (The Strong Strongly Real Conjecture). All non-abelian finite simple
groups apart from A5, M11 and M23 are strongly real Beauville groups.

As far as the author is aware no advances in proving the conjecture has been
made since [29] appeared so we refer the reader there for the specific information
on the most recent progress on this conjecture.

4 Characteristically Simple Groups

Another class of finite groups that has recently been studied from the viewpoint
of Beauville constructions, and appears to be fertile ground for providing further
examples of strongly real Beauville groups, are the characteristically simple groups
that we define as follows (the definition commonly given is somewhat different from
the below but in the case finite groups it can easily be shown to be equivalent to the
below).

Definition 5. A finite group G is said to be characteristically simple if G is isomor-
phic to some direct product Sk where S is a finite simple group.

For example, as we saw in Theorem 1, if p> 3 is prime then the abelian Beauville
groups isomorphic to (Z/pZ)× (Z/pZ) are characteristically simple as is every
finite simple group.

The study of characteristically simple Beauville groups was initiated by Jones in
[55, 56] where the following conjecture is discussed.

Conjecture 3. Let G be a finite non-abelian characteristically simple group. Then G
is a Beauville group if and only if it is a 2-generated group not isomorphic to A5.

At the time that the previous installment of this series [30] was written the author
was skeptical about 2-generated characteristically simple groups being strongly real
Beauville groups. Consequently some calculations showing that Sk is strongly real
for small values of k when |S| < 100000 was all that was given in [30, Section 4].
The author also gave a rather pithy conjecture regarding the groups of the form S×S.
Since then in [35] the author and Jones have generalised these results substantially
with the following Theorem.

Theorem 3. The 2-generated characteristically simple group Sk is a strongly real
Beauville group if S is any of the following groups.

(a) The alternating group An apart from (n,k) = (5,1);
(b) The groups L2(q) apart from (q,k) = (4,1) or (5,1);
(c) The sporadic groups apart from (S,k) = (M11,1) or (M23,1) and
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(d) Simple groups of order at most 10,000,000.

Simple groups of order at most 10,000,000 includes the groups Ln(q) of order
less than or equal to |L4(4)| and the ten smallest sporadic groups as well as the Tits
group, 2F4(2)′, among many others. A more comprehensive list may be found [22,
pp. 239–240].

The above was proved as a step towards verifying the following, a substantial
extension of Conjecture 2.

Conjecture 4 (The Strongly Strong Strongly Real Conjecture). Every 2-generated
characteristically simple group Sk is a strongly real Beauville group apart from
(S,k) = (A5,1), (M11,1) or (M23,1).

5 Abelian and Nilpotent Groups

Recall that the abelian Beauville groups were classified in Theorem 1 and that an
immediate corollary of this result is that every abelain Beauville group is strongly
real.

Theorem 1 has been put to great use by González-Diez, Jones and Torres-Teigell
in [45] where several structural results concerning the surfaces defined by abelian
Beauville groups are proved. For each abelian Beauville group they describe all the
surfaces arising from that group, enumerate them up to isomorphism and impose
constraints on their automorphism groups. As a consequence they show that all such
surfaces are defined over Q.

After the abelian groups, the next most natural class of finite groups to consider
are the nilpotent groups. In [2, Lemma 1.3] Barker, Boston and the author note the
following easy Lemma.

Lemma 1. Let G and G′ be Beauville groups and let {{x1,y1},{x2,y2}} and {{x′1,y′1,},{x′2,y′2}}
be their respective Beauville structures. Suppose that

gcd(o(xi),o(x′i)) = gcd(o(yi),o(y′i)) = 1

for i = 1,2. Then {{(x1,x′1,),(y1,y′1)},{(x2,x′2),(y2,y′2)}} is a Beauville structure
for the group G×G′.

Recall that a finite group is nilpotent if, and only if, it is isomorphic to the direct
product of its Sylow subgroups. It thus follows that Lemma 1, and its easy to prove
converse, reduces the study of nilpotent Beauville groups to that of Beauville p-
groups. Note that Theorem 1 gives us infinitely many examples of Beauville p-
groups for every prime p > 3: simply let n be any power of p. Early examples of
Beauville 2-groups and 3-groups were constructed by Fuertes, González-Diez and
Jaikin-Zapirain in [38] where a Beauville group of order 212 and another of order 312

were constructed. Even earlier than this, two (mixed) Beauville 2-groups of order
28 arose as part of a classification due to Bauer, Catanese and Grunewald in [10]
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of certain classes of surfaces of general type, which give rise to an example of an
(unmixed) Beauville 2-group of order 27.

Subsequently, in [2] Barker, Boston and the author classified the Beauville p-
groups of order at most p4 and made substantial progress on the cases of groups of
order p5 and p6. Later, in [69] Stix and Vdovina have constructed another infinite se-
ries of Beauville p-groups. In particular this gives the first examples of non-abelian
Beauville p-groups of arbitrarily large order and any prime p ≥ 5. To do this they
make use of the theory of pro-p groups and in doing so provide generalisations of
examples from [2]. The first explicit construction of an infinite family of Beauville
3-groups was recently given by Fernández-Alcober and Gül in [37] where they con-
sider homomorphic images of the famous Nottingham group as well as providing
other general constructions for Beauville p-groups. In doing so they settled several
conjectures made in [2].

The earliest explicit infinite family of Beauville 2-groups were constructed by
Barker, Boston, Peyerimhoff and Vdovina in [3, 4, 5] where, again, more general
constructions are also considered. The most comprehensive surveys on Beauville
p-groups in general are given by Boston in [16] and more recently by the author in
[24].

Few of the known examples of Beauville p-groups are known to either be
strongly real/non-strongly real. As far as the author is aware the earliest examples
of non-abelian strongly real Beauville p-groups to be discovered were an isolated
pair of examples of 2-groups constructed by the author in [30, Section 7] namely
the groups

〈u,v |(uiv j)4, i, j = 0,1,2,3〉

which has order 214 and

〈u,v |u8,v8, [u2,v2],(uiv j)4, i, j = 1,2,3〉

which has order 213.
Recently in [50] Gül constructed the first known infinite family of non-abelian

strongly real Beauville p-groups and in particular discovered the first examples in
which p is odd. More specifically, the main result of [50] is the following.

Theorem 4. Let F = 〈x,y |xp,yp〉 be the free product of two cyclic groups of order
p for an odd prime p and let i = k(p−1)+1 for k≥ 1. Then the quotient F/γi+1(F)
is a strongly real Beauville group.

Subsequently in [51] Gül constructed further examples by considering quotients
of certain triangle groups. More specifically Gül prove that there are non-abelian
strongly real Beauville p-groups of order pn for every n ≥ 3, 5 or 7 for the primes
p≥ 5, p = 3 and p = 7 respectively.

At around the same time the author constructed another infinite family of non-
abelian strongly real Beauville p-groups for p odd in [32, 33] by proving the fol-
lowing.

Theorem 5. Let p be an odd prime and let q and r be powers of p. If q and r are
sufficiently large, then groups Cq oCr/Z(Cq oCr) are strongly real Beauville groups.
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Unlike the groups given by Theorem 4 this theorem gives multiple non-isomorphic
examples for infinitely many orders. For example when (q,r) = (328,33) or (q,r) =
(33,35) we obtain groups of order 3731 which cannot be isomorphic since they have
centers of different orders.

By way of a new result we have the following.

Proposition 1. For every prime p, the smallest non-abelian Beauville p-group is a
strongly real Beauville group.

Proof. The smallest non-abelian Beauville p-groups were determined by Barker,
Boston and the author in [2]. For p = 2 the smallest example is the group defined
by the following presentation.

G := 〈u,v |(uiv j)4 for i, j = 0, . . . ,3, (u2v2)2, [u,v]2, (uvuv3)2〉

For an automorphism, we consider the group defined by the above presentation with
an additional generator that we call t along with the new relations t2, utu, vtv. It is
easy to see that if we take

x1 := u, y1 := v, x2 := uvu and y2 := uvuvu,

then 〈x1,y1〉 = 〈x2,y2〉 = G; conjugation by t inverts all of these elements and the
conjugacy condition is easily checked computationally.

The case p = 3 is similar.
The cases p≥ 5 are a special case of [34, Proposition 11]. �

One obvious place providing fertile ground for new examples of strongly real
Beauville p-groups are subgroups of larger known Beauville p-groups because the
exponent of a subgroup is at most that of the original group. The aforementioned
group constructed in [30, Section 7] has an automorphism group of order 225 sug-
gesting its subgroup structure morally should work. Alas this good idea quickly falls
down. None of the proper subgroups of order greater than 29 are even 2-generated,
let alone are Beauville groups. As mentioned earlier in this section, no subgroup of
order less than 27 is even a Beauville group, let alone a strongly real one suggesting
that the subgroup structure of this group provides little in the way of new examples.

6 Doubly Hurwitz/Minimal Beauville Groups

We recall the following.

Definition 6. A finite group G is a Hurwitz group if it can be generated by an ele-
ment of order 2 and an element of order 3 such that their product has order 7.

The study of these objects is motivated by Hurwitz’s automorphisms theorem
which states that the automorphism group of a compact Riemann surface of genus
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g ≥ 2 has order at most 84(g− 1) with equality if and only if the automorphism
group is a Hurwitz group. It is easy to show that a Hurwitz group is necessarily per-
fect making simple groups the natural starting point for investigating these objects.

Recently in [57] Jones and Pierro addressed a question of Zvonkin asking if
there exist groups that act as Hurwitz groups in two essentially different ways, that
is, which have two generating triples that together provide a Beauville structure.

Definition 7. A doubly Hurwitz Beauville group or dHB group is a Beauville group
of type ((2,3,7),(2,3,7)).

The main results of [57] are summed up in the following.

Theorem 6.(a) The following are doubly Hurwitz Beauville groups.

(i) The alternating group An for all n≥ 589.
(ii) The groups SLn(q) and Ln(q) for all n≥ 631 and prime powers q.

(b) None of the following are doubly Hurwitz Beauville groups.

(i) The sporadic simple groups.
(ii) The groups Ln(q) for n≤ 7, 2G2(3r), 2F4(2)′, G2(q) and 3D4(q).

The basic question of which groups are doubly Hurwitz Beauville groups remains
far from resolved, the content of [57] being just a first step, but despite this the
following harder question still seems worth asking.

Question 3. Which groups have strongly real Beauville structures of type
((2,3,7),(2,3,7))?

For general discussions of the current knowledge of Hurwitz groups and their
corresponding surfaces, see the two excellent surveys of Conder [20, 21] and the
more historically-oriented survey of MacBeath [61].

Of course not all groups are Hurwitz groups however every group is the automor-
phism group of various Riemann surfaces and every group will attain the minimum
genus on some surface. Given a group G its strong symmetric genus is the minimum
genus of a compact Riemann surface on which G acts as a group of automorphisms
preserving orientation. For groups that are not Hurwitz groups we can ask the more
general analogous question replacing (2,3,7) with whatever type achieves the strong
symmetric genus of the group.

Definition 8. A doubly minimal Beauville group or dmB group is a Beauville group
G of type ((a,b,c),(a,b,c)) where (a,b,c) attains the strong symmetric genus of G.

Question 4. Which Beauville groups are dmB groups?

For the sporadic groups we have the following.

Lemma 2. None of the sporadic groups, except possibly the baby monster group B,
define Beauville surfaces corresponding to Riemann surfaces that attain their strong
symmetric genus.
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Proof. The sporadic groups that are Hurwitz are dealt with in [57]. The generators
that attain the strong symmetric genus of the remaining groups are given in Table
1. Each of M11, M23, J3, McL and O’N have only one class of involutions. Similar
arguments rule out the groups M12, M22, HS and Co2. In the groups Co1 and Fi23
all elements of order 8 power up to the same class of involutions. The group M24
is easily ruled out computationally (naively scrolling through the elements of the
group, it is small enough to do this, shows that a (3,3,4) generating pair necessarily
uses elements of class 3B). �

G Type G Type G Type
M11 (2,4,11) M12 (2,3,10) M22 (2,5,7)
M23 (2,4,23) HS (2,3,11) J3 (2,4,5)
M24 (3,3,4) McL (2,5,8) Suz (2,4,5)
O’N (2,3,8) Co2 (2,3,11) Fi23 (2,3,8)
Co1 (2,3,8) B (2,3,8)

Table 1 The sporadic simple groups that are not Hurwitz groups and the types of their generators
that attain their symmetric genus.

The Baby Monster group B is famously computationally difficult to deal with:
its lowest degree representation is in 4371 dimensions and its lowest degree per-
mutation representation is on around 1010 points owing to have order around 1034.
Worse, the Baby Monster has far more conjugacy classes for us to worry about than
the smaller cases. In [72] Wilson showed that the Baby Monster is not a Hurwitz
group but is (2,3,8) generated. There are four classes of involutions; two classes of
elements of order 3 and fourteen classes of elements of order 8! Structure constant
calculations naively rule out very few cases without a detailed investigation of its
30 classes of maximal subgroups most of which contain elements of all of these or-
ders. More worryingly we do not know the character tables of most of the maximal
subgroups and calculating them in the larger cases a computationally taxing prob-
lem. Generating triples of classes (2C,3B,8X) where X is any of N, M and K and
(2D,3B,8X) where X is one of N, M, K and I do exist but none using class 3A are
known. It is unlikely that there are any suggesting that this case is the same as the
other sporadic groups.

Problem 1. Settle the case of the Baby Monster.

One class of low-rank groups of Lie type not yet dealt with are ruled out by the
following.

Lemma 3. The Suzuki groups 2B2(22n+1) are never dmB groups.

Proof. These groups are well known to not be Hurwitz groups since they contain no
elements of order 3. In [70] Suzuki showed that his now eponymous groups were
(2,4,5) generated and it is this type that gives the strong symmetric genus of these
groups. These groups however have only have one class of involutions making it
impossible to have a Beauville structure of type ((2,4,5),(2,4,5)). �
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We pose the analogue of Question 3 for dmB groups.

Question 5. Which groups have strongly real Beauville structures that make them
dmB groups?

7 Miscelenia

In this final short section we briefly discuss a number of more minor matters.

7.1 Purity

In [34] the author initiated the study of the following.

Definition 9. A finite group G is a Purely Strongly Real Beauville Group if G is a
Beauville group such that every Beauville structure of G is strongly real. A finite
group G is a Purely Non-Strongly Real Beauville Group if G is a Beauville group
such that none of its Beauville structures are strongly real.

The main results of [34] focus on constructing examples of these concepts and
posing questions about them that are summarised as follows. We first highlight the
fact that most Beauville groups appear to fit into neither category and various exam-
ples among the finite simple groups are constructed. For infinitely many examples
we have the following.

Proposition 2. The following are purely strongly real Beauville groups.

(a) The groups L2(q) where q > 4 is even;
(b) abelian Beauville groups;
(c) the groups

〈x,y,z |xpn
, ypn

,zpr
[x,y] = z, [x,z], [y,z]〉

of order p2n+r and where p≥ 5 is prime and n≥ r ≥ 1 are integers.

Observe that the above gives no examples that are 2-groups or 3-groups.

Problem 2. Find other examples of purely strongly real Beauville groups.

In particular, we have the following question.

Question 6. Do there exist purely strongly real Beauville 2-groups and 3-groups?

The following provides us with infinitely many examples of purely non-strongly
real Beauville groups.
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Proposition 3. If G and H are Beauville groups of coprime order, such that G is a
purely non-strongly real Beauville group, then G×H is a purely non-strongly real
Beauville group.

As observed earlier (though not in the terminology defined in this section) the
Matheiu groups M11 and M23 are purely non-strongly real Beauville groups which
combined with the numerous examples of Beauville p-groups discussed earlier pro-
vides infinitely many examples of non-strongly real Beauville groups.

7.2 Higher Dimensional Analogues

In various parts of the literature many mathematicians have considered varieties
isogenous to a higher product (C1×·· ·×Cn)/G, the case n= 2 (i.e. surfaces) simply
being the most frequently studied. The property of Rigidity that makes Beauville
surfaces stand out can easily be generalised to higher dimensions. The following
definition was given by Jones in [52].

Definition 10. Let G be a finite group. The Beauville dimension of G is the least
positive integer d such that there exist generating pairs (x1,y1), . . . ,(xd ,yd) ∈ G2

such that
Σ(x1,y1)∩·· ·∩Σ(xd ,yd) = {e}.

We write dB(G) for the Beauville dimension of G. If no such integer exists then we
say that the group has infinite Beauville dimension.

Beauville groups are simply groups of Beauville dimension 2. Groups with
higher Beauville dimension correspond to higher dimensional complex varieties that
also enjoy many of the nice properties of Beauville surfaces such as being rigid, be-
ing defined over algebraic number fields etc. By way of an easy example, we noted
in section 3 the only finite simple group with Beauville dimension not equal to 2 is
the alternating group A5 which has infinite Beauville dimension since every sigma
set must contain elements from the only class of cyclic subgroups of order 5. The
following example is the earliest known given in [52].

Example 1. Consider the group

(Z/3Z)× (Z/3Z) = 〈x, y |x3,y3, [x,y]〉.

The non-trivial elements of this group naturally partition into the four cyclic sub-
groups 〈x〉, 〈y〉, 〈xy〉 and 〈xy2〉. The sigma set of any generating set contains mem-
bers from three of these subgroups. However we also have that

Σ(x,y)∩Σ(x,y2)∩Σ(x,xy)∩Σ(y,xy) = {e}

and so dB(G) = 4.
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For many years this and close relatives of it were the only known examples of
groups with finite Beauville dimension greater than 2. Recent work of the author’s
PhD student, Ludovico Carta, to appear in [18], extends this example to infinite
families of groups with Beauville dimensions 3 and 4.

Question 7. Are there any groups G such that dB(G) is finite and dB(G)> 4?

Observe that the variety constructed in Example 1 combined with the earlier
observations about abelian groups suggests the following.

Problem 3. Construct examples of groups G such that dB(G) > 2 is finite and the
corresponding variety is strongly real.

7.3 Reflection Groups

Another class of 2-generated finite groups that have only been partially investigated
from the viewpoint of Beauville constructions are reflection groups. In [31] the au-
thor proves the following.

Theorem 7. Every finite irreducible Coxeter group is a strongly real Beauville
group aside from the groups of type:

(a) An for n≤ 3;
(b) Bn for n≤ 4;
(c) Dn for n≤ 4;
(d) F4, H3 and
(e) I2(k) for any k.

Corollary 1. No product of three or more irreducible Coxeter groups is a Beauville
group. Furthermore, K1×K2 is a strongly real Beauville group if K1 and K2 are
strongly real irreducible Coxeter Beauville groups not of type Bn.

Corollary 2. An irreducible Coxeter group is a Beauville group if and only if it is a
strongly real Beauville group.

Altogether the above goes most of the way to classifying which of the real reflec-
tion groups are strongly real Beauville groups, however completing the task is more
difficult. Several examples are given in [31, Section 5] showing that K1×K2 can be
a strongly real Beauville group, even when K1 and/or K2 are not.

Question 8. Which real reflection groups are Strongly Real Beauville Groups?

As far as the author is aware, nowhere in the literature considers the more general
question of which finite reflection groups of any kind (the above completely ignores
objects such as complex reflections groups and quarternionic reflection groups) are
strongly real Beauville groups. For example, this wider class of groups includes
all cyclic groups (which are clearly not even Beauville groups) but it also gives us
examples like the following.
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Example 2. In the Sheppard–Todd classification of complex reflection groups, the
group denoted G24, also denoted W (J3(4)), is isomorphic to the group L2(7)×C2.
It is easily verified that if we take

x1 := (1,4,8,3,6,5,7)(9,10), y1 := (2,5,7,6,3,4,8)(9,10),

x2 := (1,7,2,4)(3,6,8,5)(9,10), y2 := (1,8,2,5)(3,6,4,7)

and t := (3,6)(4,7)(5,8),

then these permutations give a Beauville structure of type ((14,14,7),(4,4,4)) such
that xt

i = x−1
i and yt

i = y−1
i for i = 1,2 showing that this is a Strongly Real Beauville

Group.

Question 9. Which finite reflection groups are (strongly real) Beauville groups?

7.4 Beauville Spectra

The following definition was first made by Fuertes, González-Diez and Jaikin-
Zapirain in [38, Definition 11].

Definition 11. Let G be a finite group. The Beauville genus spectrum of G, denoted
Spec(G), is the set of pairs of integers (g1,g2) such that g1 ≤ g2 and there are curves
C1 and C2 of genera g1 and g2 with the action of G on C1×C2 such that (C1×C2)/G
is a Beauville surface.

They went on in [38] to determine the Beauville genus spectra for the symmetric
group S5, the linear group L2(7) and abelian Beauville groups as well as showing
that Spec(S6) 6= ∅ (though clearly this last result has been generalised by any the-
orem proving that other groups are Beauville group). These calculations were later
pushed further to other small almost-simple groups by Pierro in his PhD thesis [64],
the largest group he considered being the Suzuki group Sz(8) (whose order is just
29120) there being 73 such pairs for this group. As the number of conjugacy classes
of the groups grows, the size of the corresponding Beauville genus spectrum also
grows making it difficult to push these calculations for almost-simple groups much
further. Computer programmes written in GAP [39] can also be found in [64].

Imposing a restriction on the Beauville structures clearly makes this set smaller
and thus the problem of determining such a spectrum is more tractable. The follow-
ing natural definition was first made by the author in [24].

Definition 12. The strongly real Beauville genus spectrum of G, that we shall denote
SRSpec(G) is the set of pairs of integers (g1,g2) such that g1 ≤ g2 and there are
curves C1 and C2 of genera g1 and g2 with the action of G on C1×C2 such that
(C1×C2)/G is a real Beauville surface.

Since elements of larger order tend to have the property that no automorphism
will map them to their inverses it seems likely to the author that SRSpec(G) will in
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general be much smaller than Spec(G) for most groups. In particular, if determin-
ing Spec(G) for a given group G is difficult owing to its size, then the problem of
performing the same task for SRSPec(G) may be much more tractable.

Problem 4. Determine the strongly real Beauville genus spectrum of Beauville
groups.

Many of the other problems raised here can be described in terms of this quantity.
For example, determining if a group G is a strongly real Beauville group is the same
as determining when SRSPec(G) 6=∅; if G is a purely strongly real Beauville group,
then it has the property that Spec(G) = SRSpec(G) and if G is a purely non-strongly
real Beauville group, then SRSPec(G) =∅.

For most Beauville groups it is likely that |SRSpec(G)|< |Spec(G)|. This moti-
vates the following interesting question first posed in the specific case of p-groups
by the author as [24, Question 6.14].

Question 10. For a Beauville group G how does the size of SRSpec(G) compare to
Spec(G)? A little more specifically, how does |SRSpec(G)|/|Spec(G)| behave as
|G| → ∞?

7.5 Beauville graphs

In recent years there has been a growing trend towards encoding generational prob-
lems for finite groups in graphs in the hope of using graph-theoretic techniques to
address group-theoretic matters. The most common being the following.

Definition 13. Given a finite group G its generating graph is the graph Γ (G) defined
as follows. The vertices of Γ (G) are the non-trivial elements of G with two elements
x and y being adjoined by an edge if and only if 〈x,y〉= G.

It seems natural to translate the study of Beauville structures into graph-theoretic
language. We thus make the following definition.

Definition 14. Given a finite group G its Beauville generating graph is the graph
ΓB(G) defined as follows. The vertices of ΓB(G) are the sets Σ(x,y) where x,y ∈
G generate the group with two vertices Σ(x,y) and Σ(x′,y′) being adjoined by an
edge if and only if Σ(x,y)∩Σ(x′,y′) = {e} or equivalently if {{x,y},{x′,y′}} is a
Beauville structure for G.

Compared to the generating graph, the Beauville generating graph has far fewer
vertices meaning that in principle it should be somewhat easier to study.

Example 3. Recall the classification of abelian Beauville groups in Theorem 1. In
particular if p ≥ 5 is prime, then (Z/pZ)× (Z/pZ) is a Beauville group. Similar
to Example 1 the non-trivial elements of this group are partitioned into the p+ 1
sets of non-trivial elements of the cyclic subgroups. Any Σ(x,y) consists of three
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of these and all possible combinations can be achieved. It follows that this graph
is isomorphic to what graph theorists sometimes call the Kneser graph K(3)

p+1 and
general theorems regarding these objects reveal a flurry of properties.

• The graph is connected if and only p > 5 (the p = 5 case being a set of three
disjoint edges.)

• These graphs are regular (that is, every vertex has the same degree) of degree(p−2
3

)
. Kneser graphs in general are in fact both vertex transitive and edge transi-

tive (this is, any pair of vertices can be sent to each other by some automorphism
of the graph and similarly for the edges).

• The chromatic number (the smallest number of colours that can be used to colour
the vertices in such a way that adjacent vertices have different colours) is exactly
p−3.

• If p > 7, then the girth (the length of the smallest cycle in the graph) is 3, in the
case p = 7 it is 4.

• An application of the Erdős-Ko-Rado theorem tells us that the independence
number (the largest size of a set of vertices such that no two are adjacent) is(p

2

)
.

For Beauville graphs more generally it is unlikely that properties anything like as
nice as the above list will hold. Nonetheless the Beauville graphs of other Beauville
groups may be of interest.

Lemma 4. The Beauville graphs of the groups L2(pr) are never connected.

Proof. If q is odd then there is always a pair of type ((q + 1)/2,(q− 1)/2, p)
by straightforward structure constant calculations. For such a pair we have that
Σ(x,y) = G and so this pair is guaranteed to generate the group and this vertex
of the graph will be isolated. The case q even is similar. �

Example 4. If G is the Mathieu group M11, then the graph ΓB(G) is not connected
since M11 is (5,6,11) generated and since the only primes dividing the order of the
group are 2, 3, 5 and 11 and there is only one class of elements of order 2 so such a
generating pair corresponds to an isolated vertex.

Question 11. Which Beauville groups have connected Beauville graphs? What other
properties do these have?

Of course we can easily consider a more sparse graph that keep the strongly real
condition in mind.

Definition 15. Let G be a finite group. The strongly real Beauville graph denoted
ΓSRB(G) is defined the same way as the Beauville graph except adjacency is now
defined by {{x,y},{x′,y′}} being a strongly real Beauville structure for G

Example 5. If G is a purely non-strongly real Beauville group, then ΓSRB(G) =
ΓB(G) so in particular some of these graphs are discussed in some detail in Ex-
ample 3. If G is a purely non-strongly real Beauville group, then ΓSRB(G) is empty
regardless of any properties of ΓB(G).

Problem 5. Investigate the properties of these graphs.
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51. Ş. Gül, An infinite family of strongly real Beauville p-groups, preprint 2016
arXiv:1610.06080

52. Gareth A. Jones, private communication, April 2013
53. G. A. Jones “Automorphism groups of Beauville surfaces” J. Group Theory. Volume 16, Issue

3, Pages 353–381 (2013), DOI: 10.1515/jgt-2012-0049, 2013 arXiv:1102.3055
54. G. A. Jones “Beauville surfaces and groups: a survey” in ‘Rigidity and Symmetry, Fields Insti-

tute Commumnications vol. 70’ (eds. R. Connelly, A. I. Weiss and W. Whiteley) pp. 205–226,
Springer 2014

55. Gareth A. Jones “Characteristically simple Beauville groups, I: cartesian powers of alternating
groups” Geometry, groups and dynamics, 289306, Contemp. Math., 639, Amer. Math. Soc.,
Providence, RI, 2015

56. Gareth A. Jones “Characteristically simple Beauville groups, II: low rank and sporadic
groups” in Beauville Surfaces and Groups, Springer Proceedings in Mathematics & Statis-
tics, Vol. 123 (eds I. Bauer, S. Garion and A. Vdovina), Springer-Verlag (2015) pp. 97–120
arXiv:1304.5450v1

57. Gareth A. Jones and E. Pierro “Doubly Hurwitz Beauville Groups” submitted
arxiv:1709.09441

58. G. A. Jones and D. Singerman “Belyi functions, hypermaps and Galois groups” Bull. Lond.
Math. Soc. 28 (1996) 561–590

59. G. A. Jones, D. Singerman and P. D. Watson “Symmetries of quasiplatonic Riemann surfaces”
Rev. Mat. Iberoam. 31 (2015), no. 4, 1403–1414 arXiv:1401.2575

60. A. M. MacBeath “Generators of the linear fractional groups” Number Theory (Proc. Sympos.
Pure Math., Vol. XII, Houston, Tex., 1967), Amer. Math. Soc., Providence, R.I., 1969, pp.
14–32

61. A. Murray Macbeath “Hurwitz Groups and Surfaces” in ‘The Eightfold Way: The Beauty of
Klein’s Quartic Curve’ (ed. S. Levy) MSRI Publications, 35, Cambridge University Press,
Cambridge (1998) pp.103–114

62. A. J. Malcolm “On products of orthogonal characters in finite simple groups” in preparation
63. G. A. Miller “On the groups generated by two operators” Bull. Amer. Math. Soc. Volume 7,

Number 10 (1901) 424–426
64. E. Pierro “Some calculations on the action of groups on surfaces” Phd thesis, Birkbeck, Uni-

versity of London (2015)
65. F. Schaffhauser “Lectures on Klein surfaces and their fundamental groups” in Geome-

try and quantization of moduli spaces, 67–108, Adv. Courses Math. CRM Barcelona,
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