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ON SETS NOT BELONGING TO ALGEBRAS AND

RAINBOW MATCHINGS IN GRAPHS

DENNIS CLEMENS, JULIA EHRENMÜLLER, AND ALEXEY POKROVSKIY

Abstract. Motivated by a question of Grinblat, we study the minimal number v(n) that sat-

isfies the following. If A1, . . . , An are equivalence relations on a set X such that for every
i ∈ [n] there are at least v(n) elements whose equivalence classes with respect to Ai are

nontrivial, then A1, . . . , An contain a rainbow matching, i.e. there exist 2n distinct elements

x1, y1, . . . , xn, yn ∈ X with xi ∼Ai
yi for each i ∈ [n]. Grinblat asked whether v(n) = 3n−2 for

every n ≥ 4. The best-known upper bound was v(n) ≤ 16n/5 +O(1) due to Nivash and Omri.

Transferring the problem into the setting of edge-coloured multigraphs, we affirm Grinblat’s

question asymptotically, i.e. we show that v(n) = 3n + o(n).

1. Introduction

Let X be a set and let P(X) denote its power set. A nonempty subset A ⊆ P(X) is an algebra
on X if A is closed under complementation and under unions, i.e. if M1,M2 ∈ A, then X \M1 ∈ A
and M1∪M2 ∈ A. In a series of papers and books [4, 5, 6]Grinblat investigated sufficient conditions
for countable families {Ai}i of algebras such that

⋃
iAi 6= P(X) and

⋃
iAi = P(X), respectively.

In this context, Grinblat [4] defined v = v(n) as the minimal cardinal number such that the
following is true. “Let A1, . . . ,An be algebras on a set X such that for each i ∈ [n] there exist
at least v(n) pairwise disjoint sets in P(X) \ Ai. Then there exists a family {U1

i , U
2
i }i∈[n] of 2n

pairwise disjoint subsets of X such that, for each i ∈ [n], if Q ∈ P(X) and Q contains one of the
two sets U1

i and U2
i and its intersection with the other one is empty, then Q /∈ Ai.” In [4] Grinblat

showed that v(n) ≥ 3n− 2 for each n ∈ N. He posed the following problem.

Problem 1 (Grinblat, [6]). Is it true that v(n) = 3n− 2 for n ≥ 4?

In [6] Grinblat proved that v(n) ≤ 10n/3 +
√

2n/3. Nivasch and Omri [8] improved the upper
bound to v(n) ≤ 16n/5 +O(1) using the following equivalent definition of v(n) in the context of
equivalence relations. Let X be a finite set and let A be an equivalence relation on X. If x, y ∈ X
are equivalent under A, we write x ∼A y. With

[x]A = {y ∈ X : x ∼A y}
we denote the equivalence class under A of an element x ∈ X, while the kernel of A is defined as

ker(A) = {x ∈ X : |[x]A| ≥ 2}.
Using these definitions, it turns out that v(n) = v1(n) holds, where v1(n) is defined to be the min-
imal number such that if A1, . . . , An are equivalence relations with ker(A) ≥ v1(n) for each i ∈ [n],
then A1, . . . , An contain a rainbow matching, i.e. a set of 2n distinct elements x1, y1, . . . , xn, yn ∈ X
with xi ∼Ai

yi for each i ∈ [n]. This identity is mainly based on the fact that there is a natural
correspondence between algebras and equivalence relations. Indeed, given an equivalence relation
A on the set X, we can define the algebra A :=

{⋃
x∈S [x]A : S ⊆ X

}
. Conversely, given some

algebra A on X, one can define the equivalence relation A on X the equivalence classes of which
are the inclusion minimal sets in A. A complete argument to show that v(n) = v1(n) is given in
the appendix.

In this paper we show that v(n) ≤ 3n+ o(n), thus giving an asymptotic answer to Problem 1.
More precisely, using the terminology of Nivasch and Omri [8], we prove the following.
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Theorem 1. For every δ > 0 there exists n0 = n0(δ) = 144/δ2 such that the following holds for
every n ≥ n0. Let A1, . . . , An be n equivalence relations on a finite set X. If | ker(Ai)| ≥ (3 + δ)n
for each i ∈ [n], then A1, . . . , An contain a rainbow matching.

Theorem 1 can be rephrased in the context of graphs. If A1, . . . , An are equivalence relations on
a set X, let the vertices of an edge-coloured multigraph be the elements of X and, for each i ∈ [n],

let {x, y} ∈
(
X
2

)
be an edge of colour i if and only if x ∼Ai y. This means that the equivalence

relations are represented in this multigraph by colour classes, each of which is the disjoint union
of nontrivial cliques, i.e. complete graphs with at least 2 vertices. A matching in an edge-coloured
multigraph is called rainbow matching if all its edges have distinct colours. Using this notion, we
can reformulate Theorem 1 as follows.

Theorem 2. For every δ > 0 there exists n0 = n0(δ) = 144/δ2 such that the following holds for
every n ≥ n0. Let G be a multigraph, the edges of which are coloured with n colours and each
subgraph of which induced by a colour class has at least (3 + δ)n vertices and is the disjoint union
of nontrivial cliques. Then G contains a rainbow matching of size n.

Theorem 2 is a strengthening of an earlier result by the first two authors [3], which proves the
above statement when the multigraph G is bipartite (and thus each clique consists of two vertices).
The latter was motivated by famous conjectures of Ryser [10] and of Brualdi and Stein [2, 11] on
Latin squares and by the following conjecture of Aharoni and Berger [1].

Conjecture 3 (Aharoni and Berger [1]). Let G be a multigraph, the edges of which are coloured
with n colours and such that each colour class induces a matching of size n + 1. Then there is a
rainbow matching of size n.

These conjectures remain widely open. However, asymptotic versions are known to be true. For
instance, as a consequence of a theorem of Häggkvist and Johansson [7] one obtains that there is
a rainbow matching of size n in case when G is an edge-coloured bipartite graph the colour classes
of which induce perfect matchings of size n+ o(n). The third author [9] provided a proof for the
more general case where the matchings are disjoint, but not necessarily perfect.

In the next section we prove Theorem 2 which automatically provides a proof for Theorem 1.
As already mentioned, the best-known lower bound on v(n) is 3n − 2 for each n ≥ 4. Indeed,
if all colour classes are identical and are the disjoint union of n − 1 triangles, then there is no
rainbow matching of size n. Hence, Theorem 2 is asymptotically best possible. If n = 3, then
v(3) = 9 > 3n− 2 as shown by Grinblat [4]. See Figure 1 for the lower bound v(3) ≥ 9, which was
also observed by Nivasch and Omri [8].

1 1 1 1

2

2

2

2

3 3 3 3

Figure 1. Example of a graph with 3 colour classes each of size 8 that has no
rainbow matching of size 3.

2. Proof of Theorem 2

The aim of this section is to present the proof of Theorem 2. We will start with stating and
proving a lemma, which will be the essential part in the proof of Theorem 2. However, we first
need to introduce some necessary definitions and notation.

Given a multigraph G, we denote by EG[A,B] the set of edges in G that have one endvertex
in A ⊆ V and one endvertex in B ⊆ V . For any edge-coloured multigraph G, we denote by c(e)
the colour assigned to the edge e ∈ E(G). For the sake of simplicity, we call an edge of colour c
simply c-edge. Let F be a set or a sequence of edges, then V (F ) :=

⋃
e∈F e is the vertex set of
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F . Next we define switchings, which, given some rainbow matching M of size k, provide us a new
rainbow matching of size k by replacing edges in M with edges in E(G) \M . See Figure 2 for an
illustration of a switching of length 3.

Definition 4. Let G be an edge-coloured multigraph and let M be a rainbow matching in G. We
call a sequence of edges σ = (e0,m1, e1,m2, . . . , ek−1,mk) a

(
c(e0), c(mk)

)
-switching of length k

with respect to M if for each i 6= j ∈ [k] we have

(S1) m1, . . . ,mk are distinct edges in M ,
(S2) ei−1 ∈ EG

[
mi, V \ V (M)

]
,

(S3) c(e0) 6= c(mi) and c(ei) = c(mi), and
(S4) ei−1 ∩ ej−1 = ∅.

Whenever it is clear from the context, we omit writing with respect to which matching a switching
is defined. The length of σ is denoted by `(σ). Furthermore, we denote by m(σ) the set of all edges
of σ that are contained in the matching M and by e(σ) the set of all other edges of σ. Observe
that `(σ) = |m(σ)| = |e(σ)|.

For every colour c, we also define an empty (c, c)-switching σ0
c . This switching has no edges,

starts and ends at the colour c, has length zero, and has m(σ0
c ) = e(σ0

c ) = ∅.

M
e0 e1 e2 m1 m2 m3

1 2 3

2 3 4

Figure 2. A (1, 4)-switching of length 3.

Now we are in the position to state and prove Lemma 5 which is the main technical result of
the paper.

Lemma 5. For each n ∈ N and δ > 0 satisfying δ
√
n ≥ 12, the following holds. Let G = (V,E)

be a multigraph whose edges are coloured by n colours, M a rainbow matching of size n− 1 in G,
and c0 the colour that is missing from M .

Suppose that for every colour c in G, and every (c0, c)-switching σ there are at least
(
d(1 +

δ)ne − 4`(σ) disjoint c-edges between V \
(
V (M) ∪ V (σ)

)
and V \ V (σ). Then G has a rainbow

matching of size n.

An important special case of the condition in Lemma 5 is when c = c0 and σ is the empty
switching σ0

c0 . In this case the condition says that there are at least d(1 + δ)ne disjoint c0-edges
touching V \ V (M).

Proof of Lemma 5. Let C be the set of colours of edges of G and R := V \ V (M). We prove
Lemma 5 by induction on n. For the initial case, we prove the theorem for all n ≤ 144. Notice
that if n ≤ 144, then from δ

√
n ≥ 12, we obtain δ ≥ 1. This means in particular that there are 2n

disjoint edges of colour c0 in EG[R, V ]. However, there can be at most |V (M)| = 2n− 2 disjoint
c0-edges in EG[R, V (M)]. Hence, there exists a c0-edge in EG[R,R] which can be added to M in
order to obtain a rainbow matching of size n.

Now let n > 144 and assume that Lemma 5 holds for every n′ < n. We may also assume that
δ ≤ 1 since otherwise there is a rainbow matching of size n by the same argument as before. Let
G = (V,E) be a multigraph and M a rainbow matching of size n− 1 in G, which satisfies all the
assumptions of the lemma. Suppose for the sake of contradiction that G does not have a rainbow
matching of size n. The following claim produces a switching, a set of colours, and a set of edges
that will later be used to reduce the problem to a smaller multigraph, to which we apply induction.
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Claim 1. There exist a colour c2 ∈ C, a (c0, c2)-switching σ = (e0,m1, e1,m2) and a subset
C∗ ⊆ C \ {c0, c1, c2}, where c1 := c(m1), with |C∗| = dδn/6e, such that for each c ∈ C∗ there
exists a c-edge ec between V \

(
V (M) ∪ V (σ)

)
and m2 \ e1.

In Figure 3 we illustrate the switching, the set of colours and the edges that are guaranteed by
Claim 1.

e0 m1 m2e1

M

C∗

C∗

Figure 3. Switching (e0,m1, e1,m2), set C∗ ⊆ C \ {c0, c1, c2} and c-edges in
V \

(
V (M) ∪ V (σ)

)
with c ∈ C∗.

Proof of Claim 1. Let C1 :=
{
c ∈ C : ∃(c0, c)-switching of length 1

}
. By the assumption of the

lemma, there exist d(1 + δ)ne disjoint c0-edges having an endvertex in R. If there exists a c0-edge
e ∈ EG[R,R], then M ∪ {e} is a rainbow matching of size n. Therefore we may assume that all
c0-edges from R end in V (M), which implies that |C1| ≥ d(1 + δ)ne/2.

For every c ∈ C1, let σc = (ec0,m
c
1) be an arbitrary but fixed (c0, c)-switching of length 1.

For a colour c ∈ C1, we say that an edge m ∈ M is c-good if there exist two disjoint c-edges in
EG
[
R \ V (σc),m

]
. By the assumption of the lemma, for every c ∈ C1, there exist d(1 + δ)ne − 4

disjoint c-edges in EG
[
R \ V (σc), V \ V (σc)

]
. If there exists a colour c ∈ C1 and a c-edge e ∈

EG
[
R \ V (σc), R \ V (σc)

]
, then there is a rainbow matching of size n, namely the union of the

subset of M induced by the colours in C \ {c}, and the edges e and ec0. Therefore we may assume
that for every c ∈ C1, there exist d(1 + δ)ne − 4 disjoint c-edges in EG

[
R \ V (σc), V (M) \ V (σc)

]
.

The maximum number of disjoint c-edges in EG
[
R\V (σc), V (M)\V (σc)

]
is less than twice the

number of c-good edges m ∈ M plus the number of edges m ∈ M which are not c-good. Hence,
for every c ∈ C1, there exist at least dδne − 2 edges in M \m(σc) that are c-good. Next we find
an edge m which is c-good for many colours c ∈ C1. Let

µ := max
m∈M

{|C ′| : C ′ ⊆ C1 \ {c(m)} such that m is c-good for each c ∈ C ′}.

Double counting the pairs (c,m), where c ∈ C1 \ {c(m)} and m is a c-good edge, yields

µ|M | ≥ |C1|
(
dδne − 2

)
and hence

µ ≥ (δn− 2)(1 + δ)

2
.

This means that there exists an edge m2 = {x, y} ∈ M and a subset C2 ⊆ C1 \ {c(m2)} of size
d(δn − 2)(1 + δ)/2e such that m2 is c-good for every c ∈ C2. For every c ∈ C2, let xc, yc ∈
EG
[
R \ V (σc),m2

]
be disjoint edges of colour c such that xc ∩m2 = {x} and yc ∩m2 = {y} (such

edges exist since m2 is c-good). Let X := {xc : c ∈ C2} and Y := {yc : c ∈ C2}. The remainder
of the proof is split into the case that there exists a vertex in R that is incident to at least 1/3 of
the edges in X and the case that there does not exist such a vertex.

First suppose that there exists a vertex v ∈ R such that v is incident to at least 1/3 of the edges
in X. Using δ

√
n ≥ 12 and δ ≤ 1, notice that |X|/3 = |C2|/3 ≥ (δn − 2)(1 + δ)/6 ≥ dδn/6e + 1.

Therefore, we can let X ′ be a subset of X consisting of dδn/6e+ 1 edges such that v ∈ e for every
e ∈ X ′. Let e′1 be any edge in X ′. Since c(e′1) ∈ C2, there is an edge e1 ∈ Y with c(e′1) = c(e1).
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By the definition of X and Y , we also have e1 ∩ e′1 = ∅ and V (σc(e1)) ∩ e′1 = ∅, which imply

X ′ ⊆ EG
[
R \

(
V (σc(e1)) ∪ e1

)
, x
]
. Set c1 := c(e1), c2 := c(m2), e0 := ec10 , and m1 := mc1

1 .
We show that the set C∗ := {c ∈ C2 : xc ∈ X ′ \ {e′1}}, the sequence σ := (e0,m1, e1,m2),
and edges ec := xc for each c ∈ C∗ are as desired in the claim. First let us argue that σ is
indeed a (c0, c2)-switching. Property (S1) is fulfilled since m1 ∈M as (e0,m1) is a switching and
since m2 ∈ M by the choice of m2. Property (S2) holds since (e0,m1) is a switching and since
e1 ∩ m2 = {y} 6= ∅ and e1 ∩ R 6= ∅ by the definition of Y . As c0 is not assigned to edges in
M , we have c(m1) 6= c(e0) 6= c(m2). Moreover, we have c(m1) = c(e1) by construction. This
shows Property (S3). Finally, Property (S4) is satisfied since we have e1 ∈ EG

[
R \ V (σc1),m2

]
by definition of e1 ∈ Y , and hence e0 ∩ e1 = ∅. Thus, σ is indeed a (c0, c2)-switching. Observe
that C∗ ⊆ C2 \ {c1} ⊆ C1 \ {c1, c2} ⊆ C \ {c0, c1, c2}. Finally, for each c ∈ C∗ ⊆ C, we have
ec = xc ∈ EG

[
V \

(
V (M) ∪ V (σ)

)
, x
]

= EG
[
V \

(
V (M) ∪ V (σ)

)
,m2 \ e1

]
.

Now suppose that all vertices in R are incident to at most 1/3 of the edges in X. Let e1 be any
edge in Y . Then at least 1/3 of the edges in X are disjoint from e1 and σc(e1). Since, as before,
|X|/3 ≥ (δn− 2)(1 + δ)/6 ≥ dδn/6e+ 1 we can choose a subset X∗ ⊆ X of size dδn/6e such that
for every e ∈ X∗ we have c(e) 6= c(e1) and e∩

(
e1∪σc(e1)

)
= ∅. Set again c1 := c(e1), c2 := c(m2),

e0 := ec10 , and m1 := mc1
1 . Analogously to the previous case, the set C∗ := {c ∈ C2 : xc ∈ X∗},

the sequence σ := (e0,m1, e1,m2), and the edges ec := xc for each c ∈ C∗ are as desired in the
claim. �

From now on we may assume the existence of the switching σ = (e0,m1, e1,m2), the set C∗ ⊆ C
and the edges ec as in Claim 1. We consider the following sets. Let

W := {e ∈M : c(e) ∈ C∗},
M ′ := M \ (m(σ) ∪W ),

C ′ := C \ (C∗ ∪ {c0, c1}).
Observe that C ′ is exactly the set of all colours assigned to the edges of M ′ plus colour c2. Note
further that |W | = |C∗| = dδn/6e. Moreover, we set

n′ := |C ′| = bn(1− δ/6)c − 2,

S :=
⋃
c∈C∗

ec ∩R,

R′ := R \ (V (σ) ∪ S).

See Figure 4 for an illustration of the sets M ′,W ⊂ M , the set S ⊂ R and the switching
(e0,m1, e1,m2).

M’
e0 m1 m2e1

W

S M

Figure 4. Sets M ′,W ⊂M , set S ⊂ R and switching (e0,m1, e1,m2).

To apply induction, we now consider the edge-coloured multigraph G′ formed from G by deleting
edges of colours from C∗ ∪{c0, c1} and vertices in

(
V (σ)∪S ∪V (W )

)
. Formally, let G′ = (V ′, E′)

be the multigraph with vertex set

V ′ := V \ (V (σ) ∪ S ∪ V (W )) = R′ ∪ V (M ′)
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and edge set

E′ := {e ∈ EG[V ′] : c(e) ∈ C ′}.
The edges of G′ keep the colours they had in G.

With this notation in hand, we prove the following claim.

Claim 2. There is a constant δ′ ≥ 12/
√
n′ such that for every colour c ∈ C ′ and (c2, c)-switching

σ (in G′, with respect to M ′) there are at least
(
d(1 + δ′)n′e − 4`(σ) disjoint c-edges between

V ′ \
(
V (M ′) ∪ V (σ′)

)
and V ′ \ V (σ′).

Proof of Claim 2. Set δ′ = (dδne − 12)/n′ and notice that the following holds:

δ′n′ ≥ δn− 12 ≥ 12(
√
n− 1) ≥ 12

√
n(1− δ/12) ≥ 12

√
n
√

1− δ/6 > 12
√
n′.

The second and third inequalities use δ ≥ 12/
√
n. Therefore δ′ ≥ 12/

√
n′ holds, and so we can

apply induction to the multigraph G′ with the matching M ′. Consider any colour c ∈ C ′ and let σ′

be some (c2, c)-switching in G′. We need to show that are at least
(
d(1+δ′)n′e−4`(σ′)

)
disjoint c-

edges in EG′
[
R′\V (σ′), V ′\V (σ′)

]
. Recall that σ is the (c0, c2)-switching, given by Claim 1. Then

the concatenation of σ and σ′ gives a (c0, c)-switching σ′′ (in G w.r.t. M) of length `(σ′)+2. So, by
the assumption of Lemma 5 on G, we can find at least d(1+δ)ne−4`(σ′′) = d(1+δ)ne−4(`(σ′)+2)
disjoint c-edges in EG

[
R\V (σ′′), V \V (σ′′)

]
. As |R\V (σ′′)|−|R′\V (σ′′)| = |S| ≤ dδn/6e, at least

d(1 + δ)ne − dδn/6e − 4(`(σ′) + 2) of these disjoint edges belong to EG
[
R′ \ V (σ′′), V \ V (σ′′)

]
⊆

EG
[
R′ \ V (σ′), V \ V (σ′)

]
.

Assume first that there is no edge e ∈ EG
[
R′ \ V (σ′), V (W ) ∪ S

]
with c(e) = c. Then,

since at most 6 disjoint edges intersect V (σ), the claim holds since the number of c-edges in
EG′

[
R′ \ V (σ′), V ′ \ V (σ′)

]
is at least

d(1 + δ)ne −
⌈
δn
6

⌉
− 4(`(σ′) + 2)− 6 = (1 + δ′)n′ − 4`(σ′).

Assume then that there is an edge e ∈ EG
[
R′\V (σ′), V (W )∪S

]
with c(e) = c. If e∩S 6= ∅, then

(M \m(σ′′)) ∪ ({e} ∪ e(σ′′)) is a rainbow matching of size n in G. Otherwise, if e ∩ V (W ) 6= ∅,
then let f ∈ W with f ∩ e 6= ∅. By definition of W and S, and by Claim 1 we find an edge
g ∈ EG(S,m2 \ e1) with c(g) = c(f). Then (M \ (m(σ′′) ∪ {f})) ∪ (e(σ′′) ∪ {e, g}) is a rainbow
matching of size n in G, contradicting our assumption that M was maximum. �

Now we are able to finish the induction. By Claim 2, G′ satisfies the hypothesis of Lemma 5.
Therefore, since n′ < n, by induction G′ contains a rainbow matching M ′′ of size n′. Now,
M ′′ ∪W ∪ e(σ) forms a rainbow matching of size n, contradicting our assumption there were no
rainbow matchings in G of this size. �

Finally, we are ready to prove Theorem 2.

Proof of Theorem 2. Let δ > 0 and n ≥ 144/δ2 and let G be given according to the theorem. For
the sake of contradiction, let us assume that a largest rainbow matching M in G has size smaller
than n. Let C ′ be the set of colours in M plus one further colour c0. Set n′ := |C ′|. In the
following, we consider the multigraph G′ = (V,E′) with E′ = {e ∈ E : c(e) ∈ C ′}. We now apply
Lemma 5 to G′ in order to find a rainbow matching of size n′. This gives a contradiction since we
assumed that M was a maximum matching.

Let δ′ = δn/n′ and observe that from n ≥ 144/δ2, we have δ′ ≥ 12/
√
n′. Let c ∈ C ′ and let σ

be any (c0, c)-switching in G′ with respect to M . By assumption on G, there exist d(3 + δ)ne −
|V (M) ∪ V (σ)| > d(1 + δ)ne − `(σ) > d(1 + δ′)n′e − `(σ) vertices in V \

(
V (M) ∪ V (σ)

)
that are

incident to colour c. If in the colour class of c any two of these vertices are adjacent or have a
common neighbour, then since all the colour classes in G are unions of cliques, there is an edge,
say e, of colour c between them, which leads to the rainbow matching (M \m(σ)) ∪ (e(σ) ∪ {e})
of size n′. So, we may assume that there are

(
d(1 + δ′)n′e − `(σ)

)
disjoint edges of colour c in

EG′
[
V \

(
V (M) ∪ V (σ)

)
, V
]

and therefore
(
d(1 + δ′)n′e − 4`(σ)

)
such edges in EG′

[
V \

(
V (M) ∪

V (σ)
)
, V \ V (σ)

]
. As c and σ were chosen arbitrarily, Lemma 5 now guarantees that G′ contains

a rainbow matching of size n′. �



ON SETS NOT BELONGING TO ALGEBRAS AND RAINBOW MATCHINGS IN GRAPHS 7

3. Concluding Remarks

We wonder how the problem changes if one adds the natural constraint that every pair of
distinct elements belongs to at most one equivalence relation. More precisely, we are interested in
the following problem.

Problem 2. Determine the minimal number v∗(n) such that if A1, . . . , An are equivalence rela-
tions on a set X with | ker(Ai)| ≥ v∗(n) and Ai ∩Aj =

{
(x, x) : x ∈ X

}
for each i 6= j ∈ [n], then

A1, . . . , An contain a rainbow matching.

Using the graph theoretic notion as before, the additional constraint means that the colour
classes need to be pairwise disjoint. This can also be seen as restricting the problem to graphs
instead of multigraphs. It is known that for every even n, there exists an edge-coloured bipartite
graph, the colour classes of which are matchings of size n, without a rainbow matching of size
n. This follows from a result by Euler on transversals in Latin squares (see e.g. [12, page 263]).
For general n we thus obtain v∗(n) > 2n − 2. An upper bound on v∗(n) follows directly from
Theorem 2, i.e. v∗(n) ≤ v(n) = 3n+ o(n).
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Appendix A.

Here we show that two versions of the problem studied in this paper are equivalent. Specifically
we show that v(n) = v1(n), where v(n) and v1(n) are as defined in the introduction.

First we show that v(n) ≥ v1(n) holds. Let A1, . . . , An be equivalence relations with | ker(Ai)| ≥
v(n) for each i ∈ [n]. Let Ai :=

{⋃
x∈S [x]Ai

: S ⊆ X
}

for each i ∈ [n]. It can be seen easily
that A1, . . . ,An are algebras. For each of the at least v(n) elements x ∈ ker(Ai) it holds that
{x} ∈ P(X) \ Ai . In particular, by the definition of v(n), we find a family {U1

i , U
2
i }i∈[n] such

that if Q ∈ P(X) and Q contains one of the two sets U1
i and U2

i and its intersection with the
other one is empty, then Q /∈ Ai. For every i ∈ [n], we now choose Qi ∈ Ai to be the inclusion
minimal set satisfying U1

i ⊆ Qi, and we note that U2
i ∩ Qi 6= ∅ is implied. By the minimality of

Qi, it turns out that every equivalence class of Ai that is contained in Qi needs to intersect U1
i ,

and thus there is at least one such class [zi]Ai
intersecting both U1

i and U2
i . Choosing arbitrary

elements xi ∈ [zi]Ai
∩U1

i and yi ∈ [zi]Ai
∩U2

i for every i ∈ [n] finally leads to a rainbow matching
as desired.

To prove v(n) ≤ v1(n), we need to argue that for every algebras A1, . . . ,An on a set X with at
least v1(n) pairwise disjoint sets in P(X) \ Ai, for each i ∈ [n], there is a family {U1

i , U
2
i }i∈[n] as

described earlier. To do so, for each i ∈ [n], we define equivalence relations Ai on X the equivalence
classes of which are the inclusion minimal sets in Ai. As, by the properties of an algebra, for every
set B ∈ P(X)\Ai there is at least one element b ∈ B with {b} /∈ Ai, we conclude | ker(Ai)| ≥ v1(n),
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for every i ∈ [n]. Thus, by definition of v1(n), we find a rainbow matching x1, y1, . . . , xn, yn as

described above. Now, for every i ∈ [n], let U1
i := {xi} and U2

i := {yi}. Then, whenever U ji ⊆ Q
holds for some Q ∈ P(X) and j ∈ {1, 2} we obtain [yi]Ai

= [xi]Ai
⊆ Q, by definition of Ai, and

thus Q ∩ U3−j
i 6= ∅.
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