Identifying codes and searching with balls in graphs
Kim, Y. and Kumbhat, M. and Nagy, Z.L. and Patkos, B. and Pokrovskiy, Alexey and Vizer, M. (2015) Identifying codes and searching with balls in graphs. Discrete Applied Mathematics 193 , pp. 39-47. ISSN 0166-218X.
|
Text
1405.7508.pdf - Author's Accepted Manuscript Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (380kB) | Preview |
Abstract
Given a graph G and a positive integer R we address the following combinatorial search theoretic problem: What is the minimum number of queries of the form "does an unknown vertex v∈V(G) belong to the ball of radius r around u?" with u∈V(G) and r≤R that is needed to determine v. We consider both the adaptive case when the jth query might depend on the answers to the previous queries and the non-adaptive case when all queries must be made at once. We obtain bounds on the minimum number of queries for hypercubes, the Erd\H os-Rényi random graphs and graphs of bounded maximum degree.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Business and Law > Birkbeck Business School |
Depositing User: | Alexey Pokrovskiy |
Date Deposited: | 21 Jan 2019 14:56 |
Last Modified: | 02 Aug 2023 17:47 |
URI: | https://eprints.bbk.ac.uk/id/eprint/25898 |
Statistics
Additional statistics are available via IRStats2.