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Abstract
For a graph G, its rth power Gr has the same vertex set as G, and has an edge

between any two vertices within distance r of each other in G. We give a lower bound
for the number of edges in the rth power of G in terms of the order of G and the
minimal degree of G. As a corollary we determine how small the ratio e(Gr)/e(G)
can be for regular graphs of diameter at least r.

1 Introduction

We will consider both graphs that may have loops and graphs in which loops are explicitly
forbidden. Loopless graphs will be denoted by Roman italic letters, such as “G”, while
graphs with loops allowed will be denoted by curly letters, such as “G”. For two vertices x
and y (possibly x = y) we only allow one edge between x and y. The rth power of G,
denoted Gr, is the graph with vertex set V (G), and xy an edge whenever x and y are
within distance r of each other. The diameter of a connected graph is the smallest r for
which Gr is complete. For all standard notation we refer to [5].

For a connected graph of diameter at least r, one would expect Gr to have substantially
more edges than G. In this note we examine how small the ratio e(Gr)/e(G) can be,
focusing primarily on the case when G is a regular graph.

The motivation for studying this comes from a corollary of the Cauchy-Davenport
Theorem from additive number theory which we will now state. The Cayley graph of a
subset A ⊆ Zp is constructed on the vertex set Zp. For two distinct vertices x, y ∈ Zp, we
define xy to be an edge whenever x− y ∈ A or y − x ∈ A. The following is a consequence
of the Cauchy-Davenport Theorem (usually stated in the language of additive number
theory).

Theorem 1 (Cauchy, Davenport, [1, 2]). Let p be a prime, G the Cayley graph of a set
A ⊆ Zp, and r an integer such that r < diam(G). Then we have

e(Gr)

e(G)
≥ r. (1)
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One could ask whether inequalities similar to (1) hold for more general families of
graphs. Motivated by the fact that Cayley graphs are regular, Hegarty asked this question
for regular graphs and proved the following theorem.

Theorem 2 (Hegarty, [7]). Let G be a regular, connected graph, with diam(G) ≥ 3. Then
we have

e(G3)

e(G)
≥ 1 + ε. (2)

Where ε ≈ 0.087.

The constant ε has since been improved to 1
6

by the author [8] and to 3
4

by DeVos and
Thomassé [4]. The value ε = 3

4
is optimal in the sense that there exists a sequence of

regular graphs of diameter greater than 3, Gm, satisfying e(G3
m)

e(Gm)
→ 7

4
as m → ∞ [4]. It is

natural to ask what happens for other powers of G.
For G2, Hegarty showed that no inequality similar to (2) with ε > 0 can hold for

regular graphs in general, by exhibiting a sequence of regular, connected graphs of diameter

greater than 2, Gm, satisfying e(G2
m)

e(Gm)
→ 1 as m → ∞ [7]. Goff [6] studied the 2nd power

of regular graphs further and showed that for any d-regular connected graph G such that

diam(G) > 2, we have e(G2)
e(G)

≥ 1 + 3
2d
− o

(
1
d

)
. For general d-regular connected graphs G

with diam(G) > 2, the 3
2d

term in this result cannot be replaced with λ
d

for any λ > 3
2
.

However it is shown in [6] that with the exception of two families of exceptional graphs,

we have e(G2)
e(G)
≥ 1 + 2

d
− o

(
1
d

)
for all d-regular connected graphs with diam(G) > 2.

In this note we consider all r ≥ 4 and determine how small e(Gr)
e(G)

can be for G a regular,
connected graph of diameter at least r. We prove the following theorem.

Theorem 3. Let G be a connected, regular graph, and r a positive integer such that
diam(G) ≥ r.

• If r ≡ 0 (mod 3), then we have

e(Gr)

e(G)
≥ r + 3

3
− 3

2(r + 3)
.

• If r 6≡ 0 (mod 3), then we have

e(Gr)

e(G)
≥
⌈r

3

⌉
.

The case r = 3 of Theorem 3 is due to DeVos and Thomassé [4], and will not be proved

here. Theorem 3 gives a lower bound on the ratio e(Gr)
e(G)

for regular graphs. The bounds on
e(Gr)
e(G)

in Theorem 3 are optimal in the following sense. For each r, there exists a sequence of

regular, connected graphs of diameter at least r, Gm, such that e(Gr
m)

e(Gm)
tends to the bound
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Figure 1: Graphs showing the cases “r = 8” and “r = 6” of Theorem 3 to be optimal.
The grey ovals represent complete graphs of specified order. The black lines between the
sets represent all the edges being present between them. The white cycle in the “r = 8”
case represents the removal of a single cycle passing through all the vertices in the sets it
intersects. The white matchings in the “r = 6” case represent a perfect matching being
removed from the specified sets.

given by Theorem 3 as m tends to infinity. We refer to Figure 1 for a diagram of the
sequences that we construct.

To see this for r 6≡ 0 (mod 3), we construct the following sequence of graphs Gm. Take
disjoint sets of verticesN0, ..., Nr, with |Ni| = m−1 if i ≡ 1 (mod 3) and |Ni| = 2 otherwise.
Add all the edges between Ni and Ni+1 for i = 0, 1, . . . , r−1. Add all the edges within Ni

for all i. Remove a cycle passing through all the vertices in N1∪ ...∪Nr−1. It is easy to see
that Gm is m-regular and has diameter r. If r ≡ 1 (mod 3) then |Gm| = 1

3
(rm+ 2m+ 3r)

will hold. Since Gm is m-regular, we have e(Gm) = 1
6
(rm + 2m + 3r)m. Since Gr

m is
complete, we have e(Gr

m) = 1
18

(rm + 2m + 3r)(rm + 2m + 3r − 1). This implies that
e(Gr

m)
e(Gm)

→
⌈
r
3

⌉
as m → ∞. A similar calculation can be used to show that the same limit

holds when r ≡ 2 (mod 3).
For r ≡ 0 (mod 3), we construct the following sequence of graphs Hm to show that

Theorem 3 is optimal. Take disjoint sets of vertices N0, ..., Nr+1. Let |N0| = |Nr+1| =
2m + 1, |Ni| = 1 if i ≡ 2 (mod 3), and |Ni| = 2m otherwise. Add all the edges between
Ni and Ni+1 for i = 0, 1, . . . , r. Add all the edges within Ni for all i. Delete a perfect
matching from each of the sets N2 and Nr. This will ensure that Hm is 4m-regular and
has diameter r + 1. Note that |Hm| = 1

3
(4rm + r + 12m + 6), and so we have e(Hm) =

1
6
(4rm+ r+ 12m+ 6)4m. The only edges missing from Hr

m will be between N0 and Nr+1,
so we have e(Hr

m) = 1
18

(4rm+ r+ 12m+ 6)(4rm+ r+ 12m+ 5)− (2m+ 1)2. This implies

that e(Hr
m)

e(Hm)
→ r+3

3
− 3

2(r+3)
as m→∞. This construction is a generalization of one from [4].

All the examples constructed above have their diameter close to r. If a graph G has
diameter larger than r, it seems that the bounds of Theorem 3 can be improved. Some
results in this direction have been obtained DeVos, McDonald and Scheide [3].
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The requirement of G being regular in the above theorems is quite restrictive. Follow-
ing [4], we will instead assume that G has minimum degree δ(G), and give the following
bound on e(Gr) in terms of |G| and δ(G).

Theorem 4. Let G be a connected graph, and r a positive integer such that diam(G) ≥ r.

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(
r + 3

6
− 3

4(r + 3)

)
δ(G)|G|.

• If r 6≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r
3

⌉
δ(G)|G|.

The case r = 3 of Theorem 4 is due to DeVos and Thomassé [4], and will not be proved
here. Theorem 4 easily implies Theorem 3.

2 Proof of Theorem 4

We will prove a version of Theorem 4 for graphs which may contain loops since in that
setting the proof seems more natural.

The neighbourhood of a vertex x, N(x), is defined as the set of vertices adjacent to x.
(If there is a loop at x, then N(x) will contain x itself.) The degree of x is |N(x)|. For
graphs with loops allowed, Gr is defined identically to how it was defined for loopless
graphs. Note that if G is a graph with loops allowed, then Gr always has a loop at each
vertex. For two sets of vertices X and Y , let d(X, Y ) denote the length of a shortest path
between a vertex in X and a vertex in Y . If X is a set of vertices, let N r(X) be the set of
vertices at distance at most r from X. We abbreviate N r({x}) as N r(x) and d({x}, {y})
as d(x, y).

We prove the following theorem, and then deduce Theorem 4 as a corollary. Several
ideas in the proof of Theorem 5 are taken from [4]. In particular, Claims 11 and 12 are
analogues of claims proved in [4].

Theorem 5. Let G be a connected graph, and r a positive integer such that r ≥ 6 and
diam(G) ≥ r.

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(
r + 3

6
− 3

4(r + 3)

)
δ(G)|G|+ 1

2
|G|.

• If r 6≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r
3

⌉
δ(G)|G|+ 1

2
|G|.
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Proof. For convenience, we will set δ = δ(G). If P is a path between two vertices x and y,
we say that P is a geodesic if the length of P is d(x, y). The notion of a geodesic was used
in [4], and is useful because the neighbourhood of a geodesic must be quite large. This is
quantified in the following claim.

Claim 6. Let P be a length k geodesic. Then |N(P )| ≥
(⌊

k
3

⌋
+ 1
)
δ holds.

Proof. If x0, x1, . . . , xk are the vertices of P (in the order in which they occur along the
path), then N(x0), N(x3), . . . , N(x3b k3c) are all disjoint, contained in N(P ), and of order

at least δ. This implies the result.

We now prove the case “r 6≡ 0 (mod 3)” of the theorem.
The diameter of G is at least r, so G contains a length r geodesic, P . Claim 6 implies

that the following holds:

|G| ≥ |N(P )| ≥
(⌊r

3

⌋
+ 1
)
δ ≥

⌈r
3

⌉
δ. (3)

Note that Gr contains a loop at every vertex, so we have e(Gr) =
∑

v∈V (G)
(
1
2
|N r(v)|+ 1

2

)
.

Thus to prove Theorem 5 it is sufficent to exhibit
⌈
r
3

⌉
δ elements of N r(v) for each vertex

v ∈ V (G).
Let v be a vertex in G. Suppose that there exists a length r − 1 geodesic Pv starting

from v. Then N(Pv) is contained in N r(v), giving

|N r(v)| ≥ |N(Pv)| ≥
(⌊

r − 1

3

⌋
+ 1

)
δ =

⌈r
3

⌉
δ.

The second inequality is an application of Claim 6.
Suppose that all the vertices in G are within distance r − 1 of v. In this case we have

N r(v) = V (G), which is of order at least
⌈
r
3

⌉
δ by (3). This completes the proof of the case

“r 6≡ 0 (mod 3)” of the theorem.

For the rest of the proof fix r such that r ≡ 0 (mod 3) and r ≥ 6.
If v is a vertex of G, we say that v is sufficient if |N r(v)| ≥

(
r
3

+ 1
)
δ. Otherwise we

say that v is insufficient.
The following is a useful property of insufficient vertices.

Claim 7. Let v be an insufficient vertex. Then there is some vertex at distance r + 1
from v.

Proof. Since diam(G) ≥ r, Claim 6 implies that |G| ≥
(
r
3

+ 1
)
δ. By assumption N r(v) <(

r
3

+ 1
)
δ, so v cannot be within distance r from all the vertices in the graph.

The following three claims will allow us to bound the number of insufficient vertices
in G.

Claim 8. If 2 < d(x, y) < r holds for x, y ∈ V (G), then either x or y is sufficient.
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Proof. Suppose that x is insufficient. By Claim 7, we can find a length r geodesic starting
from x with vertex sequence x, x1, x2, . . . , xr.

Suppose that N(y)∩N(xi) 6= ∅ for some i with 3 ≤ i ≤ r−3. In this case N(x), N(x3),
N(x6), . . . , N(xr) are all contained in N r(y). There are r

3
+ 1 of these, they are all disjoint

(since x, x1, x2, . . . , xr form a geodesic), and are of order at least δ. Hence y is sufficient.
Otherwise N(y) ∩ N(xi) = ∅ for all 3 ≤ i ≤ r − 3. In this case N(x), N(y), N(x3),

N(x6), . . . , N(xr−3) are all disjoint and contained in N r(x). This contradicts our initial
assumption that x is insufficient.

Claim 9. Let x and y be two vertices in G such that d(x, y) = r or d(x, y) = r+1. If there
exists a vertex z ∈ G such that d(z, x), d(z, y) ≥ r − 1, then either x or y is sufficient.

Proof. Choose any z in N r−1({x, y}) \ N r−2({x, y}. This set is nonempty by the second
assumption of the claim. We will have d(z, x), d(z, y) ≥ r− 1 and either d(z, x) = r− 1 or
d(z, y) = r− 1. Without loss of generality assume that d(z, x) = r− 1 and d(z, y) ≥ r− 1.

We will show that x is sufficient. Let x, x1, . . . , xd(x,y)−1, y be a geodesic between x
and y. For i = 1, . . . , d(x, y)− 1, the triangle inequality implies that

d(xi, z) ≥ d(x, z)− d(x, xi) = d(x, z)− i, (4)

d(xi, z) ≥ d(y, z)− d(y, xi) = d(y, z)− d(x, y) + i. (5)

Averaging (4) and (5), and use the inequalities d(z, x), d(z, y) ≥ r − 1 and d(x, y) ≤ r + 1
gives

d(xi, z) ≥
r − 3

2
. (6)

If r ≥ 9, then (6) implies that d(xi, z) ≥ 3 for all i. Hence N(x), N(z), N(x3),
N(x6), . . . , N(xr−3) are all disjoint and contained in N r(x). Hence x is sufficient.

If r = 6, then (4) and (5) imply that d(xi, z) ≥ 3 for all xi except possibly x3 or x4.
In this case N(z), N(x2) and N(x5) are all disjoint and contained in N6(x). Hence x is
sufficient.

Claim 10. If d(x, y) = r holds for x, y ∈ V (G), then either x or y is sufficient.

Proof. Suppose that x and y are insufficient. By Claim 7 there exists z ∈ V (G) such that
d(x, z) = r + 1. Let x, x1, . . . , xr−1, y be a geodesic between x and y. Since x and y are
insufficient, Claim 9 implies that we have d(z, y) < r− 1. Note that d(x, z) = r+ 1 implies
that N(z) ∩ N(xi) = ∅ for all i ≤ r − 2. Thus N(z), N(x1), N(x4), . . . , N(xr−2) are all
disjoint and contained in N r(y). This contradicts our assumption that y is insufficient.

Let X be the set of insufficient vertices in G. We define an equivalence relation “∼”
on X by letting x ∼ y if d(x, y) ≤ 2. For r ≥ 6, Claim 8 implies that this is an equivalence
relation. Let X1, . . . , Xl be the equivalence classes of ∼.

The following claim gives a lower bound on the order of G.

Claim 11. |G| ≥
(
r+3
6

)
δl

6



Proof. Claims 8 and 10 imply that d(Xi, Xj) ≥ r+ 1 for all i 6= j. If d(Xi, Xj) = r+ 1 for
some i and j, then Claim 9 implies that we have d(Xi, z) < r− 1 or d(Xj, z) < r− 1 for all
z ∈ V (G). Then, Claim 8 implies that all the vertices outside of Xi and Xj are sufficient.
This gives us two cases to consider:

(i) d(Xi, Xj) ≥ r + 2 for all i 6= j.

(ii) d(X1, X2) = r + 1.

Suppose that (i) holds (this includes the case when l = 1). For each i, choose xi to be a

vertex in Xi. Note that Nb
r
2c(xi) contains a length

⌊
r
2

⌋
geodesic, Pi. Using Claim 6 gives∣∣∣Nb r2c+1(Xi)

∣∣∣ ≥ |N(Pi)| ≥
(⌊

1

3

⌊r
2

⌋⌋
+ 1

)
δ ≥

(
r + 3

6

)
δ.

For the last inequality we are using the fact that r ≡ 0 (mod 3). Note that (i) implies that

Nb
r
2c+1(Xi) ∩Nb

r
2c+1(Xj) = ∅ for all i, j. This implies that the following holds:

|V (G)| ≥
l∑

i=1

∣∣∣Nb r2c+1(Xi)
∣∣∣ ≥ (r + 3

6

)
δl.

Suppose that (ii) holds. Using Claim 6 we obtain

|V (G)| ≥
(r

3
+ 1
)
δ =

(
r + 3

6

)
δl.

When x is insufficient, the following claim gives a lower bound on the order of N r(x).

Claim 12. Suppose that x is an insufficient vertex in the equivalence class Xi. Then,
|N r(x)| ≥ |Xi|+ r

3
δ holds.

Proof. By Claim 7, we can choose a length r geodesic from x. Let x, x1, . . . , xr be the
vertices of this geodesic. Suppose that Xi ∩ N(xj) is nonempty for some xj. Choose
y ∈ Xi ∩N(xj). Clearly j ≤ 1 must hold, since otherwise N(x), N(x3), N(x6), . . . , N(xr)
would all be contained in N r(y), contradicting that y is insufficient (since y ∈ Xi).

Hence Xi, N(x2), N(x5), . . . , N(xr−1) are all disjoint and contained in N r(x) proving
the claim.

Claims 11 and 12 are all that is needed to prove Theorem 5, as follows
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2e(Gr)−
(
r + 3

3
− 3

2(r + 3)

)
δ|G| − |G| =

∑
x∈V (G)

|N r(x)| −
(
r + 3

3
− 3

2(r + 3)

)
δ|G|

≥ 3

2(r + 3)
δ|G|+

l∑
i=1

(
|Xi|2 − |Xi|δ

)
≥ 1

4
δ2l +

l∑
i=1

(
|Xi|2 − |Xi|δ

)
=

l∑
i=1

(
|Xi|2 − |Xi|δ +

1

4
δ2
)

=
l∑

i=1

(
|Xi| −

1

2
δ

)2

≥ 0.

The first equality uses the fact that Gr contains a loop at every vertex, hence 2e(Gr) =∑
x∈V (G) |N r(x)|+ |G|. The first inequality follows from the definition of “sufficent vertex”,

Claim 12 and rearranging, while the second follows from Claim 11. This completes the
proof.

Proof of Theorem 4. Let G be a copy of G with a loop added at every vertex. Then Gr
will be isomorphic to Gr with a loop added at every vertex. Note that we have e(Gr) =
e(Gr) + |G|, and δ(G) = δ(G) + 1. Substitute these into Theorem 5 obtain the following.

• If r ≡ 0 (mod 3), then we have

e(Gr) ≥
(
r + 3

6
− 3

4(r + 3)

)
δ(G)|G|+

(
r + 3

6
− 3

4(r + 3)
− 1

2

)
|G|.

• If r 6≡ 0 (mod 3), then we have

e(Gr) ≥ 1

2

⌈r
3

⌉
δ(G)|G|+

(
1

2

⌈r
3

⌉
− 1

2

)
|G|.

Note that for r ≥ 3, both r+3
6
− 3

4(r+3)
− 1

2
and 1

2

⌈
r
3

⌉
− 1

2
are non-negative, so Theorem 4

follows.
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