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Abstract

We develop some basic tools to work with representable matroids of
bounded tree-width and use them to prove that, for any prime power q
and constant k, the characteristic polynomial of any loopless, GF (q)-
representable matroid with tree-width k has no real zero greater than
qk−1.

1 Introduction

For a graph G, the chromatic polynomial χG(λ) is an invariant which counts
the number of proper colourings of G when evaluated at a non-negative inte-
ger λ. However, the chromatic polynomial has an additional interpretation
as the zero-temperature antiferromagnetic Potts model of statistical mechan-
ics. This has motivated research into the zeros of the chromatic polynomial
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by theoretical physicists as well as mathematicians. Traditionally, the focus
from a graph theory perspective has been the positive integer roots, which
correspond to the graph not being properly colourable with λ colours. A
growing body of work has begun to emerge in recent years more concerned
with the behaviour of real or complex roots of the chromatic polynomial.
Sokal [19] proved that the set of roots of chromatic polynomials is dense
in the complex plane. In contrast, many other results show that certain
regions are free from zeros. For planar graphs, the Birkhoff–Lewis theorem
states that the interval [5,∞) is free from zeros. For more results along these
lines, we direct the reader to the work of Borgs [1], Jackson [9], Sokal [18],
Thomassen [20] and Woodall [21]. Perhaps one of the most compelling open
questions concerning real zeros is to determine tight bounds on the largest
real zero of the chromatic polynomial. One such bound is given in [18] and
depends on the maximum vertex degree. For recent surveys see [17] and [4].

In matroids, the corresponding invariant is the characteristic polynomial.
The characteristic polynomial of a loopless matroid M , with ground set E
and rank function r, is defined by

χM (λ) =
∑

F∈L
µM (∅, F )λr(E)−r(F ),

where L denotes the lattice of flats of M and µM the Möbius function of
L. When M has a loop, χM (λ) is defined to be zero. Observe that for a
loopless matroid M , χM (λ) is monic of degree r(E) and that M and its
simplification have the same characteristic polynomial.

The projective geometry of rank r over GF (q) is denoted by PG(r−1, q),
and Ur,n, where n ≥ r, denotes the uniform matroid with rank r containing
n elements. In the uniform matroid, every set of r or fewer elements is
independent. The characteristic polynomials of PG(r − 1, q) and Ur,n play
important roles in this paper, and these are easily computed. For a prime
power q, the projective geometry PG(r−1, q) has lattice of flats isomorphic
to the lattice of subspaces of the r-dimensional vector space over GF (q).
Hence it has characteristic polynomial

χPG(r−1,q)(λ) = (λ− 1)(λ− q)(λ− q2) · · · (λ− qr−1). (1)

The largest root of the characteristic polynomial for a projective geometry is
therefore qr−1. The characteristic polynomial of the uniform matroid, Ur,n,
is

χUr,n(λ) =
r−1∑

k=0

(−1)k
(
n

k

)
(λr−k − 1).
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For more background on matroid theory, we suggest that the reader
consults [15]. For the theory of the Möbius function and the characteristic
polynomial, we recommend [3, 22].

Perhaps the most compelling open question concerning real zeros in this
context is deciding whether there is an upper bound for the real roots of
the characteristic polynomial of any matroid belonging to a specified minor-
closed class. Welsh conjectured that no cographic matroid has a charac-
teristic polynomial with a root in (4,∞). This was recently disproved by
Haggard et al. in [7], and, in [10], Jacobsen and Salas showed that there
are cographic matroids whose characteristic polynomials have roots exceed-
ing five. Consequently, determining whether an upper bound exists for
the roots of the characteristic polynomials of cographic matroids remains
open. In [17], Royle conjectured that for any minor-closed class of GF (q)-
representable matroids, not including all graphs, there is a bound on the
largest real root of the characteristic polynomial. Given the situation with
cographic matroids, this is clearly a difficult conjecture to resolve in the affir-
mative. In contrast, the situation with graphic matroids has been resolved.
Thomassen [20] noted that by combining a result that he and Woodall [21]
had obtained independently with a result of Mader [12], one obtains the
following.

Theorem 1.1. Let F be a proper minor-closed family of graphs. Then there
exists c ∈ R such that the chromatic polynomial of any loopless graph G in
F has no root larger than c.

For certain minor-closed families of graphs, one can find the best possible
constant c. One such example is the class of graphs with bounded tree-width,
a concept originally introduced by Robertson and Seymour [16]. A tree-
decomposition of a graph G comprises a tree T and a collection {Xt}t∈V (T )

of subsets of V (G) satisfying the following properties.

1. For every edge uv of G, there is a vertex t of T such that {u, v} ⊆ Xt.

2. If p and r are distinct vertices in T , the vertex v is in Xp ∩Xr and q
lies on the path from p to r in T , then v ∈ Xq.

The width of a tree-decomposition is maxt∈V (T ) |Xt| − 1 and the tree-width
of a graph is the minimum width of all of its tree-decompositions. As its
name suggests, graph tree-width measures how closely a graph resembles a
tree. Matroid tree-width, which we will define later, measures how closely a
matroid resembles a tree. If a graph can be obtained by gluing small graphs
together in a tree-like structure, then it has small tree-width. Likewise, if a
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matroid can be obtained by gluing small matroids together along a tree-like
pattern, then it has small matroid tree-width. Thomassen [20] proved the
following.

Theorem 1.2. For positive integer k, let G be a graph with tree-width at
most k. Then the chromatic polynomial, χG(λ), is identically zero or else
χG(λ) > 0 for all λ > k.

Thomassen’s proof proceeded essentially as follows, using induction on
the number of vertices of G. Let G have tree-width k. Take a tree-
decomposition of width k, with notation as above. Choose s and t to be
neighbouring vertices in T . Then Xs ∩ Xt is a vertex-cut of G. One may
add edges to G with both end-vertices in Xs ∩ Xt until Xs ∩ Xt forms a
clique without altering the tree-width. Call this new graph G′. The chro-
matic polynomial of G may be written in terms of the chromatic polynomial
of graphs with fewer vertices than G having tree-width at most k and the
chromatic polynomial of G′ in such a way that one may apply induction
provided the result can be established for G′. But since G′ has a clique
whose vertices comprise a vertex-cut, the chromatic polynomial of G′ may
also be expressed in terms of the chromatic polynomials of graphs with fewer
vertices and having tree-width at most k.

In this paper, we generalize Thomassen’s useful technique to matroids.
The GF (q)-representable matroid analogue of a clique is a projective geom-
etry over GF (q). A given simple graph G sits inside a clique on V (G) in the
same way that a simple GF (q)-representable matroid M with rank r sits
inside PG(r − 1, q). In the above technique, edges are added to an “area”
of G to form a clique restriction, so that the altered graph has a clique
vertex-cut. This can be viewed as adding edges from the clique on V (G)
to the graph G to obtain a clique, across which our graph may be broken.
In this paper, we show how to add elements from PG(r − 1, q) to a certain
“area” of M in order to get a GF (q)-representable matroid with a certain
projective geometry restriction, across which our matroid may be broken.
The map that we use to break apart a matroid is a tree-decomposition, which
was established by Hlinĕný and Whittle in [8]. They developed a matroid
analogue of graph tree-width, which we define formally in Section 3.

In order to generalize Thomassen’s technique, we first develop some tools
for GF (q)-representable matroids of bounded matroid tree-width. We then
apply these tools to extend his argument to matroid tree-width, which we
shall refer to simply as tree-width when the context is clear. In this way,
we demonstrate the utility of these tools and simultaneously make progress
towards Royle’s conjecture.
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An alternative way to prove Theorem 1.2 is to combine the observation
that every graph with tree-width at most k has a vertex of degree at most k
with Lemma 4.2 below, established by Oxley for matroids and rediscovered
for the special case of graphs by Thomassen [20] and Woodall [21]. We show
that this proof technique may also be extended to representable matroids.
In fact, this technique extends to a slightly more general class of matroids,
namely matroids that exclude long line minors, which are considered in
Theorem 1.4.

It was shown in [8] that the tree-width of a matroid is at least equal to
the tree-width of each of its minors, thus the class of matroids with tree-
width at most k is closed under taking minors. The following result for such
a minor-closed class is the main result of this paper.

Theorem 1.3. For prime power q and positive integer k, let M be a GF (q)-
representable matroid with tree-width at most k. Then χM (λ) is identically
zero or else χM (λ) > 0 for all λ > qk−1.

In the case that r(M) ≤ k, Theorem 1.3 follows easily from known
results, in particular Equation (1). However, this case is not especially
interesting, because the rank of a matroid is always bounded below by its
tree-width. Our result gives a new bound for representable matroids with
high rank and low tree-width.

The requirement of representability is essential to the result. For in-
stance, the characteristic polynomial of the n-point line, U2,n, has a root
at n − 1. As U2,n has tree-width at most two, the n-point lines and their
minors form a minor-closed class of matroids with bounded tree-width that
do not have an upper bound for the roots of their characteristic polynomials.
Furthermore, the projective geometry PG(k− 1, q) has tree-width k and its
characteristic polynomial has a root at qk−1, hence the bound given is the
best possible. Lemma 3.3 contains the basic results on tree-width necessary
to justify these observations.

Given that the line U2,n is the simplest counter-example that we know
of, it is natural to consider whether GF (q)-representability is necessary, or
if excluding a long line minor from a matroid with bounded tree-width is
sufficient to bound the roots of the characteristic polynomial, as suggested
by Geelen and Nelson [5]. We show that this condition is indeed sufficient
in the following theorem. Note that, if q is a prime power, then U2,2+q is an
excluded minor for matroids representable over GF (q). Thus the following
theorem applies to a more general class of matroids than Theorem 1.3 applies
to, although the bound is different.
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Theorem 1.4. For an integer q at least two, let M be a matroid with tree-
width at most k and no minor isomorphic to U2,2+q. Then χM (λ) is identi-

cally zero or else χM (λ) > 0 for all λ > qk−1
q−1 .

Combining Theorem 1.4 with the observation that the characteristic
polynomial of U2,n has a root at n− 1 yields the following dichotomy.

Corollary 1.5. LetM be a minor-closed class of matroids having tree-width
at most k. Then eitherM contains all simple matroids of rank two, or there
exists λM such that for any loopless matroid M in M, χM (λ) > 0 for all
λ > λM.

2 The characteristic polynomial

The characteristic polynomial satisfies many identities similar to those satis-
fied by the chromatic polynomial. The following is one such identity, which
is particularly important for us.

Theorem 2.1. If e is an element of a matroid M that is neither a loop nor
a coloop, then the characteristic polynomial of M satisfies

χM (λ) = χM\e(λ)− χM/e(λ).

From Theorem 2.1, it is easy to see that a loopless matroid and its
simplification have the same characteristic polynomial. The second identity
which we will need is a special case of a result of Brylawski [2]. We first
define the generalized parallel connection of two matroids M1 and M2 with
ground sets E1 and E2, respectively, according to [15, page 441].

Let T = E1∩E2 and suppose that M1|T = M2|T . Furthermore, suppose
that clM1(T ) is a modular flat of M1 and that each element of clM1(T ) \ T
is either a loop or parallel to an element of T . Let N denote the common
restriction M1|T = M2|T . Then the generalized parallel connection across
N is the matroid PN (M1,M2) whose flats are precisely the subsets F of
E1 ∪ E2 such that F ∩ E1 is a flat of M1 and F ∩ E2 is a flat of M2.

Suppose a graph G has vertex set V and edge set E, where G = (V,E) =
(V1∪V2, E1∪E2), such that G1 = (V1, E1) and G2 = (V2, E2) are themselves
graphs. It is a well-known result that, if the graph (V1 ∩ V2, E1 ∩ E2) is
isomorphic to Kk, the complete graph on k vertices, then the chromatic

polynomial PG(λ) is equal to
PG1

(λ)PG2
(λ)

PKk
(λ) . We now state Brylawski’s result

which generalizes this result to matroids.
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Theorem 2.2 (Brylawski (1975)). Let M be a generalized parallel connec-
tion of the matroids M1 and M2 across the modular flat N . Then

χM (λ) =
χM1(λ)χM2(λ)

χN (λ)
.

3 Tree-decompositions

This section is devoted to defining matroid tree-width and developing some
techniques for considering matroids of bounded tree-width.

A tree-decomposition of a matroid M is a pair (T, τ), where T is a tree
and τ : E(M)→ V (T ) is an arbitrary mapping. For convenience, let V (T ) =
{v1, v2, . . . , v`} and let Ei = τ−1(vi) for all i in {1, 2, . . . , `}. We say that
Ei is the bag corresponding to vi. Let ci be the number of components
in T − vi and let Ti,1, Ti,2, . . . , Ti,ci denote the components in T − vi. For
j ∈ {1, 2, . . . , ci}, let Bi,j be the subset of E(M) given by {e|τ(e) ∈ V (Ti,j)}.
The vertex vi is said to display the subsets Bi,1, Bi,2, . . . , Bi,ci of E(M)−Ei.
Note that these subsets are pairwise disjoint. We say that the rank defect
of Bi,j , denoted rd(Bi,j), is equal to r(M)− r(E(M)−Bi,j). Note that this
number is the same as the size of the smallest set I ⊆ Bi,j such that all of
the elements in Bi,j − I are in the closure of E(M) − Bi,j in the matroid
M/I. Clearly I is an independent set in M . The rank defect is therefore a
measure of the amount of rank contributed to M solely by the set Bi,j . The

node width of a vertex vi, written nw(vi), is equal to r(M) −
ci∑
j=1

rd(Bi,j).

Note that in the degenerate case where |V (T )| = 1, the node width of the
single vertex of T is equal to r(M). The width of (T, τ) is the maximum
node width of all vertices in V (T ). The matroid tree-width of M , written
tw(M), is equal to the minimum width of all tree-decompositions of M .
We let v(M) be the number of vertices in the smallest tree over all of the
tree-decompositions with width equal to the tree-width of M . If (T, τ) is a
tree-decomposition of M with width equal to tw(M) and if |V (T )| = v(M),
then we say that (T, τ) is a good tree-decomposition of M .

Example. We give a sample tree-decomposition of U11,16. Due to the sym-
metry of the matroid elements, it is not necessary to label the elements of
the matroid. We have illustrated the assignment of elements into bags by
placing dots within circles. Each dot represents an element in U11,16 and
each circle represents a vertex of the tree in the tree-decomposition. The
vertices of the tree are labeled unambiguously by their names and their node
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32
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Figure 1: A sample tree-decomposition of the uniform matroid U11,16. Each
circle is labeled by the vertex of the tree that it represents. The dots inside
each circle represent the matroid elements that are in the bag corresponding
to that vertex. Each circle is also labeled with the node width of its vertex.

widths. Each dashed region indicates a subtree of the tree T and these sub-
trees comprise the connected components of the tree T\v4. For example, the
subtree T4,3 consists of the vertex set {v7, v8, v9} and edge set {v7v8, v8v9}.
As a consequence of each dashed region indicating a connected component
of T\v4, the matroid elements within the dashed regions are those of the
subsets B4,1, B4,2, B4,3 and B4,4 of E(U11,16)−E4 displayed by the vertex v4,
where E4 is the single-element bag associated with v4. To compute the node
width for v4, note that rd(B4,1) = 1 and rd(B4,2) = rd(B4,3) = rd(B4,4) = 0.
Hence nw(v4) = r(U11,16) − 1 = 10. Note that this is not an optimal tree-
decomposition of U11,16. For example, a tree-decomposition whose tree is a
path where each bag contains exactly one matroid element has width six.

In addition to that used previously in this section, we employ an alternate
use of the term “display” as follows. Let e = uw be an edge of T , let Tu
and Tw be the two components of T\e containing u and w respectively, and
let U and W be the sets of matroid elements U = {x|τ(x) ∈ V (Tu)} and
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W = {x|τ(x) ∈ V (Tw)}. We say that the edge e displays the sets U and W .
We now prove a lemma that will lend some structure to good tree-

decompositions, which we establish in the following corollary.

Lemma 3.1. Let (T, τ) be a tree-decomposition of a matroid M . Suppose
that T has an edge e = uw that displays the sets U,W ⊆ E(M), where
U ⊆ cl(W ). Then there exists another tree-decomposition (T ′, τ ′) of M
having width at most the width of (T, τ), such that |V (T ′)| < |V (T )|.
Proof. Consider T . Let T1, T2, . . . , T` be the connected components of
T\w, where u ∈ T1. Note that U = τ−1(V (T1)). Let T ′ be T\T1. We
define τ ′ such that τ ′(x) = τ(x) if x /∈ U and τ ′(x) = w if x ∈ U . Clearly,
|V (T ′)| < |V (T )|. Take s ∈ V (T ′). If s 6= w then s displays the same subsets
of E(M) in (T ′, τ ′) and (T, τ), so nw(T ′,τ ′)(s) = nw(T,τ)(s).

We conclude this proof by showing that nw(T ′,τ ′)(w) = nw(T,τ)(w). In
the original tree-decomposition, (T, τ), w displays the subsets B1, B2, . . . ,
B`, where Bi = τ−1(V (Ti)). Note that B1 = U . Whereas in (T ′, τ ′), w
displays the subsets B2, B3, . . . , B`. Since B1 = U ⊆ cl(E(M) − U), we
have rd(B1) = 0. It follows that nw(T ′,τ ′)(w) = nw(T,τ)(w), as required.

The next result follows immediately from Lemma 3.1.

Corollary 3.2. Let M be a matroid with tree-width k. If (T, τ) is a good
tree-decomposition of M , then, for every pair of subsets U and W of E(M)
displayed by an edge of T , neither r(U) nor r(W ) is equal to r(M).

For a good tree-decomposition of a matroid, the preceding result implies
that every leaf in the tree corresponds to a set of elements in the matroid
that, informally speaking, has some substance. That is, the set is not in the
closure of the rest of the elements in the matroid. In the corollary following
the next lemma, we bound the rank of such a set of elements.

The following lemma is a collection of fundamental results for tree-width
and tree decompositions. The first was proved in [8].

Lemma 3.3. Let M be a matroid. Then

(i) tw(M) ≥ tw(N) if N is a minor of M ;

(ii) tw(M) ≤ r(M), where equality holds if M is a projective geometry;
and

(iii) in any tree-decomposition with tree T , the rank of a bag is at most the
node width of the corresponding vertex, with equality holding at leaves
of T .
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Proof. Firstly, (i) was proved in [8]. For (ii), consider any tree decomposition
(T, τ) of M . By definition of node width, no vertex of T can have node
width larger than r(M), thus tw(M) ≤ r(M). In the case where M is a
projective geometry, to demonstrate that tw(M) = r(M), it is sufficient to
show that a good tree decomposition for M has just one vertex. To that end,
suppose that T has an edge that displays U ⊆ E(M) and W ⊆ E(M). Then
{U,W} partitions E(M). However, for every bipartition of the elements of
a projective geometry into sets U and W , either r(U) = r(M) or r(W ) =
r(M), and it follows from Corollary 3.2 that a good tree decomposition for
M has just one vertex.

To prove (iii), using the notation set up in our definition of tree width,
first note that since Bi,1,..., Bi,ci are a collection of pairwise disjoint subsets
of E(M), by submodularity of the rank function,

r(E(M)− (Bi,1 ∪Bi,2)) = r((E(M)−Bi,1) ∩ (E(M)−Bi,2))
≤ r(E(M)−Bi,1) + r(E(M)−Bi,2)− r(M).

By repeatedly applying submodularity, we see that

r(E(M)− (Bi,1 ∪ · · · ∪Bi,ci)) ≤
ci∑

j=1

r(E(M)−Bi,j)− (ci − 1)r(M).

Comparing the rank of the bag of matroid elements Evi associated with
vertex vi to the node width of vi, we have

r(Evi) = r(E(M)− (Bi,1 ∪ · · · ∪Bi,ci))

≤
ci∑

j=1

r(E(M)−Bi,j)− (ci − 1)r(M)

= r(M)−
ci∑

j=1

(r(M)− r(E(M)−Bi,j))

= nw(vi),

as required. In the case where vi is a leaf of T , equality holds since nw(vi) =
r(M)− rd(E(M)− Evi) = r(M)− (r(M)− r(Evi)) = r(Evi).

The next result follows immediately from Lemma 3.3.

Corollary 3.4. Take M with width-k tree-decomposition (T, τ). If v is a
vertex of T , then the set τ−1(v) has rank at most k.
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In Corollaries 3.2 and 3.4, we showed that a leaf in the tree of a good
tree-decomposition corresponds to a set of elements that has some substance,
but not too much substance. We now find a small cocircuit in the matroid,
when it is representable over a finite field.

Lemma 3.5. Let M be a simple GF (q)-representable matroid for some
prime power q and let M have tree-width k for some positive integer k.
Then M has a cocircuit with at most qk−1 elements.

Proof. Let (T, τ) be a good tree-decomposition of M . In the case where
v(M) ≥ 2, T contains a leaf w. Let Ew = τ−1(w). By Lemma 3.1, Ew is
not contained in the flat clM (E(M) − Ew). Hence this flat is contained in
a hyperplane of M , whose complement is contained in Ew. Evidently there
is a cocircuit C∗ contained in Ew. Corollary 3.4 implies that Ew has rank
at most k. As M is GF (q)-representable and simple, we know that Ew is a
restriction of PG(k− 1, q). The largest cocircuit in PG(k− 1, q) is obtained
by deleting a hyperplane, which leaves qk−1 elements. Hence |C∗| ≤ qk−1.

In the case where v(M) = 1, we have r(M) = k ≥ 1, thus M is a
restriction of PG(k − 1, q). With rank at least 1, M contains a cocircuit,
and by the same argument as above, M contains a cocircuit C∗ with |C∗| ≤
qk−1.

During the remainder of this paper, for a simple GF (q)-representable
matroid M , we denote by M q the projective geometry PG(r(M) − 1, q) of
which M is a spanning restriction. If S ⊆ E(M q) − E(M), then let MS

denote the restriction of M q to the elements of E(M) ∪ S. Take (T, τ), a
tree-decomposition of M . For edge uw in T , let U ′ and W ′ be the subsets
of E(M) displayed by uw, where τ−1(u) ⊆ U ′. Let U be the subset of
elements of M q obtained by taking the closure clMq

(U ′), and likewise, let

W = clMq
(W ′). We say that the neck of uw with respect to M q, or simply

the neck of uw when the projective geometry is clear, is the set of elements
in U ∩W . Note that the neck of each edge is a projective geometry over
GF (q). We say that the external neck of uw with respect to M q, or simply the
external neck of uw is the intersection of the neck of uw with E(M q)−E(M).

Lemma 3.6. Let (T, τ) be a tree-decomposition of M with width tw(M)
and let S be a subset of the external neck of an edge of T . Then tw(M) =
tw(MS).

Proof. Let uw be an edge of T whose neck contains S. Now MS has a tree-
decomposition (T, τ ′) obtained from (T, τ) by letting τ ′(x) = τ(x) when x ∈
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E(M) and by letting τ ′(x) = u when x /∈ E(M). Thus the decomposition
is the same except that we add the elements of S to the bag corresponding
to u. (We could equally well add them to the bag corresponding to w.)

We show that, for each edge of T , the corresponding subsets of E(M)
and E(MS) displayed by this edge have the same rank defects, and conclude
that M and MS have the same tree-width. By the definition of rank defect,
if the elements of S were added to a set B, then rdMS (B ∪ S) = r(MS) −
rMS (E(M)−B) = r(M)−rM (E(M)−B) = rdM (B). Hence the rank defect
of B in M is equal to the rank defect of B ∪ S in MS . If the elements of
S were not added to a set B that is displayed by an edge of T , then S is a
subset of the closure of E(M)−B in MS by construction. The rank defect
again remains unchanged, as rdMS (B) = r(MS)− rMS ((E(M)−B)∪ S) =
r(M)− rM (E(M)−B) = rdM (B). Therefore each vertex in T has the same
node width in (T, τ) and (T, τ ′). It follows that tw(MS) = tw(M).

Lemma 3.7. Let M be a simple GF (q)-representable matroid with tree-
decomposition having tree T . Let uw be an edge of T and suppose that
S = {s1, s2, . . . , sn} is the external neck of uw. Then,

χM (λ) = χMS (λ) +

n∑

i=1

χM{s1,s2,...,si}/si(λ). (2)

Proof. By construction, s1 is neither a loop nor a coloop of M s1 . Further-
more, si is neither a loop nor a coloop of M{s1,s2,...,si} for all i ∈ {1, 2, . . . , n}.
By Theorem 2.1, χM (λ) = χMs1/s1(λ) + χMs1 (λ). By repeated application
of Theorem 2.1,

χM (λ) = χMs1/s1(λ) + χMs1 (λ)

= χMs1/s1(λ) + χM{s1,s2}/s2(λ) + χM{s1,s2}(λ)

= χMs1/s1(λ) + χM{s1,s2}/s2(λ) + χM{s1,s2,s3}/s3(λ) + χM{s1,s2,s3}(λ)

...

= χMs1/s1(λ) + χM{s1,s2}/s2(λ) + · · ·+ χMS/sn(λ) + χMS (λ).

Thus, the lemma holds.

4 Bounds for zeros of the characteristic polyno-
mial

In this section we prove the main theorem in two ways, illustrating different
techniques each time. The first proof requires us to consider separately the
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case where v(M) = 1.

Lemma 4.1. Let M be a loopless, GF (q)-representable matroid of tree-
width k, for some prime power q and some positive integer k, with v(M) = 1.
Suppose that, if N is a loopless, GF (q)-representable matroid with tree-width
at most k and r(N) < r(M), then χN (λ) > 0 for all λ > qk−1. Then
χM (λ) > 0 for all λ > qk−1.

Proof. We may assume that M is simple. Let (T, τ) be a good tree-
decomposition of M . The single vertex in V (T ) must have node width
k. By Lemma 3.3, we have k = r(M). Let S be the set of elements in
E(M q) − E(M). As in the proof of Lemma 3.7, by repeated application
of Theorem 2.1, χM (λ) = χMs1/s1(λ) + χM{s1,s2}/s2(λ) + · · ·+ χMS/sn(λ) +

χMS (λ). By assumption, each term of this sum is positive for all λ > qk−1

with the possible exception of χMS (λ). As MS is a projective geometry with
rank r(M) = k, it follows that χMS (λ) = (λ−1)(λ−q)(λ−q2) · · · (λ−qk−1).
Thus χMS (λ) > 0 for all λ > qk−1.

The first proof of the main theorem uses basic tools from characteristic
polynomials, and exemplifies the tree-decomposition techniques established
by Hlinĕný and Whittle in [8], and further developed in this paper, to gen-
eralize Thomassen’s graph technique.

Proof of Theorem 1.3. If M has a loop, then its characteristic polynomial
is identically zero, so we may assume that M is loopless. As M and its
simplification have the same characteristic polynomial and the same tree-
width, we may assume that M is simple. We proceed by induction on
r(M). Suppose that r(M) = 1. Then M ∼= U1,1 and χM (λ) = λ − 1.
Thus χM (λ) > 0 if λ > 1, hence χM (λ) is certainly strictly positive for all
λ > qk−1.

We now assume r(M) > 1. Take (T, τ), a good tree-decomposition
of M . If T has a single vertex, then by Lemma 4.1, the result follows.
Thus, we may assume that T contains a leaf w with neighbour u. Let S =
{s1, s2, . . . , sn} be the elements in the external neck of uw. By Lemma 3.6,
tw(M) = tw(MS) and by Lemma 3.7

χM (λ) = χMS (λ) +

n∑

i=1

χM{s1,s2,...,si}/si(λ). (3)

Since M and, consequently, MS are simple, each of the matroids ap-
pearing in the sum on the right-hand side of (3) is loopless and has rank
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r(M)−1. Lemma 3.3 implies that tree-width is not increased by contracting
elements. By induction the characteristic polynomial of M{s1,s2,...,si}/si is
strictly positive for all λ > qk−1, for all i ∈ {1, 2, . . . , n}.

It remains to consider χMS (λ). Let S′ be the neck of uw, which is
contained in MS . Clearly MS |S′ ∼= PG(r′−1, q) for some r′. Let Ew be the
bag corresponding to w. Let M1 = MS |(Ew ∪S′) and M2 = MS\(Ew−S′).
Then M1|S′ = M2|S′. By [15, Corollary 6.9.6], S′ is a modular flat in M1.
By [15, Proposition 11.4.15], MS is the generalized parallel connection of
M1 and M2 across M1|S′. Since M has tree-width at most k, we know that

r′ = rMS (S′) ≤ rMS (Ew ∪ S′) = rM (Ew) ≤ k,

with the last part following from Corollary 3.4. Thus, by Theorem 2.2,

χMS (λ) =
χM1(λ)χM2(λ)

χPG(r′−1,q)(λ)
.

Using Equation (1), we see that the denominator is strictly positive for
all λ > qr

′−1. Hence it is strictly positive for all λ > qk−1. By Corollary 3.2,
since T has v(M) = v(MS) vertices, both M1 and M2 have rank less than
r(MS) = r(M). By our inductive hypothesis, both χM1(λ) and χM2(λ) are
strictly positive for all λ > qk−1. Thus χMS (λ) > 0 for all λ > qk−1, as
required.

It is also possible to generalize the second proof of Theorem 1.2, outlined
in the introduction, to matroids representable over a finite field by using the
following result of Oxley [14, Lemma 2.7].

Lemma 4.2. Let C∗ = {x1, x2, . . . , xm} be a cocircuit of M . Let Xi,j =
{x1, x2, . . . , xi−1, xi+1, . . . , xj−1} for all 1 ≤ i < j ≤ m. Then

χM (λ) = (λ−m)χM\C∗(λ) +
m∑

j=2

j−1∑

i=1

χM\Xi,j/xi,xj (λ).

A minor-closed family of matroidsM has the bounded cocircuit property
if there is a constant f(M) = f such that any simple matroid M inM has
a cocircuit of size at most f . We now apply Lemma 4.2 to any minor-closed
family of matroids with the bounded cocircuit property.

Lemma 4.3. Let M be a minor-closed family of matroids having the
bounded cocircuit property with constant f . Then for any M in M, either
χM (λ) is identically zero or χM (λ) > 0 for all λ > f .
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Proof. Let M be a matroid in M. We may assume that M is simple and
that the result is valid if r(M) = 1.

We now assume r(M) > 1 and proceed using induction on r(M).
Because M has the bounded cocircuit property, we know that M has
a cocircuit C∗ with size at most f . Let C∗ = {x1, x2, . . . , x|C∗|} and
let Xi,j = {x1, x2, . . . , xi−1, xi+1, . . . , xj−1} for 1 ≤ i < j ≤ |C∗|. By
Lemma 4.2, χM (λ) is equal to the following

(λ− |C∗|)χM\C∗(λ) +

|C∗|∑

j=2

j−1∑

i=1

χM\Xi,j/xi,xj (λ). (4)

Now r(M\C∗) = r(M)−1 and r(M\Xi,j/xi, xj) = r(M)−2, for all 1 ≤ i <
j ≤ |C∗|. By induction, each of the characteristic polynomials appearing
in (4) is either identically zero or strictly positive for λ > f . Furthermore
M\C∗ is loopless and so χM\C∗(λ) > 0 for λ > f . As |C∗| ≤ f , we conclude
that (λ− |C∗|), and hence χM (λ), is strictly positive for all λ > f .

We now give the alternate proof of Theorem 1.3.

Second proof of Theorem 1.3. Let M be the family of GF (q)-representable
matroids with tree-width at most k. Lemma 3.3 implies thatM is a minor-
closed class and Lemma 3.5 implies thatM has the bounded cocircuit prop-
erty with constant qk−1. The result now follows from Lemma 4.3.

5 Generalizing to matroids with the bounded co-
circuit property

The argument in the second proof of Theorem 1.3 may be extended to any
family of matroids with the bounded cocircuit property. We show the family
of matroids with tree-width at most k containing no U2,2+q minor is one such
family by using the following theorem of Kung [11].

Theorem 5.1. Let q be an integer at least two. If M is a simple matroid
with rank r having no U2,2+q-minor, then |E(M)| ≤ qr−1

q−1 .

Let pq be the largest prime less than or equal to q. When r is sufficiently
large, Geelen and Nelson showed that the bound on the number of elements
can be obtained by replacing q with pq in the preceding theorem. In [13],
Nelson conjectured that this improvement holds as long as r ≥ 4. If Nelson’s
conjecture holds, then the bound given in Theorem 1.4 can be improved by
replacing q with pq in the case that r(M) ≥ 4.

15



We now prove Theorem 1.4, in which we replace the representability
condition of Theorem 1.3 with the condition that M contain no long line
minor. This generalization was suggested by Geelen and Nelson [5].

Proof of Theorem 1.4. We claim that if M is simple, has tree-width at most

k and has no U2,2+q minor, then it has a cocircuit of size at most qk−1
q−1 . The

result then follows by noting that the class of matroids with tree-width
at most k having no U2,2+q minor is a minor-closed class and applying
Lemma 4.3.

Once again, we may assume that M is simple and that the claim is valid
if r(M) = 1. We proceed by induction on r(M). Take (T, τ), a good tree-
decomposition of M and vertex v ∈ V (T ) with degree at most one. Let Ev
be the bag corresponding to v and let r = r(Ev). Lemma 3.3(iii) implies
that r ≤ k. If T consists of a single vertex, then E(M) = Ev. Furthermore
Ev contains a cocircuit since r ≥ 1. Suppose then that T contains more than
one vertex. Then v is a leaf vertex. Since (T, τ) is a good tree-decomposition,
Ev is not contained in cl(E(M) − Ev) by Lemma 3.1. Thus Ev contains a
cocircuit of M .

Theorem 5.1 implies that |Ev| ≤ qr−1
q−1 ≤

qk−1
q−1 . Thus M has a cocircuit

C∗ of size at most qk−1
q−1 .

In Corollary 1.5, we completely determine whether there is a bound
on the largest real root of the characteristic polynomial of any matroid
belonging to a minor-closed family having bounded tree-width. It would
be interesting to find minor-closed classes of matroids that do not have the
bounded cocircuit property and determine bounds on the real characteristic
roots.
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