BIROn - Birkbeck Institutional Research Online

Bonin, J.E. and Chun, C. and Noble, Steven (2018) The excluded 3-minors for Vf-safe Delta-matroids. Technical Report. Birkbeck, University of London, London, UK.

Downloaded from:

Usage Guidelines:	
Please refer to usage guidelines at contact lib-eprints@bbk.ac.uk.	or alternatively

The Excluded 3-minors for Vf-safe Delta-matroids

By
Joseph E. Bonin, Carolyn Chun and Steven D. Noble

THE EXCLUDED 3-MINORS FOR VF-SAFE DELTA-MATROIDS

JOSEPH E. BONIN, CAROLYN CHUN, AND STEVEN D. NOBLE

Abstract

Vf-safe delta-matroids have the desirable property of behaving well under certain duality operations. Several important classes of delta-matroids are known to be vf-safe, including the class of ribbon-graphic delta-matroids, which is related to the class of ribbon graphs or embedded graphs in the same way that graphic matroids correspond to graphs. In this paper, we characterize vf-safe delta-matroids and ribbon-graphic deltamatroids by finding the minimal obstructions, called 3 -minors, to belonging to the class. We find the unique (up to twisted duality) excluded 3-minor within the class of set systems for the class of vf-safe delta-matroids. Geelen and Oum [17] found the 166 (up to twists) excluded minors for ribbon-graphic delta-matroids. By translating Bouchet's characterization of circle graphs to the language of 3-minors, we show that this class can also be characterized amongst delta-matroids by a set of three excluded 3-minors up to twisted duality.

1. Introduction

A set system is a pair $S=(E, \mathcal{F})$, where E, or $E(S)$, is a set, called the ground set, and \mathcal{F}, or $\mathcal{F}(S)$, is a collection of subsets of E. (All set systems in this paper have finite ground sets.) The members of \mathcal{F} are the feasible sets. We say that S is proper if $\mathcal{F} \neq \emptyset$.

A matroid M has many associated set systems with $E=E(M)$. The most important of these from the perspective of this paper has $\mathcal{F}=\mathcal{B}(M)$, the set of bases of M. Recall that the bases of a matroid satisfy the following exchange property: for any $B_{1}, B_{2} \in \mathcal{B}(M)$ and for each element $x \in B_{1}-B_{2}$, there is a $y \in B_{2}-B_{1}$ for which $B_{1} \triangle\{x, y\} \in \mathcal{B}(M)$. To get the definition of a delta-matroid, replace set differences by symmetric differences. Thus, as introduced by Bouchet in [2], a delta-matroid is a proper set system $D=(E, \mathcal{F})$ for which \mathcal{F} satisfies the delta-matroid symmetric exchange axiom:
(SE) for all triples (X, Y, u) with X and Y in \mathcal{F} and $u \in X \triangle Y$, there is
a $v \in X \triangle Y$ (perhaps u itself) such that $X \triangle\{u, v\}$ is in \mathcal{F}.
Clearly every matroid $(E(M), \mathcal{B}(M))$ is a delta-matroid.
Just as there is a mutually-enriching interplay between matroid theory and graph theory, the theory of delta-matroids has substantial connections with the theory of embedded graphs or equivalently ribbon graphs; see [13, 14]. Brijder and Hoogeboom [9, 10, 11] introduced the operation of loop complementation, which we define in the next paragraph. This operation is natural for the class of binary delta-matroids and its subclass of ribbongraphic delta-matroids. These classes are closed under loop complementation, but that is not true for the class of all delta-matroids. We investigate when loop complementation of a delta-matroid yields a delta-matroid.

For a set system $S=(E, \mathcal{F})$ and $e \in E$, we define $S+e$ to be the set system

$$
\begin{equation*}
S+e=(E, \mathcal{F} \triangle\{F \cup e: e \notin F \in \mathcal{F}\}) \tag{1.1}
\end{equation*}
$$

[^0](As in matroid theory, we often omit set braces from singletons.) Note that $(S+e)+e=S$ and that $S+e$ is proper if and only if S is proper. It is straightforward to check that if $e_{1}, e_{2} \in E$ then $\left(S+e_{1}\right)+e_{2}=\left(S+e_{2}\right)+e_{1}$. Thus if $X=\left\{e_{1}, \ldots, e_{n}\right\}$ is a subset of E, then the set system $S+X$ is unambiguously defined by
\[

$$
\begin{equation*}
S+X=\left(\left(S+e_{1}\right)+\cdots\right)+e_{n} \tag{1.2}
\end{equation*}
$$

\]

This operation is called the loop complementation of S on X. There is a natural operation of embedded graphs, namely partial Petriality, to which loop complementation corresponds. More precisely if two embedded graphs are partial Petrials of each other then their ribbon graphic delta-matroids are related by a loop complementation [14, Section 4].

For a delta-matroid D and element $e \in E(D)$, the set system $D+e$ need not be a deltamatroid. Consider, for example, the delta-matroid $D_{3}=\left(\{a, b, c\}, 2^{\{a, b, c\}}-\{\{a, b, c\}\}\right)$. Then $D_{3}+\{a, b, c\}$ is the set system $(\{a, b, c\},\{\emptyset,\{a, b, c\}\})$. This is not a delta-matroid. In fact, it is an excluded minor for the class of delta-matroids [1].

Another operation on delta-matroids is the twist. For $A \subseteq E$, the twist of S on A, which is also called the partial dual of S with respect to A, denoted $S * A$, is given by

$$
S * A=(E,\{F \triangle A: F \in \mathcal{F}\})
$$

Note that $(S * A) * A=S$. The dual S^{*} of S is $S * E$. In contrast with loop complementation, each twist of a delta-matroid is a delta-matroid. Apart from the dual, the twists of a matroid $(E(M), \mathcal{B}(M))$ are generally not matroids, as discussed in [14, Theorem 3.4].

Two set systems are said to be twisted duals of one another if one may be obtained from the other by a sequence of twists and loop complementations. Following [11], a deltamatroid is said to be $v f$-safe if all of its twisted duals are delta-matroids. (The term vf-safe is short for 'vertex-flip safe'. Both of the terms vf-safe and loop complementation are named for operations on graphs representing binary delta-matroids [9], which we discuss in Section 5.)

Delta-matroids belonging to certain important classes are known to be vf-safe. In fact, every twisted dual of a ribbon-graphic delta-matroid is a ribbon-graphic delta-matroid [14, Theorem 2.1,Theorem 4.1], and every twisted dual of a binary delta-matroid is a binary delta-matroid [11, Theorem 8.2]. Brijder and Hoogeboom showed that quaternary matroids are vf-safe [12], although, as mentioned earlier, matroids are not closed under twists.

In the main result of this paper, Theorem 4.4 , we identify D_{3} as essentially the unique obstacle for a delta-matroid to be vf-safe. More precisely, we show that the excluded 3minors for the class of vf-safe delta-matroids within the class of set systems comprise the 28 set systems that are the twisted duals of D_{3}. These set systems are given in Tables 2-7. In the final section of the paper, we relate 3 -minors to other minor operations that have appeared in the literature, and we apply Theorem 4.4 to recast some known results using short lists of excluded 3-minors.

2. BACKGROUND

Let $S=(E, \mathcal{F})$ be a proper set system. An element $e \in E$ is a loop of S if no set in \mathcal{F} contains e. If e is in every set in \mathcal{F}, then e is a coloop. If e is not a loop, then the contraction of e from S, written S / e, is given by

$$
S / e=(E-e,\{F-e: e \in F \in \mathcal{F}\}) .
$$

If e is not a coloop, then the deletion of e from S, written $S \backslash e$, is given by

$$
S \backslash e=(E-e,\{F \subseteq E-e: F \in \mathcal{F}\})
$$

If e is a loop or a coloop, then one of S / e and $S \backslash e$ has already been defined, so we can set $S / e=S \backslash e$. Any sequence of deletions and contractions, starting from S, gives another set system S^{\prime}, called a minor of S. Each minor of S is a proper set system.

The order in which elements are deleted or contracted can matter. See [1] for an example. However, for disjoint subsets X and Y of E, if some set in \mathcal{F} is disjoint from X and contains Y, then the deletions and contractions in $S \backslash X / Y$ can be done in any order, and

$$
S \backslash X / Y=(E-(X \cup Y),\{F-Y: F \in \mathcal{F} \text { and } Y \subseteq F \subseteq E-X\})
$$

The following lemma, which is [1, Lemma 2.1], shows that all minors of a proper set system are of this type.
Lemma 2.1. For any minor S^{\prime} of a proper set system $S=(E, \mathcal{F})$, there are disjoint subsets X and Y of E such that

$$
S^{\prime}=S \backslash X / Y=(E-(X \cup Y),\{F-Y: F \in \mathcal{F} \text { and } Y \subseteq F \subseteq E-X\})
$$

Bouchet and Duchamp [3] showed that, if S is a delta-matroid and $S^{\prime}=S \backslash X / Y$, then S^{\prime} is a delta-matroid and S^{\prime} is independent of the order of the deletions and contractions.

The following definition from [9] is equivalent to that given in equations (1.1)-(1.2). Equivalence can be shown by a routine induction on $|A|$.
Definition 2.2. If $S=(E, \mathcal{F})$ is a set system and A is a subset of E, then the loop complementation of S by A, denoted by $S+A$, is the set system on E such that F is feasible in $S+A$ if and only if S has an odd number of feasible sets F^{\prime} with $F-A \subseteq F^{\prime} \subseteq F$.

Note that if $A=\{e\}$, then the feasible sets of $S+e$ that do not contain e are the same as those of S, and a set F containing e is feasible in $S+e$ if and only if one but not both of F and $F-e$ is feasible in S. That is, so long as e is not a loop or coloop,

$$
\mathcal{F}(S+e)=\mathcal{F}(S \backslash e) \cup\{F \cup e: F \in \mathcal{F}(S \backslash e) \triangle \mathcal{F}(S / e)\}
$$

If e is a loop, then $\mathcal{F}(S+e)=\mathcal{F} \cup\{F \cup e: F \in \mathcal{F}\}$. If e is a coloop, then $S+e=S$.
The twist and loop complementation operations interact in the following way. If A and B are disjoint subsets of E then $(S+A) * B=(S * B)+A$ (a two-element case check and routine induction suffice to verify this), but in general $(S * A)+A \neq(S+A) * A$. However $((S+A) * A)+A=((S * A)+A) * A$ (see [9]). It follows that there are at most six twisted duals of S with respect to a fixed set A. These relations ensure that any twisted dual of S is of the form $((S * X)+Y) * Z$ for suitably chosen subsets X, Y and Z of E with $X \subseteq Z$. The first relation is used in the proof of the following result.
Lemma 2.3. Let $S=(E, \mathcal{F})$ be a proper set system, and let a and b be distinct elements of E. Then
(i) $S+a \backslash a=S \backslash a$,
(ii) $S+a \backslash b=S \backslash b+a$, and
(iii) $S+a / b=S / b+a$.

Proof. If a is a coloop of S, then $S+a=S$, so statement (i) follows. Also, a is not a coloop of S if and only if it is not a coloop of $S+a$, in which case the feasible sets avoiding a are the same in S and $S+a$ by the definition.

For statement (ii), observe that b is a coloop of $S+a$ if and only if it is a coloop of S. When b is not a coloop of S, statement (ii) holds since for each side, the feasible sets are the sets F with $b \notin F$ for which an odd number of the sets X with $F-a \subseteq X \subseteq F$ are in \mathcal{F}. When b is a coloop of S, we need to show that $S+a / b=S / b+a$. This holds since
for each side, the feasible sets are the sets F with $b \notin F$ for which an odd number of the sets X with $(F-a) \cup b \subseteq X \subseteq F \cup b$ are in \mathcal{F}.

It is easy to check that $S^{\prime} / e=S^{\prime} * e \backslash e$, so, using statement (ii), we get statement (iii):

$$
S+a / b=((S+a) * b) \backslash b=((S * b)+a) \backslash b=((S * b) \backslash b)+a=S / b+a .
$$

The counterpart, for contractions, of statement (i) is false, as taking $S=D_{3}$ shows.

3. 3-MINORS

We introduce a third minor operation on set systems. For a proper set system S, we define $S \ddagger e$ to be the set system $(S+e) / e$. This minor operation was first defined by Ellis-Monaghan and Moffatt [15] for ribbon graphs and in an equivalent way by Brijder and Hoogeboom [10] for delta-matroids. The notation \ddagger is new, but it seems appropriate to shorten the unwieldy $+e / e$ notation. Motivation for this definition comes from two directions. First, one way to define the Penrose polynomial of a ribbon graph is by specifying a recursive relation analogous to the deletion-contraction recurrence of the chromatic polynomial with this minor operation replacing contraction. For this reason, following a suggestion of Iain Moffatt [18], we propose calling the operation Penrose contraction. Second, there is a class of combinatorial objects called multimatroids [6, 7, 8], of which tight 3-matroids are a particular subclass. Brijder and Hoogeboom [10] showed that tight 3 -matroids are equivalent (in a sense that we do not make precise here) to vf-safe deltamatroids. Tight 3 -matroids have three minor operations corresponding to deletion, contraction, and Penrose contraction in vf-safe delta-matroids.

Any sequence of the three minor operations, starting from S, gives another proper set system S^{\prime}, called a 3-minor of S. A collection \mathcal{C} of proper set systems is 3-minor closed if every 3 -minor of every member of \mathcal{C} is in \mathcal{C}. Given such a collection \mathcal{C}, a proper set system S is an excluded 3-minor for \mathcal{C} if $S \notin \mathcal{C}$ and all other 3-minors of S are in \mathcal{C}. A proper set system belongs to \mathcal{C} if and only if none of its 3 -minors is an excluded 3 -minor for \mathcal{C}. Thus, the excluded 3 -minors determine \mathcal{C}; they are the 3 -minor-minimal obstructions to membership in \mathcal{C}.

For a given class \mathcal{C}, there may be substantially fewer excluded 3 -minors than excluded minors. For instance, in [17], Geelen and Oum found 166 delta-matroids that, up to twists, are the excluded minors for ribbon-graphic delta-matroids within the class of binary deltamatroids. In contrast, in Theorem 5.8, we show that every binary matroid that does not have a twisted dual of one of three delta-matroids as a 3-minor is ribbon-graphic.

An element e is called a pseudo-loop of S if e is a loop of $S+e$. The next lemma characterizes these elements.

Lemma 3.1. For an element e in a proper set system S, the following statements are equivalent:
(i) e is a loop of $S+e$, that is, a pseudo-loop of S,
(ii) $F \cup e \in \mathcal{F}(S)$ if and only if $F \in \mathcal{F}(S)$, and
(iii) $S * e=S$.

Pseudo-loops of S are neither loops nor coloops of S. Furthermore, $S \ddagger e=S \backslash e=S / e$ if and only if e is a loop, a coloop, or a pseudo-loop of S.

Proof. The equivalence of statements (i)-(iii) is immediate from the definitions. Statement (ii) implies that pseudo-loops are neither loops nor coloops. If e is a loop of S, then $S \ddagger e=S \backslash e$ since $\mathcal{F}(S+e)=\mathcal{F}(S) \cup\{F \cup e: F \in \mathcal{F}(S)\}$; also, $S \backslash e=S / e$ by definition. If e is a coloop of S, then $S \ddagger e=S / e$ since $S+e=S$; also, $S \backslash e=S / e$ by
definition. If e is a pseudo-loop of S, then statements (i) and (ii) gives the equality. If e is not a loop, a coloop, or a pseudo-loop of S, then $S \backslash e \neq S / e$ by the failure of statement (ii) and the fact that some, but not all, sets in $\mathcal{F}(S)$ contain e.

The following two results show that one may choose the operations used to form a 3 -minor in such a way that they commute.
Lemma 3.2. Let $S=(E, \mathcal{F})$ be a proper set system, and let X, Y, and Z be pairwise disjoint subsets of E. If there is a set F with
(3.1) $F \subseteq E-(X \cup Y \cup Z)$ and $\left|\mathcal{F} \cap\left\{F^{\prime}: F \cup Y \subseteq F^{\prime} \subseteq F \cup Y \cup Z\right\}\right|$ is odd,
then the minor operations in $S \backslash X / Y \ddagger Z$ can be done in any order and a set F is feasible in $S \backslash X / Y \ddagger Z$ if and only if it satisfies Condition (3.1).
Proof. A set F meets Condition (3.1) if and only if $F \subseteq E-(X \cup Y \cup Z)$ and $F \cup Y \cup Z$ is in $\mathcal{F}(S+Z)$. If there is at least one set satisfying Condition (3.1), the remarks preceding Lemma 2.1 imply that the deletions and contractions in forming $(S+Z) \backslash X /(Y \cup Z)$ from $S+Z$ may be done in any order and a set F is feasible in $(S+Z) \backslash X /(Y \cup Z)$ if and only if it satisfies Condition (3.1). Lemma 2.3 implies that we may defer taking a loop complementation of an element in Z until just before it is contracted. The result follows.

We next show that for every 3 -minor of a proper set system, there are pairwise disjoint sets X, Y and Z satisfying Condition (3.1).
Lemma 3.3. Let S^{\prime} be a 3 -minor of a proper set system $S=(E, \mathcal{F})$. Then there are pairwise disjoint subsets X, Y, and Z of E such that $S^{\prime}=S \backslash X / Y \ddagger Z$ and there is a set F satisfying Condition (3.1).
Proof. Suppose we get S^{\prime} from S by, for each of $e_{1}, e_{2}, \ldots, e_{k}$ in turn, performing one the three minor operations, giving the sequence of minors $S_{0}=S, S_{1}, \ldots, S_{k}=S^{\prime}$. Let X be the set of elements e_{i} in $\left\{e_{1}, \ldots, e_{k}\right\}$ that satisfy at least one of the following conditions:
(1) e_{i} is a loop or a pseudo-loop of S_{i-1}, so $S_{i}=S_{i-1} \backslash e_{i}$, or
(2) e_{i} is not a coloop of S_{i-1} and $S_{i}=S_{i-1} \backslash e_{i}$.

Let Y be the set of elements e_{i} in $\left\{e_{1}, \ldots, e_{k}\right\}-X$ such that e_{i} is either a coloop of S_{i-1} or $S_{i}=S_{i-1} / e_{i}$. Note that if $e_{i} \in Y$ then it is not a loop in S_{i-1}. Finally let $Z=\left\{e_{1}, \ldots, e_{k}\right\}-(X \cup Y)$, so that Z comprises the elements e_{i} in $\left\{e_{1}, \ldots, e_{k}\right\}$ for which $S_{i}=S_{i-1} \ddagger e_{i}$ but e_{i} is not a loop, pseudo-loop or coloop. Then there is always at least one set F satisfying Condition (3.1).

Table 1 shows the result of applying one of the three minor operations that remove e after taking one of the six twisted duals, with respect to e, of a proper set system. If instead the minor operation removes a different element from that used for the twisted dual, then these operations commute.

We next show that any 3 -minor of a twisted dual of a proper set system S is a twisted dual of some 3 -minor of S. It is easy to see that the converse is also true.
Lemma 3.4. Suppose S is a proper set system and S^{\prime} is a twisted dual of S. If $S^{\prime \prime}$ is a 3-minor of S^{\prime}, then S has a 3-minor that is a twisted dual of $S^{\prime \prime}$.

Proof. There are subsets A and B of $E(S)$ such that we obtain $S^{\prime \prime}$ from S by first forming a twisted dual for each element of A and then performing one of the three minor operations for each element of B. The remarks before this lemma imply that one may reorder these

	$/ e$	$\backslash e$	$\ddagger e$
S	S / e	$S \backslash e$	$S \ddagger e$
$S * e$	$S \backslash e$	S / e	$S \ddagger e$
$S+e$	$S \ddagger e$	$S \backslash e$	S / e
$(S+e) * e$	$S \backslash e$	$S \ddagger e$	S / e
$(S * e)+e$	$S \ddagger e$	S / e	$S \backslash e$
$((S * e)+e) * e$	S / e	$S \ddagger e$	$S \backslash e$

Table 1. Interaction of minor operations and twisted duality.
operations to first deal with the elements of $A \cap B$, one by one, forming a twisted dual for an element and then a 3 -minor before moving on to the next element. According to Table 1 each of these pairs of operations may be replaced by a single 3 -minor operation. Next a 3 -minor is formed for each element of $B-A$. The resulting set system is a twisted dual of $S^{\prime \prime}$ with respect to the elements of $A-B$.

4. Characterizations by excluded 3-minors

Brijder and Hoogeboom [11] showed that the class of vf-safe delta-matroids is minorclosed. A computer search for excluded minors for this class turns up many examples with apparently little structure. The class of vf-safe delta-matroids is defined using both the twist and loop complementation operations, so it is natural to try to characterize this class using 3-minors. By Lemma 4.1 below, the class of vf-safe delta-matroids is closed under Penrose contraction, so, with the result in [11], it is closed under 3-minors. The main result of this section, Theorem 4.4, gives the excluded 3-minors for the class of vf-safe delta-matroids within the class of set systems.

Lemma 4.1. If S is $v f$-safe and $e \in E(S)$, then $S \ddagger e$ is $v f$-safe.
Proof. If S is vf-safe, then all of its twisted duals are vf-safe by definition, so $S+e$ is vf-safe. Theorem 8.3 in [11] states that every minor of a vf-safe delta-matroid is vf-safe. Thus $S \ddagger e=S+e / e$ is vf-safe.

Let

$$
S_{i}=\left(\left\{e_{1}, e_{2}, \ldots, e_{i}\right\},\left\{\emptyset,\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right\}\right)
$$

Let \mathcal{S} be the set of all twists of the set systems in $\left\{S_{3}, S_{4}, \ldots\right\}$. Let

- $T_{1}=(\{a, b, c\},\{\emptyset,\{a, b\},\{a, b, c\}\})$;
- $T_{2}=(\{a, b, c\},\{\emptyset,\{a, b\},\{a, c\},\{a, b, c\}\})$;
- $T_{3}=(\{a, b, c\},\{\emptyset,\{a\},\{a, b\},\{a, b, c\}\})$;
- $T_{4}=(\{a, b, c\},\{\emptyset,\{a\},\{a, b\},\{a, c\},\{a, b, c\}\})$;
- $T_{5}=(\{a, b, c, d\},\{\emptyset,\{a, b\},\{a, b, c, d\}\})$;
- $T_{6}=(\{a, b, c, d\},\{\emptyset,\{a, b\},\{a, c\},\{a, b, c, d\}\})$;
- $T_{7}=(\{a, b, c, d\},\{\emptyset,\{a, b\},\{a, c\},\{a, d\},\{a, b, c, d\}\})$;
- $T_{8}=(\{a, b, c, d\},\{\emptyset,\{a\},\{a, b\},\{a, c\},\{a, d\},\{a, b, c, d\}\})$.

Let \mathcal{T} be the set of all twists of the set systems in $\left\{T_{1}, T_{2}, \ldots, T_{8}\right\}$. By the following result from [1, Theorem 5.1], these are all of the excluded minors for delta-matroids within the class of set systems.

Theorem 4.2. A proper set system S is a delta-matroid if and only if S has no minor isomorphic to a set system in $\mathcal{S} \cup \mathcal{T}$.

The following lemma is key for finding the excluded 3-minors for vf-safe delta-matroids within the class of set systems.

Lemma 4.3. Let S be an excluded 3-minor for the class of $v f$-safe delta-matroids. Then S has a twisted dual that is isomorphic to a set system in $\mathcal{S} \cup \mathcal{T}$.
Proof. Such an excluded 3-minor S either is not a delta-matroid and all of its other minors are delta-matroids, or it is a delta-matroid and has a twisted dual S^{\prime} that is not a deltamatroid. In the former case S is isomorphic to a set system in $\mathcal{S} \cup \mathcal{T}$ and the lemma holds. In the latter case S^{\prime} has a minor $S^{\prime \prime}$ isomorphic to a member of $\mathcal{S} \cup \mathcal{T}$. By Lemma 3.4, S has a 3 -minor $S^{\prime \prime \prime}$ that is a twisted dual of $S^{\prime \prime}$. Therefore $S^{\prime \prime \prime}$ is not a vf-safe delta-matroid. The only 3 -minor of S that is not a vf-safe delta-matroid is S itself. Hence $S=S^{\prime \prime \prime}$ and the lemma holds.

To connect the next result with the remarks in Section 1, note that $D_{3}+\{a, b, c\}=S_{3}$.
Theorem 4.4. A proper set system is a vf-safe delta-matroid if and only if it has no 3-minor that is isomorphic to a twisted dual of S_{3}.
Proof. All proper set systems with two elements are delta-matroids, and therefore each one is vf-safe, so the twisted duals of S_{3} are excluded 3-minors for the class of vf-safe deltamatroids. By Lemma 4.3 every excluded 3-minor for the class of vf-safe delta-matroids must be a twisted dual of a set system in $\mathcal{S} \cup \mathcal{T}$. We first consider the set systems with three-element ground sets. We have $T_{1}^{*}+c=S_{3}$ and $T_{2}^{*}+\{b, c\} \simeq T_{3}+a=T_{1}$ and $T_{4}+a=T_{2}$, so every excluded 3-minor of size three is a twisted dual of S_{3}.

Lastly, we show that no other set system in $\mathcal{S} \cup \mathcal{T}$ is an excluded 3-minor. Lemma 3.4 implies that each twisted dual of an excluded 3-minor is an excluded 3-minor, so it suffices to show that each of $T_{5}, T_{6}, T_{7}, T_{8}$, and S_{n}, for $n \geq 4$, has a smaller member of $\mathcal{S} \cup \mathcal{T}$ as a 3 -minor. Indeed, $S_{n} \ddagger e_{n}=S_{n-1}$, for $n \geq 4, T_{5} \ddagger d=T_{1}, T_{6} \ddagger d=T_{8} \ddagger d=T_{2}$, and $T_{7} \ddagger d=T_{4}$.

As stated in the introduction, there are 28 twisted duals of S_{3}, up to isomorphism. These excluded 3-minors are listed in Tables 2-7.

5. 3-MINORS AND VERTEX MINORS

We now explain the link between 3 -minors and vertex minors in binary delta-matroids. Vertex minors are well-studied, but are only defined for binary delta-matroids. In contrast, the concept of a 3-minor is relatively unstudied, but is important due to its direct correlation with ribbon-graph operations and its applicability beyond binary delta-matroids. For this reason, and for completeness, we give a full explanation here. Although the key ideas presented here are not new, the link between vertex minors and 3-minors has not previously been fully described.

A delta-matroid is normal if the empty set is feasible. A delta-matroid is even if for every pair F_{1} and F_{2} of its feasible sets $\left|F_{1} \triangle F_{2}\right|$ is even. Equivalently, the sizes of all its feasible sets are of the same parity. Let M denote a symmetric binary matrix with rows and columns indexed by $[n]=\{1, \ldots, n\}$. Take $E=[n]$ and \mathcal{F} to be the collection of subsets S of $[n]$ for which the principal submatrix of M comprising the rows and columns indexed by elements of S is non-singular. Bouchet [3] showed that $D(M)=(E, \mathcal{F})$ is a delta-matroid. We call such delta-matroids basic binary. (In the literature, what we have called basic binary delta-matroids are often called graphic, but we prefer to avoid this term to prevent confusion with ribbon-graphic delta-matroids.) A delta-matroid is binary [3] if it is a twist of a basic binary delta-matroid.

It follows immediately from the definition that every basic binary delta-matroid is normal and that a basic binary delta-matroid is uniquely determined by its feasible sets of size at most two. A well-known result of linear algebra states that a symmetric matrix with an odd number of rows (and columns) and zero diagonal is singular. Consequently a basic binary delta-matroid is even if and only if it has no feasible sets of size one.

Let A be a matrix over an arbitrary field with rows and columns indexed by $[n]$, and let X be a subset of $[n]$ such that the principal sub-matrix $P=A[X]$ is non-singular. Suppose without loss of generality that $A=\left(\begin{array}{cc}P & Q \\ R & S\end{array}\right)$. Then the matrix $A * X$ is defined by

$$
A * X=\left(\begin{array}{cc}
P^{-1} & -P^{-1} Q \\
R P^{-1} & S-R P^{-1} Q
\end{array}\right)
$$

Note that if A is a symmetric binary matrix then $A * X$ is symmetric. The following result is due to Tucker [20].

Theorem 5.1. Let A be a matrix over an arbitrary field with rows and columns indexed by $[n]$, and let X be a subset of $[n]$ such that the principal sub-matrix $P=A[X]$ is nonsingular. Then for every subset Y of $[n]$, we have

$$
\operatorname{det}((A * X)[Y])=\frac{\operatorname{det}(A[X \triangle Y])}{\operatorname{det}(A[X])}
$$

In particular for any subset Y of $[n]$, the principal submatrix $(A * X)[Y]$ is non-singular if and only if the principal submatrix $A[X \triangle Y]$ is non-singular.

The following corollary is immediate.
Corollary 5.2. Suppose that A is a binary matrix, and X is a feasible set of $D(A)$. Then $D(A) * X=D(A * X)$.

See [3] for an alternative proof of this result that holds for arbitrary fields. A consequence of this corollary is that every normal twist of a basic binary delta-matroid is basic binary.

A looped simple graph is a graph without parallel edges but in which each vertex is allowed to have up to one loop. Much of the time we will forbid loops; we call such graphs loopless simple graphs. Recall that basic binary delta-matroids are completely determined by their feasible sets with size two or fewer. Clearly basic binary delta-matroids on the set $[n]$ are in one-to-one correspondence with looped simple graphs with vertex set $[n]$; likewise, even basic binary delta-matroids on $[n]$ are in one-to-one correspondence with loopless simple graphs with vertex set $[n]$.

We take adjacency matrices to always be binary. Given a looped simple graph G and its adjacency matrix A, we let $D(G)$ denote the basic binary delta-matroid $D(A)$. If X is a subset of the edges of G, then X labels a subset of the rows and columns of A, and we define $G * X$ to be the looped simple graph with adjacency matrix $A * X$.

We now consider various transformations that may be applied to G and their effect on $D(G)$.

The loop complementation operation of Brijder and Hoogeboom was first defined in terms of basic binary delta-matroids. If G is a looped simple graph and v is a vertex of G, then the loop complementation $G+v$ is formed by toggling the loop at v, that is, removing a loop if there is one at v and adding one at v if there is no loop there.

The following lemma from [9] is straightforward.
Lemma 5.3. Let G be a looped simple graph with vertex v. Then $D(G+v)=D(G)+v$.

Our next operation is local complementation. There are several variations in the definition of local complementation: see, for instance, [19]. We will only require certain cases of what is defined there. For a looped simple graph G with vertex v, let $N_{G}(v)$ denote the open neighbourhood of v, that is, the set of vertices, excluding v, that are adjacent to v in G. We will generally write N instead of N_{G} when there is no possibility of confusion. The local complementation of G at v, denoted by G^{v}, is formed by toggling the adjacencies between pairs of neighbours of v, that is, for every distinct pair x, y from the neighbourhood of v, delete edge $x y$ if x and y are adjacent in G and add edge $x y$ if x and y are not adjacent in G. Additionally, if there is a loop at v, then the loop status of every vertex in the open neighbourhood of v is toggled. In both cases, adjacencies involving one or more non-neighbours of v or v itself are unchanged and the presence or not of a loop at v is unaffected. To distinguish the two cases, it will be helpful to refer to local complementation at v as simple local complementation when v is loopless, and non-simple local complementation when there is a loop at v.

For delta-matroid D and subset $A \subseteq E(D)$, let $D \nexists A$ denote the dual pivot on A, which is equal to $D+A * A+A$. The following result is implicit in the results of [19], but is not expressed in this form.

Proposition 5.4. Let G be a loopless simple graph with vertex v. Then $D\left(G^{v}\right)=(D(G) \mp v)+$ $N(v)$.

Proof. Let A be the adjacency matrix of G. Then A is symmetric and all of its diagonal entries are zero. Notice that the simple local complementation G^{v} can be formed by adding a loop at v, performing the non-simple local complementation at v and then removing the loops added at v and all of its neighbours.

We have $D(G+v)=D(G)+v$. Assume without loss of generality that $v=1$ and let $Z=[n]-1$. Then the adjacency matrix of $G+v$ is $\left(\begin{array}{cc}1 & c \\ c^{t} & A[Z]\end{array}\right)$ for some vector c. Then it follows from Corollary 5.2 that $(D(G)+v) * v=D((G+v) * v)=D\left(A^{\prime}\right)$ where $A^{\prime}=\left(\begin{array}{cc}1 & c \\ c^{t} & A[Z]+c^{t} c\end{array}\right)$.

A diagonal entry of $c^{t} c$ is non-zero if it corresponds to a neighbour of v and an offdiagonal entry of $c^{t} c$ is non-zero if both the row and column correspond to neighbours of v. Thus $(D(G)+v) * v=D\left(G^{\prime}\right)$ where G^{\prime} is formed from G by adding a loop at v and performing the non-simple local complementation at v. Now G^{\prime} has loops at v and at all neighbours of v, so

$$
D\left(G^{v}\right)=D\left(G^{\prime}+v+N(v)\right)=D\left(G^{\prime}\right)+v+N(v)=(D(G) \bar{\not} v)+N(v)
$$

The corollary below is well-known and follows from the previous result.
Corollary 5.5. Let G be a loopless simple graph with adjacent vertices v and w. Then $D\left(\left(\left(G^{v}\right)^{w}\right)^{v}\right)=D(G) *\{v, w\}$.
Proof. We have

$$
D\left(\left(\left(G^{v}\right)^{w}\right)^{v}\right)=\left((D(G) \neq v+N(v)) \neq w+N_{G^{v}}(w)\right) \neq v+N_{\left(G^{v}\right)^{w}}(v) .
$$

It follows from the discussion before Lemma 2.3 that one may reorder the loop complement and twist operations so that those involving a particular vertex of G are done consecutively. The result follows by considering the effect of the operations involving each vertex of G separately and noting that

Figure 1. A complete set of circle graph obstructions.
(1) a common neighbour of v and w in G is a neighbour of v but not w in both G^{v} and $\left(G^{v}\right)^{w}$,
(2) a vertex other than w that is a neighbour of v but not w in G is a neighbour of both v and w in G^{v} and of w but not v in $\left(G^{v}\right)^{w}$, and
(3) a vertex other than v that is a neighbour of w but not v in G is a neighbour of both v and w in $\left(G^{v}\right)^{w}$ and of w but not v in G^{v}.

A vertex minor of a looped simple graph G is formed from G by a sequence of local complementations and deletions of vertices. It is easy to check that if v and w are different vertices of an unlooped simple graph, then $\left(G^{v}\right) \backslash w=(G \backslash w)^{v}$ and thus one may assume that all the local complementations are done first.

Perhaps the most important use of vertex minors is Bouchet's characterization of circle graphs. A chord diagram is a collection of chords of a circle. Chord diagrams are in one-toone correspondence with orientable ribbon graphs with one vertex. (For more information on ribbon graphs, see [16] or [14].) To see this think of the circle and its interior as the vertex of a ribbon graph and for each chord attach a ribbon to the vertex at the points corresponding to the endpoints of the chord. Clearly two chords intersect if and only if the corresponding ribbons e_{1} and e_{2} are interlaced, that is, as one traverses the vertex one meets an end of e_{1}, then an end of e_{2}, then the other end of e_{1}, and finally the other end of e_{2}. An unlooped simple graph is a circle graph if it is the intersection graph of the chords in a chord diagram, that is, there is a vertex corresponding to each chord and they are adjacent if and only if the chords cross. Equivalently a circle graph is the interlacement graph of an orientable ribbon graph with one vertex: it has a vertex for each ribbon and two vertices are adjacent if the corresponding ribbons are interlaced. Bouchet established the following result [5].
Theorem 5.6. An unlooped simple graph is a circle graph if and only if it has no vertex minor isomorphic to the graphs G_{1}, G_{2} or G_{3} depicted in Figure 1.

We are now ready to state the link between 3-minors and vertex minors.
Theorem 5.7. (1) Let G be a unlooped simple graph and let H be a vertex minor of G. Then $D(H)$ is a 3-minor of $D(G)$.
(2) Let D be a twisted dual of a basic binary delta-matroid and let D^{\prime} be a 3-minor of D. Then there are graphs G and G^{\prime} such that $D(G)$ and $D\left(G^{\prime}\right)$ are twisted duals of D and D^{\prime} respectively, and G^{\prime} is a vertex minor of G.

Proof. For part (1), note that a vertex minor of an unlooped simple graph is obtained by a sequence of local complementations and vertex deletions. The result follows from Proposition 5.4 and the fact that if v is a vertex of G then $D(G \backslash v)=D(G) \backslash v$.

For part (2), let F be a feasible set of D and let

$$
B=\{e \in E(D):\{e\} \in \mathcal{F}(D * F)\} .
$$

The remark following Corollary 5.2 implies that $D * F$ is basic binary, so $(D * F)+B$ is an even basic binary delta-matroid, so $(D * F)+B=D(G)$ for some unlooped simple graph G. It follows from Lemma 3.4 that there is a delta-matroid $D^{\prime \prime}$ that is a 3-minor of $D(G)$ and a twisted dual of D^{\prime}. We shall prove by induction on k that if G is an unlooped simple graph and $D^{\prime \prime}$ is a 3-minor of $D(G)$ with k fewer elements, then there is an unlooped simple graph G^{\prime} that is a vertex minor of G and such that $D\left(G^{\prime}\right)$ is a twisted dual of $D^{\prime \prime}$. The result then follows.

If $k=0$, then take $G^{\prime}=G$. Otherwise $D^{\prime \prime}$ is obtained from $D(G)$ by a sequence of k deletions, contractions and Penrose contractions. Suppose that the first operation is the deletion of v. Then take $G^{\prime \prime}=G \backslash v$, which is a vertex minor of G. Furthermore $D(G) \backslash v=D\left(G^{\prime \prime}\right)$ and $D^{\prime \prime}$ is a 3 -minor of $D\left(G^{\prime \prime}\right)$ with $k-1$ fewer edges. Hence, by induction, there is an unlooped simple graph G^{\prime} that is a vertex minor of $G^{\prime \prime}$ and hence of G, and such that $D\left(G^{\prime}\right)$ is a twisted dual of $D^{\prime \prime}$. Suppose next that the first operation is the Penrose contraction of v. Then take $G^{\prime \prime}=\left(G^{v}\right) \backslash v$. We have

$$
\begin{aligned}
D\left(G^{\prime \prime}\right) & =D\left(G^{v} \backslash v\right) \\
& =((((D(G)+v) * v)+v)+N(v)) \backslash v \\
& =((((D(G) * v)+v) * v) \backslash v)+N(v) \\
& =(((D(G) * v)+v) / v)+N(v) \\
& =(D(G) \ddagger v)+N(v) .
\end{aligned}
$$

(The last equality uses Table 1.) Now $D\left(G^{\prime \prime}\right)$ is a twisted dual of $D(G) \ddagger v$, so it has a 3 -minor $D^{\prime \prime \prime}$ with $k-1$ fewer elements that is a twisted dual of $D^{\prime \prime}$. Hence, by induction, there is an unlooped simple graph G^{\prime} that is a vertex minor of $G^{\prime \prime}$ such that $D\left(G^{\prime}\right)$ is a twisted dual of $D^{\prime \prime \prime}$ and consequently of $D^{\prime \prime}$. In the final case the first operation is the contraction of v. If v is an isolated vertex of G then v appears in no feasible set of $D(G)$ of size at most two and consequently in no feasible set of $D(G)$ of any size. Thus v is a loop of $D(G)$ and $D(G) / v=D(G) \backslash v=D(G \backslash v)$. If v is not an isolated vertex of v then let w be a neighbour of v. We have

$$
\begin{aligned}
D\left(\left(\left(G^{v}\right)^{w}\right)^{v} \backslash v\right) & =D\left(\left(\left(G^{v}\right)^{w}\right)^{v}\right) \backslash v \\
& =(D(G) *\{v, w\}) \backslash v \\
& =(D(G) / v) * w .
\end{aligned}
$$

The proof of this case is completed in a similar way to the case of Penrose contraction.
From the preceding result we obtain the following restatement of Bouchet's result, determining the three binary delta-matroids that are the excluded 3-minors for ribbon-graphic delta-matroids.

Theorem 5.8. A binary delta-matroid is ribbon-graphic if and only if it has no 3-minor that is a twisted dual of $D\left(G_{1}\right), D\left(G_{2}\right)$ or $D\left(G_{3}\right)$.

Proof. If D is a binary delta-matroid and v is an element of D then D is ribbon-graphic if and only if $D+v$ is ribbon graphic, because it follows from Theorem 4.1 of [14] that if R is a ribbon graph with $D=D(R)$ then $D+v$ is the delta-matroid corresponding to the ribbon graph formed from R by applying a half-twist to v. Let

$$
B=\{e \in E(D):\{e\} \in \mathcal{F}(D)\} .
$$

Then $D+B$ is even and, furthermore, $D+B$ is ribbon-graphic if and only if D is ribbongraphic. Now $D+B=D(G)$ where G is an unlooped simple graph. Bouchet's Theorem 5.6 states that G is a circle graph if and only if G has no vertex minor isomorphic to G_{1}, G_{2} or G_{3}. Equivalently $D+B$ is ribbon-graphic if and only if it has no 3-minor that is a twisted dual of $D\left(G_{1}\right), D\left(G_{2}\right)$ or $D\left(G_{3}\right)$. As $D+B$ is a twisted dual of D, the result follows.

We close by presenting excluded 3-minor results for the classes of binary delta-matroids and ribbon graphic delta-matroids that follow from Theorem 4.4. Bouchet [4] proved that every minor of a binary delta-matroid is binary and gave the following excluded-minor characterization of binary delta-matroids.

Theorem 5.9. A delta-matroid is binary if and only if it does not have a minor isomorphic to any of the following five delta-matroids or their twists.
(1) $B_{1}=(\{a, b, c\},\{\emptyset,\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\})$;
(2) $B_{2}=S_{3}+\{a, b, c\}$;
(3) $B_{3}=(\{a, b, c\},\{\emptyset,\{b\},\{c\},\{a, b\},\{a, c\},\{a, b, c\}\})$;
(4) $B_{4}=(\{a, b, c, d\},\{\emptyset,\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}\})$;
(5) $B_{5}=(\{a, b, c, d\},\{\emptyset,\{a, b\},\{a, d\},\{b, c\},\{c, d\},\{a, b, c, d\}\})$.

We obtain corollaries of this result characterizing binary delta-matroids in terms excluded 3-minors.
Corollary 5.10. A vf-safe delta-matroid is binary if and only if it has no 3-minor that is a twisted dual of B_{1}.

Proof. Theorem 8.2 of [11] states that every twisted dual of a binary delta-matroid is a binary delta-matroid. In particular every binary delta-matroid is vf-safe. Moreover, every 3 -minor of a binary delta-matroid is binary. The delta-matroid B_{1} is vf-safe and all of its 3 -minors are binary. Thus all of its twisted duals are excluded 3 -minors for the class of binary delta-matroids.

Suppose that D is a vf-safe delta-matroid that is not binary. Then Theorem 5.9 implies that D has a minor isomorphic to a twist of B_{i} for $1 \leq i \leq 5$. The delta-matroid B_{2} is not vf-safe and $B_{4} \ddagger d=B_{2}$, so D has no minor isomorphic to a twist of B_{2} or of B_{4}. Furthermore $\left(B_{3}+a\right)^{*}=B_{1}$, and $B_{5} \ddagger d \simeq B_{3}$. Thus D has a 3 -minor that is isomorphic to a twisted dual of B_{1}.

By combining this result with Theorem 4.4, we obtain the following.
Corollary 5.11. A proper set system is a binary delta-matroid if and only if it has no 3 -minor that is a twisted dual of B_{1} or S_{3}.

Finally we combine the last two results with Theorem 5.8.
Corollary 5.12. A proper set system is a ribbon graphic delta-matroid if and only if it has no 3-minor that is a twisted dual of $B_{1}, S_{3}, D\left(G_{1}\right), D\left(G_{2}\right)$ or $D\left(G_{3}\right)$.

6. Appendix: The twisted duals of S_{3}

As proved in Theorem 4.4, these twisted duals of S_{3} are the excluded 3-minors for vf-safe delta-matroids.

\[

\]

TABLE 2. All twists of S_{3} up to isomorphism.

TABLE 3. All twists of $S_{3}+\{a\}$ up to isomorphism. Dual pairs are side by side.

$\emptyset \begin{aligned} & \{a\} \\ & \{b\}\end{aligned} \quad\{a, b\} \quad\{a, b, c\}$	$\left.\emptyset \quad \begin{array}{ccc}\{c\}\end{array} \begin{array}{l}\{a, c\} \\ \{b, c\}\end{array}\right\}\{a, b, c\}$
$S_{3}+\{a, b\}$	$\left(S_{3}+\{a, b\}\right)^{*}$
	$\begin{array}{lll}\{a\} & \{a, c\} \\ \{c\} & \{b, c\} & \{a, b, c\}\end{array}$
$\left(S_{3}+\{a, b\}\right) *\{a\}$	$\left(S_{3}+\{a, b\}\right) *\{b, c\}$
$\{c\}$ $\{a, b\}$ $\{a, c\}$ $\{b, c\}$$\quad\{a, b, c\}$	$\emptyset \begin{aligned} & \{a\} \\ & \{b\} \\ & \{c\} \end{aligned} \quad\{a, b\}$
$\left(S_{3}+\{a, b\}\right) *\{c\}$	$\left(S_{3}+\{a, b\}\right) *\{a, b\}$

Table 4. All twists of $S_{3}+\{a, b\}$ up to isomorphism. Dual pairs are side by side.

Table 5. All twists of $S_{3}+\{a, b, c\}$ up to isomorphism. Dual pairs are side by side.

$\{a\}$	$\{a, b\}$ $\{b, c\}$$\quad\{a, b, c\}$	$\emptyset \begin{aligned} & \{a\} \\ & \{c\}\end{aligned}$	$\{b, c\}$
$\left(S_{3} *\{a\}\right)+\{a, b\} \quad\left(\left(S_{3} *\{a\}\right)+\{a, b\}\right)^{*}$			
$\emptyset \quad\{b\} \quad\{b, c\} \quad\{a, b, c\}$			
$\left(\left(S_{3} *\{a\}\right)+\{a, b\}\right) *\{a\}$			
$\begin{array}{ll}\{a\} & \{a, b\} \\ \{c\} & \{a, c\}\end{array}$			
$\left(\left(S_{3} *\{a\}\right)+\{a, b\}\right) *\{b\}$			

TABLE 6. All twists of $\left(S_{3} *\{a\}\right)+\{a, b\}$ up to isomorphism. Dual pairs are side by side.

$$
\left.\right]
$$

TABLE 7. All twists of $\left(S_{3} *\{a\}\right)+\{a, b, c\}$ up to isomorphism. Dual pairs are side by side.

References

[1] J. Bonin, C. Chun, and S. Noble, Delta-matroids as subsystems of sequences of Higgs lifts. Preprint.
[2] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Program. 38 (1987) 147-159.
[3] A. Bouchet. Representability of Δ-matroids. Combinatorics (Eger, 1987), Colloq. Math. Soc. János Bolyai, 52, North-Holland, Amsterdam, (1988) 167-182.
[4] A. Bouchet. Representability of delta-matroids over $G F(2)$. Linear Algebra and Its Applications, 78, (1991) 67-78.
[5] A. Bouchet. Circle graph obstructions. Journal of Combinatorial Theory Series B, 60 (1994) 107-144.
[6] A. Bouchet, Multimatroids I. Coverings by independent sets, SIAM J. Discrete Math. 10 (1997) 626-646.
[7] A. Bouchet, Multimatroids II. Orthogonality, minors and connectivity, Electron. J. Combin. 8 (1998) R8.
[8] A. Bouchet, Multimatroids III. Tightness and fundamental graphs, Europ. J. Combin. 22 (2001) 657-677.
[9] R. Brijder and H. Hoogeboom. The group structure of pivot and loop complementation on graphs and set systems. European Journal of Combinatorics, 32 (2011) 1353-1367.
[10] R. Brijder and H. Hoogeboom. Interlace polynomials for multimatroids and delta-matroids. European Journal of Combinatorics, 40 (2014) 142-167.
[11] R. Brijder and H. Hoogeboom. Nullity and loop complementation for delta-matroids. SIAM Journal on Discrete Mathematics, 27 (2013) 492-506.
[12] R. Brijder, and H. Hoogeboom, Quaternary matroids are vf-safe. Preprint, arXiv:1302.4415v2.
[13] C. Chun, I. Moffatt, S. D. Noble, and R. Rueckriemen, Embedded graphs and delta-matroids. Preprint, arXiv:1403.0920v2.
[14] C. Chun, I. Moffatt, S. D. Noble and R. Rueckriemen. On the interplay between embedded graphs and delta-matroids. Preprint, arXiv:1602.01306.
[15] J. A. Ellis-Monaghan and I. Moffatt. A Penrose polynomial for embedded graphs. European Journal of Combinatorics, 34 (2013) 424-445.
[16] J. Ellis-Monaghan and I. Moffatt, Graphs on surfaces: Dualities, Polynomials, and Knots, Springer, (2013).
[17] J. Geelen, S. Oum, Circle graph obstructions under pivoting. J. Graph Theory 61 (2009) 1-11.
[18] I. Moffatt. Private communication, (2017).
[19] L. Traldi. Binary matroids and local complementation, European Journal of Combinatorics, 45 (2015) 2140.
[20] A. W. Tucker. A combinatorial equivalence of matrices. Combinatorial Analysis, Proc. Symposia Appl. Math., vol. X, American Mathematical Society, Providence (1960) 129-140.
(J. Bonin) Department of Mathematics, The George Washington University, Washington, D.C. 20052, USA

E-mail address, J. Bonin: jbonin@gwu. edu
(C. Chun) Department of Mathematics, United States Naval Academy, Annapolis, MD, 21402, USA

E-mail address, C. Chun: chun@usna. edu
(S. Noble) Department of Economics, Mathematics and Statistics, Birkbeck, University of London, London WC1E 7HX, United Kingdom

E-mail address, S. Noble: s.noble@bbk.ac.uk

[^0]: Date: July 3, 2018.

