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Abstract

We employ the Schwartz and Smith (2000) model to explore yimamhics of the
UK gas markets. We discuss in detail the short-term and teng-market prices of
risk borne by the market players and how deviations from ebgukcyclical storage
affect the short-term market price of risk. Finally, we dttate an application of the
model by pricing interruptible supply contracts that arerently traded in the UK.

Keywords: Interruptible supply contracts, gas marketsyroodities, market price of
short-term and long-term risk, multi-exercise Bermudatioms, convenience yield.
JEL Classification: G12, C61.

1 Introduction

Over the last twenty years the UK natural gas market has goderdramatic changes.
Starting with the 1982 Oil and Gas Act, the British Governinggissed a succession of
laws designed to bring competition to the transmission asilbution of natural gas, ar-
eas previously monopolised by the publicly owned Britists Q&/ith the 1995 Gas Act, the
groundwork was laid for the introduction of full retail coeftion in the natural gas indus-
try, creating licensing schemes for companies to engadeeitransport and supply of gas.
This was followed in 1996 by the Network Code, a legal framewfor the relationship
between the operator of the pipeline system (the now psidtBritish Gas Transco) and
shippers, those using the pipeline system to transport gas.

Network Code was designed to provide a set of market-basettanesms to ensure
the optimal operation of the UK gas pipeline system by TranSuccessfully and safely
running a gas pipeline system is a complex task. The systenatgy has to carefully mon-
itor and control the system intake (gas injected into thelpiye system by producers) the
system off-take (gas withdrawn from the system by end-Jisers the physical transporta-
tion of the gas around the whole national network. This isedmmmaintain an equilibrium
between instantaneous supply and demand for natural gas @dtious Local Distribution
Zones throughout the country, and maintain system pressuteuality.



A shipper running an imbalance, either injecting or witlwdray more gas than it is
contracted to, imposes a cost on other users of the systerdisdourage the externality
caused by these imbalances, the Network Code allows Traosegpose severe balancing
penalties on shippers found to be breaching a certain taderigvel. The resulting price is,
often significantly, above the market price for gas when ttipper is short gas and below
the market price when the shipper is long.

This balancing mechanism requires the system operator podséded with an up-to-
date market price of natural gas on which to base the balgmpeioe. Before deregulation,
gas had overwhelmingly been sold to end-users on long-tentracts with terms agreed
upon in October of a given year. However, under the new syssemaller independent
end-user suppliers entered the market often purchasing 28Ke-or-pay contracts from
producers. This created a demand for short-term contracts to allow névaets to meet
their balancing needs, selling their surpluses back to t&et. As a result, a highly liquid
spot market for gas developed. On January 31st, 1997 stiisddrgas futures contracts
were launched on London’s International Petroleum Exchdog delivery via a virtual
system hub, the National Balancing Point (NBP). This alldvia a system-wide trading
point and a national spot market needed for the purpose ahbalg.

The development of the UK gas markets exposes participadiffierent types of risks.
One way in which market participants may manage their exgosuprice and volume
fluctuations is by buying or selling instruments written asgOne of the most common
and important types of these contracts has been the intdreigupply contract, which
gives the gas supplier the right to cease supplying his met®with gas for a finite number
of days throughout the life of the contract.

The contribution of this article is twofold. First, we empl&chwartz and Smith’s
model (Schwartz and Smith 2000) to explore the dynamicseofil natural gas industry
to determine what economic factors influence spot and fahweaces. Given the idiosyn-
crasies of the storage facilities in the UK gas markets,fangple the constraints on inflow
and outflow, we argue that the relationship between the gbort market price of risk and

1Take-or-pay means the buyer of gas commits to buying a setedoantract quantity for which he or she
is obliged to pay, but if all the gas is not required there i®hlgation to take it. This is sometimes referred
to as a ‘buyer’s option’ agreement as the buyer has the ofwiitake the gas or not.



storage is, to a large extent, determined by deviations grpected seasonal storage lev-
elsrather than absolute levels. Second, we price interrugsibpply contracts using actual
contracts traded in the UK as a basis (E.ON Energy 2005).

The rest of this article is structured as follows. SectiorisZuksses the UK gas market
and motivates the choice of model. Section 3 proposes a spad¢lmdriven by short-term
and long-term shocks, plus a seasonal component, undeth@ogiysical and risk-neutral
measure. Section 4 discusses the estimation of the pananfietehe model. Section 5
prices standard UK interruptible supply gas contracts.aljinsection 6 concludes and
discusses further work.

2 Spot Prices, Forward Curves, Risk Premia and Conve-
nience Yield

In this section we discuss the UK spot and forward data and¢dheection between the
two. Although earlier data is available we will use spot dedan March 2003 to Jan 2006.
This is because in 1998, the Interconnector, a large pipelamnecting the UK gas entry
beach Bacton to the Belgian port of Zeebrugge, came onlmeatiog a link between the
UK and Continental gas markets. Once these markets hadedljissthe new setup, UK
prices became heavily determined by the factors that datedhthe European gas price
such as the oil market. This structural change means tharéh2000 data will no longer
be relevant to the current market.

In Figure 1 we can see the UK NBP Day-Ahead price from March3260wards.
The path can be seen to include a long-term upward drift, soseh component (high in
the winters and low in the summers) and random shocks thouighrhe peaks in spot
prices coincide with the coldest periods of each year'savjntsually occurring in January
but occurring during March for 2005. They point to the facittthe seasonality in spot
gas prices is driven heavily by weather conditions, esfigérathe winter. In the winter
months, the colder weather increases the demand for gasmddaim households and
businesses, as well as producing adverse conditions fduption and supply from the gas
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Figure 1: Weekday Day-Ahead NBP gas prices: March 2003-0a6 2

fields in the North Sea. These combine to cause tight supplgamand conditions, which
is reflected in higher winter spot prices.

Furthermore, to value derivatives, such as interruptibletracts, we have to be able
to model the spot price process under the risk-neutral meastihis naturally requires
understanding the market’s attitude to risk, as well as theevit places on it. In the
absence of a complete market this will have to be estimatezbbgrving the quoted price
of derivatives where risk will already have been accounted fThe simplest and most
liquidly traded natural gas contingent claims are forwardtracts.

Forwards curves in contango, ie positively sloped jrare associated with times when
supplies are plentiful. We can see in Figure 2 that in Junéotiweard curves are in contango
going into the winter quarters. In the winter quarters theveuhen shifts into backwarda-
tion, ie negatively sloped iir, going into the summer. The market can be seen to place a
premium on ownership of gas in the winter relative to owngr&h the coming summer,
ownership coming from production or from gas held in storagkee marked seasonality
in the forward curve prompts the question from where doesgfeémium come? Looking
beyond the seasonal fluctuations we can also see that thedl®lepe of the curve is back-
wardated, a fact that might point to the effect of long-teisk exposure on prices. We will
address the matter of long-term risk first.
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Figure 2: Quarter forward curves late-2004

The theory of normal backwardation, originally postulabydkeynes (1930), moved
away from traditional backwardation and contango by gsiiftihe emphasis away from
whether forward prices are above or below the current spoe (&, and on to how forward
prices relate t@xpecteduture spot prices, under the physical meadtiréle investigated
this relationship by linking spot forecasts to forward pg¢hrough a forward risk premium,
T8 = EF [ST} —F(t,T), whereEf is the expectation operator with respect to the physical
measure with information up until timteandF (t, T) is the price of the forward at time
with deliveryT. When this risk premium is positive then forward prices a®t expected
spot prices and the forward curve is said to be normally bac#tated. If the premium is
instead negative, placing forward prices above expectetisjres, then the curve is said
to be in normal contangd.

Observing the steady backwardated trend in the forwardecue can theorise as to
what state the UK gas market is in over the medium and longs;tera year or longer into
the future. For example, if it is assumed that market coogtiare generally the same from
year to year, and that expected spot prices will stay at lbydhd same levels across time,
then it would seem that since the forward curve is actualokbardated, the risk premium

2In the literature the forward risk premium is also defineFésT) — Ef [Sr].



must be positive and must increase in magnitude with thettheoigexpiry of the forward
contract, a situation consistent with normal backwardhatio

Normal backwardation such as the one that seems to occug loKhgas market can be
explained through long-run market structure and hedgimgeshels. As a result of the large
sunk costs inherent to energy production due to explorapoomduction and processing,
gas producers have effectively “purchased” their supgtiea long period in advance. For
example Gazprom’s recently developed Yuzhno-Russkoy@ ifieSiberia by itself holds
enough gas to supply the entire UK market for fourteen yess,Cahill and Gismatullin
(2005). It is natural, therefore, that producers would wskell very long-dated forwards
to reduce their exposure to adverse changes in the equilibgas price over this time.
Wholesale gas consumers, on the other hand, do not havedoneime sunk costs to cover
and therefore only require shorter-term hedges, purchasimual or biannual contracts.
Therefore, although the hedging demand for customers Wwitt-germ positions decreases
as the maturity of the forward increases, the hedging derafpbducers with long-dated
gas exposures does not. This means that these hedges havprtwvided by speculators
who demand a risk premium as compensation for supplying whegsentially insurance
for producers.

Although the risk of long-run changes in price can be exachared evaluated through
a Keynesian forward risk premium, short-term price risk traesapproached differently.
This is due to the fact that natural gas storage, practicaigvailable over the long-run,
can be exploited in the short-term. Traditionally the dffeicstorage has been explained
through the concept of convenience yield of storage, whiichva the application of more
traditional arbitrage arguments to forward commodity ipigc

We have to question whether storability and a determincstivenience yield are suit-
able assumptions for the UK gas market. One difficulty comas fthe fact that the rates
at which gas can be injected into and withdrawn from storggéems are limited. Often
during the main winter cold snap of the year, withdrawalsfidK gas storage sites have
been at maximum outflow, whilst the spot price has continoeddrease dramatically due
to the price inelasticity of short-term gas supply and desindParties with gas in storage
were prevented from taking full advantage of this price @éase due to limitations in the



withdrawal capability of the system. The arbitrage oppuaittes of storage therefore are
not as clear or effective as standard theory would suggest.

Further evidence against the assumptions of conveniertiéamd storage comes from
the fact that given a constant convenience yield, forwarceprolatility must be equal to
spot price volatility. This contradicts a well-known andsebved property of commodities
futures prices called th8amuelson effeatvhich states that forward price volatility will
decrease as the time to maturity of the futures contraceases. More recent papers such
as Schwartz (1997) have built the Samuelson effect into spatels by modelling the
convenience yield as a stochastic process in itself.

Dincerler, Khokher, and Simin (2004) state that althougheagdeal of what drives the
convenience yield is still undetermined, it is generallyesgl that inventory levels have a
strong impact with the marginal convenience yield decljras a function of storage. What
is not necessarily agreed upon though, is how levels of tovgmaffect the price of conve-
nience yield risk. Brennan (1958) suggests that specslatdr become wary of holding
stocks as the overall level of inventories increase, periwegry of being crowded out of
arbitrage opportunities as described earlier. To accaumthis, Brennan suggests spec-
ulators will price an increasing risk-adjustment factaoithe cost of carrying inventory.
Others such as Ribeiro and Hodges (2004) have suggestetutiteg times of comfortable
supply, when injections into storage increase, specudatolrequire lower premia in their
expected returns, so risk will be priced more cheaply asnitorg increases. We, on the
other hand, argue that it is deviations from expected sedstorage that producers take
into account. Producers must pay particular attentiondgtbfile of inflow/outflow of gas
from storage. Storage facilities tend to be at their peakaghing the winter season (first
couple of weeks of December) and are normally depleted tisxtaie end of April. Hence,
producers bear the risk of finding themselves out of line framere seasonal storage levels
need to be in order to maximise expected profits from storasy g



3 ThelLong-Term/ Short-Term Model

Working commaodity spot price models, using more than ontfatruly began with Gib-
son and Schwartz (1990) who introduced a mean-revertirdpastic convenience yield as
a second cause of uncertainty in the determination of pritles spot price itself was mod-
elled as a geometric Brownian motion (GBM). The model was g@ved numerically and
was shown to be capable of displaying the desired Samueftam, evith futures contract
volatility decreasing as maturity increased.

Schwartz (1997) continued his work with this model propgsin

dx = (u—&—%oﬁ)dt-&-md\/\&, Q)
dd% = k(a—&)dt+o2dWs, (2)

with Wy andW, correlated Wiener processes. Heenodelled the spot price with drift
and volatilityo1, whilst® modelled the stochastic convenience yield, an Orsteiretdgck
process with mean reversion rakg mean reversion level and volatility o».

A shift away from direct convenience yield modelling ocadrwhen Schwartz and
Smith (2000) devised a two-factor model in which log-spates were described as the
sum of two state variables, a mean-reverting short-termmattan componeni;, and a
long-term equilibrium price compone®t, modelled as a GBM. They proved that this
model was mathematically equivalent to the two-factor emimence model, (1) and (2),
with the short-term deviations being related to the cormece yield. This two-factor,
long-term/short-term (LT/ST) model, proved to have distiadvantages over the earlier
model as it replaced the fairly opaque concept of conveeigmed with the simpler idea
of short-term deviations from the long-run trend price. TWwe-factors were related by
the correlation between their driving processes, and ther¢he model became more ‘or-
thogonal’ than the model in (1) where the level of convengeyield d; directly affects the
evolution ofX;.



We employ the LT/ST model with an added deterministic sealitgnfunction g(t),
decomposing spot prices into three component§,4ag(t) + X: + &:. The stochastic com-
ponents evolve according to the following SDEs:

dxt = —Kxidt+oydW, 3)
dé¢; = }.lédt-l-O'EdV\é, (4)

with the two driving processe/ anddV\ correlated wittdW, dW = pysdt. This model
has also been applied by Lucia and Schwartz (2002) to thedBwanan electricity market.

A report by economic consultancy Global Insight into the WWk#dard gas market iden-
tifies the key real-world factors driving UK gas spot pric€&dpal Insight 2005). This
gives us an indication of what the three components of ourehmay represent. The re-
port claims that long-run equilibriur&, is driven not by long-run gas demand or long-run
marginal cost of gas but by crude oil prices. This featurenigarted from the Continental
market through the Interconnector pipeline because Earoges prices are index-linked
to European oil prices. The seasonality seems broadly taréftegtion of British weather
patterns, prices rising as temperatures fall with the oogetinter. Finally, short-term
variationsy; are caused by unusual weather patterns: a prolonged frostéonple; unex-
pected production and transportation problems, such as fajd experiencing technical
difficulties; or rumours of either of these reaching traderd speculators.

To price derivatives, interruptible contracts for example need to be able to choose
a risk-neutral martingale measuge equivalent to the physical measure under which we
have already defined the LT/ST model, to model the risk-adifnamics of spot prices.
In line with most of the commaodities literature (see for exgenSchwartz (1997), Cartea
and Figueroa (2005), Benth and Saltyte-Benth (2006)), wednce two parameters to
represent the market prices of risk for short-term dewregtiand long-term equilibrium
price changeshy andA; respectively. Hence,

dxt = (=KXt —Ay)dt+oyxdW, (5)
dé; = (“E —}\E)dt—f—czd\/\g, (6)
Whered\/\gzk and d\/\gk are the increments of Brownian motion under eneasure with
d\/\gZ‘d\/\gk = pyedt.
10



As we have observed, producers with production schedubasspg far into the future
bear the long-term forward price rigk, of potential price changes damaging the value of
these sunk commitments. The situation is reversed in the-sino with producers inject-
ing or withdrawing gas from storage and consumers comingatidket with price inelastic
supply and demand. This shifts the risk exposure onto coasumhose inflexible con-
sumption and balancing needs could leave them to bear tiné difrghort-run price rises in
the event of an unexpected reduction in supply. This secouarts of risk is modelled as
Ay, the short-term market price of risk.

Above we raised the debate as to how inventories affect theetvence yield risk.
The parametexy, in the LT/ST model is directly proportional to the convergeryield risk
in the two-factor Schwartz and Gibson model shown in equat{d) and (2). When the
short-run deviations from the equilibrium price rises,a@ntories will often be depleted to
take advantage of the higher price and vice-versa. We caeftite examine how changes
in inventory affect convenience yield or short-term riskotigh this relationship by making
the short-term risk become a linear functionxef

Ay = o+ Bxt. (7)

The sign of3 provides an insight into how the market reacts to changdsart-germ prices.
For example, if3 is negativex; andAy go in opposite directions. We note that with the
specification (7), the drift component of the risk-neujyabrocess becomes

—(K+B)xt —a,

hence we may write the risk-neutral process (5) as
dXt = (=KXt — a)dt+ oy dW,

wherek* = K 4 3. It is straightforward to see the effediswill have on the risk-neutral
mean reversion rate. For example, a posifivenplies a higher mean reversion rate. In
this risk-neutral world a positivg; causes a higher risk premium to be demanded, increas-
ing the magnitude of the negative drift and causing mearrsemeto occur more quickly.

A negative3 means that the risk-neutral world has slower mean revetbiam under the
physical measure, with the risk-averse customers exposgubtt-term increases in prices

11



acting as if those increases will last longer than expecateluthe physical measure. Intu-
itively, we would expect thgb < 0 since risk-averse agents will tend, as in standard pricing
theory, to give more weight to ‘unwanted’ outcomes, like @@spike, and less weight to
‘favourable’ scenarios.

Another interesting property of the market prices of risésidle the effect of inventories,
is their comparative size. The worst-case scenario for dymer concerned about long-
term equilibrium changes will be the price falling to zerd bansumers exposed to short-
run risk face potentially infinite price rises. As we can sed-igure 1 huge spot price
rises over short periods of time are not unheard of in the gaket, as shown by the three
price spikes visible in the data. These occurred in the \grae2004, 2005 and early 2006
during times of simultaneous high demand, due to cold weadine supply problems. We
would therefore expect the average magnitudkab be larger thai;. This effect could
be exacerbated by there being a partial hedge against éwnggrice changes, namely the
oil market due to the oil-index linked nature of European gas

3.1 Forward Contract Valuation

We now have the full specification of our risk-neutral spat@process, I6 = g(t) +Xx: +
&, where

dxt = (—K'Xt—0a)dt+oydW;, (8)
dé; = }J.;dt-l-O'EdV\é*, (9)
andk* =K +j3, u; = Mg — As.
This formulation allows us to value forward contraEtd, T) on the gas price by taking

the expectation of the future spot-price under the riskiaémeasure. The forward price
for delivery at maturityT, set at timd is

FILT) = exp(om+e ™ T Ux+&+AT-1)). (10

AT-t) = p;(T—t)—(l—e*K”*t))%
(/. (Tt 0_>2< 2 ki (T-t)) Pxe9x %%
+2<<1 e ) o +OHT 1) +2(1-e ).

12



4 Estimation of parameters

In this section we discuss the calibration of the paramgtexs, 3, s, As, 0y, 0 and the
correlation between the driving Wiener procesgesto recorded UK market data. We
must also approximate the other part of the spot price eeoluthe annual seasonality,

g(t).

4.1 Contract Selection

We use data from the IPE Natural Gas Futures data publishedrious Heren Reports
(Heren 2001-2006), a daily gas market newsletter. For owrds price data, we have
taken two and a half years (Aug 2003 - Jan 2006) of ddéyen Indexprices for the Month
+1, Month +2,..., Month +6 contracts, rolling the contracts over as one mentls and
another begins. As there is no true spot market for gas weusdlthe Day-Ahead contract,
the shortest maturity traded contract, as a proxy for thé @per the same periotl.

4.2 Seasonality and Risk-Neutral Parameters

When using a relatively small data set, as we are, it is ablleda estimate as few parame-
ters as possible using the Kalman filter, see Harvey (1988¢.\@y in which it is possible
to reduce the number of parameters we have to estimate ismveethe seasonality from
the data before we apply the filter as in Cartea and Figuei@@b(2 At this point we can
proceed as usual and remove the seasonality present inrgpest from the data or we can
obtain this seasonal component from forward data; we hawserhto use the latter. From
equation (10) we see that for long-dated forwards the exmeof the log-forward, as a
consequence of mean reversion, is given by

o L Pxe%x%

1
T t)— 2
205( ) +4K* K*

3In other commodities markets, such as electricity, the alagad price is also used as the spot price
Escribano, Pefia, and Villaplana (2005), Villaplana (Q0®®nth, Ekeland, Hauge, and Nielsen (2003),
Benth and Koekebakker (2005).

INF(t,T) ~o(T) + &+ K (T —t) + (11)

13
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Figure 3: Fitted seasonal curve

Therefore, to isolate the seasonal comporgiit) we first detrend the log-prices of a
long-dated forward (Month+4) and then fit a second-orderieoseries as in Cartea and
Figueroa (2005f. We note that using the seasonal comporggiit) estimated from spot

prices is also desirable, but only as long as current andotgemarket conditions do

not differ from those in the past. On the other hand, forwamdtiacts reflect market ex-
pectations of what this seasonal component will be and caist bre taken not to include
the risk-premium in the estimation of seasonality; a situmtve have avoided by using
detrended log-forwards with long maturity.

Despite removing the seasonality there are still a numbpaaimeters to estimate via
the Kalman filter:k, a, 3, kg, Ag, 0y, 0 andp. Running the Kalman filter over the futures
data will not be sufficient to give us estimates of every pat@mas the filter is unable to
distinguish between the relative sizes\gfandpg or betweerk and. The filter can only
pick up on their combined effectp; andk* respectively.

To try and differentiate between the two we will first run thalkan filter over the
futures series to obtain th@-measure/risk-neutral parameters. Following that, we wil
run the filter again over just the spot data to obtainkth@easure/real-world parameters.
When running over just the spot data we will allevandp to change and hold constant

4We could have used the M+5 or M+6 forwards but these are niqaislly traded as M+4 forwards.

14



the remaining parametersy, oz andp, as they are not affected by the change of measure.
The differences betweedi andk, H§ andpg will give general estimates @ andA;.

The Kalman filter was applied to the forward data and the teguinaximum-likelihood
(ML) risk-neutral parameters are recorded in Table 1.

K* a Oy u; O p
UKNBP | 10.18 | 1.29 1.38 | 0.15 | 0.24 | -0.33
t-statistic| 5.3839| 2.6544| 16.975| 6.3131| 4.6830| -1.6507

Table 1: Maximum-Likelihood Risk-Neutral Parameters &stiatistics

It is interesting to note that the correlation between thartsind long-term shocks is
negative, igp < 0. This result may be expected since it implies that longiterovements
do not necessarily affect, on average, short-term pricestier words, a long-term shock
that would move the spot price up is compensated by movenretite opposite direction
via negative short-term shocks. Furthermore, in the UK gaket it is generally observed
that short-term ‘blips’ in the spot market are immediateljdwed by a shift in the forward
market in the opposite direction (Global Insight 2005), evhagain supports the finding
thatp < 0.

4.3 Real-World Parametersand the Market Prices of Risk

Re-running the Kalman filter over the spot data providesdas Icertainty with respect to
the parameters, but we are able to obtain the parametersahge/n in Table 2.

K B He Ag
~ 12 - 25| ~(-15) - (-2) | ~ 0.265 - 0.275 ~ 0.07 - 0.08

Table 2: Parameter ranges under the physical measure

The spot data was sufficient to discern tRas negative but not to determine its magni-
tude® Figure 4 shows the filter-predicted short-term marketepatrisk, Ay with a range

5B was also found to be negative in an extension to Schwartz arith $2000) performed on crude oil
but there too the data wasn't sufficient to estimate its size.
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of possible3s. We can see the short-term price of risk is very high dutiegincommonly
mild weather that occurred from October to late-Februamyngduthe winter of 2004/2005.
At that time traders were reported to have believed thatlggpm store were more than
enough to comfortably withstand the rest of the winter (lHe2601-2006). This supports
our claim that the market demands a higher risk-premium vitneantory levels are higher
than seasonal storage plans would have predicted, ownstsrafjye being aware that any
further gas placed into storage might not actually be useslramark that this is a similar
finding to Brennan (1958) except that we have explained thktprice adjustment using
inventory levelgelativeto seasonal expectations, as opposeabsnlutenventory levels.

This belief, that winter was essentially ofemeant that when the prolonged Febru-
ary/March 2005 cold-spell actually came (occurring at thmes time as supply problems
in the North Sea) prices reacted violently and the expedidiyaof storage to cope with
demand was completely reversed. The British cold weathemwierored in Europe, creat-
ing high continental demand and causing Interconnectooitspo fall to almost nothing.
This meant that “No longer able to depend on continental giasviing volumes, the issue
of how much is left in UK storage also became critical&s we can see in Figure 4 the

6In early February some market commentators were actualtytingstarting putting gas back into stor-

age for the next winter.
"Heren ReportMarch 4" 2005.
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Figure 5: Predictedy with B = 3, Day ahead and M+1 forward prices

sudden, desperate need for storage supplies meant thaatketmprice of risk fell dramati-
cally, actually becoming negative at the height of the spikes demonstrates the flip-side
of our finding: that the market asks for a far lower (or evenatieg) price on risk during
periods when inventory levels are below what seasonal madeds would require them
to be. Moreover, Figure 5 shows short-term market pricesi for 3 = 3 with spot and
M+1 forward prices. Note that during periods of positive isierm shocks like in March
and Nov 2005, a large (in magnitude) negative short-ternketarice of risk (iehy < 0)
induces a relatively large positive drift in futures pricese equation (10), which seems to
be corroborated by an increase in the M+1 forward duringetpesiods.

The LT forward risk premiunmig, indicated a state of normal backwardation for UK gas
forwards withpy* being less thap. It was, as postulated, a lot smaller in magnitude than
Ay being only about 7%.
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5 Model Application: Interruptible supply contracts

Now that the spot model has been posed and calibrated weaathe t@ price interruptible
contracts and other contingent claims based on the spat pfiga$. Interruptible con-
tract$ give the supplier a set number of rights, typically 45, topenarily cease supplying
gas to their customer for periods of a day at a time. The seppéin exercise these rights
at their discretion, with exercise giving the potential ptiypf

Z = maq{§—K,O0},

wherek; is the contract price for the" day.

An interruptible contract with one interruption can theref be viewed as an Amer-
ican or Bermudan call option on the gas spot price, whilstrd@riuptible contract with
many exercises becomes a multi-exercise Bermudan optioweter, because of the im-
possibility of simultaneous exercise, only one exercisevex active at once. Previously,
attempts to value similar structures in energy marketsh stsscswing contracts, have fo-
cused on using methods such as trinomial trees (Jailletn Ramd Tompaidis 2004), but
with higher dimensional problems, such as our LT/ST modelkenthese methods very
time-consuming, especially for derivatives with large rnars of exercises. More recently
Monte Carlo methods have been applied to early-exerciddqms, first by Longstaff and
Schwartz (2001) for single-exercise problems, and theth®multi-exercise case, Mein-
shausen and Hambly (2004), Thanawalla (2005), Ibane24(2@nd Ibafiez and Zapatero
(2004). In this section we will discuss these methods anad épgply them to the pricing of
interruptible contracts.

5.1 Extended L east-Squares Monte Carlo Method

When deciding whether to exercise an American-style ogtigfiore it's maturity date the
option holder has to determine whether the curexetrcise valugz;, of the option is higher

8At the time of writing we are aware of no other studies intophieing of gas interruptible contracts.
9All terms and conditions are taking from EON Energy’s staddzntract (E.ON Energy 2005)
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than thecontinuation valueQ, of instead holding onto the option, whepeis the expected
value of the option in the next period:
E[\/Hl’xt - x] t<T

Q(x) = ,
0 t=T

whereT is the maturity-date of the option.

Knowing the continuation value of the option yields the eatunction of the option:

V(9 =max{ z(x), ()} (12)

and a natural optimal stopping-time for the option,
T = min{t : Zt>Qt}.

The central idea of the Least-Squares Monte Carlo (LSM) otktifi Longstaff and Schwartz
is to approximate this continuation value function for an &roan option (and by proxy
the value function and optimal-stopping rule of the optiosing least-squares regression.

The LSM algorithm has proved robust and successful at grioptions, Moreno and
Navas (2003). One important place it falls down though i¢ #%ait is driven by an ap-
proximation to the optimal stopping rule it can only providdower bound to the true
value. However, for the LSM to be useful to price interrufgibontracts it must be ex-
tended from the single-exercise case to the multi-exease. This extension has been
proposed and implemented by a number of authors: Dorr (2008nshausen and Ham-
bly (2004), Thanawalla (2005) and we will refer to it as Exted Least-Squared Monte
Carlo, (XLSM)1° The XLSM algorithm differs from the LSM algorithm becausstead
of approximating the optimal stopping-tintefor one exercise we must approximate the
optimal stopping-policyt= {ty,...,T1} for n separate exercises.

5.2 Approximating the Continuation Values

For the XLSM we approximate the optimal stopping rule by gklting not just one contin-
uation value function at every time-point butontinuation value function§f(x) , ..., Q(x),

10we will use the notation and algorithms of Meinshausen anuiibig (2004).
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one for every possible remaining exercise amount. The ideaigle for the multi-exercise
case becomes “exercise tm¥' exercise if the marginal continuation value of thé® exer-
cise,AQM(x), is less than the exercise-paydf;, ie:

Z(x) > AQ(x),
= Q- Q.

By once again simulating a large number of sample paths wesady to price options.
Now the XLSM algorithm works very similarly to the LSM algttm, starting at maturity,
T, and iterating backwards. At timieve have continuation value functions for=1,...,n
exercises for every time-point larger tharwith these we can calculate the optimal future
cash-flows for each path, given each of the possible amotietseeccisesn=1,...,n that
one could have at that time. We then use these to perform aéisé $guares regression, as
in the LSM algorithm, to calculat®(x), ..., Qt(x) respectively. Once we have iterated
back tot = 0 we have an approximation to the marginal continuationevafieach exercise
and therefore we have an approximation to the optimal stgppolicy. With these we are
able to value multi-exercise claims.

5.3 XLSM Lower and Upper Bounds

Because of the numerical approximation error in the LSM ah&M algorithms it desir-
able to construct both an upper and lower bound for the optadwe. With the approxi-
mated optimal stopping policy calculated in section 5.1 ae eceive a lower bound for
the option by simulating a number of price-paths and det@ngiwhat their average payoff
would have been under our sub-optimal, approximated stgpolicy.

Calculating upper bounds in LSM, Rogers (2002), and XLSMirdleausen and Ham-
bly (2004), is based around the idea that the value of Amerstgle options can be ex-
pressed as the infimum over a family of expectations. For ¢etepess we will reproduce
the main theorem presented in Rogers (2002) for the caseeséxercise options. This
provides the intuition behind the upper bound and we wilhteate the theory in the case
of the multi-exercise problem as presented in (MeinshaasdrHambly 2004) and explore
its practical implementation.
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Theorem 1 Consider the amount paid to the holder of an American optibexarcise
as an adapted proces&Z: )o<t<T, With a finite time horizon, B0, defined on a filtered
probability space(Q, O, (0)o<t<T,Q). Then the timé value, Y; of the American option
is given by:

Yo = inf E

sup (Z — M)
MeH}

o<t<T

: (13)

where H is the space of martingales, M, such tisag .1 [M;| € L' and My = 0.

This theorem provides a natural method for calculating thy@en bound. First, choose
and construct a martingal® € H3. And second, evaluat® |sug-t (Z — M) | using
numerical simulation techniques.

The multi-exercise upper bound is generated in a similar thegugh calculating the
upper bounds of the marginal values of each individual étxemVOT’”,...,AVTvl. The
theory was introduced by Meinshausen and Hambly (2004) se/tmaajor result is as fol-
lows.

Theorem 2 The marginal valua\V,"" is equal to:

AV " = irT1[f MiQL&E ue(‘l\{rTT:]i)f...Jl})(Zu —Muy) |, (14)
whereT = {0,...,T} is the set of possible exercise dates @nd 1,,_1<...<T; are stop-
ping times and Me H&. Furthermore, the infimum is attained by the optimal poli€y o
stopping timesit’, and the optimal martingale Mwith M; = 0, whose increment at time t
is given by:

M — My = AV — B AT (15)

where m is the smallest natural such thatty, 11

This theorem has the advantage of identifying the optimatingale. Given our ap-
proximated optimal stopping policy we generate an appration of the martingale used
to value the upper bound of the marginal value ofmﬁbexerciseAVOT’”, along a certain
path by means of the following algorithm:

UThere is a typo here in the original paper corrected here efteespondence with the author.
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1. Firstwe must calculate the stopping-timgs,-1, ..., T1}, along the path{ X }1-1... T,
that would have occurred under our approximated stoppitigypid we started with
n— 1 exercises.

2. Next we have to approximate the martingale increment&5h &long our path. We
use the stopping-times generated, as well as defipirg0, to choose the appropriate
continuation value function to use to calcul&¢™(X;):

Time Continuation Value Function
O0<t<Tth1 Q(x)
Tno1 <t < Tnoo n—1(x)
Tm<t <Tm1 QM(x)

Table 3: Appropriate Continuation Functions Used For Uggauinds

3. To generate the martingale increm®ht— M;_1 equation (15) requires us to approx-
imate two valuesAV;™ andE;_1[AV;"]. The first of these is given by

AV(%) = VMO =%,
where V"(x) = max{Z((X)Jermfl(X),th(X)}a

and the second is approximated by Monte Carlo simulation:
IEt 1 AVt ~ ZiAVt 7 (16)

whereX!, i = 1,... k are independent one time-step evolutions of the path condi-
tional fromX;_1.

4. Once the martingale is generated a sample of the uppedtouthent” exercise is
evaluated by taking

Ay = max  (Zu—My),
UG(-[\{Tn,l,...,Tl})

The upper bound of the exercise value is the sample mean ohbenof such samples,
each requiring its own martingale. Clearly this can becoery ¢omputationally expense
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for an option with a large number of exercises. OA%‘@” is calculatedm=1, ..., n, then
the overall upper bound is given by,

n
Vo= A (17)
m=1

54 Implementation and Benchmarking

We implemented the XLSM algorithm iIMATLAB The implementation was designed to
be reusable for different driving processes. This allowesldctual XLSM algorithm to

be tested against the results presented in Meinshausenamntlyd(2004) for an AR(1)
process with 1000 time-steps and a number of exercise asianging from 1 to 100. The
results for the lower bound of our implementation and thaltspresented in Meinshausen
and Hambly (2004) were within 8% of one another whilst the upper bound estimates were
within 1 — 2% of each other, though our implementation reported a higtaandard error

for the upper bound. The lower bound was also tested, using @8the driving process,
against American put option prices reporting prices withis% of those calculated by
finite-difference methods.

5.5 Contract Value and Interruptible Discount

The value of an interruptible contract can be expressed enafriwo ways: either as a
straight monetary value (per therm of gas) or as a gas prsmdinted relative to the cost
of a firm supply of gas. Clearly these two values have a sinmgl&ionship: a one-pence
per therm discount on a year-long gas contract is worth teegmt value of a cash-flow
of 1p for every day of that year. Taking the annual interet esr = 4.5% this means
that a penny discount is worth3%3e~"/355 ~ 357p at the start of the contraé.Given

2This is only a rough approximation and does not take into aetthe fact that no payments are made on
an interruption day.
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Figure 6: 99% Confidence interval for the price of a 45 intetian winter start contract.

a gas price for firm supplKr, and a set number of interruptions,we can calculate the
corresponding price for interruptible ga§, by finding the point where:

Vn(K|) = 357x (KF —K|).
N—— \ v

InterruptionValue DiscountValue

55.1 StrikePrice

The first contract variable we will alter is the contractlstprice K. Figure 6 shows a 99%
confidence interval for the value of an interruptible coctraith 45 exercises spanning
from October 1st 2005 to September 30th 2006. The slope ofother bound curve,
whilst seemingly linear, is not as steep as might be expeckad is because during the
typical life of a contract not every exercise available &gtually be used.

Using these results we can see what discount we would oféefitim on the price of
gas. On October 1st, 2005 the Gas-Year Ahead 05/06 contesctrading at 6G5p/per
therm. Using the results in Figure 6 we can create a confideneeval for the appro-
priate interruptible gas price. As we can see in Table 4 theetdound contract prices
suggest setting, = 60.75p/therm, a ®625p discount. The upper bound prices suggest
settingK; = 60.25p/therm, a 81625p discount. Moreover, in the example shown here, for
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Strike K| 60 60.25 60.5 60.75

Contract Cl| [2164.35, 229845] | [21622, 228645] | [216038, 22878] | [2149.25, 228675]

Discount Cl|  [6.067, 6.443] [6.061 6.410] | [6.057,6.413] | [6.025,6.410]

Discount 6.7125 6.4625 6.2125 5.9625

Table 4: Appropriate discount against firm price of 66.7&@rin. All figures are in pence.

strike prices between 60.25 and 60.75 around 42.5 inteongpare used. As expected,
the inclusion of further interruptions increases the po€e¢he interruptible contract but
the marginal increase in the contract value is decreasiadiirear fashion with respect to
strike for ranges € [40,100.

6 Conclusionsand Further Work

In this article we make two main contributions. Firstly, wered the short-term market
price of risk in the gas market. In our analysis we explainngfes in the risk-price, pre-

viously related to the absolute level of inventory in ther#ture Brennan (1958), in terms
of the inventory level relative to the expected seasonabgt patterns. Motivating this,

is the intuition that in the UK gas industry supplies are pubistorage over the summer
and withdrawn over the winter in a pre-planned yearly cydsighed to help the market
cope with the tight winter supply/demand situation. Whattera therefore is not whether
supplies are being put into or taken out of storage but hogetigections and withdrawals
compare with what the market expectes them to be. In our werkievthese unexpected
deviations, modelled by, to the short-term market price of risky = o + Bx;.

Running a Kalman filter over a data set of UK forward and spstg&es we find3
to be negative. This implies that in the UK natural gas matket short-term market price
of risk is higher when storage inventories are being degletere slowly than the seasonal
storage plans suggest they should be. Essentially, if ikarere gas in storage than the
market expects it will require a higher risk premium to bedpé&or the duration of a period
of tight supply, in order to convince a market participanpto further gas into storage than
would have been demanded if there was a shortage in invest@liative to seasonal need.
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The second contribution comes through the use of the mxstietsse Extended Least
Squares Monte Carlo algorithm to value interruptible gagrexts. Given a price per therm
for the firm supply of gas we are able to give upper and lowendsuor the appropriate
per therm discount that a consumer should demand as contigenga entering into a
standard interruptible contract. The upper and lower beward found to be within 0.6p
of one another, a difference of less than 1% relative to oggssted price for interruptible
gas.

Both of these contributions open opportunities for furthverk. A larger time series
of forward data and a calibration method that accountedn®continuous delivery of gas
forwards, such as a particle filter, would allow a betterhraliion of the LT/ST model
to market data. Moreover, it is straightforward to see thatame realistic model should
include jumps in the short-term deviations process thdtiwilurn affect the price of in-
terruptible contracts. Although the incorporation of juisrgeems a natural way to model
gas price dynamics, the application of the standard Kalnsar fwould not be possible.
Hence, the richness of the insights provided by the undaistg of the short-term market
price of risk would have been more difficult to obtain if a n@aussian model had been
chosen.
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