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Abstract Distribution testing deals with what information can be deduced
about an unknown distribution over {1, . . . , n}, where the algorithm is only
allowed to obtain a relatively small number of independent samples from the
distribution. In the extended conditional sampling model, the algorithm is also
allowed to obtain samples from the restriction of the original distribution on
subsets of {1, . . . , n}.

In 2015, Canonne, Diakonikolas, Gouleakis and Rubinfeld unified several
previous results, and showed that for any property of distributions satisfying
a “decomposability” criterion, there exists an algorithm (in the basic model)
that can distinguish with high probability distributions satisfying the property
from distributions that are far from it in the variation distance.

We present here a more efficient yet simpler algorithm for the basic model,
as well as very efficient algorithms for the conditional model, which until now
was not investigated under the umbrella of decomposable properties. Addi-
tionally, we provide an algorithm for the conditional model that handles a
much larger class of properties.

Our core mechanism is an algorithm for efficiently producing an interval-
partition of {1, . . . , n} that satisfies a “fine-grain” quality. We show that with
such a partition at hand we can avoid the search for the “correct” partition of
{1, . . . , n}.

A preliminary version with less refined bounds appeared in the Proceedings of the 34th
STACS (2017).
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1 Introduction

1.1 Historical background

In most computational problems that arise from modeling real-world situa-
tions, we are required to analyze large amounts of data to decide if it has a
fixed property. The amount of data involved is usually too large for reading it
in its entirety, with respect to both time and storage. In such situations, it is
natural to ask for algorithms that can sample points from the data and obtain
a significant estimate for the property of interest. The area of property testing
addresses this issue by studying algorithms that look at a small part of the
data and then decide if the object that generated the data has the property
or is far (according to some metric) from having the property.

There has been a long line of research, especially in statistics, where the
underlying object from which we obtain the data is modeled as a probability
distribution. Here the algorithm is only allowed to ask for independent samples
from the distribution, and has to base its decision on them. If the support of the
underlying probability distribution is large, it is not practical to approximate
the entire distribution. Thus, it is natural to study this problem in the context
of property testing.

The specific sub-area of property testing that is dedicated to the study
of distributions is called distribution testing. There, the input is a probability
distribution (in this paper the domain is the set {1, 2, . . . , n}) and the objec-
tive is to distinguish whether the distribution has a certain property, such as
uniformity or monotonicity, or is far in the `1 distance from it. See [7] for a
survey about the area of distribution testing.

Testing properties of distributions was studied by Batu et al in [5], where
they gave a sublinear query algorithm for testing closeness of distributions
supported over the set {1, 2, . . . , n}. They did so by extending the idea of
collision counting, which was implicitly used for uniformity testing in the work
of Goldreich and Ron ([14]). Consequently, various properties of probability
distributions were studied, like testing identity with a known distribution ([4,
20,3,12]), testing independence of a distribution over a product space ([4,3]),
and testing k-wise independence ([1]).

In recent years, distribution testing has been extended beyond the classical
model. A new model called the conditional sampling model was introduced. It
first appeared independently in [10] and [9]. In the conditional sampling model,
the algorithm queries the input distribution µ with a set S ⊆ {1, 2, . . . , n},
and gets an index sampled according to µ conditioned on the set S. Notice
that if S = {1, 2, . . . , n}, then this is exactly like in the standard model. The
conditional sampling model allows adaptive querying of µ, since we can choose
the set S based on the indexes sampled until now. Chakraborty et al ([9])
and Canonne et al ([10]) showed that testing uniformity can be done with a
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number of queries not depending on n (the latter presenting an optimal test),
and investigated the testing of other properties of distributions. In [9], it is
also shown that uniformity can be tested with poly(log n) conditional samples
by a non-adaptive algorithm. In this work, we study the distribution testing
problem in the standard (unconditional) sampling model, as well as in the
conditional model.

A line of work which is central to our paper, is the testing of distributions
for structure. The objective is to test whether a given distribution has some
structural properties like being monotone ([6]), being a k-histogram ([16,12]),
or being log-concave ([3]). Canonne et al ([8]) unified these results to show
that if a property of distributions has certain structural characteristics, then
membership in the property can be tested efficiently using samples from the
distribution. More precisely, they introduced the notion of L-decomposable
distributions as a way to unify various algorithms for testing distributions
for structure. Informally, an L-decomposable distribution µ supported over
{1, 2, . . . , n} is one that has an interval partition I of {1, 2, . . . , n} of size
bounded by L, such that for every interval I, either the weight of µ on it is
small or the distribution over the interval is close to uniform. A property C of
distributions is L-decomposable if every distribution µ ∈ C is L-decomposable
(L is allowed to depend on n). This generalizes various properties of distri-
butions like being monotone, unimodal, log-concave etc. In this setting, their
result for a set of distributions C supported over {1, 2, . . . , n} translates to
the following: if every distribution µ from C is L-decomposable, then there is
an efficient algorithm for testing whether a given distribution belongs to the
property C.

To achieve their results, Canonne et al ([8]) show that if a distribution
µ supported over [n] is L-decomposable, then it is O(L log n)-decomposable
where the intervals are of the form [j2i + 1, (j + 1)2i]. This presents a natural
approach of computing the interval partition in a recursive manner, by bisect-
ing an interval if it has a large probability weight and is not close to uniform.
Once they get an interval partition, they learn the “flattening” of the distribu-
tion over this partition, and check if this distribution is close to the property
C. The term “flattening” refers to the distribution resulting from making µ
conditioned on any interval of the partition to be uniform. When applied to
a partition corresponding to a decomposition of the distribution, the learned
flattening is also close to the original distribution. Because of this, in the case
where there is a promise that µ is L-decomposable, the above can be viewed
as a learning algorithm, where they obtain an explicit distribution that is close
to µ. Without the promise it can be viewed as an agnostic learning algorithm.
For further elaboration of this connection see [11].

1.2 Results and techniques

In this paper, we extend the body of knowledge about testing L-decomposable
properties. We improve upon the previously known bound on the sample com-
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plexity, and give much better bounds when conditional samples are allowed.
Additionally, for the conditional model, we provide a test for a broader family
of properties, that we call atlas-characterizable properties.

Our approach differs from that of [8] in the manner in which we compute the
interval partition. We show that any partition where most intervals that are not
singletons have small probability weight is sufficient to learn the distribution
µ, even when it is not the original L-decomposition of µ. We show that if a
distribution µ is L-decomposable, then the “flattening” of µ with respect to
such a partition is close to µ. It turns out that such a partition can be obtained
in “one shot” without resorting to a recursive search procedure.

We obtain a partition as above using the method of partition pulling that
we develop here. Informally, a pulled partition is obtained by sampling indexes
from µ, and taking the partition induced by the samples in the following way:
Every sampled index is a singleton interval, and the rest of the partition is
composed of the maximal intervals between the sampled indexes. Apart from
the obvious simplicity of this procedure, it also has the advantage of providing
a partition with a significantly smaller number of intervals, linear in L for a
fixed ε, and with no dependency on n unless L itself depends on it such that the
flattened distribution obtained from the partitioning is ε-close to the original
distribution. This makes our algorithm more efficient in query complexity than
the one of [8] in the unconditional sampling model, and leads to a dramatically
small sample complexity in the (adaptive) conditional model.

Another feature of our method is that it provides a partition with small
weight intervals also when the distribution is not L-decomposable. This al-
lows us to use the partition in a different manner later on. We provide a test
under the conditional query model for the extended class of atlas character-
izable properties that we define below, which generalizes both decomposable
properties and symmetric properties.

The main common ground between our approach for L-decomposable prop-
erties and that of [8] is the method of testing by implicit learning, as defined
formally in [13] (see [18]). In particular, the results also provide a means to
learn a distribution close to µ if µ satisfies the tested property. A learning
algorithm for atlas characterizable properties is not (and cannot be) provided;
only an “atlas” of the input distribution, rather than the distribution itself, is
learned.

Our result for unconditional testing (Theorem 1) gives a
√
nL/poly(ε)

query algorithm in the standard (unconditional) sampling model for testing
an L-decomposable property of distributions. Our method of finding a good
partition for µ using pulled partitions, that we explained above, avoids the
log n factor present in Theorem 3.3 of [8]. The same method enables us to
extend our results to the conditional query model, which we present for both
adaptive and non-adaptive algorithms. Table 1 summarizes our results and
compares them with known lower bounds1.

1 The lower bounds for unconditional and non-adaptive conditional testing of L-
decomposable properties with L = 1 are exactly the lower bounds for uniformity testing;
the lower bound for adaptive conditional testing follows easily from the proved existence of
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Table 1 Summary of our results

Result Known lower bound
L-decomposable (testing and learning)

Unconditional

√
nL · polylog(1/ε)/ε4√
nL log(L) · polylog(1/ε)/ε3

Ω(
√
n/ε2) for L = 1 [17]

Adaptive conditional L · polylog(1/ε)/ε3 Ω(L) for some fixed ε [9]

Non-adaptive conditional L · polylog(n)/poly(ε)
Ω(logn) for L = 1 and
some fixed ε [2]

k-characterized by atlases (testing)

Adaptive conditional k · polylog(n)/poly(ε)
Ω(
√

log logn) for k = 1,
and some fixed ε [9]

In all the above L and k refer to L(Θ(ε), n) and k(Θ(ε), n) respectively, and
we make no attempt to optimize the hidden coefficient of ε in the parameters,
or the powers of all polylog(1/ε) expressions. We also make no attempt to
optimize the powers in the expressions for the non-adaptive conditional model
and the properties characterized by atlases, since these rely on tests whose
query complexity is likely not optimal.

Up to the power of log(1/ε) and the aforementioned coefficient of ε, our
bounds for the unconditional model subsume the O(

√
nL(log(n))3/2/ε3) bound

in [8] (the extra 1/2 power of log(n) there follows from their theorem being
formulated using an “L-splitting” notion that is related to decomposition by an
extra log(n)). We know of no previous upper bounds for testing decomposable
distribution properties under the conditional models.

2 Preliminaries

We denote the set {1, . . . , n} by [n], and denote an interval {a, . . . , b} ⊆ [n] by
[a, b].

We study the problem of testing properties of probability distributions
supported over [n], when we are given samples from the distribution. For two
distributions µ and χ, we say that µ is ε-far from χ if they are far in the `1
norm, that is, d(µ, χ) =

∑
i∈[n] |µ(i)−χ(i)| > ε. For a property of distributions

C, we say that µ is ε-far from C if for all χ ∈ C, d(µ, χ) > ε.
In addition to the `1 norm between distributions, we also use the `∞ norm,

‖µ− χ‖∞ = maxi∈[n] |µ(i)− χ(i)|, and the following measure for uniformity.

Definition 1 For a distribution µ over a domain I, we define the bias of µ to
be bias(µ) = (maxi∈I µ(i)/mini∈I µ(i))− 1.

The following observation is easy and will be used implicitly throughout.

properties that have no sub-linear complexity adaptive conditional tests; finally, the lower
bound for properties k-characterized by atlases with k = 1 is just a bound for a symmetric
property constructed there. About the last one, we conjecture that there exist properties
with much higher lower bounds.
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Observation 1 For any two distributions µ and χ over a domain I of size
m, d(µ, χ) ≤ m‖µ−χ‖∞. Also, ‖µ−UI‖∞ ≤ 1

mbias(µ), where UI denotes the
uniform distribution over I.

Proof Follows from the definitions.

We study both the standard model, where the algorithm is given indexes
sampled from the distribution, and the model of conditional samples. The
conditional model was first studied in the independent works of Chakraborty
et al ([9]) and Canonne et al ([10]). We first give the definition of a conditional
oracle for a distribution µ.

Definition 2 (Conditional oracle) A conditional oracle for a distribution
µ supported over [n] is a black-box that takes as input a set A ⊆ [n], samples
a point i ∈ A with probability µ �A (i) = µ(i)/

∑
j∈A µ(j), and returns i. If

µ(j) = 0 for all j ∈ A, then the oracle chooses i ∈ A uniformly at random.2

Now we define conditional distribution testing algorithms. We will define
and analyze both adaptive and non-adaptive algorithms.

Definition 3 An adaptive conditional distribution testing algorithm for a
property of distributions C, with parameters ε, δ > 0, and n ∈ N, with query
complexity q(ε, δ, n), is a randomized algorithm with access to a conditional
oracle of a distribution µ with the following structure:

– For each i ∈ [q], at the ith phase, the algorithm generates a set Ai ⊆ [n],
based on j1, j2, · · · , ji−1 and its internal coin tosses, and calls the con-
ditional oracle with Ai to receive an element ji, drawn independently of
j1, j2, · · · , ji−1.

– Based on the received elements j1, j2, · · · , jq and its internal coin tosses,
the algorithm accepts or rejects the distribution µ.

If µ ∈ C, then the algorithm accepts with probability at least 1 − δ, and if µ
is ε-far from C, then the algorithm rejects with probability at least 1− δ.

Definition 4 A non-adaptive conditional distribution testing algorithm for a
property of distributions C, with parameters ε, δ > 0, and n ∈ N, with query
complexity q(ε, δ, n), is a randomized algorithm with access to a conditional
oracle of a distribution µ with the following structure:

– The algorithm chooses sets A1, . . . , Aq (not necessarily distinct) based on
its internal coin tosses, and then queries the conditional oracle to respec-
tively obtain j1, . . . , jq.

– Based on the received elements j1, . . . , jq and its internal coin tosses, the
algorithm accepts or rejects the distribution µ.

If µ ∈ C, then the algorithm accepts with probability at least 1 − δ, and if µ
is ε-far from C, then the algorithm rejects with probability at least 1− δ.

2 The behavior of the conditional oracle on sets A with µ(A) = 0 is as per the model
of Chakraborty et al [9]. However, upper bounds in this model also hold in the model of
Canonne et al [10], and most known lower bounds can be easily converted to it.
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2.1 Large deviation bounds

The following large deviation bounds will be used in the analysis of our algo-
rithms throughout the rest of the paper.

Lemma 1 (Chernoff bounds) Let X1, X2, . . . , Xm be independent random
variables taking values in {0, 1}. Let X =

∑
i∈[m]Xi. Then for any δ ∈ (0, 1],

we have the following bounds.

1. Pr[X > (1 + δ)E[X]] ≤ exp
(
−δ2E[X]

3

)
.

2. Pr[X < (1− δ)E[X]] ≤ exp
(
−δ2E[X]

2

)
.

If δ ≥ 1, then Pr[X ≥ (1 + δ)E[X]] < exp(−δE[X]
3 ).

Lemma 2 (Hoeffding bounds [15]) Let X1, X2, . . . , Xm be independent
random variables such that 0 ≤ Xi ≤ 1 for i ∈ [m], and let X̄ = 1

m

∑
i∈[m]Xi.

Then Pr
[
|X̄ − E[X̄]| > ε

]
≤ 2 exp

(
−2mε2

)
2.2 Basic distribution procedures

The following is a folklore result about learning any distribution supported
over [n], that we prove here for completeness.

Lemma 3 (Folklore) Let µ be a distribution supported over [n]. By using
2(n+log(2/δ))

ε2 unconditional samples from µ, we can obtain an explicit distribu-
tion µ′ supported on [n] such that, with probability at least 1− δ, d(µ, µ′) ≤ ε.

Proof Take m = 2(n+log(2/δ))
ε2 samples from µ, and for each i ∈ [n], let mi

be the number of times i was sampled. Define µ′(i) = mi/m. Now, we show
that maxS⊆[n] |µ(S)−µ′(S)| ≤ ε/2 with probability at least 1− δ. The lemma
follows from this since the `1 distance is equal to twice this amount.

For any set S ⊆ [n], letX1, X2, . . . , Xm be random variables such thatXj =
1 if the jth sample was in S, and otherwise Xj = 0. Let X̄ = 1

m

∑
j∈[m]Xj .

Then, X̄ = µ′(S) and E[X̄] = µ(S). By Lemma 2, Pr[|X̄ − E[X̄]| > ε/2] ≤
2e−mε

2/2. Substituting for m, we get Pr[|µ′(S)−µ(S)| > ε/2] ≤ 2e−n−log(2/δ).
Taking a union bound over all sets, with probability at least 1 − δ, |µ′(S) −
µ(S)| ≤ ε/2 for every S ⊆ [n]. Therefore, d(µ, µ′) ≤ ε.

We also have the following simple lemma about learning a distribution
under the `∞ distance.

Lemma 4 Let µ be a distribution supported over [n]. Using log(2n/δ)
2ε2 uncon-

ditional samples from µ, we can obtain an explicit distribution µ′ supported on
[n] such that, with probability at least 1− δ, ‖µ− µ′‖∞ ≤ ε.
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Proof Take m = log(2n/δ)
2ε2 samples from µ, and for each i ∈ [n], let mi be the

number of times i was sampled. For each i ∈ [n], define µ′(i) = mi/m.

For an index i ∈ [n], let X1, X2, . . . , Xm be random variables such that
Xj = 1 if the jth sample is i, and otherwise Xj = 0. Let X̄ = 1

m

∑
j∈[m]Xj .

Then X̄ = µ′(i) and E[X̄] = µ(i). By Lemma 2, Pr[|X̄−E[X̄]| > ε] ≤ 2e−2mε
2

.
Substituting for m, we get that Pr[|µ(i)−µ′(i)| > ε] ≤ δ/n. By a union bound
over [n], with probability at least 1− δ, |µ(i)− µ′(i)| ≤ ε for every i ∈ [n].

Finally, a simple lemma about classifying the probabilities of many sets at
once.

Lemma 5 Given subsets A1, . . . As of [n] and any γ, δ > 0, there is a proce-
dure taking O(log(s/δ)/γ) many unconditional samples, which with probability
1 − δ provides non-negative integers k1, . . . , ks for which the following holds
for every 1 ≤ t ≤ s.

– If µ(At) < γ/2 then kt = 0.
– Otherwise, kt is such that 2kt−1γ ≤ µ(At) < 2kt+1γ.

Proof We take m = 50 log(s/δ)/γ many samples, set kt = 0 for every 1 ≤ t ≤ s
such that less than 2γm/3 samples landed in At, and for every other t set kt
such that at least 2ktγm/3 but less than 2kt+1γm/3 samples landed in At.
Lemma 1 (with δ = 1/3 in the Chernoff bounds) provides that every At
is correctly classified with probability at least 1 − δ/s, and a union bound
concludes the proof.

3 Fine partitions and how to pull them

We define the notion of η-fine partitions of a distribution µ supported over [n],
which are central to all our algorithms.

Definition 5 (η-fine interval partition) Given a distribution µ over [n],
an η-fine interval partition of µ is an interval-partition I = (I1, I2, . . . , Ir) of
[n] such that for all j ∈ [r], µ(Ij) ≤ η, except in the case that |Ij | = 1. The
length |I| of an interval partition I is the number of intervals in it.

The following Algorithm 1 is the mechanism for pulling a fine partition. It
takes independent unconditional samples from µ, makes them into singleton
intervals in the interval-partition I, and takes the intervals between these
samples as the remaining intervals in I.

Lemma 6 Let µ, η and δ, be the input to Algorithm 1. Then, with probability
at least 1−δ, the set of intervals I returned by Algorithm 1 is an η-fine interval

partition of µ of length O
(

1
η log

(
1
ηδ

))
.
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Algorithm 1: Pulling an η-fine partition

Input: Oracle access to a distribution µ supported over [n], parameters η > 0
(fineness) and δ > 0 (error probability)

1 take m = 3
η

log
(

3
ηδ

)
unconditional samples from µ

2 arrange the indices sampled in increasing order i1 < i2 < · · · < im without repetition
and set i0 = 0

3 for each j ∈ [m] do
4 add the singleton interval {ij} to I
5 if ij > ij−1 + 1 then add the interval [ij−1 + 1, ij − 1] to I
6 if im < n then add the interval [im + 1, n] to I
7 return I

Proof Let I be the set of intervals returned by Algorithm 1. The guarantee
on the length of I follows from the number of samples taken in Step 1, noting
that |I| ≤ 2m− 1 = O(m).

Let J be a maximal set of pairwise disjoint intervals in [n], where every
I ∈ J is a minimal interval for which µ(I) ≥ η/3. Note that every i for which
µ(i) ≥ η/3 necessarily appears as a singleton interval {i} ∈ J . Also clearly
|J | ≤ 3/η.

We shall first show that, with probability at least 1− δ, the samples taken
in Step 1 include an index from every interval I ∈ J . Afterwards, we show that
every interval I ′ such that µ(I ′) ≥ η contains some interval I ∈ J . By Steps 2
to 6 of the algorithm, these two assertions imply that an η-fine partition is
produced.

Let I ∈ J . The probability that an index from I is not sampled is at most
(1−η/3)3 log(3/ηδ)/η ≤ δη/3. By a union bound over all I ∈ J , with probability
at least 1− δ the samples taken in Step 1 include an index from every interval
in J .

Now let I ′ be an interval such that µ(I ′) ≥ η, and assume on the contrary
that it contains no interval from J . Clearly it may intersect without containing
at most two intervals Il, Ir ∈ J . Also, µ(I ′ ∩ Il) < η/3 because otherwise we
could have replaced Il with I ′∩ Il in J , and the same holds for µ(I ′∩ Ir). But
this means that µ(I ′ \ (Il∪Ir)) > η/3, and so we could have added I ′ \ (Il∪Ir)
(or a subinterval thereof) to J , again a contradiction.

The following is a definition of a variation of a fine partition, where we
allow some intervals of small total weight to violate the original requirements.

Definition 6 ((η, γ)-fine partitions) Given a distribution µ over [n], an
(η, γ)-fine interval partition is an interval partition I = (I1, I2, . . . , Ir) such
that

∑
I∈HI µ(I) ≤ γ, where HI is defined as the set of violating intervals

{I ∈ I : µ(I) > η, |I| > 1}.

In our applications, γ will be larger than η by a factor of L, which will
allow us through the following Algorithm 2 to avoid having an additional
log(L) factor in our complexity bounds for the unconditional and the adaptive
tests.
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Algorithm 2: Pulling an (η, γ)-fine partition

Input: Oracle access to a distribution µ supported over [n], parameters η > 0
(fineness), γ > 0 (allowed exception) and δ > 0 (error probability)

1 take m = 3
η

log
(

5
γδ

)
unconditional samples from µ

2 perform Step 2 through Step 6 of Algorithm 1
3 return I

Lemma 7 Let µ, η, γ and δ, be the input to Algorithm 2. Then, with probabil-
ity at least 1−δ, the set of intervals I returned by Algorithm 2 is an (η, γ)-fine

interval partition of µ of length O
(

1
η log

(
1
γδ

))
.

Proof Let I be the set of intervals returned by Algorithm 2. The guarantee
on the length of I follows from the number of samples taken in Step 1.

As in the proof of Lemma 6, let J be a maximal set of pairwise disjoint
intervals in [n], where every I ∈ J is a minimal interval for which µ(I) ≥ η/3.
Here, also define the set J ′ to be the set of maximal intervals in [n] \

⋃
I∈J I.

Note that J∪J ′ is an interval partition of [n]. Note also that between every two
consecutive intervals of J ′ lies an interval of J . Finally, since J is maximal,
all intervals in J ′ are of weights less than η/3.

Let I ∈ J . The probability that an index from I is not sampled is at most
(1 − η/3)3 log(5/γδ)/η ≤ δγ/5. By applying the Markov bound over all I ∈ J
(along with their weights), with probability at least 1 − δ the samples taken
in Step 1 include an index from every interval in J except a subset of them
of total weight at most γ/5. Suppose that the above event occurred.

Recalling the definition HI = {I ∈ I : µ(I) > η, |I| > 1}, as in the proof of
Lemma 6, every I ′ ∈ HI must fully contain an interval from J from which no
point was sampled. Moreover, I ′ may not fully contain intervals from J from
which any points were sampled.

Note furthermore that the weight of any such interval I ′ ∈ HI is not more
than 5 times the total weight of the intervals in J that it fully contains. To see
this, recall that the (at most two) intervals from J that intersect I ′ without
containing it have intersections of weight not more than η/3. Also, there may
be the intervals of J ′ intersecting I ′, each of weight at most η/3. However,
because there is an interval in J between any two consecutive intervals of
J ′, the number of intervals from J ′ intersecting I ′ is at most 1 more than the
number of intervals of J fully contained in I ′. Thus the number of intersecting
intervals from J ∪ J ′ is not more than 5 times the number of fully contained
intervals from J , and together with their weight bounds we get the bound on
the weight the interval I ′. By the above this means that

∑
I′∈HI µ(I ′) ≤ γ.

4 Handling decomposable distributions

We now formally define L-decomposable distributions and properties, following
[8].
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Definition 7 ((γ, L)-decomposable distributions [8]) For an integer L,
a distribution µ supported over [n] is (γ, L)-decomposable, if there exists an
interval partition I = (I1, I2, . . . , I`) of [n], where ` ≤ L, such that for all
j ∈ [`], at least one of the following holds.

1. µ(Ij) ≤ γ
L .

2. maxi∈Ij µ(i) ≤ (1 + γ) mini∈Ij µ(i).

The second condition in the definition of a (γ, L)-decomposable distribution
is identical to saying that bias(µ �Ij ) ≤ γ. An L-decomposable property is now
defined in terms of all its members being decomposable distributions.

Definition 8 (L-decomposable properties, [8]) For a function L : (0, 1]×
N → N, we say that a property of distributions C is L-decomposable, if for
every γ > 0, and µ ∈ C supported over [n], µ is (γ, L(γ, n))-decomposable.

Recall that part of our algorithm for learning such distributions is finding
(through pulling) what we referred to as a fine partition. Such a partition may
still have intervals where the conditional distribution over them is far from
uniform. However, we shall show that for L-decomposable distributions, the
total weight of such “bad” intervals is not very high.

The next lemma shows that every fine partition of an (γ, L)-decomposable
distribution has only a small weight concentrated on “non-uniform” intervals,
and thus it will be sufficient to deal with the “uniform” (small bias) intervals.

Lemma 8 Let µ be a distribution over [n] which is (γ, L)-decomposable. For
every γ/L-fine interval partition I ′ = (I ′1, I

′
2, . . . , I

′
r) of µ, the following holds.∑

j∈[r]:bias(µ�I′
j
)>γ

µ(I ′j) ≤ 2γ.

Proof Let I = (I1, I2, . . . , I`) be the L-decomposition of µ, where ` ≤ L. Let
I ′ = (I ′1, I

′
2, . . . , I

′
r) be an interval partition of [n] such that for all j ∈ [r],

µ(I ′j) ≤ γ/L or |I ′j | = 1.
Any interval I ′j for which bias(µ �I′j ) > γ, is either completely inside an

interval Ik such that µ(Ik) ≤ γ/L, or intersects more than one interval (and
in particular |I ′j | > 1). There are at most L − 1 intervals in I ′ that intersect
more than one interval in I. The sum of the weights of all such intervals is at
most γ.

For any interval Ik of I such that µ(Ik) ≤ γ/L, the sum of the weights of
intervals from I ′ that lie completely inside Ik is at most γ/L. Thus, the total
weight of all such intervals from I ′ is bounded by γ. Therefore, the sum of the
weights of intervals I ′j such that bias(µ �I′j ) > γ is at most 2γ.

To get better bounds for our tests, we will use the counterpart of this
lemma for the more general (two-parameter) notion of a fine partition.
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Lemma 9 Let µ be a distribution over [n] which is (γ, L)-decomposable. For
every (γ/L, γ)-fine interval partition I ′ = (I ′1, I

′
2, . . . , I

′
r) of µ, the following

holds. ∑
j∈[r]:bias(µ�I′

j
)>γ

µ(I ′j) ≤ 3γ.

Proof Let I = (I1, I2, . . . , I`) be the L-decomposition of µ, where ` ≤ L. Let
I ′ = (I ′1, I

′
2, . . . , I

′
r) be an interval partition of [n] such that for a set HI′ of

total weight at most γ, for all I ′j ∈ I ′ \ HI′ , µ(I ′j) ≤ γ/L or |I ′j | = 1.
Exactly as in the proof of Lemma 8, the total weight of intervals I ′j ∈

I ′ \HI′ for which bias(µ �I′j ) > γ is at most 2γ. In the worst case, all intervals

I ′j ∈ HI′ are also such that bias(µ �I′j ) > γ, adding at most γ to the total
weight of such intervals.

As previously mentioned, we are not directly learning the actual distri-
bution, but a “flattening” thereof. We next formally define the flattening of
a distribution µ with respect to an interval partition I. Afterwards we shall
describe its advantages and how it can be learned.

Definition 9 Given a distribution µ supported over [n] and a partition I =
(I1, I2, . . . , I`) of [n], the flattening of µ with respect to I is a distribution µI ,
supported over [n], such that for i ∈ Ij , µI(i) = µ(Ij)/|Ij |.

The following lemma shows that the flattening of any distribution µ, with
respect to any interval partition that has only small weight on intervals far
from uniform, is close to µ.

Lemma 10 Let µ be a distribution supported on [n], and let I = (I1, I2, . . . , Ir)
be an interval partition of µ such that

∑
j∈[r]:d(µ�Ij ,UIj )>γ

µ(Ij) ≤ η. Then

d(µ, µI) ≤ γ + 2η.

Proof We split the sum d(µ, µI) into parts, one for Ij such that d(µ �Ij ,UIj ) ≤
γ, and one for the remaining intervals.

For Ij ∈ I such that d(µ �Ij ,UIj ) ≤ γ, we have∑
i∈Ij

∣∣∣∣µ(i)− µ(Ij)

|Ij |

∣∣∣∣ =
∑
i∈Ij

µ(Ij)

∣∣∣∣µ �Ij (i)− 1

|Ij |

∣∣∣∣ = µ(Ij)d(µ �Ij ,UIj ) ≤ γµ(Ij).

(1)

For Ij ∈ I such that d(µ �Ij ,UIj ) > γ, we have∑
i∈Ij

∣∣∣∣µ(i)− µ(Ij)

|Ij |

∣∣∣∣ =
∑
i∈Ij

µ(Ij)

∣∣∣∣µ �Ij (i)− 1

|Ij |

∣∣∣∣ ≤ 2µ(Ij) (2)

We know that the sum of µ(Ij) over all Ij such that d(µ �Ij ,UIj ) ≥ γ is at
most η. Using Equations 2 and 1, and summing up over all the sets Ij ∈ I,
the lemma follows.
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The good thing about a flattening (for an interval partition of small length)
is that it can be efficiently learned. For this we first make a technical definition
and note some trivial observations:

Definition 10 (coarsening) Given µ and I, where |I| = `, we define the
coarsening of µ according to I to be the distribution µ̂I over [`] so that µ̂I(j) =
µ(Ij) for all j ∈ [`].

Observation 2 Given a distribution µ̂I over [`], define µI over [n] by µ(i) =
µ̂I(ji)/|Iji |, where ji is the index satisfying i ∈ Iji . This is a distribution, and
for any two distributions µ̂I and χ̂I we have d(µI , χI) = d(µ̂I , χ̂I). Moreover,
if µ̂I is a coarsening of a distribution µ over [n], then µI is the respective
flattening of µ.

Proof All of this follows immediately from the definitions.

The following lemma shows how learning can be achieved. We will ulti-
mately use this in conjunction with Lemma 10 as a means to learn a whole
distribution through its flattening.

Lemma 11 Given a distribution µ supported over [n] and an interval partition

I = (I1, I2, . . . , I`), using 2(`+log(2/δ))
ε2 unconditional samples from µ, we can

obtain an explicit distribution µ′I , supported over [n], such that d(µI , µ
′
I) ≤ ε

with probability at least 1− δ.

Proof First, note that an unconditional sample from µ̂I can be simulated using
one unconditional sample from µ. To obtain it, take the index i sampled from
µ, and set j to be the index for which i ∈ Ij . Using Lemma 3, we can now obtain
a distribution µ̂′I , supported over [`], such that d(µ̂I , µ̂

′
I) ≤ ε with probability

at least 1− δ. To finish, we construct and output µ′I as per Observation 2.

5 Weakly tolerant interval uniformity tests

To unify as much as possible our treatment of learning and testing with respect
to L-decomposable properties to all three models (unconditional, adaptive-
conditional and non-adaptive-conditional), we first define what it means to
test a distribution µ for uniformity over an interval I ⊆ [n]. The following
definition is technical in nature, but it is what we need to use as a building
block for our learning and testing algorithms.

Definition 11 (weakly tolerant interval tester) A weakly tolerant inter-
val tester is an algorithm T that takes as input a distribution µ over [n], an
interval I ⊆ [n], a maximum size parameter m, a minimum weight parameter
γ, an approximation parameter ε and an error parameter δ, and satisfies the
following.

1. If |I| ≤ m, µ(I) ≥ γ, and bias(µ �I) ≤ ε/100, then T accepts with proba-
bility at least 1− δ.
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2. If |I| ≤ m, µ(I) ≥ γ, and d(µ �I ,UI) > ε, then T rejects with probability
at least 1− δ.

In all other cases, T may accept or reject with arbitrary probability.

For our purposes we will use three weakly tolerant interval testers, one for
each model.

First, a tester for uniformity which uses unconditional samples, a version of
which has already appeared implicitly in [14]. We state below the tester with
the best dependence on n and ε. We first state it in its original form, where I
is the whole of [n], implying that m = n and γ = 1, and δ = 1/3.

Lemma 12 ([17]) For the input (µ, [n], n, 1, ε, 1/3), there is a weakly tolerant
interval tester using O(

√
n/ε2) unconditional samples from µ.

The needed adaptation to our purpose is straightforward.

Lemma 13 For the input (µ, I,m, γ, ε, δ), there is a weakly tolerant interval
tester which uses O(

√
m log(1/δ)/γε2) unconditional samples from µ.

Proof To adapt the tester of Lemma 12 to the general m and γ, we just take
samples according to µ and keep from them those samples that lie in I. This
simulates samples from µ �I , over which we employ the original tester. This
gives a tester using O(

√
m/γε2) unconditional samples and providing an error

parameter of, say, δ = 2/5 (the extra error is due to the probability of not
getting enough samples from I even when µ(I) ≥ γ). To move to a general δ,
we repeat this process O(log(1/δ)) times and take the majority vote.

Next, a tester that uses adaptive conditional samples. For this we use the
following tester from [10] (see also [9]). Its original statement does not have
the weak tolerance (acceptance for small bias) guarantee, but it is easy to see
that the proof there works for the stronger assertion. This time we skip the
question of how to adapt the original algorithm from I = [n] and δ = 2/3 to the
general parameters here. This is since γ does not matter (due to using adaptive
conditional samples), the query complexity is independent of the domain size
to begin with, and the move to a general δ > 0 is by standard amplification.

Lemma 14 ([10], see also [9]) For the input (µ, I,m, γ, ε, δ), there is a
weakly tolerant interval tester that adaptively takes polylog(1/ε) log(1/δ)/ε2

conditional samples from µ.

Finally, a tester that uses non-adaptive conditional samples. For this to
work in our test, it is also very important that the queries do not depend on
I (but only on n and γ). We just state here the lemma, the algorithm itself is
presented and analyzed in Section 9.

Lemma 15 For the input (µ, I,m, γ, ε, δ), there is a weakly tolerant interval
tester that non-adaptively takes poly(log n, 1/ε) log(1/δ)/γ conditional samples
from µ, in a manner that is additionally independent of the interval I.
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5.1 Testing uniformity in parallel

To get a better dependency on ε for the unconditional setting, we will use a
version of Lemma 13 that “scales” better by allowing us to test several disjoint
intervals at once. We formulate it for testing sets rather than just intervals,
and not necessarily disjoint ones.

The way we formulate it (obtaining correct answers for all sets rather than
just most of them) adds an additional log(1/ε) in the bound proved in Section
6, but we do not optimize the power of log(1/ε) in our complexity estimates
anyway.

Lemma 16 For the input (µ,A1, . . . , As,m, γ, ε, δ), where A1, . . . , As are sub-
sets of [n], there is a tester which uses O(

√
m log(s) log(1/δ)/γε2) uncondi-

tional samples from µ, and with probability at least 1− δ, supplies for all sets
answers which satisfy the following.

1. If |At| ≤ m, µ(At) ≥ γ, and bias(µ �At
) ≤ ε/100, then At is marked as

accepted.
2. If |At| ≤ m, µ(At) ≥ γ, and d(µ �At ,UAt) > ε, then At is marked as

rejected.
3. Any other At is marked arbitrarily.

Proof We adapt the tester of Lemma 12 by taking Θ(
√
m log(s) log(1/δ)/γε2)

independent samples from µ, then for each 1 ≤ t ≤ s collecting those samples
that lend in At, and feeding them to the uniformity test for that set. By lemma
1, with probability at least δ/2 we received at least Θ(

√
m log(s) log(1/δ)/ε2)

samples in every At whose weight is at least γ, which enables us to test its
uniformity with success probability at least δ/2s if it also satisfies |At| ≤ m.
A union bound gives us a success probability of at least 1− δ for all relevant
sets at once.

Remark 1 We know of no parallel variant of Lemma 14. The proof of Lemma
15 does lend itself to parallelization, but that endeavor would be futile for the
purpose here, because in any case the powers of log(n) and ε in its (current)
query complexity are suboptimal.

6 Assessing an interval partition

Through either Lemma 6 or Lemma 7 we know how to construct a fine par-
tition, and then through either Lemma 8 or Lemma 9 respectively we know
that if µ is decomposable, then most of the weight is concentrated on intervals
with a small bias. However, eventually we would like a test that works for de-
composable and non-decomposable distributions alike. For this we need a way
to assess an interval partition as to whether it is indeed suitable for learning a
distribution. This is done through a weighted sampling of intervals, for which
we employ a weakly tolerant tester. The following is the formal description,
given as Algorithm 3.
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Algorithm 3: Assessing a partition

Input: Oracle access to a distribution µ supported over [n], parameters c, r, an
interval partition I satisfying |I| ≤ r, parameters ε, δ > 0, a weakly tolerant
interval uniformity tester T taking input values (µ, I,m, γ, ε, δ)

1 for s = 20 log(1/δ)/ε times do
2 take an unconditional sample from µ and let I ∈ I be the interval that contains

it
3 use the tester T with input values (µ, I, n/c, ε/r, ε, δ/2s)
4 if test rejects then add I to B
5 if |B| > 4εs then reject else accept

To analyze it, first, for a fine interval partition, we bound the total weight
of intervals where the weakly tolerant tester is not guaranteed a small error
probability; recall that T as used in Step 3 guarantees a correct output only
for an interval I satisfying µ(I) ≥ ε/r and |I| ≤ n/c.

Observation 3 Define NI = {I ∈ I : |I| > n/c or µ(I) < ε/r}. If I is
(η, γ)-fine, where cη + γ ≤ ε, then µ(

⋃
I∈NI I) ≤ 2ε.

Proof Intervals in NI must fall into at least one of the following categories.

– Intervals in HI , whose total weight is bounded by γ by the definition of a
fine partition.

– Intervals whose weight is less than ε/r. Since there are at most r such
intervals (since |I| ≤ r), their total weight is bounded by ε.

– Intervals whose size is more than n/c and are not inHI . Every such interval
is of weight bounded by η (by the definition of a fine partition) and clearly
there are no more than c of those, giving a total weight bound of cη.

Summing these up concludes the proof.

The following “completeness” lemma states that the case of a fine partition
of a decomposable distribution, i.e. the case where most intervals exhibit a
small bias, is correctly detected.

Lemma 17 Suppose that I is (η, γ)-fine, where cη+ γ ≤ ε. Define GI = {I ∈
I : bias(µ �I) ≤ ε/100}. If µ(

⋃
I∈GI ) ≥ 1 − ε, then Algorithm 3 accepts with

probability at least 1− δ.

Proof Note by Observation 3 that the total weight of GI \NI is at least 1−3ε.
By the Chernoff bound of Lemma 1, with probability at least 1− δ/2 at most
4εs of the intervals drawn in Step 2 fall into I \ (GI \ NI).

Finally, note that if I as drawn in Step 2 belongs to GI \ NI , then with
with probability at least 1−δ/2s the invocation of T in Step 3 will accept it, so
by a union bound with probability at least 1− δ/2 all sampled intervals from
this set will be accepted. All events occur together and make the algorithm
accept with probability at least 1− δ, concluding the proof.
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The following “soundness” lemma states that if too much weight is con-
centrated on intervals where µ is far from uniform in the `1 distance, then the
algorithm rejects. Later we will show that this is the only situation where µ
cannot be easily learned through its flattening according to I.

Lemma 18 Suppose that I is (η, γ)-fine, where cη + γ ≤ ε. Define FI =
{i : I : d(µ �I ,UI) > ε}. If µ(

⋃
I∈FI ) ≥ 7ε, then Algorithm 3 rejects with

probability at least 1− δ.

Proof Note by Observation 3 that the total weight of FI \ NI is at least 5ε.
By the Chernoff bound of Lemma 1, with probability at least 1− δ/2 at least
4εs of the intervals drawn in Step 2 fall into this set.

Finally, note that if I as drawn in Step 2 belongs to this set, then with with
probability at least 1− δ/2s the invocation of T in Step 3 will reject it, so by
a union bound with probability at least 1− δ/2 all sampled intervals from this
set will be rejected. All events occur together and make the algorithm reject
with probability at least 1− δ, concluding the proof.

Finally, we present the query complexity of the algorithm. It is presented
as polynomial in log(1/δ), but this can be made linear easily by first using the
algorithm with δ = 1/3, and then repeating it O(log(1/δ)) times and taking
the majority vote. When we use this lemma later on, both r and c will be
linear in the decomposability parameter L for a fixed ε, and δ will be a fixed
constant (we also show later on how to further improve the query complexity
for the unconditional model).

Lemma 19 Algorithm 3 requires O(q log(1/δ)/ε) many samples, where q =
q(n/c, ε/r, ε, δ/2s) is the number of samples that the invocation of T in Step 3
requires.

In particular, this provides an unconditional sampling algorithm taking
r
√
n/c · polylog(1/ε, 1/δ)/ε4 many samples, an adaptive conditional sampling

algorithm taking polylog(1/ε, 1/δ)/ε3 many samples, or a non-adaptive condi-
tional sampling algorithm taking r · polylog(n, 1/δ)/poly(ε) many samples.

Proof A single (unconditional) sample is taken each time Step 2 is reached,
and all other samples are taken by the invocation of T in Step 3. This makes
the total number of samples to be s(q + 1) = O(q log(1/δ)/ε).

The bound for each individual sampling model follows by plugging in
Lemma 13, Lemma 14 and Lemma 15 respectively. For the last one it is im-
portant that the tester makes its queries completely independently of I, as
otherwise the algorithm would not have been non-adaptive.

The above is suboptimal for the unconditional model. To improve this
algorithm, to be used later in the learning and testing algorithm achieving
the first bound for the unconditional model, we just use the parallelization
technique of Lemma 16 when we need to test intervals for uniformity.

Lemma 20 In the setting of unconditional sampling, Algorithm 3 can also be
implemented in a way that requires r

√
n/c·polylog(1/ε, 1/δ)/ε3 many samples.
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Proof Instead of performing the main loop of the algorithm using Lemma 13,
we first choose s intervals as in Step 2, and then use Lemma 16 to classify
all of them at once (if the same interval was chosen more than once, we just
“weigh” the answer obtained for it accordingly).

7 Departitioning and trade-off in the unconditional model

In this section we construct and prove an alternative for the assessment proce-
dure under the unconditional sampling model, that will be used for the algo-
rithm achieving the second bound for learning and testing a distribution in this
model. The idea is to check the possibility of grouping together neighboring
intervals in the fine partition, while assuring the small bias of the distribution
over the grouped intervals, in a way that allows us to weaken the minimum
probability requirement of the sets that we test for uniformity. This trades
a power of ε (resulting from the minimum probability requirement) with a
factor of log(L) (as the procedure requires a union bound for testing O(L2)
candidate intervals at once).

We will now define what it means for some I ⊆ [n] to be too “thin” and
hence unsuited for testing here.

Definition 12 A subset I ⊆ [n] is called γ-thin (with respect to µ), if µ(I) <
γ|I|/n.

Observation 4 Given a partition I = (I1, . . . , Ir) of [n], the total probability
of all γ-thin intervals in it is bounded by γ.

Proof This is immediate from I1, . . . , Ir being disjoint.

Lemma 16 can be extended to cover sets of varying sizes, as long as they
are not thin. Here we also make the “arbitrariness” for intervals that are too
light or thin 1-sided towards the negative.

Lemma 21 For the input (µ,A1, . . . , As, η, γ, ε, δ), where A1, . . . , As are sub-
sets of [n] and η ≥ γ/n, there is a tester which uses O(

√
n/ηγ log(s/δ)/ε2)

unconditional samples from µ, and with probability at least 1− δ, supplies for
all intervals answers which satisfy the following.

1. If µ(At) ≥ η, At is not γ-thin, and bias(µ �At) ≤ ε/100, then At is marked
as accepted.

2. If d(µ �At
,UAt

) > ε, then At is marked as rejected.
3. Any other At is marked arbitrarily.

Proof We adapt the tester of Lemma 12 by first taking Θ(
√
n/ηγ log(s/δ)/ε2)

independent samples from µ, and then for each 1 ≤ t ≤ s collecting those
samples that lend in At By lemma 1, with probability at least δ/2 we received
at least Θ(µ(At) ·

√
n/ηγ log(s/δ)/ε2) samples in every At whose weight is at

least η (we use here that η ≥ γ/n and hence η ·
√
n/ηγ ≥ 1).
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For an At which is not γ-thin in addition to having weight at least η, we
note that this quantity is at least Θ(

√
η ·
√
γ|At|/n ·

√
n/ηγ log(s/δ)/ε2) =

Θ(
√
|At| log(s/δ)/ε2), which enables us to feed these samples to a uniformity

test for At which has success probability at least δ/2s. A union bound gives
us a success probability of at least 1− δ for all relevant sets at once.

To make sure that the second item in the assertion of the lemma is satisfied
also for thin sets and sets of low probability, we set the rule that if the number
of samples inside At is insufficient for a uniformity test with success probability
at least δ/2s (this can be calculated using the known quantity |At|), then we
mark At as rejected without invoking the test.

Given an interval partition I = (I1, . . . , Ir) and a set A ⊆ [r], we denote
by IA the union

⋃
j∈A Ij . The following lemma is proved similarly to the proof

of Lemma 9.

Lemma 22 Let µ be a distribution over [n] which is (γ, L)-decomposable. For
every (γ/L, γ)-fine interval partition I = (I1, I2, . . . , Ir) of µ, there are disjoint
intervals K1, . . . ,Ks ⊆ [r] where s ≤ L, such that bias(µ �IKt

) ≤ γ, µ(IKt
) ≥

γ/L, IKt is not γ-thin for every 1 ≤ t ≤ k, and µ(I[r]\
⋃s

t=1Kt
) ≤ 5γ.

Proof Let I = (I1, . . . , I`) denote the (L, γ)-decomposition of µ. For every
J ∈ I for which bias(µ �J) ≤ γ we set KJ = {j : Ij ⊆ J}. We then keep and
renumber the sets KJ for which µ(IKJ

) ≥ γ/L, and IKJ
is not γ-thin.

As in the proof of Lemma 9, a count shows that the total weight of the
intervals above, before discarding the γ-thin intervals and those with µ(IKJ

) <
γ/L, is at least 1−3γ. Since |I| ≤ L, discarding the small weight intervals loses
not more than an additional γ in the total weight of the remaining intervals,
and by Observation 4, discarding the thin intervals loses not more than another
additional γ as well.

The above lemma naturally leads to the following definition.

Definition 13 A grouping sequence for I is a sequence K = (K0, . . . ,Ks) of
disjoint subsets partitioning [r], where K1, . . . ,Ks (but not necessarily K0) are
intervals. We also define IK to be the partition IK0 , . . . , IKs (note that IK0 is
not necessarily an interval in [n], while all other members are intervals).

A grouping sequence K is called γ-calm for I, if K1, . . . ,Ks satisfy d(µ �IKt

,UIKt
) ≤ γ, and µ(IK0) ≤ γ.

In turn, this leads to the following observation which will make all of this
useful for learning and testing decomposable distributions.

Observation 5 If K is γ-calm for I, then µ is 3γ-close to its flattening:
d(µ, µIK) ≤ 3γ.

Proof This follows since for every t > 0, by definition
∑
i∈IKt

|µ(i)− µI(i)| ≤
γµ(IKt), while

∑
i∈IK0

|µ(i)− µI(i)| ≤ 2µ(IK0) ≤ 2γ.
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Algorithm 4: Departitioning in the unconditional model

Input: Oracle access to a distribution µ supported over [n], parameters L, r, an
interval partition I satisfying |I| = r′ ≤ r, parameters ε, δ > 0

1 use Lemma 5 with γ = ε/4r to find kj corresponding to µ(Ij) for every j ∈ [r′], with
probability at least 1− δ/2

2 use Lemma 21 to test all
(r′+1

2

)
intervals IK , where K is any interval in [r′], with

parameters η = ε/100L, γ = ε/100, ε also for the lemma’s “ε” parameter, and δ/2
3 let A denote the set of intervals K for which IK was accepted

4 if there exist disjoint K1, . . . ,Ks ∈ A where s ≤ L and
∑
j∈[r′]\

⋃s
t=1Kt

2kj+1 ≤ 4r

then return K =
(
([r′] \

⋃s
t=1Kt),K1, . . . ,Ks

)
else reject

We now present our departitioning algorithm under the unconditional
model, as Algorithm 4.

Let us first prove for the algorithm a soundness lemma, that the probability
of outputting a grouping sequence that is not calm is bounded by δ.

Lemma 23 The probability, for any µ and I, for Algorithm 4 to output (with-
out rejecting) a grouping sequence which is not ε-calm is at most δ.

Proof By a union bound, with probability at least 1−δ, both Step 1 produced
k1, . . . , kr′ which satisfy µ(Ij) ≤ ε2kj+1/4r for every j ∈ [r′], and Step 2 lead
to an A which contains only intervals K for which d(µ �IK ,UIK ) ≤ ε. When
the two events occur, Step 4 makes sure to output an ε-calm grouping sequence
(or reject if it fails to find one).

Next, let us prove a completeness lemma. In this case, it depends on both
the original distribution being decomposable and the original partition being
fine.

Lemma 24 If µ is (ε/100, L)-decomposable, and I is (ε/100L, ε/100)-fine,
then with probability at least 1−δ, the algorithm will not reject and will output
an ε-calm grouping sequence.

Proof As before, with probability at least 1 − δ both Step 1 and Step 2 are
successful. As above this event implies that if a sequence is output then it is
ε-calm (it is the same event as above), so it remains to prove that rejection
will not occur. First note that the above event additionally implies that the
intervals K1, . . . ,Ks that are provided by Lemma 22 (with ε/100 instead of γ)
are in particular members of A, by the assertion of Lemma 21.

In particular this means that Step 4 considers the above K1, . . . ,Ks. Then,
Lemma 5 asserts (due to the event of being successful) that k1, . . . , kr′ are
such that for every K ′,

∑
j∈K′ ε2

kj+1/4r ≤ ε/2 + 4µ(IK′) (since ε2kj+1/4r ≤
max{4µ(Ij), ε/2r}). In particular this occurs for K ′ = [r′]\

⋃s
t=1Kt, which by

Lemma 22 satisfies µ(IK′) ≤ ε/20, and hence Step 4 will not reject, as it has
at least one viable output option.

Finally, let us bound the sample complexity.
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Lemma 25 Algorithm 4 takes O(r log(r/δ)/ε +
√
nL log(r/δ)/ε3) many un-

conditional samples.

Proof This follows respectively from Lemma 5 with the parameters provided
in Step 1, and Lemma 21 with the parameters provided in Step 2.

8 Learning and testing decomposable distributions and properties

Here we finally put things together to produce a learning algorithm for L-
decomposable distribution. This algorithm is not only guaranteed to learn with
high probability a distribution that is decomposable, but is also guaranteed
with high probability to not produce a wrong output for any distribution
(though it may plainly reject a distribution that is not decomposable).

This is presented as Algorithm 5. We present it with a fixed error proba-
bility 2/3 because this is what we use later on, but it is not hard to move to
a general δ.

Algorithm 5: Learning an L-decomposable distribution

Input: Oracle access to a distribution µ supported over [n], parameters L
(decomposability), ε > 0 (accuracy), a weakly tolerant interval uniformity
tester T taking input values (µ, I,m, γ, ε, δ)

1 use Algorithm 2 with input values (µ, ε/2000L, ε/2000, 1/9) to obtain a partition I
with |I| ≤ r = 105L log(1/ε)/ε

2 use Algorithm 3 with input values (µ,L, r, I, ε/20, 1/9,T)
3 if Algorithm 3 rejected then reject

4 use Lemma 11 with values (µ, I, ε/10, 1/9) to obtain µ′I
5 return µ′I

First we show completeness, that the algorithm will be successful for de-
composable distributions.

Lemma 26 If µ is (ε/2000, L)-decomposable, then with probability at least 2/3
Algorithm 5 produces a distribution µ′ so that d(µ, µ′) ≤ ε.

Proof By Lemma 7, with probability at least 8/9 the partition I = (I1, . . . , Ir)
is (ε/2000L, ε/2000)-fine, which then implies through use of Lemma 9 that∑
j∈[r]:bias(µ�Ij )>ε/2000

µ(Ij) ≤ 3ε/2000. When this occurs, by Lemma 17 with

probability at least 8/9 Algorithm 3 will accept and so the algorithm will
move past Step 3. In this situation, in particular by Lemma 10 we have that
d(µI , µ) ≤ 15ε/20 (in fact this can be bounded much smaller here), and with
probability at least 8/9 (by Lemma 11) Step 4 provides a distribution that is
ε/10-close to µI and hence ε-close to µ.

Next we show soundness, that the algorithm will with high probability not
mislead about the distribution, whether it is decomposable or not.
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Lemma 27 For any µ, the probability that Algorithm 5 produces (without
rejecting) a distribution µ′ for which d(µ, µ′) > ε is bounded by 1/3.

Proof Consider the interval partition I. By Lemma 7, with probability at
least 8/9 it is (ε/2000L, ε/2000)-fine. When this happens, if I is such that∑
j:d(µ�Ij ,UIj )>ε/20

µ(Ij) > 7ε/20, then by Lemma 18 with probability at least

8/9 the algorithm will reject in Step 3, and we are done (recall that here a
rejection is an allowable outcome).

On the other hand, if I is such that
∑
j:d(µ�Ij ,UIj )>ε/20

µ(Ij) ≤ 7ε/20, then

by Lemma 10 we have that d(µI , µ) ≤ 15ε/20, and with probability at least
8/9 (by Lemma 11) Step 4 provides a distribution that is ε/10-close to µI and
hence ε-close to µ, which is also an allowable outcome.

And finally, we plug in the sample complexity bounds.

Lemma 28 Algorithm 5 requires O(L log(1/ε)/ε+q/ε+L/ε3) many samples,
where the value q = q(n/L, ε2/105L log(1/ε), ε/20, ε/500) is a bound on the
number of samples that each invocation of T inside Algorithm 3 requires.

Algorithm 5 can be implemented either as an unconditional sampling al-
gorithm taking

√
nL · polylog(1/ε)/ε4 many samples, an adaptive conditional

sampling algorithm taking L·polylog(1/ε)/ε3 many samples, or a non-adaptive
conditional sampling algorithm taking L · polylog(n)/poly(ε) many samples.

Proof The three summands in the general expression follow respectively from
the sample complexity calculations of Lemma 7 for Step 1, Lemma 19 for Step
2, and Lemma 11 for Step 4 respectively. Also note that all samples outside
Step 2 are unconditional.

The specific bounds for the two conditional sampling models follow from
the respective bounds stated in Lemma 19, while for the unconditional model
we replace the middle summand with the bound provided by Lemma 20 (the
implementation using parallel testing).

Let us now summarize the above as a theorem.

Theorem 1 Algorithm 5 is capable of learning an (ε/2000, L)-decomposable
distribution, giving with probability at least 2/3 a distribution that is ε-close
to it, while for no distribution will it give as output a distribution ε-far from
it with probability more than 1/3.

It can be implemented either as an unconditional sampling algorithm taking√
nL · polylog(1/ε)/ε4 many samples, an adaptive conditional sampling algo-

rithm taking L · polylog(1/ε)/ε3 many samples, or a non-adaptive conditional
sampling algorithm taking L · polylog(n)/poly(ε) many samples.

Proof This follows from Lemmas 26, 27 and 28 respectively.

For the model of unconditional samples, there is an alternative to Algo-
rithm 5, which uses the departitioning Algorithm 4 instead of the assessment
Algorithm 3. We present it as Algorithm 6.

Also for this alternative we will prove completeness, soundness and a sam-
ple bound. Completeness is done in a similar manner as Lemma 26.
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Algorithm 6: Learning an L-decomposable distribution – departitioning
alternative
Input: Oracle access to a distribution µ supported over [n], parameters L

(decomposability) and ε > 0 (accuracy)
1 use Algorithm 2 with input values (µ, ε/2000L, ε/2000, 1/9) to obtain a partition I

with |I| ≤ r = 105L log(1/ε)/ε
2 use Algorithm 4 with input values (µ,L, r, I, ε/20, 1/9)
3 if Algorithm 4 rejected then reject else let K be its output
4 use Lemma 11 with values (µ, IK, ε/10, 1/9) to obtain µ′IK
5 return µ′IK

Lemma 29 If µ is (ε/2000, L)-decomposable, then with probability at least 2/3
Algorithm 6 produces a distribution µ′ so that d(µ, µ′) ≤ ε.

Proof By Lemma 7, with probability at least 8/9 the obtained partition I is
(ε/2000L, ε/2000)-fine, which means that by Lemma 24, with probability at
least 8/9 Algorithm 4 will accept and provide a K which is ε/20-calm. In this
situation, in particular by Observation 5 we have that d(µIK , µ) ≤ 3ε/20 and
with probability at least 8/9 (by Lemma 11) Step 4 provides a distribution
that is ε/10-close to µIK , and in particular ε-close to µ.

Soundness is even easier, because most of the work was already done by
Lemma 23.

Lemma 30 For any µ, the probability that Algorithm 6 produces (without
rejecting) a distribution µ′ for which d(µ, µ′) > ε is bounded by 1/3.

Proof By Lemma 23, with probability at least 8/9 the invocation in Step 2 will
not produce a grouping sequence K which is not ε/10-calm. If there was no
rejection in Step 3 (which would have been also allowable), then we conclude
using Observation 5 and Lemma 11, exactly as in the proof of Lemma 29
above, that the output distribution is ε-close to µ.

We conclude with the sample complexity calculation and the summarizing
theorem.

Lemma 31 Algorithm 6 requires
√
nL log(L) · polylog(1/ε)/ε3 many uncon-

ditional samples.

Proof This follows from plugging in the parameter values of Step 2 in Lemma
25. The sample complexity in Step 4 is subsumed in this.

Theorem 2 Algorithm 6, using
√
nL log(L) · polylog(1/ε)/ε3 many uncondi-

tional samples, is capable of learning an (ε/2000, L)-decomposable distribution,
giving with probability at least 2/3 a distribution that is ε-close to it, while for
no distribution will it give as output a distribution ε-far from it with probability
more than 1/3.

Proof This follows from Lemmas 31, 29 and 30 respectively.
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Let us finally move to the immediate application of the above learning
algorithms for testing decomposable properties. The algorithm achieving this
is presented as Algorithm 7

Algorithm 7: Testing L-decomposable properties.

Input: Oracle access to a distribution µ supported over [n], function
L : (0, 1]× N→ N (decomposability), parameter ε > 0 (accuracy), an
L-decomposable property C of distributions, a weakly tolerant interval
uniformity tester T taking input values (µ, I,m, γ, ε, δ)

1 use either Algorithm 5 with input values (µ,L(ε/4000, n), ε/2,T) (all models), or
Algorithm 6 with input values (µ,L(ε/4000, n), ε/2) (unconditional model only), to
obtain µ′

2 if Algorithm 5 or 6 accepted and µ′ is ε/2-close to C then accept else reject

Theorem 3 Algorithm 7 is a test (with error probability 1/3) for the L-
decomposable property C. For L = L(ε/4000, n), It can be implemented either
as an unconditional sampling algorithm taking either

√
nL · polylog(1/ε)/ε4

or
√
nL log(L) · polylog(1/ε)/ε3 many samples, an adaptive conditional sam-

pling algorithm taking L · polylog(1/ε)/ε3 many samples, or a non-adaptive
conditional sampling algorithm taking L · polylog(n)/poly(ε) many samples.

Proof The number and the nature of the samples are determined fully by
the application of Algorithm 5 or Algorithm 6 in Step 1, and so follow from
either Theorem 1 or Theorem 2 respectively. Also by these theorems, for a
distribution µ ∈ C, with probability at least 2/3 an ε/2-close distribution µ′

will be produced, and so it will be accepted in Step 2.
Finally, if µ is ε-far from C, then with probability at least 2/3 Step 1 will

either produce a rejection, or again produce µ′ that is ε/2-close to µ. In the
latter case, µ′ will be ε/2-far from C by the triangle inequality, and so Step 2
will reject in both cases.

9 A weakly tolerant tester for the non-adaptive conditional model

Given a distribution µ, supported over [n], and an interval I ⊆ [n] such that
µ(I) ≥ γ, we give a tester that uses non-adaptive conditional queries to µ to
distinguish between the cases bias(µ �I) ≤ ε/100 and d(µ �I ,UI) > ε, using
ideas from [9]. A formal description of the test is given as Algorithm 8. It is
formulated here with error probability δ = 1/3. Lemma 15 is obtained from
this the usual way, by repeating the algorithm O(1/δ) times and taking the
majority vote.

We first state the observation that makes Algorithm 8 suitable for a non-
adaptive setting.

Observation 6 Algorithm 8 can be implemented using only polylog(n)/γ ·
poly(ε) many non-adaptive conditional queries to the distribution µ, that are
chosen independently of I.
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Algorithm 8: Non-adaptive weakly tolerant uniformity tester

Input: Oracle access to a distribution µ supported over [n], interval I ⊆ [n], weight
bound γ, accuracy ε > 0

1 sample t =
4(log10 n+4)

ε2γ
elements from µ

2 for k ∈ {0, . . . , logn} do
3 set pk = 2−k

4 choose a set Uk ⊆ [n], where each i ∈ [n] is in Uk with probability pk,
independently of other elements in [n]

5 if |I| ≤ log10 n then
6 use Lemma 32, using the t unconditional samples from µ, to construct a

distribution µ′

7 if d(µ′,UI) ≤ ε/2 then accept else reject

8 else

9 for Uk such that k ≤ log
(
|I|

2 log8 n

)
, and |I ∩ Uk| ≥ log8 n do

10 use Lemma 33 for Uk and I, with parameters γ/100 log2 n and
δ = 1/10 logn, to find a corresponding ηk, using polylog(n)/γ many
samples

11 if ηk > γ/100 log2 n then
12 sample log3 n/ηk elements from µ �Uk

13 if the same element from I ∩ Uk has been sampled twice then reject

14 choose an index k such that 2
3

log8 n/ε2 ≤ |I|pk < 4
3

log8 n/ε2

15 sample mk =
108 log16 n log(3 logn)

ε6γ
elements from µ �Uk

16 if |I ∩ Uk| > 2|I|pk or the number of samples in I ∩ Uk is less than γmk/40
then

17 reject

18 else
19 use Lemma 4 with the samples received from I ∩ Uk, to construct µ′,

supported on I ∩ Uk, such that ‖µ′ − µ �I∩Uk
‖∞ ≤ ε

80|I∩Uk|
with

probability at least 9/10
20 if ‖µ′ − UI∩Uk

‖∞ ≤ 3ε
80|I∩Uk|

then accept else reject

Proof First, note that the algorithm samples elements from µ in four places.
Initially, it samples unconditionally from µ in Step 1, and then it performs
conditional samples from the sets Uk in Steps 10, 12 and 15. In Steps 10 and
15, the samples are conditioned on sets Uk, where k depends on I. However,
observe that we can sample from all sets Uk, for all 0 ≤ k ≤ log n, at the
beginning, and then use just the samples taken from the appropriate Uk at
these steps. This only increases the bound on the number of samples by a
factor of log n. Step 12 depends also on the result of Step 10. However, this
step can be reached only for ηk > γ/100 log2 n. Therefore, we can also here
take in advance 100 log5 n/γ samples for every possible k, and then use only
as many of these samples as we need for this step, for every k for which it is
reached. Thus we have only non-adaptive queries, all of which are made at the
start of the algorithm, and in a manner independent of I.

The following lemma is used in Step 6 of our algorithm.
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Lemma 32 Let µ be a distribution supported over [n] and I ⊆ [n] be an

interval such that µ(I) ≥ γ. Using t = 4(|I|+log(4/δ))
ε2γ unconditional queries to

µ, we can construct a distribution µ′ over I such that, with probability at least
1− δ, d(µ �I , µ′) ≤ ε (in other cases µ′ may be arbitrary).

Proof Take t = 4(|I|+log(4/δ))
ε2γ unconditional samples. Let tI be the number of

samples that belong to I. Then, E[tI ] = tµ(I) ≥ tγ. Therefore, by Lemma 1,
with probability at least 1− exp(−tµ(I)/4) > 1− δ/2, tI ≥ tµ(I)/2 ≥ tγ/2.

The tI samples are distributed according to µ �I . By the choice of t, the
above implies that with probability at least 1− δ/2, tI ≥ 2(|I|+ log(4/δ))/ε2.
Therefore, by Lemma 3, we can obtain a distribution µ′, supported over I,
such that with probability at least 1− δ/2, d(µ �I , µ′) ≤ ε. The probability of
both of the above events happening is at least 1− δ.

If we did not obtain sufficiently many samples (either because µ(I) < γ or
due to a low probability event) then we just output an arbitrary distribution
supported on I.

The following very simple lemma is used in Step 10 of our algorithm.

Lemma 33 Given a set U ⊆ [n], an interval I ⊆ [n] and any γ, δ > 0, it
takes O(log(1/δ)/γ) samples from µ conditioned on U to output η satisfying
the following.

– µ �U (I) < 2η.
– If µ �U (I) ≥ γ then µ �U (I) ≥ η/2.

Proof We use here Lemma 5, with µ �U instead of µ, and with only one set
A1 = U ∩ I. We then set η = 2k1γ.

We now move to prove the completeness and soundness of Algorithm 8. In
the following analysis, all “o(1) probability” bounds are functions of n only, so
these can be made small enough by assuming that n is larger than some global
constant; to handle smaller n a brute-force algorithm can be used instead.

Lemma 34 (Completeness) If µ(I) ≥ γ and bias(µ �I) ≤ ε/100, then Al-
gorithm 8 accepts with probability at least 2/3.

Proof First note that if |I| ≤ log10 n, then we use Lemma 32 to test the
distance of µ �I to uniform with probability at least 9/10 in Step 7. For the
remaining part of the proof, we will assume that |I| > log10 n.

Now note that with probability at least 9/10, all ηk which were produced
in Step 10 indeed satisfy µ �Uk

(I) ≤ 2ηk, and hence µ(Uk ∩ I) ≤ 2ηkµ(Uk).
For a set Uk chosen by the algorithm, and any i ∈ I ∩ Uk, the prob-

ability that it is sampled twice in Step 12 (if it was reached) is at most(
log3 n/ηk

2

) ( µ(i)
µ(Uk)

)2
. Since µ(Uk) ≥ µ(I ∩ Uk)/2ηk, the probability of sam-

pling i twice in Step 12 is at most
(
log3 n/ηk

2

) ( 2ηkµ(i)
µ(I∩Uk)

)2
. By Observation 1
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bias(µ �I) ≤ ε/100 implies ‖µ �I −UI‖∞ ≤ ε
100|I| , so we have

µ(I)

|I|

(
1− ε

100

)
≤ µ(i) ≤ µ(I)

|I|

(
1 +

ε

100

)
. (3)

From Equation 3 we get the following for all Uk.

|I ∩ Uk|µ(I)

|I|

(
1− ε

100

)
≤ µ(I ∩ Uk) ≤ |I ∩ Uk|µ(I)

|I|

(
1 +

ε

100

)
. (4)

Therefore, the probability that the algorithm samples the same element in
I ∩ Uk at Step 13 twice is bounded as follows.∑
i∈I∩Uk

(
log3 n/ηk

2

)(
2ηkµ(i)

µ(I ∩ Uk)

)2

≤ 10|I ∩ Uk|
(

log3 n

2

)
maxi∈I∩Uk

µ(i)2

µ(I ∩ Uk)2

≤ 10

|I ∩ Uk|

(
log3 n

2

)(
1 + ε/100

1− ε/100

)2

Since |I ∩ Uk| ≥ log8 n for any k that goes through Step 9, we can bound
the sum as follows.∑

i∈I∩Uk

(
log3 n/ηk

2

)(
µ(i)

µ(I ∩ Uk)

)2

≤ 10

log2 n

(
1 + ε/100

1− ε/100

)2

.

Therefore, with probability at least 1− o(1), the algorithm does not reject at
Step 13 for any k for which it is reached.

To show that the algorithm accepts with probability at least 2/3 in Step
20 (and reaches it), we proceed as follows. Combining Equations 3 and 4, we
get the following.

1

|I ∩ Uk|

(
1− ε/100

1 + ε/100

)
≤ µ �I∩Uk

(i) ≤ 1

|I ∩ Uk|

(
1 + ε/100

1− ε/100

)
From this it follows that ‖µ �I∩Uk

−UI∩Uk
‖∞ ≤ ε

40|I∩Uk| .

We now argue that in this case, the test does not reject in Step 16, for
the k chosen in Step 14. Observe that E[µ(I ∩Uk)] ≥ pkγ. Also, the expected
size of the set I ∩ Uk is pk|I|. Since the k chosen in Step 14 is such that
|I|pk ≥ 2

3 log8 n/ε2 > 2
3 log8 n, with probability at least 1 − exp(−Θ(log8 n)),

pk|I|/2 ≤ |I ∩ Uk| ≤ 2pk|I| (and in particular Step 16 does not reject by
its first condition). Therefore, from Equation 4, we get that with probability
at least 1 − exp(−Θ(log8 n)), µ(I ∩ Uk) ≥ pkγ/3. Since E[µ(Uk)] = pk, we
can conclude using Markov’s inequality that, with probability at least 9/10,
µ(Uk) ≤ 10pk. The expected number of samples from I ∩ Uk among the mk

samples taken in Step 15 is mkµ(I ∩ Uk)/µ(Uk). Therefore, with probability
at least 9/10, the expected number of samples from I ∩ Uk among the mk

samples is at least γmk/30. Therefore, with probability, at least 9/10 − o(1),
at least γmk/40 elements of I ∩Uk are sampled, and the tester does not reject
in Step 16 by its second condition. The indexes that are sampled in Step 15
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that lie in I ∩ Uk are distributed according to µ �I∩Uk
, and we know that

|I ∩ Uk| ≤ 2|I|pk ≤ 8
3 log8 n/ε2. Therefore, with probability at least 9/10, we

get a distribution µ′ such that ‖µ′−µ �I∩Uk
‖∞ ≤ ε

80|I∩Uk| in Step 19, and the

test correctly accepts in Step 20 for the k chosen in Step 14.

Now we prove the soundness of the tester mentioned above. First we state
a lemma from Chakraborty et al [9].

Lemma 35 ([9], adapted for intervals) Let µ be a distribution, and I ⊆ [n]
be an interval such that d(µ �I ,UI) ≥ ε. Then the following two assertions hold.

1. The set B1 =
{
i ∈ I | µ �I (i) < 1+ε/3

|I|

}
is such that |B1| ≥ ε|I|/2.

2. There exists an index j ∈
{

3, . . . , log |I|
log(1+ε/3)

}
, such that the set set Bj =

{j ∈ I | (1+ε/3)j−1

|I| ≤ µ �I (i) < (1+ε/3)j

|I| } is of cardinality at least
ε2|I|

96(1+ε/3)j log |I| .

Now we analyze the case where d(µ �I ,UI) > ε.

Lemma 36 (Soundness) Let µ be a distribution supported on [n], and let
I ⊆ [n] be an interval such that µ(I) ≥ γ. If d(µ �I ,UI) ≥ ε, then Algorithm 8
rejects with probability at least 2/3.

Proof Observe that when |I| ≤ log10 n, the algorithm rejects with probability
at least 9/10 in Step 7. For the remainder of the proof, we will assume that
|I| > log10 n. We analyze two cases according to the value of j given by Lemma
35.

Suppose first that j > 2 is such that |Bj | ≥ ε2|I|
96(1+ε/3)j log |I| , and (1 +

ε/3)j ≤ log6 n. The expected number of elements from this set that is chosen

in Uk is at least ε2|I|pk
96(1+ε/3)j log |I| . For the choice of k made in Step 14, we

have |I|pk ≥ 2
3 log8 n/ε2. The probability that no index from Bj is chosen

in Uk is (1 − pk)|Bj |, which is at most (1 − 2 log8 n
3|I|ε2 )ε

2|I|/96(1+ε/3)j log |I|. Since

(1 + ε/3)j ≤ log6 n, this is at most exp
(
− logn

144

)
. Therefore, with probability

1− o(1), at least one element i is chosen from Bj .
Since |B1| ≥ ε|I|/2, the probability that no element from B1 is chosen in

Uk is at most (1 − pk)ε|I|/2. Substituting for pk, we can conclude that, with
probability 1− o(1), at least one element i′ is chosen from the set B1.

Now, µ �I (i) ≥ (1+ε/3)µ �I (i′). Hence, µ �I∩Uk
(i) ≥ (1+ε/3)µ �I∩Uk

(i′).
This implies that ‖µ �I∩Uk

−UI∩Uk
‖∞ ≥ ε

20|I∩Uk| . The algorithm will hence

reject with probability at least 9/10 in Step 20, unless it has already rejected
in Step 16 or Step 13.

Now assume the second case, where j is such that |Bj | ≥ ε2|I|
96(1+ε/3)j log |I| ,

and (1 + ε/3)j > log6 n. Let k = max
{

0, blog
(

ε2|I|
4(1+ε/3)j log2 n

)
c
}

. Then,

for this value of k, pk ≥ min
{

1, 2(1+ε/3)
j log2 n

ε2|I|

}
. Also, for this value of k,
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pk ≤ min
{

1, 4(1+ε/3)
j log2 n

ε2|I|

}
. By Lemma 1, with probability at least 1 −

exp(−Θ(log8 n)), |Uk ∩ I| ≥ log8 n, for this value of k. Thus, with proba-
bility 1− o(1) Step 9 will allow steps 10 through Step 13 to take place for this
k.

Furthermore, the probability that Bj ∩Uk is empty is (1− pk)|Bj |. Substi-
tuting the values of |Bj | and pk, we get that Pr[Bj∩Uk = ∅] ≤ exp(− log n/48).
Therefore, with probability at least 1−exp(− log n/48), Uk contains an element
of Bj .

Let i ∈ Bj ∩ Uk. Since i ∈ Bj , from Lemma 35 we know that µ �I (i) =
µ(i)
µ(I) ≥

(1+ε/3)j−1

|I| . From this bound, we get that µ �Uk
(i) ≥ (1+ε/3)j−1µ(I)

|I|µ(Uk)
. The

expected value of µ(Uk) is pk. By Markov’s inequality, with probability at least

9/10, µ(Uk) ≤ 10pk. Therefore, µ �Uk
(i) ≥ (1+ε/3)j−1γ

10|I|pk ≥ γ
40ε2(1+ε/3) log2 n

. In

particular, since µ �Uk
(I) ≥ µ �Uk

(i), with probability 1− o(1) the ηk that is
produced for it in Step 10 is such that Step 11 allows Steps 12 and 13 to take
place.

The probability that in Step 12 i is sampled less than twice is the sum of the

probability that it is not sampled at all, at most
(

1− γ
40ε2(1+ε/3) log2 n

)log3(n)/γ

,

and the probability that this index is sampled exactly once, which is at most

log3(n)
γ

γ
40ε2(1+ε/3) log2 n

(
1− γ

40ε2(1+ε/3) log2 n

)(log3(n)/γ)−1
. Both are o(1) (as a

function of n only, not γ or ε ≤ 1), and therefore with probability 1− o(1), i
is sampled at least twice, and the tester rejects in Step 13.

Proof (Proof of Lemma 15) Given the input values (µ, I,m, γ, ε, δ), we iterate
Algorithm 8 O(1/δ) independent times with input values (µ, I, γ, ε) (we may
ignore m here), and take the majority vote. The sample complexity is evident
from the description of the algorithm. If indeed µ(I) ≥ γ then Lemma 34 and
Lemma 36 provide that every round gives the correct answer with probability
at least 2/3, making the majority vote correct with probability at least 1− δ.
The sample complexity and the independence of the requested samples from
I are guaranteed by Observation 6.

10 Introducing properties characterized by atlases

In the next sections, we give a testing algorithm for properties characterized
by atlases, which we formally define here. We will also show that distributions
that are L-decomposable are, in particular, characterized by atlases. First we
start with the definition of an inventory.

Definition 14 (inventory) Given an interval I = [a, b] ⊆ [n] and a real-
valued function ν : [a, b] → [0, 1], the inventory of ν over [a, b] is the multiset
M corresponding to (ν(a), . . . , ν(b)).

That is, we keep count of the function values over the interval including rep-
etitions, but ignore their order. In particular, for a distribution µ = (p1, . . . , pn)
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over [n], the inventory of µ over [a, b] is the multiset M corresponding to
(pa, . . . , pb).

Definition 15 (atlas) Given a distribution µ over [n], and an interval parti-
tion I = (I1, . . . , Ik) of [n], the atlas A of µ over I is the ordered pair (I,M),
whereM is the sequence of multisets (M1, . . . ,Mk) so that Mj is the inventory
of µ over Ij , for every j ∈ [k]. In this setting, we also say that µ conforms to
A.

We note that there can be many distributions over [n] whose atlas is the
same. We will also denote by an atlas A any ordered pair (I,M) where I
is an interval partition of [n] and M is a sequence of multisets of the same
length, so that the total sum of all members of all multisets is 1. It is a simple
observation that for every such A there exists at least one distribution that
conforms to it. The length of an atlas |A| is defined as the shared length of its
interval partition and sequence of multisets.

We now define what it means for a property to be characterized by atlases,
and state our main theorem concerning such properties.

Definition 16 For a function k : R+ × N → N, we say that a property of
distributions C is k-characterized by atlases if for every n ∈ N and every
ε > 0 we have a set A of atlases of lengths bounded by k(ε, n), so that every
distribution µ over [n] satisfying C conforms to some A ∈ A, while on the
other hand no distribution µ over [n] that conforms to any A ∈ A is ε-far from
satisfying C.

Theorem 4 If C is a property of distributions that is k-characterized by at-
lases, then for any ε > 0 there is an adaptive conditional testing algorithm for
C with query complexity k(ε/5, n) · polylog(n)/poly(ε), and error probability
bound 1/3.

10.1 Applications and examples

We first show that L-decomposable properties are in particular characterized
by atlases.

Lemma 37 If C is a property of distributions that is L-decomposable, then C
is k-characterized by atlases, where k(ε, n) = L(ε/3, n).

Proof Every distribution µ ∈ C that is supported over [n] defines an atlas
in conjunction with the interval partition of the L-decomposition of µ for
L = L(γ, n). Let A be the set of all such atlases. We will show that C is
L(3γ, n)-characterized by A.

Let µ ∈ C. Since µ is L-decomposable, µ conforms to the atlas given by
the L-decomposition and it is in A as defined above.

Now suppose that µ conforms to an atlas A ∈ A, where I = (I1, . . . , I`) is
the sequence of intervals. By the construction of A, there exists a distribution
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χ ∈ C that conforms with A. Now, for each j ∈ [`] such that µ(Ij) ≤ γ/L, we
have (noting that χ(Ij) = µ(Ij))∑

i∈Ij

|µ(i)− χ(i)| ≤
∑
i∈Ij

µ(i) +
∑
i∈Ij

χ(i) ≤ 2µ(Ij) ≤
2γ

`
. (5)

Noting that µ and χ have the same maximum and minimum over Ij (as
they have the same inventory), for each j ∈ [`] and i ∈ Ij , we know that
|µ(i)− χ(i)| ≤ maxi∈Ij µ(i)−mini∈Ij µ(i). Therefore, for all j ∈ [`] such that
maxi∈Ij µ(i) ≤ (1 + γ) mini∈Ij µ(i), |µ(i)− χ(i)| ≤ γmini∈Ij µ(i). Therefore,∑

i∈Ij

|µ(i)− χ(i)| ≤ |Ij |γmin
i∈Ij

µj(i) ≤ γµj(Ij). (6)

Finally, recall that since A came from an L-decomposition of χ, all intervals
are covered by the above cases. Summing up Equations 5 and 6 for all j ∈ [`],
we obtain d(µ, χ) ≤ 3γ.

Note that atlases characterize also properties that do not have shape re-
striction. The following is a simple observation.

Observation 7 If C is a property of distributions that is symmetric over [n],
then C is 1-characterized by atlases.

It was shown in Chakraborty et al [9] that such properties are efficiently
testable using conditional queries, so Theorem 4 in particular generalizes this
result.

Finally, the notion of characterization by atlases provides a natural model
for tolerant testing, as we will see in the next section.

11 Atlas characterizations and tolerant Testing

We now show that for all properties of distributions that are characterized by
atlases, there are efficient tolerant testers as well. In [8], it was shown that for
a large property of distribution properties that have “semi-agnostic” learners,
there are efficient tolerant testers. In this section, we show that when the al-
gorithm is given conditional query access, there are efficient tolerant testers
for the larger class of properties that are characterized by atlases, including
decomposable properties that otherwise do not lend themselves to tolerant
testing. The mechanism presented here will also be used in the proof of The-
orem 4 itself.

First, we give a definition of tolerant testing. We note that the definition
extends naturally to algorithms that make conditional queries to a distribution.

Definition 17 Let C be any property of probability distributions. An (η, ε)-
tolerant tester for C with query complexity q and error probability δ, is an
algorithm that samples q elements x1, . . . , xq from a distribution µ, accepts
with probability at least 1 − δ if d(µ, C) ≤ η, and rejects with probability at
least 1− δ if d(µ, C) ≥ η + ε.
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In [8], they show that for every α > 0, there is an ε > 0 that depends on
α, such that there is an (ε, α − ε)-tolerant tester for certain shape-restricted
properties. On the other hand, tolerant testing using unconditional queries
for other properties, such as the (1-decomposable) property of being uniform,
requires Ω (n/ log n) many samples by [19]. We prove that, in the presence of
conditional query access, there is an (η, ε)-tolerant tester for every η, ε > 0
such that η + ε < 1, for all properties of probability distributions that are
characterized by atlases.

We first present a definition and prove an easy lemma that will be useful
later on.

Definition 18 Given a partition I = (I1, . . . , Ik) of [n], we say that a permu-
tation σ : [n]→ [n] is I-preserving if for every 1 ≤ j ≤ k we have σ(Ij) = Ij .

Lemma 38 Let χ and χ′ be two distributions, supported on [n], both of which
conform to an atlas A = (I,M). If A′ = (I,M′) is another atlas with the
same interval partition as A, such that χ is ε-close to conforming to A′, then
χ′ is also ε-close to conforming to A′.

Proof It is an easy observation that there exists an I-preserving permutation
σ that moves χ to χ′. Now let µ be the distribution that conforms to A′ such
that d(µ, χ) ≤ ε, and let µ′ be the distribution that results from having σ
operate on µ. It is not hard to see that µ′ conforms to A′ (which has the same
interval partition as A), and that it is ε-close to χ′.

For a property C of distributions that is k-characterized by atlases, let Cη be
the property of distributions of being η-close to C. The following lemma states
that Cη is also k-characterized by atlases. This lemma will also be important
for us outside the context of tolerant testing per-se.

Lemma 39 Let C be a property of distributions that is k-characterized by
atlases. For any η > 0, let Cη be the set of all probability distributions µ such
that d(µ, C) ≤ η. Then, for every ε and n, there is a set Aη of atlases of length
at most k(ε, n), such that every µ ∈ Cη over [n] conforms to at least one atlas
in Aη, and every distribution that conforms to an atlas in Aη is η+ ε-close to
C, and is ε-close to Cη.

Proof Since C is k-characterized by atlases, for every ε and n there is a set of
atlases A of length at most k(ε, n), such that for each µ ∈ C over [n] there is an
atlas A ∈ A to which it conforms, and any χ that conforms to an atlas A ∈ A is
ε-close to C. Now, let Aη be obtained by taking each atlas A ∈ A, and adding
all atlases, with the same interval partition, corresponding to distributions
that are η-close to conforming to A.

First, note that the new atlases that are added have the same interval
partitions as atlases in A, and hence have the same length bound k(ε, n). To
complete the proof of the lemma, we need to prove that every µ ∈ Cη conforms
to some atlas in Aη, and that no distribution that conforms to Aη is η + ε-far
from C (and ε-far from Cη).
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Take any µ ∈ Cη. There exists some distribution µ′ ∈ C such that d(µ, µ′) ≤
η. Since C is k-characterized by atlases, there is some atlas A ∈ A such that µ′

conforms with A. Also, observe that µ is η-close to conforming to A through
µ′. Therefore, there is an atlas A′ with the same interval partition as A that
was added in Aη, which is the atlas corresponding to the distribution µ. Hence,
there is an atlas in Aη to which µ conforms.

Conversely, let χ be a distribution that conforms to an atlas A′ ∈ Aη. From
the construction of Aη, we know that there is an atlas A ∈ A with the same
interval partition as A′, and there is a distribution χ′ that conforms to A′
and is η-close to conforming to A. Therefore, by Lemma 38 χ is also η-close
to conforming to A. Let µ′ be the distribution conforming to A such that
d(χ, µ′) ≤ η. Since µ′ conforms to an atlas A ∈ A, d(µ′, C) ≤ ε. Therefore, by
the triangle inequality, d(χ, C) ≤ η + ε.

This also implies that d(χ, Cη) ≤ ε, by considering χ̃ = (εµ̃ + ηχ)/(ε + η)
where µ̃ is the distribution in C that is ε+ η-close to χ. Note that χ̃ is η-close
to µ̃ and ε-close to χ.

Using Lemma 39 we get the following corollary of Theorem 4 about tolerant
testing of distributions characterized by atlases.

Corollary 1 Let C be a property of distributions that is k-characterized by
atlases. For every η, ε > 0 such that η+ ε < 1, there is an (η, ε)-tolerant tester
for C that takes k(ε/5, n) · poly(log n, 1/ε) conditional samples and succeeds
with probability at least 2/3.

12 Some useful lemmas about atlases and characterizations

We start with a definition and a lemma, providing an alternative equivalent
definition of properties k-characterizable by atlases

Definition 19 (permutation-resistant distributions) For a function k :
R+ × N → N, a property C of probability distributions is k-piecewise permu-
tation resistant if for every n ∈ N, every ε > 0, and every distribution µ over
[n] in C, there exists a partition I of [n] into up to k(ε, n) intervals, so that
every I-preserving permutation of [n] transforms µ into a distribution that is
ε-close to a distribution in C.

Lemma 40 For k : R+ × N → N, a property C of probability distributions is
k-piecewise permutation resistant if and only if it is k-characterized by atlases.

Proof If C is k-piecewise permutation resistant, then for each distribution µ ∈
C, there exists an interval partition Iµ of [n], such that every Iµ-preserving
permutation of [n] transforms µ into a distribution that is ε-close to C. Each
distribution µ thus gives an atlas over Iµ, and the collection of these atlases
for all µ ∈ C characterizes the property C. Therefore, C is k-characterized by
atlases.
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Conversely, let C be a property of distributions that are k-characterized by
atlases and let A be the set of atlases. For each µ ∈ C, let Aµ be the atlas in
A that characterizes µ and let Iµ be the interval partition corresponding to
this atlas. Now, every Iµ-preserving permutation σ of µ gives a distribution
µσ that has the same atlas Aµ. Since C is k-characterized by atlases, µσ is
ε-close to C. Therefore, C is k-piecewise permutation resistant as well.

We now prove the following lemma about ε/k-fine partitions of distribu-
tions characterized by atlases, having a similar flavor as Lemma 8 for L-
decomposable properties. Since we cannot avoid a polylog(n) dependency any-
way, for simplicity we use the one-parameter variant of fine partitions.

Lemma 41 Let C be a property of distributions that is k-characterized by
atlases, and for some ε and n let A be the corresponding characterization. For
any µ ∈ C, any ε/k-fine interval partition I ′ of µ, and the corresponding atlas
A′ = (I ′,M′) for µ (not necessarily in A), any distribution µ′ that conforms
to A′ is 3ε-close to C.

Proof Let A = (I,M) be the atlas from A to which µ conforms, and let
I ′ = (I ′1, I

′
2, . . . , I

′
r) be an ε/k-fine interval partition of µ. Let P ⊆ I ′ be the

set of intervals that intersect more than one interval in I. Since I ′ is ε/k-fine,
and the length of A is at most k, µ(

⋃
I′j∈P

I ′j) ≤ ε (note that P cannot contain

singletons). Also, since µ′ conforms to A′, we have µ′(
⋃
I′j∈P

I ′j) ≤ ε.

Let µ̃ be a distribution supported over [n] obtained as follows: For each
interval I ′j ∈ P, µ̃(i) = µ(i) for every i ∈ I ′j . For each interval I ′j ∈ I ′ \ P,
µ̃(i) = µ′(i) for every i ∈ I ′j . Note that the inventories of µ̃ and µ are identical
over any I ′j in I ′ \ P. From this it follows that µ̃ also conforms to A, and in
particular µ̃ is a distribution. To see this, for any Ij in I partition it to its
intersection with the members of I ′ \ P contained in it, and all the rest. For
the former we use that µ and µ′ have the same inventories, and for the latter
we specified that µ̃ has the same values as µ.

Since µ′ and µ̃ are identical at all points except those in P, we have
d(µ′, µ̃) ≤ 2ε. Furthermore, d(µ̃, C) ≤ ε since µ̃ conforms to A ∈ A. There-
fore, by the triangle inequality, d(µ′, C) ≤ 3ε.

The main idea of our test, for a property of distributions k-characterized
by atlases, starts with a fine partition I obtained through Algorithm 1. We
then show how to compute an atlas A with this interval partition, such that
there is a distribution µI that conforms to A that is close to µ. We use the
trimming sampler from [9] to obtain such an atlas corresponding to I. To test
if µ is in C, we show that it is sufficient to check if there is some distribution
conforming to A that is close to a distribution in C.
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13 An adaptive test for properties characterized by atlases

Our main technical lemma, which we state here and prove in Section 14, is the
following possibility of “learning” an atlas of an unknown distribution for an
interval partition I, under the conditional sampling model.

Lemma 42 Given a distribution µ supported over [n], and a partition I =
(I1, I2, . . . , Ir), using r · poly(log n, 1/ε, log(1/δ)) conditional samples from µ
we can construct, with probability at least 1− δ, an atlas for some distribution
µI that is ε-close to µ.

First, we show how this implies Theorem 4. To prove it, we give as Algo-
rithm 9 a formal description of the test.

Algorithm 9: Adaptive conditional tester for properties k-characterized
by atlases

Input: Oracle access to a distribution µ supported over [n], a function
k : (0, 1]× N→ N, accuracy parameter ε > 0, a property C of distributions
that is k-characterized by the set of atlases A

1 use Algorithm 1 with input values (µ, ε/5k(ε/5, n), 1/6) to obtain a partition I with
|I| ≤ 1 + 30k(ε/5, n) log(90k(ε/5, n)/ε)/ε = O(k(ε/5, n) log(n) log(1/ε)/ε)

2 use Lemma 42 with accuracy parameter ε/5 and error parameter 1/6 to obtain an
atlas AI corresponding to I

3 if there exists χ ∈ C that is ε/5-close to conforming to AI then accept else reject

Lemma 43 (completeness) Let C be a property of distributions that is k-
characterized by atlases, and let µ be any distribution supported over [n]. If
µ ∈ C, then with probability at least 2/3 Algorithm 9 accepts.

Proof In Step 2, with probability at least 5/6 > 2/3, we get an atlas AI′ , such
that there is a distribution µI′ conforming to it that is ε/5-close to µ. Step 3
then accepts on account of χ = µ.

Lemma 44 (soundness) Let C be a property of distributions k-characterized
by atlases, and let µ be any distribution supported over [n]. If d(µ, C) > ε, then
with probability at least 2/3 Algorithm 9 rejects.

Proof With probability at least 2/3, for k = k(ε/5, n) we get an ε/5k-fine
partition I ′ in Step 1, as well as an atlas AI′ in Step 2 such that there is a
distribution µI′ conforming to it that is ε/5-close to µ.

Suppose that the algorithm accepted in Step 3 on account of χ ∈ C. Then
there is a χ′ that is ε/5-close to χ and conforms to AI′ . By Lemma 39, the
property Cε/5 of being ε/5-close to C is itself k-characterized by atlases. Let
Aε/5 be the collection of atlases characterizing it. Using Lemma 41 with χ′

and Aε/5, we know that χ′ is 3ε/5-close to some χ, which is in Cε/5 and thus
ε/5-close to C. Since χ′ is also ε/5-close to µ, we obtain that µ is ε-close to C
by the triangle inequality, contradicting d(µ, C) > ε.



36 E. Fischer et al.

Proof (Proof of Theorem 4) Given a distribution µ, supported on [n], and a
property C of distributions that is k-characterized by atlases, we use Algorithm
9. The correctness follows from Lemmas 43 and 44. The number of samples
made in Step 1 is clearly dominated by the number of samples in Step 2, which
is k(ε/5, n) · polylog(n)/poly(ε).

14 Constructing an atlas for a distribution

Before we prove Lemma 42, we will define the notion of value-distances and
prove lemmas that will be useful for the proof of the theorem.

Definition 20 (value-distance) Given two multisets A,B of real numbers,
both of the same size (e.g. two inventories over an interval [a, b]), the value-
distance between them is the minimum `1 distance between a vector that
conforms to A and a vector that conforms to B.

The following observation gives a simple method to calculate the value-
distances between two multisets A and B.

Observation 8 The value-distance between A and B is equal to the `1 dis-
tance between the two vectors resulting from the respective sorting of the two
multisets.

Proof Given two vectors v and w corresponding to A and B achieving the
value-distance, first assume that the smallest value of A is not larger than the
smallest value of B. Assume without loss of generality (by permuting both v
and w) that v1 is of the smallest value among those of A. It is not hard to see
that in this case one can make w1 to be of the smallest value among those of
B without increasing the distance (if wk holds the smallest value, swapping
it with w1 will not increase the distance), and from here one can proceed by
induction over |A| = |B|.

We now prove two lemmas that will be useful for the proof of Lemma 42.

Lemma 45 Let A and B be two multisets of the same size, both with members
whose values range in {0, α1, . . . , αr}. Let mj be the number of appearances of
αj in A, and nj the corresponding number in B. If mj ≤ nj for every 1 ≤ j ≤
r, then the value-distance between A and B is bounded by

∑r
j=1(nj −mj)αj.

Proof Let vA = {a1, . . . , al} and vB = {b1, . . . , bl} be two vectors such that
a1 = · · · = am1 = α1, am1+1 = · · · = an1 = 0 and b1 = · · · = bn1 = α1,
and similarly for j ∈ {1, . . . , r− 1}, a∑j

i=1 ni+1 = · · · = a∑j
i=1 ni+mj+1

= αj+1,

a∑j
i=1 ni+mj+1+1 = · · · = a∑j+1

i=1 ni
= 0 and b∑j

i=1 ni+1 = · · · = b∑j+1
i=1 ni

=

αj+1. For k >
∑r
j=1 nj , we set ak = bk = 0. The vectors vA and vB conform

to the multisets A and B respectively, and the `1 distance between the two
vectors is

∑r
j=1(nj −mj)αj , so the lemma follows.
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Lemma 46 Let µ be a probability distribution over {1, . . . , n}, and let µ̃ be a
vector of size n where each entry is a real number in the interval [0, 1], such
that

∑
i∈[n] |µ(i)− µ̃(i)| ≤ ε. Let µ̂ be a probability distribution over {1, . . . , n}

defined as µ̂(i) = µ̃(i)/
∑
i∈[n] µ̃(i) for all i ∈ [n]. Then

∑
i∈[n] |µ(i)− µ̂(i)| ≤

5ε.

Proof We have |
∑
i∈[n] µ(i)−

∑
i∈[n] µ̃(i)| ≤ ε. Therefore, 1−ε ≤

∑
i∈[n] µ̃(i) ≤

1 + ε. If
∑
i∈[n] µ̃(i) < 1, then µ̂(i) ≤ µ̃(i)/(1− ε) and µ̂(i) > µ̃(i). Therefore,

µ̂(i) ≤ (1+2ε)µ̃(i) and hence 0 ≤ µ̂(i)− µ̃(i) ≤ 2εµ̃(i). If
∑
i∈[n] µ̃(i) ≥ 1, then

µ̂(i) ≥ µ̃(i)/(1 + ε) ≥ (1− ε)µ̃(i) and µ̂(i) ≤ µ̃(i). Therefore 0 ≤ µ̃(i)− µ̂(i) ≤
εµ̃(i). Therefore |µ̃(i)− µ̂(i)| ≤ 2εµ̃(i), in all cases, for all i.

Now,
∑
i∈[n] |µ(i)− µ̂(i)| ≤

∑
i∈[n] |µ(i)− µ̃(i)|+

∑
i∈[n] |µ̃(i)− µ̂(i)|. Since∑

i∈[n] |µ̃(i) − µ̂(i)| ≤ 2ε
∑
i∈[n] µ̃(i) ≤ 2ε(1 + ε), we get that

∑
i∈[n] |µ(i) −

µ̂(i)| ≤ 5ε.

We now recall the definition of an ε-trimming sampler from [9].

Definition 21 (ε-trimming sampler) An ε-trimming sampler providing s
samples for a distribution µ supported over [n], is an algorithm that has condi-
tional query access to the distribution µ and returns s pairs of values (r, µ̄(r))
(for r = 0, µ̄(r) is not output) from a distribution µ̄ supported on {0} ∪ [n],
such that

∑
i∈[n] |µ̄(i) − µ(i)| ≤ 4ε, and each r is independently drawn from

µ̄. Furthermore, there is a set P of poly(log n, 1/ε) real numbers such that for
all i either µ̄(i) = 0 or µ̄(i) ∈ P .

The existence of an ε-trimming sampler with a small set of values was
proved in [9]. Let us formally state this lemma.

Lemma 47 ([9]) Given conditional query access to a distribution µ sup-
ported on [n], there is an ε-trimming sampler that makes 32s · ε−4 · log5 n ·
log(sδ−1 log n) many conditional queries to µ, and returns, with probability
at least 1 − δ, a sequence of s samples from a distribution µ̄, where P =

{ (1+ε)
k−1ε
n : 1 ≤ k ≤ t} for t = log n log(ε−1)/ log2(1 + ε).

14.1 Proving the main lemma

The proof of Lemma 42 depends on the following technical lemma.

Lemma 48 Let µ be a distribution over [n], and let P = (P0, P1, P2, . . . , Pr)
be a partition of [n] into r + 1 subsets with the following properties.

1. For each Pk ∈ P, µ(i) = pk for every i ∈ Pk, where p1, . . . , pr (but not p0)
are known.

2. Given an i ∈ [n] sampled from µ, we can find the k such that i ∈ Pk.

Using s = 6r
ε2 log

(
r
δ

)
samples from µ, with probability at least 1−δ, we can find

m1, . . . ,mr such that mk ≤ |Pk| for all k ∈ [r], and
∑
k∈[r] pk(|Pk|−mk) ≤ 4ε.
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Proof Take s samples from µ. For each k ∈ [r], let sk be the number of samples
in Pk, each with probability pk. We can easily see that E[sk] = spk|Pk|.

If pk|Pk| ≥ 1/r, then by Lemma 1, we know that

Pr [(1− ε)E[sk] ≤ sk ≤ (1 + ε)E[sk]] ≥ 1− 2e−ε
2E[sk]/3

By the choice of s, with probability at least 1 − δ/r, (1 − ε)pk|Pk| ≤ sk
s ≤

(1 + ε)pk|Pk|.
On the other hand, if pk|Pk| < 1/r, then by Lemma 1 we have

Pr
[
pk|Pk| − ε

r ≤
sk
s ≤ pk|Pk|+

ε
r

]
=

Pr
[(

1− ε
rpk|Pk|

)
spk|Pk| ≤ sk ≤

(
1 + ε

rpk|Pk|

)
spk|Pk|

]
≥

1− 2 exp

(
− ε2s

3r2pk|Pk|

)
≥ 1− 2e−ε

2s/3r

By the choice of s, with probability at least 1 − δ/r, pk|Pk| − ε
r ≤

sk
s ≤

pk|Pk|+ ε
r .

With probability at least 1 − δ, we get an estimate αk = sk/s for ev-
ery k ∈ [r] satisfying that αk ≤ max {pk|Pk|+ ε/r, pk|Pk|(1 + ε)}, and αk ≥
min {pk|Pk| − ε/r, pk|Pk|(1− ε)}. From now on we assume that αk satisfies
the above bounds, and define α′k = min {αk − ε/r, αk/(1 + ε)}. Notice that
α′k ≤ pk|Pk|. Furthermore, α′k ≥ min {pk|Pk| − 2ε/r, (1− 2ε)pk|Pk|}. Set mk =
dα′k/pke. Since α′k/pk ≤ |Pk| ∈ Z, we have mk ≤ |Pk| for all k.

Now,
∑
k∈[r] pk(|Pk| − mk) ≤

∑
k∈[r](pk|P | − α′k). Under the above as-

sumption on the value of αk, for every k such that pk|Pk| < 1/r, we have
α′k ≥ pk|Pk|−2ε/r. Hence, this difference is at most 2ε/r. For every k such that
pk|Pk| ≥ 1/r, α′k ≥ (1− 2ε)pk|Pk|. For any such k, the difference pk|Pk| − α′k
is at most 2εpk|Pk|. Therefore,

∑
k∈[r] pk(|Pk| −mk) is at most 4ε.

Proof (Proof of Lemma 42) Given a distribution µ and an interval partition
I = (I1, I2, . . . , Ir), let µ̄ be the distribution presented by the ε/8-trimming
sampler in Lemma 47. Let Ij,k ⊆ [n] be the set of indexes i such that i ∈ Ij
and µ̄(i) = (1+ε/8)k−1ε

8n , and Ij,0 be the set of indexes in Ij such that µ̄(i) = 0.
Thus, each interval Ij in I is now split into subsets Ij,0, Ij,1, Ij,2, . . . , Ij,`, where
` ≤ log n log(8/ε)/ log2(1 + ε/8).

Using Lemma 47 to obtain s = r · poly(log n, 1/ε, log(1/δ)) samples from
the distribution µ̄ (later we calculate how many samples this requires from
µ), we can estimate using Lemma 48 where P0 =

⋃r
j=1 Ij,0 and Pj`+k = Ij,k,

with probability at least 1 − δ/2, the values mj,k such that mj,k ≤ |Ij,k| for
all k > 0, and the following holds.∑

j,k:k>0

(1+ε/8)k−1ε
8n (Ij,k −mj,k) ≤ ε/10.

For every j, let MIj be the inventory provided by mj,1, . . . ,mj,` and mj,0 =

|Ij | −
∑
k∈[`]mj,k. Thus, we have a sequence M̃I = (MI1 ,MI2 , . . . ,MIr ) of
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inventories, that is ε/10-close in value-distance to the corresponding atlas of
µ̄ (where we need to add the interval {0} to the partition to cover its entire
support). Corresponding to M̃I , there is a vector µ̃ that is ε/10-close to µ̄.
Using Lemma 46, we have a distribution µ̂ that is ε/2-close to µ̄. Since the [n]
portion of µ̄ is ε/2-close to µ, by the triangle inequality, µ̂ is ε-close to µ. Thus
A = (I,MI), where MI is obtained by multiplying all members of M̃I by
the same factor used to produce µ̂ from µ̃, is an atlas for a distribution that
is ε-close to µ.

By lemma 47, we need s·poly(log n, log s, 1/ε, log(1/δ)) conditional samples
from µ to get s samples from a correct µ̄ with probability at least 1−δ/2. Thus
we require r ·poly(log n, 1/ε, log(1/δ)) conditional samples from µ to construct
the atlas AI .
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