
BIROn - Birkbeck Institutional Research Online

Fuhs, Carsten (2019) Transforming derivational complexity of term rewriting
to runtime complexity. In: Herzig, A. and Popescu, A. (eds.) Frontiers of
Combining Systems 12th International Symposium, FroCoS 2019, London,
UK, September 4-6, 2019, Proceedings. Lecture Notes in Artificial
Intelligence 11715. Springer. (In Press)

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/28185/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/28185/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Transforming Derivational Complexity of Term
Rewriting to Runtime Complexity

Carsten Fuhs

Department of Computer Science and Information Systems,
Birkbeck, University of London, United Kingdom

Abstract. Derivational complexity of term rewriting considers the length
of the longest rewrite sequence for arbitrary start terms, whereas runtime
complexity restricts start terms to basic terms. Recently, there has been
notable progress in automatic inference of upper and lower bounds for
runtime complexity. We propose a novel transformation that allows an off-
the-shelf tool for inference of upper or lower bounds for runtime complexity
to be used to determine upper or lower bounds for derivational complexity
as well. Our approach is applicable to derivational complexity problems
for innermost rewriting and for full rewriting. We have implemented
the transformation in the tool AProVE and conducted an extensive
experimental evaluation. Our results indicate that bounds for derivational
complexity can now be inferred for rewrite systems that have been out of
reach for automated analysis thus far.

1 Introduction

Term rewrite systems (TRSs) are a classic computational model both for equa-
tional reasoning and for evaluation of programs with user-defined data structures
and recursion [5]. A widely studied question for TRSs is that of their complexity,
i.e., the length of their longest derivation (i.e., rewrite sequence) as a function of
the size of the start term of the derivation. From a program analysis perspective,
this corresponds to the worst-case time complexity of the TRS.

In the literature, commonly two distinct notions are considered for the set
of start terms. On the one hand, the derivational complexity [21] of a term
rewrite system considers arbitrary terms as start terms that need to be regarded,
including terms with several (possibly nested) function calls. This notion is
inspired by the notion of termination of a rewrite system, which also considers
whether all rewrite sequences from arbitrary start terms terminate. Derivational
complexity is a suitable measure for the number of rewrite steps needed for
deciding the word problem in first-order equational reasoning with the help of
a terminating and confluent term rewrite system to rewrite both sides of the
conjectured equality to normal form.

On the other hand, the notion of runtime complexity [18] of a term rewrite
system restricts the set of start terms that are regarded to what is known as
basic terms: intuitively, these are terms where a single function call is performed
on constructor terms (i.e., data objects) as arguments. The motivation for this

2 Carsten Fuhs

restriction comes from program analysis, where one is usually interested in the
running time of a function when it is invoked on data objects.

These notions have been particularly studied for term rewriting with arbitrary
rewrite strategies (“full rewriting”) and for term rewriting restricted to innermost
rewrite strategies (“innermost rewriting”). The latter notion is closely related to
call-by-value evaluation in programming languages and λ-calculi.

Both for the derivational complexity and the runtime complexity of rewriting,
and both for innermost and full rewriting, fully automatic push-button tools have
been devised to determine asymptotic upper and lower bounds on the derivational
complexity and the runtime complexity of term rewriting. Examples include the
tools AProVE [14], CaT [23], Matchbox [34], and TcT [4].

However, as far as the author of this paper is aware, the two strands of research
on derivational and on runtime complexity have essentially stayed separate thus
far. While an upper bound on derivational complexity also implies an upper
bound on runtime complexity and a lower bound on runtime complexity also
implies a lower bound on derivational complexity, these implied bounds are
seldom tight. A translation that would allow for applying tools for analysis of
runtime complexity to analysis of derivational complexity (or vice versa) to
infer potentially tight bounds is still missing. This paper aims to close this gap.
We propose a transformation between rewrite systems such that the runtime
complexity of the transformed rewrite system is the same as the derivational
complexity of the original rewrite system. This transformation is applicable both
for innermost rewriting and for full rewriting.

This paper is organized as follows. In Sec. 2, we give preliminaries on term
rewriting and on notions of complexity. Sec. 3 proposes our novel transformation
(Def. 5) and proves its correctness (Thm. 12 and Thm. 14). In Sec. 4, we dis-
cuss related work for complexity analysis of rewriting and for transformational
approaches to analysis of rewrite systems. Sec. 5 provides a detailed experimen-
tal evaluation of our contributions on a large standard benchmark set. Sec. 6
concludes.

2 Preliminaries

In the following, we assume basic knowledge of term rewriting [5]. We recapitulate
(relative) term rewriting as well as the notions of derivational complexity and
runtime complexity.

Definition 1 (Signature, term, term rewriting, defined symbol, con-
structor symbol, basic term). We write T (Σ,V) for the set of terms over a
finite signature Σ and the set of variables V. For a term t, V(t) denotes the set of
variables occurring in t, and if t has the form f(t1, . . . , tn), we write root(t) = f .

A term rewrite system (TRS) R is a set of rules {`1 → r1, . . . , `n → rn} with
`i, ri ∈ T (Σ,V), `i 6∈ V, and V(ri) ⊆ V(`i) for all 1 ≤ i ≤ n. Its rewrite relation
is given by s →R t iff there is a rule ` → r ∈ R, a position π ∈ Pos(s), and a
substitution σ such that s = s[`σ]π and t = s[rσ]π. Here, the term `σ is called
the redex of the rewrite step.

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 3

For two TRSs R and S, R/S is a relative TRS, and its rewrite relation→R/S
is →∗S ◦ →R ◦ →∗S , i.e., rewriting with S is allowed before and after each R-step.
We define the innermost rewrite relation by s i→R/S t iff s→∗S s′ →R s′′ →∗S t
for some terms s′, s′′ such that the proper subterms of the redexes of each step
with →S or →R are in normal form w.r.t. R∪ S. We may write →R instead of
→R/∅ and i→R instead of i→R/∅.

For a relative TRS R/S, ΣR∪Sd = {root(`) | ` → r ∈ R ∪ S} and ΣR∪Sc =
{f | f ∈ Σ occurs in some rule ` → r ∈ R ∪ S} \ ΣR∪Sd are the defined (and
constructor, respectively) symbols of R/S. We write ΣR∪S = ΣR∪Sd] ΣR∪Sc .
A term f(t1, . . . , tk) is basic (for a given relative TRS R/S) iff f ∈ ΣR∪Sd and

t1, . . . , tk ∈ T (ΣR∪Sc ,V). We write T R/Sbasic for the set of basic terms for a relative
TRS R/S.

In the following, ω is the smallest infinite ordinal, i.e., ω > n holds for all
n ∈ N, and for any P ⊆ N ∪ {ω}, sup P is the least upper bound of P , where
sup ∅ = 0.

Definition 2 (Size, derivation height, derivational complexity dc, run-
time complexity rc [18, 21, 37]). The size |t| of a term t is defined as |x| = 1

if x ∈ V and |f(t1, . . . , tk)| = 1 +
∑k
i=1|ti|, otherwise.

The derivation height of a term t w.r.t. a relation→ is the length of the longest
sequence of →-steps starting with t, i.e., dh(t,→) = sup{e | ∃ t′ ∈ T (Σ,V). t→e

t′} where →e denotes the eth iterate of →. If t starts an infinite →-sequence, we
write dh(t,→) = ω.

To define the intended complexity notions, we first introduce a generic com-
plexity function compl parameterized by a natural number n, a relation →, and
a set of start terms T : compl(n,→, T) = sup{dh(t,→) | t ∈ T , |t| ≤ n}.

The derivational complexity function dcR/S maps any n ∈ N to the length
of the longest sequence of →R/S-steps starting with a term whose size is at
most n, i.e., dcR/S(n) = compl(n,→R/S , T (ΣR∪S ,V)). The innermost deriva-
tional complexity function idcR/S is defined analogously for innermost rewriting:
idcR/S(n) = compl(n, i→R/S , T (ΣR∪S ,V)).

The runtime complexity function rcR/S maps any n ∈ N to the length of the
longest sequence of →R/S-steps starting with a basic term whose size is at most

n, i.e., rcR/S(n) = compl(n,→R/S , T
R/S
basic). The innermost runtime complexity

function ircR/S is defined analogously: ircR/S(n) = compl(n, i→R/S , T
R/S
basic).

Our transformation will preserve and reflect derivation height precisely. How-
ever, many analysis techniques for derivational complexity and runtime complexity
of rewriting consider asymptotic behavior. The following definition is standard.

Definition 3 (Asymptotic notation, O, Ω, Θ). Let f, g : N → N ∪ {ω}.
Then f(n) ∈ O(g(n)) iff there are constants M,N ∈ N such that f(n) ≤M · g(n)
for all n ≥ N . Moreover, f(n) ∈ Ω(g(n)) iff g(n) ∈ O(f(n)), and f(n) ∈ Θ(g(n))
holds iff both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)) hold.

4 Carsten Fuhs

Example 4 (plus). Consider the relative TRS R/S with the following rules in R:

plus(0, x)→ x

plus(s(x), y)→ s(plus(x, y))

and with S = ∅. Here 0 and s are constructor symbols, and plus is a defined
symbol. We have rcR/S(n) ∈ Θ(n) (so both rcR/S(n) ∈ O(n) and rcR/S(n) ∈
Ω(n) hold) and ircR/S(n) ∈ Θ(n). Moreover, we have dcR/S(n) ∈ Θ(n2) and
idcR/S(n) ∈ Θ(n2).

3 From Derivational Complexity to Runtime Complexity

In this section we present the main contribution of this paper, an instrumentation
of a relative TRS R/S to a relative TRS R/(S] G) with the same (innermost
or full) runtime complexity. Moreover, we provide a proof for its correctness.
The idea is to encode the set of arbitrary start terms that is considered for
derivational complexity into a set of corresponding basic terms of the same size
that can be analyzed for runtime complexity. This is accomplished by adding
further constructor symbols consf that represent the defined symbols f from
R/S. We also add an “instrumentation” in the form of relative rewrite rules G
that generate the original start term for R/S from its encoding as a basic term
for R/(S] G), but do not lead to additional derivation height. The root symbol
for these basic terms will be called encf for f a defined or a constructor symbol
for R/S (note that the root symbol of a start term for derivational complexity
with maximum derivation height is not necessarily a defined symbol, e.g., consider
the rewrite rule a→ c(b, b)). We will also introduce an auxiliary function symbol
argenc for recursive application of the additional rewrite rules.

For example, a start term plus(plus(s(0), 0), x) for derivational complexity will
be represented by a basic term encplus(consplus(s(0), 0), x). Here encplus will be
a defined symbol and consplus a constructor symbol. Rewriting using i→G then
restores (an instance of) the original start term.

Definition 5 (Generator rules G, runtime instrumentation). Let R/S be
a relative TRS. We define the generator rules G of R/S as the set of rules

G = {encf (x1, . . . , xn)→ f(argenc(x1), . . . , argenc(xn)) | f ∈ ΣR∪S}
∪ {argenc(consf (x1, . . . , xn))→ f(argenc(x1), . . . , argenc(xn)) | f ∈ ΣR∪Sd }
∪ {argenc(f(x1, . . . , xn))→ f(argenc(x1), . . . , argenc(xn)) | f ∈ ΣR∪Sc }

where x1, . . . , xn are variables and where all function symbols argenc, consf , and
encf are fresh (i.e., they do not occur in R ∪ S). We call the relative TRS
R/(S] G) the runtime instrumentation of R/S. Moreover, we call terms over
the signature {encf | f ∈ ΣR∪S} ∪ {consf | f ∈ ΣR∪Sd } ∪ΣR∪Sc generator terms
for R/S (they are the intended start terms for R/(S] G)).

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 5

Example 6 (Example 4 continued). Continuing Example 4, we obtain the following
generator rules G:

encplus(x, y)→ plus(argenc(x), argenc(y))

enc0 → 0

encs(x)→ s(argenc(x))

argenc(consplus(x, y))→ plus(argenc(x), argenc(y))

argenc(0)→ 0

argenc(s(x))→ s(argenc(x))

To reason about our transformation, we introduce several helper functions to
encode and decode arbitrary terms for R/S as basic terms for R/(S] G).

Definition 7 (Constructor variant, basic variant, decoded variant). Let
R/S be a relative TRS and let R/(S] G) be its runtime instrumentation.

For a term t ∈ T (ΣR∪S ,V), we define its constructor variant cv(t) inductively
as follows:

– cv(x) = x for x ∈ V
– cv(f(t1, . . . , tn)) = f(cv(t1), . . . , cv(tn)) for f ∈ ΣR∪Sc

– cv(f(t1, . . . , tn)) = consf (cv(t1), . . . , cv(tn)) for f ∈ ΣR∪Sd

For a term t = f(t1, . . . , tn) ∈ T (ΣR∪S ,V), we define its basic variant
bv(f(t1, . . . , tn)) = encf (cv(t1), . . . , cv(tn)).

Finally, for a term t ∈ T (ΣR∪S∪G ,V), we define its decoded variant dv(t) ∈
T (ΣR∪S ,V) as follows:

– dv(x) = x for x ∈ V
– dv(f(t1, . . . , tn)) = g(dv(t1), . . . ,dv(tn)) for f ∈ {g, consg, encg} with g ∈
ΣR∪Sd

– dv(f(t1, . . . , tn)) = f(dv(t1), . . . ,dv(tn)) for f ∈ ΣR∪Sc

The following lemmas address properties of our helper functions that we will
use in the proofs of our theorems.

Lemma 8 (Basic variants of function applications are basic terms). Let
R/S be a relative TRS, let t be a term from T (ΣR∪S ,V).

(a) We have cv(t) ∈ T (ΣR∪S∪Gc ,V).
(b) The term bv(t) is a basic term for the runtime instrumentation R/(S] G).
(c) |bv(t)| = |t|.

Proof. Claims (a) and (b) follow directly from the definitions of cv, of bv, and of
generator rules, and claim (c) follows by induction over the definitions of bv and
cv. ut

6 Carsten Fuhs

In the following lemmas and proofs, we will need a particular substitution σt
that maps each variable x of a term t to argenc(x), so we introduce corresponding
notation.

Definition 9 (σt). For a term t, we define the substitution σt by σt(x) =
argenc(x) for x ∈ V(t) and σt(x) = x otherwise.

Lemma 10 (argenc reduces constructor variants innermost to instances
of their originals). Let R/S be a relative TRS and R/(S] G) its runtime
instrumentation. Then for all t ∈ T (ΣR∪S ,V), argenc(cv(t)) i→∗R∪S∪G tσt is an
innermost rewrite sequence that moreover uses only rules from G.

Proof. By induction over the structure of t. Let t ∈ V. Then cv(t) = t, and
argenc(cv(t)) i→∗R∪S∪G tσt in zero steps.

Now let t = f(t1, . . . , tn) ∈ T (ΣR∪S ,V). By induction hypothesis, we have
argenc(cv(ti))

i→∗R∪S∪G tiσti .
If f ∈ ΣR∪Sc , we have cv(f(t1, . . . , tn)) = f(cv(t1), . . . , cv(tn)). By applying

the induction hypothesis, we get the desired innermost rewrite sequence:

argenc(cv(t))

= argenc(f(cv(t1), . . . , cv(tn)))
i→R∪S∪G f(argenc(cv(t1)), . . . , argenc(cv(tn)))
i→∗R∪S∪G f(t1σt1 , . . . , tnσtn)

= tσt

If f ∈ ΣR∪Sd , we have cv(f(t1, . . . , tn)) = consf (cv(t1), . . . , cv(tn)). By apply-
ing the induction hypothesis, we get the desired innermost rewrite sequence:

argenc(cv(t))

= argenc(consf (cv(t1), . . . , cv(tn)))
i→R∪S∪G f(argenc(cv(t1)), . . . , argenc(cv(tn)))
i→∗R∪S∪G f(t1σt1 , . . . , tnσtn)

= tσt ut

Lemma 11 (Basic variants reduce innermost to instances of their orig-
inals). Let R/S be a relative TRS and R/(S] G) its runtime instrumentation.
Then for all t ∈ T (ΣR∪S ,V) of the form f(t1, . . . , tn), bv(t) i→∗R∪S∪G tσt is an
innermost rewrite sequence that moreover uses only rules from G.

Proof. Let t ∈ T (ΣR∪S ,V) of the form f(t1, . . . , tn). Then we have bv(t) =
encf (cv(t1), . . . , cv(tn)). The only possible rewrite step uses the rewrite rule
encf (x1, . . . , xn) → f(argenc(x1), . . . , argenc(xn)) in G for bv(t) i→R∪S∪G
f(argenc(cv(t1)), . . . , argenc(cv(tn))). By Lemma 10, we have:

f(argenc(cv(t1)), . . . , argenc(cv(tn))) i→∗R∪S∪G f(t1σt1 , . . . , tnσtn) = tσt ut

Now we are ready to prove the first theorem:

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 7

Theorem 12 (Derivational complexity via runtime complexity). Let
R/S be a relative TRS and let R/(S] G) be its runtime instrumentation. Then
for all n ∈ N, we have dcR/S(n) = rcR/(S]G)(n).

Proof. We show the two directions of the theorem separately.

(1) dcR/S(n) ≤ rcR/(S]G)(n).

For n = 0, there are no terms of size ≤ n. Thus, let n > 0 and let t ∈
T (ΣR∪S ,V) be an arbitrary term with |t| ≤ n starting a →R/S -rewrite sequence

t = t0 →R/S t1 →R/S t2 →R/S · · ·

of maximal length for all terms of size at most n, i.e., (i) dh(t,→R/S) = dcR/S(n).
By Lemma 11, we have bv(t) →∗G tσt. Since →R/S ⊆ →R/(S]G) and since

rewriting is closed under substitutions, we have

bv(t) →∗G tσt →R/(S]G) t1σt →R/(S]G) t2σt →R/(S]G) · · ·

which yields

bv(t)→R/(S]G) t1σt →R/(S]G) t2σt →R/(S]G) · · ·

and thus (ii) dh(t,→R/S) ≤ dh(bv(t),→R/(S]G)).
By Lemma 8, bv(t) is a basic term for R/(S]G) with |bv(t)| = |t| ≤ n. Thus,

dh(bv(t),→R/(S]G)) ≤ rcR/(S]G)(n). Using equality (i) and inequality (ii), we
can conclude that the claim indeed holds.

(2) dcR/S(n) ≥ rcR/(S]G)(n).

For n = 0, there are no terms of size ≤ n. Thus, let n > 0 and let t ∈
T (ΣR∪S∪G ,V) be an arbitrary basic term for R/(S] G) with |t| ≤ n starting a
→R/(S]G)-rewrite sequence

t = t0 →R/(S]G) t1 →R/(S]G) t2 →R/(S]G) · · ·

of maximal length for all terms of size at most n, i.e., dh(t,→R/(S]G)) =
rcR/(S]G)(n).

We will now show that there exists a term s ∈ T (ΣR∪S ,V) of size at most n
that has at least the same derivation height, witnessed by a “simulation” of the
above →R/(S]G)-derivation using →R/S .

If root(t) ∈ ΣR∪Sd , t does not contain argenc or encf for any f since t is a basic
term. Moreover, no rewrite sequence starting with t can use the rules in G since
none of the rules reachable from t introduce any of the symbols argenc or encf
for some f . Therefore, the above →R/(S]G)-sequence starting from t is an →R/S -
sequence of the same length. To get a term s over the original signature ΣR∪S , we
replace all occurrences of function symbols consf by the corresponding f ∈ ΣR∪Sd ,
i.e., we set s = dv(t). Thus, we have dh(t,→R/(S]G)) ≤ dh(s,→R/S) ≤ dcR/S(n).

Now consider root(t) = argenc, i.e., t = argenc(u) for a constructor term u ∈
T (ΣR∪S∪Gc ,V). We can simulate the →R/(S]G)-derivation starting with t from

8 Carsten Fuhs

the term s = dv(u). In this simulation, we omit the →G-steps from the original
→R/(S]G)-derivation and obtain a→R/S -derivation with the same number of→R-
steps and hence the same derivation height. As |s| ≤ n (|dv(u)| = |u| can be shown
analogously to Lemma 8), we have dh(t,→R/(S]G)) ≤ dh(s,→R/S) ≤ dcR/S(n).

Finally, let root(t) = encf for some f ∈ ΣR∪Sd and thus t = encf (u1, . . . , uk)
for some terms u1, . . . , uk ∈ T (ΣR∪S∪Gc ,V). By construction, the first rewrite step
in the above →∗R∪S∪G-derivation must be t →G f(argenc(u1), . . . , argenc(uk)).
We again obtain s ∈ T (ΣR∪S ,V) as the start term for our simulation from
f(u1, . . . , uk) as dv(f(u1, . . . , uk)), and analogously to the case root(t) = argenc,
we again have dh(t,→R/(S]G)) ≤ dh(s,→R/S) ≤ dcR/S(n). ut

To prove the corresponding theorem for innermost derivational complexity, we
use an additional lemma which lets us simulate innermost rewrite steps s i→R/S t
via sσs

i→R/(S]G) tσs. (This is a priori not completely obvious since innermost
rewriting is not closed under substitutions nor under addition of rewrite rules.)

Lemma 13 (Innermost simulation with generator rules). Let R/S be
a relative TRS and let R/(S] G) be its runtime instrumentation. Let s, t ∈
T (ΣR∪S ,V). Let σ be a substitution with sσ = sσs.

(a) If s i→R∪S t, then sσ i→R∪S∪G tσ.
(b) If s i→R/S t, then sσ i→R/(S]G) tσ.

Proof. (a) Let s, t ∈ T (ΣR∪S ,V) such that s i→R∪S t. Then we also have
s i→R∪S∪G t since s, t do not contain any defined symbols from G. Moreover, we
have sσ i→R∪S∪G tσ since the introduced function symbol argenc does not occur
in R∪S, since argenc does not occur below the root of a left-hand side of G, and
since argenc occurs in sσ only in subterms of the shape argenc(x) for variables
x, whereas all argenc-rules in G require a function symbol below the root of a
potential redex.

(b) Follows directly from (a).

Theorem 14 (Innermost derivational complexity via innermost run-
time complexity). Let R/S be a relative TRS and let R/(S]G) be its runtime
instrumentation. Then for all n ∈ N, we have idcR/S(n) = ircR/(S]G)(n).

Proof. (1) idcR/S(n) ≤ ircR/(S]G)(n).

The proof for this direction of the theorem is analogous to the one for Thm. 12.
The only difference is that Lemma 13 is required to show that ti

i→R/S ti+1

implies tiσt
i→R/(S]G) ti+1σt.

(2) idcR/S(n) ≥ ircR/(S]G)(n).

Let n ∈ N and let t ∈ T (ΣR∪S∪G ,V) be an arbitrary basic term for R/(S]G)
with |t| ≤ n starting a i→R/(S]G)-rewrite sequence

t = t0
i→R/(S]G) t1

i→R/(S]G) t2
i→R/(S]G) · · ·

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 9

of maximal length for all terms of size at most n, i.e., (i) dh(t, i→R/(S]G)) =
ircR/(S]G)(n).

We will now show that there exists a term s ∈ ΣR∪S that has at least the
same derivation height, again witnessed by a simulation of the above →R/(S]G)-
derivation using →R/S .

If root(t) ∈ ΣR∪Sd , no rewrite sequence starting with t can use the rules in
G since none of the rules reachable from the basic term t introduce any of the
symbols argenc or encf for some f . Therefore, the above i→R/(S]G)-sequence is
an i→R/S -sequence of the same length.

For our simulation, we still need to obtain a start term over the original
signature ΣR∪S . Simply replacing all consf by f as in the proof of Thm. 12
might introduce new S-redexes that, due to innermost rewriting, could prevent
further steps in the derivation using R and lead to a shorter i→R/(S]G)-derivation.
Thus, to obtain a term s over ΣR∪S , we replace all maximal “alien subterms” u
of t with regard to the signature ΣR∪S by corresponding fresh variables xu. (An
alien subterm u of a term t with regard to a (sub-)signature Σ is a subterm of t
with a root symbol h /∈ Σ. Here h = consg for some g ∈ ΣR∪Sd may occur.)

The obtained rewrite sequence from s has at least as many i→R/S-rewrite
steps as the original i→R/(S]G)-rewrite sequence had steps from t, and so we have
dh(t, i→R/(S]G)) ≤ dh(s, i→R/S) ≤ idcR/S(n).

The cases root(t) = argenc and root(t) = encf are analogous to Thm. 12.
Note that by construction, here argenc is always applied to constructor terms as
arguments. ut

We finish the section by presenting an example that (to the author’s knowledge)
was out of reach for automated analysis tools for derivational complexity so far,
but can now be handled using an off-the-shelf tool for automated inference
of runtime complexity bounds. This example is taken from the Termination
Problems Data Base (TPDB) [36], a collection of examples used at the annual
Termination and Complexity Competition [16, 35].

Example 15 (Derivational_ Complexity_ Full_ Rewriting/ AG01/ #3. 12 ,
TPDB). Consider the following set of rewrite rules R:

app(nil, y)→ y

app(add(n, x), y)→ add(n, app(x, y))

reverse(nil)→ nil

reverse(add(n, x))→ app(reverse(x), add(n, nil))

shuffle(nil)→ nil

shuffle(add(n, x))→ add(n, shuffle(reverse(x)))

10 Carsten Fuhs

Using our transformation to a runtime instrumentation, AProVE adds the
following generator rules G:

argenc(nil)→ nil

argenc(add(x1, x2))→ add(argenc(x1), argenc(x2))

argenc(consapp(x1, x2))→ app(argenc(x1), argenc(x2))

argenc(consreverse(x1))→ reverse(argenc(x1))

argenc(consshuffle(x1))→ shuffle(argenc(x1))

encnil → nil

encadd(x1, x2)→ add(argenc(x1), argenc(x2))

encapp(x1, x2)→ app(argenc(x1), argenc(x2))

encreverse(x1)→ reverse(argenc(x1))

encshuffle(x1)→ shuffle(argenc(x1))

Then AProVE determines dcR/∅(n) ∈ O(n4) and dcR/∅(n) ∈ Ω(n3). (A
manual analysis reveals that dcR/∅(n) ∈ Θ(n4).)

For the inference of the upper bound, first a sufficient criterion [12] is used to
show that this TRS belongs to a class of TRSs where runtime complexity and
innermost runtime complexity coincide. To analyze innermost runtime complexity,
the approach by Naaf et al. [30] is applied. Here the search for an upper bound
for innermost runtime complexity is encoded as the search for an upper bound
for the runtime of integer transition systems. The proof is completed using the
tools CoFloCo [10, 11] and KoAT [6] as backends for complexity analysis of
integer transition systems.

For the inference of the lower bound, AProVE uses a technique based on
rewrite lemmas [13].

4 Related Work

Derivational complexity analysis. There is a significant body of work on automated
analysis of derivational complexity [21] of term rewriting systems. Early techniques
are based on observations on the induced maximal derivation height by a direct
termination proof via reduction orders [20, 27, 28, 22, 31]. Later work also considers
modular techniques [37].

Runtime complexity analysis. In recent years, techniques to infer bounds on the
runtime complexity of rewrite systems [18] have become a subject of intensive
study, both for full and for innermost rewriting strategies [18, 2, 3, 30, 13]. We
can use these techniques to analyze the runtime instrumentations generated from
our transformation. In this way, we can now analyze of derivational complexity
indirectly, e.g., using amortized complexity analysis [29], adaptions of the depen-
dency pair method [18, 32], and further transformational techniques discussed
below (see also Ex. 15).

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 11

Transformational approaches for proving properties of TRSs. Transformational
approaches for proving properties of TRSs have been introduced successfully in
the literature before.

For instance, for termination, techniques like semantic labeling [38] or depen-
dency pairs [1] transform rewrite systems in a way that preserves and reflects
termination and that often makes the resulting system more amenable to (auto-
mated) termination proofs.

For termination of rewriting with different rewrite strategies, a number of
transformations have been devised. For example, transformations to context-
sensitive rewriting [25] have been proposed for innermost rewriting [8] (later
adapted to innermost runtime complexity [19]) and for outermost rewrite strate-
gies [7]. Here termination of the resulting rewrite system w.r.t. a context-sensitive
strategy implies termination w.r.t. the original strategy. Similarly, for context-
sensitive rewriting, a number of transformations to full rewriting have been
proposed [24, 39, 9, 15] such that termination of the transformed TRS w.r.t. full
rewriting implies termination of the original TRS w.r.t. the original context-
sensitive rewrite strategy. In particular, Giesl and Middeldorp [15] propose a
transformation such that termination of the transformed system is equivalent
to termination of the original system w.r.t. its context-sensitive rewrite strategy.
These transformations often encode aspects of the context-sensitive rewrite strat-
egy by means of rewrite rules. We follow a related idea, but in contrast to the
rewrite strategy, in this paper we encode the set of start terms.

For complexity analysis, dependency pairs have been adapted in the form of
weak dependency pairs [18] and dependency tuples [32]. Further transformational
approaches with term rewriting as target formalism for complexity analysis of
programming languages have been investigated, e.g., for Prolog [17] and for
Java [26]. Here upper bounds on the (innermost) runtime complexity of the
obtained TRS (possibly with constraints) are used to draw conclusions on upper
bounds for the worst-case time complexity of the input program. Our approach is
related in that it also encodes a complexity problem for a source language (here:
term rewriting) to a runtime complexity problem.

Similar to us, Frohn and Giesl [12] also relate different complexity properties.
They identify a sufficient criterion to identify TRSs where runtime complexity of
innermost rewriting and of full rewriting coincide.

However, to the best of the author’s knowledge, so far complexity properties
for different sets of start terms for the same TRS have not been related. This is
where the present work comes in.

5 Implementation and Experimental Evaluation

Of course, to make the point that an instrumentation technique such as the
present one is of practical interest, automatic analysis tools need to be able to
actually prove useful statements about the output of the technique on standard
examples. Thus, to assess the practical usefulness of our contributions, we im-
plemented our transformation in the termination and complexity analysis tool

12 Carsten Fuhs

AProVE [14]. First the runtime instrumentation of the derivational complexity
problems is computed, and then this generated problem is processed further by
existing techniques to find upper or lower bounds for runtime complexity of inner-
most or full rewriting. The corresponding configurations are labeled “AProVE
instrumentation irc” and “AProVE instrumentation rc” in Tables 1 – 4.

As the state of the art against which to compare our contributions, we used
the complexity analysis tool TcT [4] from the Termination and Complexity
Competition in 20181 (for the competition of 2019, no tools had been submitted
to analyze derivational complexity of rewriting) to analyze derivational complexity
for innermost and for full rewriting. The corresponding tool configurations are
labeled “TcT direct idc” and “TcT direct dc” in Tables 1 – 4. Thus far, AProVE
featured only rudimentary techniques for analysis of derivational complexity.
Therefore, we did not use AProVE as a reference implementation for analysis of
derivational complexity, and we deactivated the existing rudimentary techniques
for direct analysis of derivational complexity in our experiments.

Additionally, we wanted to assess whether our runtime instrumentation tech-
nique could be useful also for existing state-of-the-art tools like TcT for analysis
of derivational complexity. To this end, we extracted the runtime instrumentations
for the derivational complexity benchmarks and then conducted experiments on
the resulting runtime complexity inputs for innermost and for full rewriting using
TcT. The time needed for computing the runtime instrumentations themselves
is negligible, so we believe that this is a fair comparison that can inform whether
it might be worthwhile to add our transformation technique to the portfolio of
techniques to analyze derivational complexity in an established tool like TcT.

For inferring lower bounds for dc, it is sound to use lower bounds for irc
or rc for the same set of rewrite rules. Similarly, a lower bound for idc can be
obtained directly from a lower bound for irc for the same set of rewrite rules.
Thus, for computation of lower bounds, we ran the tools AProVE and TcT on
corresponding versions of the rewrite systems (configurations “AProVE direct
irc”, “AProVE direct rc”, “TcT direct irc”, and “TcT direct rc” in Tables 2
and 4). The purpose of including these configurations was to see to what extent
the addition of our generator rules facilitates the search for lower bounds.

As benchmark set, we used the derivational complexity families of the TPDB,
version 10.6 [36]. For technical reasons, we restricted ourselves to the 2664
benchmarks for innermost rewriting2 and the 1754 benchmarks for full rewriting3

whose rewrite rules satisfy the conditions from Def. 1 that left-hand sides of
rewrite rules must not be variables and right-hand sides of rewrite rules must
not contain variables that do not occur in the corresponding left-hand sides.4

1 Available at:
https://www.starexec.org/starexec/secure/details/solver.jsp?id=20651

2 Benchmark family: Derivational Complexity Innermost Rewriting
3 Benchmark family: Derivational Complexity Full Rewriting
4 Version 10.6 of the TPDB contains 60 further examples for derivational complexity

of innermost rewriting and 55 further examples for derivational complexity of full
rewriting that violate these restrictions.

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 13

Tool O(1) ≤ O(n) ≤ O(n2) ≤ O(n3) ≤ O(n≥4)

TcT direct idc 1 368 468 481 501
TcT instrumentation irc 3 465 555 626 691

AProVE instrumentation irc 13 598 769 827 833

Table 1. Upper bounds for derivational complexity of innermost rewriting

Tool ≥ Ω(n) ≥ Ω(n2) ≥ Ω(n3) ≥ Ω(n≥4) EXP

TcT direct idc 0 0 0 0 0
TcT direct irc 913 10 10 10 10

AProVE direct irc 1047 205 140 140 139
TcT instrumentation irc 893 10 10 10 10

AProVE instrumentation irc 1082 169 135 135 134

Table 2. Lower bounds for derivational complexity of innermost rewriting

We ran our experiments on the StarExec compute cluster [33] in the all.q

queue with a timeout of 300 seconds per example.
Tables 1 – 4 give an overview over our experimental results. For each considered

configuration, we state the number of examples for which the corresponding
asymptotic complexity bound could be inferred. More precisely, a row “≤ O(nk)”
means that the corresponding tools proved a bound ≤ O(nk) (e.g., in Table 1,
the configuration “TcT direct idc” proved constant or linear upper bounds in
368 cases). The column “EXP” in Table 2 and Table 4 refers to an unspecified
exponential.

Upper bounds for innermost rewriting. Table 1 provides our experimental data for
inference of upper bounds for innermost rewriting. As evidenced by the results,
both TcT and AProVE benefit significantly from using our instrumentation
rather than relying on existing techniques. For example, the 2018 version of TcT
inferred constant or linear upper bounds for 368 TRSs. In contrast, TcT with
our instrumentation found constant or linear upper bounds for 465 TRSs, and
AProVE found constant or linear upper bounds for 598 TRSs. This indicates
that our technique is particularly useful for finding upper complexity bounds.

Lower bounds for innermost rewriting. In Table 2 we present our data for the
inference of lower bounds for innermost rewriting. Here the analysis of innermost
runtime complexity of the runtime instrumentation and the analysis of the original
TRSs are roughly on par. In particular, approximately the same numbers of
exponential bounds could be found.

Upper bounds for full rewriting. Table 3 presents our data for upper bounds of
derivational complexity for rewriting with arbitrary strategies. Here we observe
that the 2018 version of TcT scores noticeably better than our instrumentation-
based approach. We conjecture that this is because a number of advanced

14 Carsten Fuhs

Tool O(1) ≤ O(n) ≤ O(n2) ≤ O(n3) ≤ O(n≥4)

TcT direct dc 1 366 466 479 499
TcT instrumentation rc 1 203 224 304 304

AProVE instrumentation rc 1 328 386 398 399

Table 3. Upper bounds for derivational complexity of full rewriting

Tool ≥ Ω(n) ≥ Ω(n2) ≥ Ω(n3) ≥ Ω(n≥4) EXP

TcT direct dc 0 0 0 0 0
TcT direct rc 415 0 0 0 0

AProVE direct rc 451 73 68 68 68
TcT direct irc 345 0 0 0 0

AProVE direct irc 426 59 54 54 54
TcT instrumentation rc 378 0 0 0 0

AProVE instrumentation rc 456 68 65 65 65

Table 4. Lower bounds for derivational complexity of full rewriting

techniques (e.g., [19, 29, 30, 32]) for analysis of runtime complexity are available
only for innermost rewriting. Still, Ex. 15 shows that also here bounds on
derivational complexity can now be found that were out of reach before.

Lower bounds for full rewriting. Table 4 shows the results for our experiments
with respect to lower bounds for arbitrary rewrite strategies. Similar to innermost
rewriting, also here the precision of the analysis with and without the generator
rules is roughly on par (note that for lower bounds, high bounds are better).

Overall we can conclude that in particular for upper bounds of (innermost)
derivational complexity, our instrumentation-based approach provides a good
addition to state-of-the-art techniques.

Our experimental data from StarExec is available at the following URL:

http://www.dcs.bbk.ac.uk/~carsten/eval/rcdc/

6 Reflections and Conclusion

In this article, we have introduced a transformation technique that allows one to
analyze derivational complexity problems in term rewriting via an off-the-shelf
analysis tool specialized for the analysis of runtime complexity. We have proved
correctness of the technique, and we have performed extensive experiments to
validate the practical usefulness of our approach.

We recommend that a complexity analysis tool should use this approach
and existing techniques in parallel. For complexity analysis tools specialized to

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 15

(innermost) runtime complexity, our transformation can provide an avenue to
broadened applicability.

In general, the approach of using instrumentations by rewrite rules to generate
the set of “intended” start terms from their representation via “allowed” start
terms appears to be underexplored in the analysis of properties of rewrite systems.
We believe that this approach is worth investigating further, also for other
properties of rewriting.

Acknowledgments. The author wishes to thank Florian Frohn and Jürgen Giesl for
valuable discussions and the anonymous reviewers for suggestions and comments
that helped to improve the paper.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1–2):133–178, 2000.

2. M. Avanzini, N. Eguchi, and G. Moser. A path order for rewrite systems that
compute exponential time functions. In Proc. RTA ’11, volume 10 of LIPIcs, pages
123–138, 2011.

3. M. Avanzini and G. Moser. A combination framework for complexity. Information
and Computation, 248:22–55, 2016.

4. M. Avanzini, G. Moser, and M. Schaper. TcT: Tyrolean complexity tool. In Proc.
TACAS ’16, volume 9636 of LNCS, pages 407–423, 2016.

5. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press,
1998.

6. M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime
and size complexity of integer programs. ACM Transactions on Programming
Languages and Systems, 38(4):13:1–13:50, 2016.

7. J. Endrullis and D. Hendriks. Transforming outermost into context-sensitive
rewriting. Logical Methods in Computer Science, 6(2), 2010.

8. M.-L. Fernández. Relaxing monotonicity for innermost termination. Information
Processing Letters, 93(3):117–123, 2005.

9. M. C. F. Ferreira and A. L. Ribeiro. Context-sensitive AC-rewriting. In Proc.
RTA ’99, volume 1631 of LNCS, pages 286–300, 1999.

10. A. Flores-Montoya and R. Hähnle. Resource analysis of complex programs with
cost equations. In Proc. APLAS ’14, volume 8858 of LNCS, pages 275–295, 2014.

11. A. Flores-Montoya. Upper and lower amortized cost bounds of programs expressed
as cost relations. In Proc. FM ’16, volume 9995 of LNCS, pages 254–273, 2016.

12. F. Frohn and J. Giesl. Analyzing runtime complexity via innermost runtime
complexity. In Proc. LPAR ’17, volume 46 of EPiC, pages 249–268, 2017.

13. F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder. Lower bounds for
runtime complexity of term rewriting. Journal of Automated Reasoning, 59(1):121–
163, 2017.

14. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,
C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.
Analyzing program termination and complexity automatically with AProVE. Journal
of Automated Reasoning, 58:3–31, 2017.

15. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite
systems. Journal of Functional Programming, 14(4):379–427, 2004.

16 Carsten Fuhs

16. J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. The termination
and complexity competition. In Proc. TACAS ’19 (3), volume 11429 of LNCS,
pages 156–166, 2019.

17. J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic
evaluation graphs and term rewriting: A general methodology for analyzing logic
programs. In Proc. PPDP ’12, pages 1–12, 2012.

18. N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency
pair method. In Proc. IJCAR ’08, volume 5195 of LNAI, pages 364–379, 2008.

19. N. Hirokawa and G. Moser. Automated complexity analysis based on context-
sensitive rewriting. In Proc. RTA-TLCA ’14, volume 8560 of LNCS, pages 257–271,
2014.

20. D. Hofbauer. Termination proofs by multiset path orderings imply primitive
recursive derivation lengths. Theoretical Computer Science, 105(1):129–140, 1992.

21. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations.
In Proc. RTA ’89, volume 355 of LNCS, pages 167–177, 1989.

22. A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term
rewriting. Acta Cybernetica, 19(2):357–392, 2009.

23. M. Korp, C. Sternagel, and H. Zankl. CaT (complexity and termination). http:

//cl-informatik.uibk.ac.at/software/cat/.
24. S. Lucas. Termination of context-sensitive rewriting by rewriting. In Proc.

ICALP ’96, volume 1099 of LNCS, pages 122–133, 1996.
25. S. Lucas. Context-sensitive computations in functional and functional logic programs.

Journal of Functional and Logic Programming, 1998(1):1–61, 1998.
26. G. Moser and M. Schaper. From Jinja bytecode to term rewriting: A complexity

reflecting transformation. Information and Computation, 261:116–143, 2018.
27. G. Moser and A. Schnabl. Proving quadratic derivational complexities using context

dependent interpretations. In Proc. RTA ’08, volume 5117 of LNCS, pages 276–290,
2008.

28. G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting
based on matrix and context dependent interpretations. In Proc. FSTTCS ’08,
volume 2 of LIPIcs, pages 304–315, 2008.

29. G. Moser and M. Schneckenreither. Automated amortised resource analysis for
term rewrite systems. In Proc. FLOPS ’18, volume 10818 of LNCS, pages 214–229,
2018.

30. M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. Complexity analysis
for term rewriting by integer transition systems. In Proc. FroCoS ’17, volume 10483
of LNAI, pages 132–150, 2017.

31. F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations
for polynomial derivational complexity of term rewriting. In Proc. LPAR ’10
(Yogyakarta), volume 6397 of LNCS, pages 550–564, 2010.

32. L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of
term rewriting by dependency pairs. Journal of Automated Reasoning, 51(1):27–56,
2013.

33. A. Stump, G. Sutcliffe, and C. Tinelli. Starexec: A cross-community infrastructure
for logic solving. In Proc. IJCAR ’14, volume 8562 of LNAI, pages 367–373, 2014.
https://www.starexec.org/.

34. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc.
RTA ’04, volume 3091 of LNCS, pages 85–94. Springer, 2004.

35. Wiki. The International Termination Competition (TermComp). http://

termination-portal.org/wiki/Termination_Competition.

Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 17

36. Wiki. Termination Problems DataBase (TPDB). http://termination-portal.

org/wiki/TPDB.
37. H. Zankl and M. Korp. Modular complexity analysis for term rewriting. Logical

Methods in Computer Science, 10(1), 2014.
38. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta

Informaticae, 24(1–2):89–105, 1995.
39. H. Zantema. Termination of context-sensitive rewriting. In Proc. RTA ’97, volume

1232 of LNCS, pages 172–186, 1997.

