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Error Propagation Analysis for a Static Convergent Beam Triple

LIDAR

Theodore C. Holtom∗& Anthony C. Brooms†

August 20, 2019

Abstract

We consider the matter of how to assess uncertainty propagation for the converging beam triple
LIDAR technology, which is used for measuring wind velocity passing through a fixed point in space.
Converging beam triple LIDAR employs the use of three non-parallel, non-coplanar, laser beams
which are directed from a fixed platform, typically at ground level, that extend to meet at the
point at which measurement of velocity is sought. Coordinate values of the velocity are ascertained
with respect to unit vectors along the lines of sight of the laser beams (Doppler vectors), which
are then resolved in order to determine the velocity in terms of Cartesian coordinates (i.e. with
respect to the standard basis). However, if there is any discrepancy between the recorded values
of the coordinates with respect to the Doppler unit vectors and/or the perceived angle settings for
such vectors with what they really should be, however small, then this will lead to errors in the
reconstructed Cartesian coordinates. One aim of this paper is to present the detailed formulae that
would be required for the computation of the estimated variances of the reconstructed velocities,
calculated on the basis of the error propagation formulae (and to highlight to the practitioner
the conditions under which such estimated variances could be relied upon). The other main
aim of this paper is to demonstrate that for (various wind profiles and, in particular) certain
LIDAR configurations, which can be characterized by an associated parallelepiped with unit edge
length, the estimated variances have the potential to be unsuitably large, thus indicating that the
reconstructed velocity may be unreliable for gauging the value of the true wind velocity and that
the practitioner should avoid such configurations in the measurement campaign.

KEYWORDS: WIND TURBINES; WIND VELOCITY FIELD; CONVERGING BEAM LIDAR; DOPPLER LIDAR; DOPPLER

VECTORS; VELOCITY RECONSTRUCTION; MEASUREMENT ERROR; FORWARD ERROR PROPAGATION; ERROR

PROPAGATION FORMULA

1 Introduction

Efficient deployment of wind power provides economic benefits, as well as reducing carbon dioxide
emissions and other pollution in accordance with UK and international government targets (UK De-
partment of Energy and Climate Change (2013), UK Department of Business, Energy and Industrial
Strategy (2018), EU Commission (2017)).

The onshore and offshore wind industry requires wind measurement at the pre-construction site
planning stage in order to determine whether a given site has favourable wind conditions and to
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estimate the likely energy production from a wind farm located at the given site (MEASNET (2016)).
Favourable wind conditions imply firstly that the average wind speed throughout the year is high
enough, and secondly that the wind conditions are not too damaging due to excessive gusts, excessive
turbulence intensity, extreme non-horizontal flow, or due to other extreme or abnormal flow conditions.

It is noted that site wind conditions vary considerably due to site weather conditions, as well as
due to local terrain complexity and terrain roughness features such as forestry. Measurement data
may be collected over some years in order to characterise a prospective wind farm site. Statistical
and stochastic effects imply that there is uncertainty associated with extrapolating the measured
time series data to a future expected wind regime which may be used to predict wind farm output.
Reducing measurement uncertainty is beneficial in reducing uncertainty in predicted energy output as
well as fatigue loading conditions. Therefore reduced measurement uncertainty allows for reduction
in financial uncertainty and enables more efficient deployment of capital and resources.

Also, wind turbines continue to grow in size with rotor diameters as large as 180 metres and top
tip height as high as 225 metres. This means that the variation in wind velocity field across the entire
rotor area has a significant effect both on energy production, as well as fatigue loading throughout the
wind turbine components such as blades, rotating drive train, tower and onshore/offshore foundations.
Therefore wind measurement across a large area or volume of space can be beneficial towards opti-
mization of wind farms, both at the pre-construction planning stage, as well as during the operational
lifetime of wind farms and their wind turbines.

Traditionally the wind industry has employed mast mounted single point instruments such as
spinning cup anemometers, wind vanes and ultrasonic equivalents but in recent years has employed
remote sensing methods such as SODAR (SOnic Detection And Ranging) and LIDAR (laser-based
Light Detection And Ranging) (Mikkelson pp. 10-23 in Peña et. al. (2015)). A mast may provide a
number of measurements at different heights but typically ignores the lateral variation in wind field.

Often the wind flow has been assumed to be horizontal only, or the vertical component neglected,
which is not always correct.

LIDAR wind velocity measurement works on the basis of the Doppler effect whereby laser radiation
along a given laser line of sight is reflected back along that line of sight from microscopic aerosol
particles within the air carried by the wind. The Doppler effect is well known and causes a frequency
change in the reflected laser radiation. The frequency change may be measured by suitable signal
processing and this provides a measured velocity component along the laser line of sight (see Pitter
et. al. pp. 99-130 and Cariou pp. 131-148, in Peña et. al. (2015)).

It is possible to select a measurement range by using timing gates, or “range gates”, in the signal
processing of pulsed LIDARs – essentially fixing the measurement range by knowledge of the duration
of time of flight of radiation there and back, or alternatively by controlling the focus range of focused
CW (continuous wave) LIDARs – relying on the fact that the integrated Doppler signal will be
dominated by reflected radiation from the optically focused region.

Usually the LIDAR is placed on the ground and, in the typical land-based deployment, the chosen
measurement range of interest corresponds to the typical wind turbine hub height, such as 100 metres.

The wind industry has already been employing LIDAR technology. However, the usual deployment
of wind LIDAR employs a diverging beam approach. For instance the conical scan approach employs
a beam at a fixed angle to a rotation axis and then takes many measurements as the beam rotates
around that axis, describing a cone. For instance one hundred measurements might be taken per
revolution or conical scan. These measurements along different lines of sight may be combined into
a single wind velocity measurement. However, by combining many line of sight measurements in
this way there is an implicit assumption of simple wind flow. Effectively the diverging beam LIDAR
averages the wind velocity around a circular probe region at a chosen range on the conical scan.
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Apart from conical scan, another commonly used diverging beam design is the beam swinging
approach where typically four beam directions are employed by switching or swinging the beams.
This configuration is equivalent to a conical scan with only four samples around the circle/cone. Both
conical scan and beam swinging methods may be referred to as VAD scan (Velocity Azimuth Display).
Since it is a special case of conical scan, the beam swinging approach suffers the same problem as the
conical scan in that it combines independent line of sight measurements from probe regions which are
separated in space, typically by distances of approximately 100 metres.

Therefore the diverging beam LIDAR approach suffers from the assumption of uniform or simple
linearly varying flow. The lack of general validity of this assumption gives rise to increased measure-
ment error.

We know from simply observing the motion of leaves and branches of a tree in the wind that the
wind is spatially varying and it is wrong to assume uniform or linearly varying flow. Considering
that a large wind turbine (of rotor diameter 180 metres) may be ten times greater than the height of
a large tree then it is noted that the wind velocity may vary considerably from top to bottom and
from left to right across large rotors. Therefore the diverging beam LIDAR approach suffers from
measurement ambiguity and measurement error uncertainties arising from the assumption of uniform
flow.

In order to properly reconstruct a three dimensional wind velocity vector it is required to measure
three independent non-parallel wind components. If the wind velocity vector field is varying non-
linearly in space then to measure the wind velocity at a chosen point one should converge three
LIDAR beams at the chosen measurement point (Mann et al. 2008). Sathe et al. (2015) (Section
3.2.5) write that “one of the biggest disadvantages of using a single lidar is the necessity of the
horizontal homogeneity assumption that almost precludes its use in complex terrains/flows, as well
as within wind turbine wakes. We are then forced to use a triple lidar system, where the beams cross
at a point”.

A single point wind velocity measurement can be obtained by use of three or more fixed converging
beam LIDARs. By employing an angle-scanning (or beam switching) LIDAR system with three
separate LIDARs scanning (or switching) in cooperation to a succession of measurement points, it is
then possible to measure a two-dimensional (planar) or three-dimensional (volumetric) wind velocity
field map.

The convergence of three beams accounts for the fact that wind velocity is a three-dimensional
vector quantity. The scanning or variation through a succession of measurement points accounts for
the fact that the velocity vector field may vary three-dimensionally throughout a volume of space.

Proper measurement of non-horizontal flow, or measurement of yaw error in directional control
of operational turbines (Fleming et al. (2014)), are examples of situations where it is beneficial to
account for the three-dimensional nature of wind velocity.

Measurement of wind shear (changing wind speed with height, Wagner et al. (2011)) and wind
veer (changing wind direction with height) are examples of where it is necessary to measure the three-
dimensional variation of wind velocity through space. This may determine suitability of a site for
wind turbine deployment.

In summary the measurement of the three-dimensional volumetrically varying wind velocity vec-
tor field offers numerous advantages to the wind industry, including that of better site assessment
of damaging local conditions, better turbine site classifications (matching turbine strengths to site
conditions), and better insurance and warranty conditions (ensuring turbines are operating within
their design specifications). This may be achieved by a scanning converging beam triple LIDAR.

Furthermore, converging beam triple LIDAR has potential applications in the aviation and con-
struction industries: these would include, for example, wind limited runway operations, helicopter
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operations, crane operations, and bridge operations.
There are two main aims of this paper. One of them is to present, in as a compact and succinct

form as possible, suitable for implementation by the practitioner, the detailed formulae that would
be required for the computation of the estimated variances of the reconstructed velocities, calculated
on the basis of the error propagation formulae. The other main aim is to highlight to the practi-
tioner the LIDAR configurations under which such estimated variances could be very large. The
mathematics of this paper provides the means by which LIDAR practitioners can avoid such adverse
configurations in order to obtain reliable velocity measurements. We will show that such adverse
LIDAR configurations can be characterized by the absolute value of the triple scalar product of the
unit vectors characterizing the directions of the laser beams, which in turn translates into the volume
of an associated parallelepiped with unit edge length. We will corroborate and help illustrate these
theoretical deductions with several numerical examples towards the end of the paper.

2 Mathematical Preliminaries and Problem Formulation

Figure 1: Geometric set-up of the convergent triple-beam LIDAR technology

Throughout we shall work with the index set I = {1, 2, 3}. Let {ei : i ∈ I} be the unit vectors
for the standard basis in R3, where e1, e2, and e3, correspond to the x, y, z directions, respectively, in
the right-handed Cartesian coordinate system.

Let {r̂i : i ∈ I} be the unit vectors corresponding to the directions of each of the laser/LIDAR
beams i.e. the Doppler LIDAR basis vectors. Thus, from the point of origin of each of the Doppler
LIDAR beams, the point in space for which a velocity measurement is being sought, is represented
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by ri = r̃ir̂i, for each lidar beam i ∈ I, respectively.
A wind velocity, w, relative to the aformentioned standard basis may represented as

w = w1e1 + w2e2 + w3e3. (1)

Each Doppler LIDAR measurement obtains a component of wind velocity along the LIDAR line
of sight. Therefore, employing the scalar product of two vectors (the unit line of sight vector and the
wind velocity vector relative to the standard basis) one obtains the Doppler line of sight component,
given by

w̃i = r̂i.w =
∑
j∈I

rijwj for all i ∈ I, (2)

where r̂i = (ri1, ri2, ri3)
T , for i ∈ I.

It is to be noted that the unit direction vectors do not depend on the position of the measurement
point and in particular the above equation does not depend on the range or distance to the mea-
surement point. Therefore range dependence of the velocity reconstruction exists only in the sense
of increasing error on the three Doppler measurements which can be range dependent due to range
limitations of LIDAR: however, such considerations will be ignored for the purposes of this discussion.

For each Doppler unit vector r̂i, i ∈ I, we may characterize its direction by:
θi ∈ [0, 2π), the azimuthal angle measured anti-clockwise from the x-axis; ϕi ∈ [−π/2, π/2], the
elevation angle from the (x, y)-plane, taken to be positive when the z-coordinate is positive (as would
normally be the case for a platform set on the ground measuring a point that is above ground). Then
each of the Doppler unit vectors can be re-expressed in terms of the standard basis as follows:

r̂i = cos(θi) cos(ϕi)e1 + sin(θi) cos(ϕi)e2 + sin(ϕi)e3 i ∈ I. (3)

Equations (2) and (3) can also be written in matrix form:

w̃ = Mw (4)

where
Mi1 = ri1 = cos(θi) cos(ϕi), i ∈ I (5)

Mi2 = ri2 = sin(θi) cos(ϕi), i ∈ I (6)

Mi3 = ri3 = sin(ϕi), i ∈ I (7)

and
w̃i =

∑
j∈I

Mijwj = cos(θi) cos(ϕi)w1 + sin(θi) cos(ϕi)w2 + sin(ϕi)w3, i ∈ I. (8)

It will be assumed throughout the remainder of this paper that M is of full rank.

Thus, given the 6 Doppler angles and the 3 Doppler wind velocity coordinates, one can determine the
equivalent co-ordinate representation of the wind velocity with respect to the standard basis:

w = M−1w̃ (9)

or, equivalently,

wj =
∑
k∈I

[M−1]jkw̃k j ∈ I. (10)
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Therefore, with knowledge of the elements of M, then M−1 can be obtained. Knowledge of M−1

allows us to estimate the true wind velocity (within the Cartesian reference frame) from the three
Doppler LIDAR measured velocity components via an appropriate analogue of equation (9).

Epistemic uncertainty (also known as systematic uncertainty) is due to things that one could know
about, in principle, but yet do not know about, in practice. For example, this could reflect the notion
that some quantity could be measured or ascertained exactly but yet has not been, normally due to
the existence of a constraint on the amount of resource (in terms of time, money, technology, etc.)
that is able to be applied to such an endeavour. The overall uncertainty may be considered to consist
of epistemic uncertainty combined with aleatoric uncertainty (also known as statistical uncertainty,
representative of random unknowns that differ each time we run the same experiment).

It will be our objective in the remainder of this paper to gauge the effect of uncertainty (epistemic
or otherwise), as a result of the perceived polar angles and measurements of the Doppler velocity
components, on the value of the reconstructed velocity vector in Cartesian coordinates. This will be
done by working with a metric commonly referred to as the error propagation formula, which is, in
part, derived from a first order Taylor expansion of the output variable around some nominal input
configurations. This sort of approach, which normally has to be established on a bespoke basis for
the system at hand, has at least been alluded to in the work of Liu et al. (2018), Ni et al. (2016), and
Wang et al. (2018).

3 Uncertainty quantification of the components of the reconstructed
velocity vector via the error propagation formula

3.1 Derivation of the error propagation formulae

It is noted from (5)-(7) that the entries of M−1 do not involve the Doppler LIDAR components, i.e.:

[M−1]jk = [M−1]jk(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3), j, k ∈ I. (11)

Generically, we set
θ = (θ1, θ2, θ3)

T ϕ = (ϕ1, ϕ2, ϕ3)
T

for the azimuthal angles and elevation angles, respectively.

Suppose that at a given measurement position, the true (Cartesian) velocity vector is denoted by
vtrue, where

vtrue = (vtrue1 , vtrue2 , vtrue3 )

and that the true azimuthal angles, and true elevation angles, of the LIDAR beams, are given by

θtrue = (θtrue1 , θtrue2 , θtrue3 )

and
ϕtrue = (ϕtrue

1 , ϕtrue
2 , ϕtrue

3 )

respectively.
The corresponding Doppler velocity, which we shall denote as ṽc(vtrue;θtrue,ϕtrue), consistent with

the coordinate transformation equation (4), is given by the following:

ṽc(vtrue;θtrue,ϕtrue) := M(θtrue,ϕtrue)vtrue. (12)
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In practice, there would be no reasonable expectation that the true velocity vector, vtrue, would be
available for direct observation (not least because, in general, the LIDAR orientations would be dif-
ferent from those corresponding to the standard basis): thus, in effect, vtrue would be hidden from
the observer (only to be eventually discerned via some transformation of a measured Doppler veloc-
ity). To emphasise the latent nature of vtrue, and its interplay with (θ,ϕ) (which, in effect, serve as
parameters), we will sometimes suppress display of vtrue by replacing it with “•” in its stead: thus,
for example, ṽc(vtrue;θtrue,ϕtrue) can be written as ṽc(•;θtrue,ϕtrue).

In practice, we will not be able to ascertain (θtrue,ϕtrue) nor the corresponding ṽc(•;θtrue,ϕtrue),
but rather we attempt to gauge their values on the basis of nominal estimates. To that end, we will
work with generic (θ,ϕ, ṽ). It will be assumed that (θ,ϕ, ṽ) ∈ D where

D := Θ× Φ× Ṽ .

Typically, each of Θ, Φ and Ṽ (and therefore D) will be convex.

Let v = (v1, v2, v3)
T denote the reconstructed velocity vector, whose j-th element, j ∈ I, is defined as

follows:
vj :=

∑
k∈I

[M−1]jk (θ,ϕ) ṽk. (13)

In the case in which (θ,ϕ) takes the value (θtrue,ϕtrue), and ṽ takes the value ṽc(vtrue;θtrue,ϕtrue),
then it follows that v will take the value vtrue. However, in general, (θ,ϕ, ṽ) will be chosen to be
estimates of (θtrue,ϕtrue, ṽc(vtrue;θtrue,ϕtrue)), in which case v will correspond to an estimate of vtrue.

One notes that the reconstructed velocity vector components can be decomposed in terms of six
arbitrarily chosen angles governing the LIDAR orientations and the corresponding assigned Doppler
LIDAR components, i.e.

vj = vj(θ,ϕ, ṽ). (14)

In the context of a particular measurement scenario, let θ0 and ϕ0 represent the demanded azimuthal
angles and demanded elevation angles, respectively. Let ṽ0(•;θ0,ϕ0) represent the Doppler velocities
that were recorded on the premise of the LIDAR orientations being governed exactly by (θ0,ϕ0).
Denote the measurement errors around θ0, ϕ0, and ṽ0(•;θ0,ϕ0) by δθ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)),
δϕ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) and δṽ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)), respectively (of which (0, 0, 0)T is a possible
realization of each); and set

δx(θ0,ϕ0, ṽ0(•;θ0,ϕ0))
T

=
[
δθ(θ0,ϕ0, ṽ0(•;θ0,ϕ0))

T , δϕ(θ0,ϕ0, ṽ0(•;θ0,ϕ0))
T , δṽ(θ0,ϕ0, ṽ0(•;θ0,ϕ0))

T
]
.

The measurement errors (which, it is assumed, can never be determined exactly or, indeed, directly ob-
served) are, for convenience, modelled as random variables, parameterized by θ0, ϕ0, and ṽ0(•;θ0,ϕ0).
Thus, for the measurement scenario under consideration, the true azimuthal angles, true elevation
angles, and true Doppler velocities, will be modelled by

θ∗(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) = θ0 + δθ(θ0,ϕ0, ṽ0(•;θ0,ϕ0));

ϕ∗(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) = ϕ0 + δϕ(θ0,ϕ0, ṽ0(•;θ0,ϕ0));

ṽ∗(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) = ṽ0(•;θ0,ϕ0) + δṽ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)).
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Although ṽ0(•;θ0,ϕ0) may be regarded as a realization of a random variable, in terms of the mod-
elling of ṽ∗(θ0,ϕ0, ṽ0(•;θ0,ϕ0)), however, the former will be treated as fixed (on account of it being
directly observed from the instrumentation) with all remaining stochasticity being accounted for by
δṽ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)).

We now proceed to introduce some assumptions that will be useful in order to progress with our
analysis.

Assumption 1 (LIDAR beam convergence within a locale of the measurement position).
Given a triple LIDAR locational layout, the LIDAR beams will be assumed to be converging at the
originally intended measurement position, (θ,ϕ, r̃1, r̃2, r̃3) say, (where there would be angular and
distance uncertainty in an actual physical deployment) for some sufficiently small region ϵlocale ⊆
R6 × R3 such that (θ,ϕ, r̃1, r̃2, r̃3) ∈ ϵlocale.

The above assumption is easy to justify (and poses no essential loss of generality) in the sense that it
is consistent with the notion that, within a small enough locale, the wind flow (expressed within the
Cartesian coordinate frame) would exhibit spatial stationarity.

It is also reasonable to suppose that no subset of the components of δx(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) has
any statistical influence on any other subset, thus leading to the following assumption:

Assumption 2.
The components of δx(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) are statistically independent of each other.

Thus the variance-covariance matrices (see Chatfield & Collins (1980), for e.g., for a review of the
relevant multivariate statistical concepts) of δθ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)), δϕ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) and
δṽ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) are given by

Σδθ(θ0,ϕ0, ṽ0(•;θ0,ϕ0))

=

 σ2
θ1
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 0 0

0 σ2
θ2
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 0

0 0 σ2
θ3
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)))


Σδϕ(θ0,ϕ0, ṽ0(•;θ0,ϕ0))

=

 σ2
ϕ1
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 0 0

0 σ2
ϕ2
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 0

0 0 σ2
ϕ3
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)))


Σδṽ(θ0,ϕ0, ṽ0(•;θ0,ϕ0))

=

 σ2
ṽ1
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 0 0

0 σ2
ṽ2
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 0

0 0 σ2
ṽ3
(θ0,ϕ0, ṽ0(•;θ0,ϕ0)))


respectively, with the diagonal forms arising from the absence of correlation between the variables. It
follows that the variance-covariance matrix of δx(θ0,ϕ0, ṽ0(•;θ0,ϕ0)), a 9× 9 matrix, is given by

Σδx(θ0,ϕ0, ṽ0(•;θ0,ϕ0))
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=

 Σθ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 03×3 03×3

03×3 Σϕ(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) 03×3

03×3 03×3 Σṽ(θ0,ϕ0, ṽ0(•;θ0,ϕ0))

 .

Define the gradient operator, ∇(θ,ϕ,ṽ), as

∇(θ,ϕ,ṽ) =

(
∂

∂θ1
,

∂

∂θ2
,

∂

∂θ3
,

∂

∂ϕ1
,

∂

∂ϕ2
,

∂

∂ϕ3
,

∂

∂ṽ1
,

∂

∂ṽ2
,

∂

∂ṽ3

)T

and the Hessian operator, Ĥ, a symmetric matrix, as

Ĥ =



∂2

∂θ21

∂2

∂θ1∂θ2
∂2

∂θ1∂θ3
∂2

∂θ1∂ϕ1

∂2

∂θ1∂ϕ2

∂2

∂θ1∂ϕ3

∂2

∂θ1∂ṽ1
∂2

∂θ1∂ṽ2
∂2

∂θ1∂ṽ3
∂2

∂θ2∂θ1
∂2

∂θ22

∂2

∂θ2∂θ3
∂2

∂θ2∂ϕ1

∂2

∂θ2∂ϕ2

∂2

∂θ2∂ϕ3

∂2

∂θ2∂ṽ1
∂2

∂θ2∂ṽ2
∂2

∂θ2∂ṽ3
∂2

∂θ3∂θ1
∂2

∂θ3∂θ2
∂2

∂θ23

∂2

∂θ3∂ϕ1

∂2

∂θ3∂ϕ2

∂2

∂θ3∂ϕ3

∂2

∂θ3∂ṽ1
∂2

∂θ3∂ṽ2
∂2

∂θ3∂ṽ3
∂2

∂ϕ1∂θ1
∂2

∂ϕ1∂θ2
∂2

∂ϕ1∂θ3
∂2

∂ϕ2
1

∂2

∂ϕ1∂ϕ2

∂2

∂ϕ1∂ϕ3

∂2

∂ϕ1∂ṽ1
∂2

∂ϕ1∂ṽ2
∂2

∂ϕ1∂ṽ3
∂2

∂ϕ2∂θ1
∂2

∂ϕ2∂θ2
∂2

∂ϕ2∂θ3
∂2

∂ϕ2∂ϕ1

∂2

∂ϕ2
2

∂2

∂ϕ2∂ϕ3

∂2

∂ϕ2∂ṽ1
∂2

∂ϕ2∂ṽ2
∂2

∂ϕ2∂ṽ3
∂2

∂ϕ3∂θ1
∂2

∂ϕ3∂θ2
∂2

∂ϕ3∂θ3
∂2

∂ϕ3∂ϕ1

∂2

∂ϕ3∂ϕ2

∂2

∂ϕ2
3

∂2

∂ϕ3∂ṽ1
∂2

∂ϕ3∂ṽ2
∂2

∂ϕ3∂ṽ3
∂2

∂ṽ1∂θ1
∂2

∂ṽ1∂θ2
∂2

∂ṽ1∂θ3
∂2

∂ṽ1∂ϕ1

∂2

∂ṽ1∂ϕ2

∂2

∂ṽ1∂ϕ3

∂2

∂ṽ21

∂2

∂ṽ1∂ṽ2
∂2

∂ṽ1∂ṽ3
∂2

∂ṽ2∂θ1
∂2

∂ṽ2∂θ2
∂2

∂ṽ2∂θ3
∂2

∂ṽ2∂ϕ1

∂2

∂ṽ2∂ϕ2

∂2

∂ṽ2∂ϕ3

∂2

∂ṽ2∂ṽ1
∂2

∂ṽ22

∂2

∂ṽ2∂ṽ3
∂2

∂ṽ3∂θ1
∂2

∂ṽ3∂θ2
∂2

∂ṽ3∂θ3
∂2

∂ṽ3∂ϕ1

∂2

∂ṽ3∂ϕ2

∂2

∂ṽ3∂ϕ3

∂2

∂ṽ3∂ṽ1
∂2

∂ṽ3∂ṽ2
∂2

∂ṽ23



.

Set
gj(θ0,ϕ0, ṽ0(•;θ0,ϕ0)) = ∇(θ,ϕ,ṽ)vj(θ,ϕ, ṽ)

∣∣∣
(θ0,ϕ0,ṽ0(•;θ0,ϕ0))

and
Hj((θ

′,ϕ′, ṽ′)) = Ĥvj(θ,ϕ, ṽ)
∣∣∣(
θ′

,ϕ′
,ṽ′

) .
Justified by the fact that each of the angles governing the LIDAR orientations can, in principle, be
set without regard to any other angle, and that (at least from a classical physics perspective) the
LIDAR orientations are not deemed to have any effect on the true (Cartesian) wind velocity (and
vice-versa), then one observes that for any two distinct variables ξ1, ξ2 such that either ξ1, ξ2 ∈ Ω1,
or else (ξ1, ξ2) ∈ Ω1 × Ω2, where

Ω1 := {θ1, θ2, θ3, ϕ1, ϕ2, ϕ3}

Ω2 := {vtrue1 , vtrue2 , vtrue3 },

then
∂ξ1
∂ξ2

= 0. (15)

It can be shown that vj is twice continuously differentiable on the whole of R3×R3×R3: this follows
from (18)-(20) and Propositions 1-4, that point to the fact that the second partial derivatives of vj
(mixed or otherwise) would be nothing more than finite sums of rational functions of sums of finite
products of sin(·)/ cos(·) functions, provided that one rules out the scenario in which the LIDAR
directions become either parallel or coplanar (which is guaranteed by the assumption that M is of
full rank – see later discussions in Section 3.2).
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In that case, for (θ0,ϕ0, ṽ0) ∈ D, (θ∗,ϕ∗, ṽ∗) ∈ D, one can invoke the Mean Value Theorem (see
Section A.6 of Luenberger (2005) for example) to express vj(θ

∗,ϕ∗, ṽ∗), whilst suppressing display of
(•;θ0,ϕ0) on ṽ0 and (θ0,ϕ0, ṽ0(•;θ0,ϕ0)) on (θ∗,ϕ∗, ṽ∗) for the sake of notational brevity, as

vj(θ
∗,ϕ∗, ṽ∗) = vj(θ0,ϕ0, ṽ0) + gT

j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0)

+
1

2
δx(θ0,ϕ0, ṽ0)

THj (ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗))) δx(θ0,ϕ0, ṽ0)

where

ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗)) = (γθ0 + (1− γ)θ∗, γϕ0 + (1− γ)ϕ∗, γṽ0 + (1− γ)ṽ∗)

for some 0 ≤ γ ≤ 1, provided that ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗)) ∈ D (which will certainly be the case

if D is convex).

In order to proceed further with the analysis of var(vj(θ
∗,ϕ∗, ṽ∗)), we briefly review some stan-

dard results that will prove to be useful in our endeavour.

Suppose that:
• X, Y , U , and V , are 1-dimensional random variables;
• X and Y are two p× 1 random vectors, for some integer p ≥ 1;
• all necessary expectations of positive powers, and pairwise products of positive powers, of X, Y , U ,
V , (and the components of) X and Y, can be properly defined and are finite, in order to ensure that
all relevant variances and covariances of X, Y , U , V , (and the components of) X and Y, can be
properly defined and are finite;
• ΣX is the symmetric, p× p, variance-covariance matrix of X, i.e. var(X) = ΣX;
• a and b are scalar constants;
• c is a p× 1 vector of constants, for some integer p ≥ 1.
Then the following hold true:
Property (I)

var(U + V ) = var(U) + var(V ) + 2cov(U, V ).

Property (II)
var(cTX) = cTΣXc.

Property (III)
(i)

var(aX) = a2var(X).

(ii)
cov(aX, bY ) = abcov(X,Y ).

Returning to the main calculation, noting that vj(θ0,ϕ0, ṽ0) is a constant (for a particular setting
of the demanded angles, along with the perceived Doppler wind velocity measurements) that makes
no contribution to variance, and that the variance-covariance matrix of δx(θ0,ϕ0, ṽ0) is given by
Σδx(θ0,ϕ0, ṽ0), i.e. that

var(δx(θ0,ϕ0, ṽ0)) = Σδx(θ0,ϕ0, ṽ0),

10



then it follows, using Property (I), that

var(vj(θ
∗,ϕ∗, ṽ∗))

= var

(
gT
j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0) +

1

2
δx(θ0,ϕ0, ṽ0)

THj(ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗)))δx(θ0,ϕ0, ṽ0)

)
= var

(
gT
j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0)

)︸ ︷︷ ︸
term (A)

+var

(
1

2
δx(θ0,ϕ0, ṽ0)

THj(ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗)))δx(θ0,ϕ0, ṽ0)

)
︸ ︷︷ ︸

term (B)

+2cov

(
gT
j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0),

1

2
δx(θ0,ϕ0, ṽ0)

THj(ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗)))δx(θ0,ϕ0, ṽ0)

)
︸ ︷︷ ︸

term (C)

.

Applying Property (II) to (A), Property (III)(i) to (B), and Property (III)(ii) to (C), whilst also
collecting together (B) and (C) to form Err((θ0,ϕ0, ṽ0), (θ

∗,ϕ∗, ṽ∗)), yields

gT
j (θ0,ϕ0, ṽ0)Σδx(θ0,ϕ0, ṽ0)gj(θ0,ϕ0, ṽ0) + Err((θ0,ϕ0, ṽ0), (θ

∗,ϕ∗, ṽ∗))

where
Err((θ0,ϕ0, ṽ0), (θ

∗,ϕ∗, ṽ∗)) =

=
1

4
var

(
δx(θ0,ϕ0, ṽ0)

THj(ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗)))δx(θ0,ϕ0, ṽ0)

)
+cov

(
gT
j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0), δx(θ0,ϕ0, ṽ0)

THj(ξ ((θ0,ϕ0, ṽ0) , (θ
∗,ϕ∗, ṽ∗)))δx(θ0,ϕ0, ṽ0)

)
.

Now suppose that each one of the nine components of δx(θ0,ϕ0, ṽ0) lies within the interval [−B,B].
One can quantify the speed with which Err((θ0,ϕ0, ṽ0), (θ

∗,ϕ∗, ṽ∗)) goes to zero as one reduces the
size of B towards zero also.

Theorem 1. For fixed nominal input parameters θ0, ϕ0, and ṽ0, suppose that

δx(θ0,ϕ0, ṽ0) ∈ X ⊆ [−B,B]9

where B is a positive real number. Then

Err((θ0,ϕ0, ṽ0), (θ
∗,ϕ∗, ṽ∗)) ∼ o(Bη) as B → 0

for all {η : 0 < η < 3}.

Proof
It can be shown (see Appendix for further details) that an upper bound on |Err((θ0,ϕ0, ṽ0), (θ

∗,ϕ∗, ṽ∗))|
is given by

81

2
B4(Hmax

j (θ0,ϕ0, ṽ0))
2 + 54B3||gj(θ0,ϕ0, ṽ0)||Hmax

j (θ0,ϕ0, ṽ0) (16)

where the norm used throughout the calculation, || · ||, corresponds to the 2-norm, and that
Hmax

j (θ0,ϕ0, ṽ0) is an upper bound on the induced norm of the Hessian matrix that arises in the
calculation. The result of the theorem follows immediately as a result of the above bound. 2

Thus, for all {η : 0 < η < 3},

var(vj(θ
∗,ϕ∗, ṽ∗)) = gT

j (θ0,ϕ0, ṽ0)Σδx(θ0,ϕ0, ṽ0)gj(θ0,ϕ0, ṽ0) + o(Bη)

11



= s2vj (θ0,ϕ0, ṽ0) + o(Bη) as B → 0,

where

s2vj (θ0,ϕ0, ṽ0) =
∑
n∈I

{(
∂vj
∂θn

)2

σ2
θn +

(
∂vj
∂ϕn

)2

σ2
ϕn

+

(
∂vj
∂ṽn

)2

σ2
ṽn

}∣∣∣∣∣
(θ0,ϕ0,ṽ0)

. (17)

Here s2vj (θ0,ϕ0, ṽ0) falls within the generic class of expressions known as the error propagation for-
mulae (c.f. Taylor (1997) for example): typically, formulae such as these are derived by truncating
the expression for vj(θ

∗,ϕ∗, ṽ∗) at first order and finding the variance of just that, without actually
taking higher order terms into account, as has been done in our deductions. However, the result of
Theorem 1 serves only to present the validity of the error propagation formula in a wider context.
On the one hand (and the one that would justify truncation prior to taking the variance, as well as
the use of the formula in general), if B were sufficiently small, then vj(θ

∗,ϕ∗, ṽ∗) might be deemed
to be sufficiently linear across the perturbation domain [−B,B]9 to warrant its representation solely
by vj(θ0,ϕ0, ṽ0) + gT

j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0) (which we can view as a local strong linearity as-
sumption): the more linear the representation of vj(θ

∗,ϕ∗, ṽ∗), the smaller the absolute values of
the entries within the associated Hessian matrix would be. On the other hand, any decrease made to
the value of B would cause a larger proportionate decrease in the upper bound on the variance trun-
cation error as compared to that associated with the value of the error propagation formula where,
for example, the input uncertainties are drawn from the uniform distribution (giving rise to variances
that are of order O(B2) as B → 0).

To further illustrate the above sentence, it might be the case, for instance, that B could be reduced
by 10%, from B down to 0.9B, due to more accurate measurement of the Doppler velocities and better
angle control. The resultant reduction of B2 down to 0.81B2 would then cause a 19% reduction in the
value obtained from the error propagation formula for each of the reconstructed velocity components,
whereas the resultant reduction of B3 down to 0.729B3 would cause the bound on the truncation error
(which, as we have already shown, is no worse than of order O(B3) as B → 0) to reduce by at least
27.1%.

Decreases in the value of B would of course reduce the actual size of the norm of the associated
Hessian matrix: but having the linearity assumption to fall back on when B is at, or below, some
critical value, will ensure that B does not have to be made vanishingly small beyond the level of
precision that is capable of being obtained by the instrumentation.

The above arguments suggest that one should regard s2vj (θ0,ϕ0, ṽ0) as an estimate of the vari-
ance of vj(θ

∗,ϕ∗, ṽ∗) (according to its associated error propagation formula). The calculation of
s2vj (θ0,ϕ0, ṽ0) will be the focus of our discussion for the remainder of this subsection, and
the whole of the next one.

Along with the values of the variances of the six angles and those of the three measured Doppler
velocity components, it is also required to evaluate the partial derivatives that appear in (17).

∂vj
∂θs

=
∑
k∈I

∂
{
[M−1]jkṽk

}
∂θs

=
∑
k∈I

ṽk
∂[M−1]jk

∂θs
(18)

∂vj
∂ϕs

=
∑
k∈I

∂
{
[M−1]jkṽk

}
∂ϕs

=
∑
k∈I

ṽk
∂[M−1]jk

∂ϕs
(19)
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∂vj
∂ṽs

=
∑
k∈I

[M−1]jk
∂ṽk
∂ṽs

=
∑
k∈I

[M−1]jkδsk = [M−1]js (20)

where for l, n ∈ I, δln is Kronecker delta.

Thus it will be required to calculate the 27 terms given by
∂[M−1]jk

∂θi
, i,j,k ∈ I and the 27 terms

∂[M−1]jk
∂ϕi

, i,j,k ∈ I, which in turn will necessitate the calculation of the 6 terms that arise from
differentiating ∆, with respect to each of the angles θ1, θ2, θ3, ϕ1, ϕ2 and ϕ3. These matters will be
addressed in the next section.

3.2 Computational results pertaining to M−1

The determinant of the matrix M is given by ∆ = ∆(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3), a function of the six angles
defining three LIDAR beam directions:

∆ = cos(θ1) cos(ϕ1) {sin(θ2) cos(ϕ2) sin(ϕ3)− sin(ϕ2) sin(θ3) cos(ϕ3)}

− sin(θ1) cos(ϕ1) {sin(ϕ3) cos(θ2) cos(ϕ2)− sin(ϕ2) cos(θ3) cos(ϕ3)}

+sin(ϕ1) {cos(θ2) cos(ϕ2) sin(θ3) cos(ϕ3)− sin(θ2) cos(ϕ2) cos(θ3) cos(ϕ3)} . (21)

More compactly, this can be written as

∆ =
∑
π∈S3

∆π (22)

where
∆π := sgn(π) cos

(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
(23)

and S3 is the set of all permutations on I.
In the following lemmas, we will work with the following quantities for identifying particular

indices within I for specific situations.

Definition 1. For any l ∈ I, define:
(i) K(l) := I \{l}; (ii) α(l) := minK(l); (iii) β(l) := maxK(l).

Proposition 1.
[M−1]ij = (−1)i+j

{
rα(j)α(i)rβ(j)β(i) − rβ(j)α(i)rα(j)β(i)

}
/∆ (24)

where, for i′ ∈ {α(j), β(j)} and j′ ∈ {α(i), β(i)},

ri′j′ =


cos (ϕi′) cos (θi′) if j′ = 1
cos (ϕi′) sin (θi′) if j′ = 2

sin (ϕi′) if j′ = 3.
(25)

Proof
Noting that

M =

 r11 r12 r13
r21 r22 r23
r31 r32 r33


then the minor corresponding to the (j, i)-th element of M is given by

rα(j)α(i)rβ(j)β(i) − rβ(j)α(i)rα(j)β(i).
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Multiplying this by (−1)i+j gives both the corresponding cofactor of the (j, i)-th element of M and
the (i, j)-th element of the adjoint of M, which, upon dividing through by ∆, yields (24).
Further noting that

M =

 cos(ϕ1) cos(θ1) cos(ϕ1) sin(θ1) sin(ϕ1)
cos(ϕ2) cos(θ2) cos(ϕ2) sin(θ2) sin(ϕ2)
cos(ϕ3) cos(θ3) cos(ϕ3) sin(θ3) sin(ϕ3)


then (25) follows. 2

Proposition 2. For i′ ∈ {α(j), β(j)}, j′ ∈ {α(i), β(i)} and n ∈ I:

∂ri′j′

∂θn
=


− cos (ϕn) sin (θn) if j′ = 1 and i′ = n
cos (ϕn) cos (θn) if j′ = 2 and i′ = n

0 if j′ = 3 or i′ ̸= n
(26)

and

∂ri′j′

∂ϕn
=


− sin (ϕn) cos (θn) if j′ = 1 and i′ = n
− sin (ϕn) sin (θn) if j′ = 2 and i′ = n

cos (ϕn) if j′ = 3 and i′ = n
0 i′ ̸= n.

(27)

Proof Follows immediately by differentiating (25) with respect to the {θn} and {ϕn}. 2

Proposition 3.
(i) for each n ∈ I,

∂∆

∂θn
=

∑
π∈S3

∂∆π

∂θn

where

∂∆π

∂θn
=


−sgn(π) sin

(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(1)

sgn(π) cos
(
θπ(1)

)
cos

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(2)

0 n = π(3)

(ii) for each n ∈ I,
∂∆

∂ϕn
=

∑
π∈S3

∂∆π

∂ϕn

where

∂∆π

∂ϕn
=


−sgn(π) cos

(
θπ(1)

)
sin

(
θπ(2)

)
sin

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(1)

−sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
sin

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(2)

sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
cos

(
ϕπ(3)

)
n = π(3).

Proof
Follows immediately by differentiating (22). 2

Proposition 4. Suppose ξn ∈ {θn, ϕn}. Then:

∂

∂ξn
[M−1]ij =

(−1)i+j

∆

{
rα(j)α(i)

(
∂

∂ξn
rβ(j)β(i)

)
+

(
∂

∂ξn
rα(j)α(i)

)
rβ(j)β(i)

−
(

∂

∂ξn
rβ(j)α(i)

)
rα(j)β(i) − rβ(j)α(i)

(
∂

∂ξn
rα(j)β(i)

)}
−(−1)i+j

∆2

{
rα(j)α(i)rβ(j)β(i) − rβ(j)α(i)rα(j)β(i)

} ∂∆

∂ξn
. (28)
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Proof
Follows immediately by differentiating (24). 2

3.3 Geometric Interpretation of |∆| and its effect on the variance of the recon-
structed velocity components

It is noted that the absolute value of the determinant has a geometric interpretation in that it
represents the volume of a parallelepiped whose edges are defined by the three unit vectors along
the three LIDAR beam directions r̂1, r̂2 and r̂3. Note that the parallelepiped volume is exactly the
absolute value of the triple scalar product of r̂1, r̂2 and r̂3. If any two or more of these unit vectors
approach each other, or if all three of these vectors approach being co-planar, then the parallelepiped
volume tends to zero. On the other hand, the volume is at its maximum when the Doppler vectors
are orthogonal to each other, resulting in a parallelepiped that is just a cube of unit length.

It is also to be noted that |∆| has the potential to vastly inflate the estimated variances (calculated
according to the error propagation formulae (17)) of the reconstructed velocity components: therefore
it is recommended to always apply (17), by way of a reliability check of the efficacy of the reconstructed
velocities as estimates of the corresponding true velocities, prior to any field deployment, especially
when potentially adverse LIDAR configurations have been flagged up, as per the following theorem.

Theorem 2.
Let C be some closed, feasible, subset of [0, 2π)3× [−π

2 ,
π
2 ]

3×R3 for the input parameters and suppose
that, for all n ∈ I, |δṽn| ≤ B < ∞.
For a given j ∈ I, and each

(
θ′,ϕ′, ṽ′) ∈ C and n ∈ I, define

D̂jn

(
θ′,ϕ′, ṽ′)

to be equal to∣∣rα(n)α(j)(θ′,ϕ′)rβ(n)β(j)(θ
′,ϕ′)− rβ(n)α(j)(θ

′,ϕ′)rα(n)β(j)(θ
′,ϕ′)

∣∣√σ2
ṽj
(θ′,ϕ′, ṽ′)

and
Djn(C) := min

(θ′
,ϕ′

,ṽ′)∈Ĉ
Djn

(
θ′,ϕ′, ṽ′) .

Suppose there exists an n′∈I such that Djn′(C) > 0.

Then for (θ0,ϕ0, ṽ0) ∈ C,
(i)

s2vj (θ0,ϕ0, ṽ0) ≥
D2

jn′(C)
|∆(θ0,ϕ0)|2

;

(ii) s2vj (θ0,ϕ0, ṽ0) → ∞ as |∆(θ0,ϕ0)| → 0.

Proof
Using (20), we can deduce that(

∂vj(θ
′,ϕ′, ṽ′)

∂ṽ′n

)2

σ2
ṽn
(θ′,ϕ′, ṽ′) =

(
[M−1]jn(θ

′,ϕ′)
)2

σ2
ṽn
(θ′,ϕ′, ṽ′)

=
{∣∣[M−1]jn(θ

′,ϕ′)
∣∣√σ2

ṽn
(θ′,ϕ′, ṽ′)

}2
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which, by Proposition 1, is equal to{ ∣∣rα(n)α(j)(θ′,ϕ′)rβ(n)β(j)(θ
′,ϕ′)− rβ(n)α(j)(θ

′,ϕ′)rα(n)β(j)(θ
′,ϕ′)

∣∣√σ2
ṽj
(θ′,ϕ′, ṽ′)

}2

|∆(θ′,ϕ′)|2

and which, by the definition of D̂jn(θ
′,ϕ′, ṽ′), equates to

D̂2
jn(θ

′,ϕ′, ṽ′)

|∆(θ′,ϕ′)|2
.

It follows that ∑
n∈I

{(
∂vj
∂θn

)2

σ2
θn +

(
∂vj
∂ϕn

)2

σ2
ϕn

+

(
∂vj
∂ṽn

)2

σ2
ṽn

}∣∣∣∣∣
(θ0,ϕ0,ṽ0)

≥
∑
n∈I

{(
∂vj
∂ṽn

)2

σ2
ṽn

}∣∣∣∣∣
(θ0,ϕ0,ṽ0)

=
∑
n∈I

D̂2
jn(θ0,ϕ0, ṽ0)

|∆(θ0,ϕ0)|2
≥

D̂2
jn′(θ0,ϕ0, ṽ0)

|∆(θ0,ϕ0)|2
≥

D2
jn′(C)

|∆(θ0,ϕ0)|2

where the first inequality follows from the non-negativity of the squared terms and of the input pa-
rameter variances, the second inequality follows from the non-negativity of the summands, and the
final inequality follows from the definition of Djn′(C), as required to establish (i).
Part (ii) is a simple corollary of (i). 2

Remark: By virtue of the fact that

f(θ′,ϕ′) :=
∣∣rα(n)α(j)(θ′,ϕ′)rβ(n)β(j)(θ

′,ϕ′)− rβ(n)α(j)(θ
′,ϕ′)rα(n)β(j)(θ

′,ϕ′)
∣∣

is just a composition of a continuous function (namely | · |), with another continuous function compris-
ing a linear combination of finite products of sin(·) and/or cos(·) functions, then f(θ′,ϕ′) will itself
be continuous with respect to

(
θ′,ϕ′), thus ensuring that its minimum (and indeed maximum) over

C exists. Due to the boundedness assumption on the {δṽn}, one can ensure that the minimum (and
indeed a maximum) of σ2

ṽn
(θ′,ϕ′, ṽ′) over C also exists. Thus, by Cauchy-Schwarz, D̂jn(θ

′,ϕ′, ṽ′) is
bounded over C and thus Djn(C) is well defined and finite.

4 Numerical Examples

In the following examples, speeds are expressed in metres per second, and angles in radians.

Examples Set 1: varying the demanded elevation angle(s) only
In the scenarios described in this examples set, it will be assumed that the demanded azimuthal
angles will be held fixed throughout, but that the elevation angles will change in order to gauge
their effect on the results. The value used for the measured Doppler velocity vector will be given
by ṽ0 = M(θ0,ϕ0)v0 for some given Cartesian velocity vector v0, where v0 will also be held fixed
throughout this examples set. (This will, of course, imply that the same v0 is being ascertained at
different positions in space if the LIDARs are to remain situated at fixed locations; or, otherwise, that
v0 is measured at the same position in space but with the LIDARs moving their locations in order to
achieve the required angle orientations).
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It will be assumed throughout that the uncertainty ranges around each Doppler velocity, demanded
azimuthal angle and demanded elevation angle, will be ±0.05, ±0.001, and ±0.001, respectively. On
each of the uncertainty ranges, the true value of the corresponding variable will be assumed to follow
a uniform distribution (i.e. that each value within the range is assumed equally likely to be the true
one). Thus the standard deviation of each of these “input” variables can be easily calculated by using
the formula b−a√

12
, where a is the lower end point of the range and b the upper end point.

The values that will remain static throughout this examples set are as follows:

vT
0 = ṽT

0 [M(θ0,ϕ0)]
−T = (26.82,−0.70,−0.09);

θT
0 = (π/6, 5π/6, 9π/6) = (0.5236, 2.6180, 4.7124).

Additionally, from the uniformity assumption and ranges discussed earlier, it can be deduced that

σṽj = 0.0289, σθj = σϕj
= 5.7732× 10−4, j∈I.

The examples below show the effect of varying the elevation angles of the LIDARs from low to high.

Demanded elevation angles, ϕT
0 ( π

360 ,
π
360 ,

π
360)=(0.0087, 0.0087, 0.0087)

Doppler velocity vector (22.8789, -23.5764, 0.6952)
|∆(θ0,ϕ0)| 0.0227
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.0244, 0.0260, 2.0428)

Comment: Noting that the elevation angles are just half a degree out from the horizontal plane,
the measurement configuration is unable to accurately resolve the vertical wind velocity component,
as evidenced by the vertical error standard deviation at 2.04 m/s.

Demanded elevation angles, ϕT
0 ( π30 ,

π
30 ,

π
30)=(0.1047, 0.1047, 0.1047)

Doppler velocity vector (22.7461, -23.4565, 0.6831)
|∆(θ0,ϕ0)| 0.2686
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.0246, 0.0261, 0.1705)

Demanded elevation angles, ϕT
0 ( π12 ,

π
12 ,

π
12)=(0.2618, 0.2618, 0.2618)

Doppler velocity vector (22.0784, -22.7957, 0.6498)
|∆(θ0,ϕ0)| 0.6274
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.0254, 0.0268, 0.0689)

Demanded elevation angles, ϕT
0 (π4 ,

π
4 ,

π
4 )=(0.7854, 0.7854, 0.7854)

Doppler velocity vector (16.1175, -16.7326, 0.4306)
|∆(θ0,ϕ0)| 0.9186
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.0357, 0.0357, 0.0252)

Demanded elevation angles, ϕT
0 (5π

12 ,
5π
12 ,

5π
12 )=(1.3090, 1.3090, 1.3090)

Doppler velocity vector (5.8379, -6.1861, 0.0961)
|∆(θ0,ϕ0)| 0.1681
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.1000, 0.0947, 0.0185)
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Demanded elevation angles, ϕT
0 (7π

16 ,
7π
16 ,

7π
16 )=(1.3744, 1.3744, 1.3744)

Doppler velocity vector (4.3784 -4.6849 0.0505)
|∆(θ0,ϕ0)| 0.0970
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.1329, 0.1254, 0.0182)

Comment: Noting that the elevation angles are 78.75 degrees from the horizontal, all three beams are
starting to approach being parallel along the vertical. Whilst the standard deviation for the vertical
velocity error is reduced, those for the horizontal velocity errors have grown above the typical
wind industry requirement of 0.1 m/s, as the horizontal velocity resolving power becomes reduced.

As could have been anticipated, for low elevation angles, the first and second Cartesian velocity com-
ponents will have standard deviations which are at the lower end of their ranges, whereas the third
component will have a standard deviation at the higher end. At high elevation angles, one sees exactly
the converse.

But interestingly, seemingly in line with the remarks of Section 3.3, we can clearly see a “ 1
|∆(θ0,ϕ0)|

”

phenomenon at play for low elevation angles in respect of the standard deviation of the third re-
constructed vector component, namely sv3 . This shows that in a practical field deployment of the
converging beam triple LIDAR, it is advantageous to ensure that the measurement position is not
close to the plane defined by the three LIDARs.

Examples Set 2

The settings will be exactly those as for Examples Set 1, except that

ϕT
0 = (π/4, π/4, π/4) = (0.7854, 0.7854, 0.7854)

throughout, and
θT
0 = (x, 5π/6, 9π/6) = (x, 2.6180, 4.7124);

where x will be varied such that π/6 < x < 5π/6, in order to show the effect of varying the azimuthal
angle of the first LIDAR.

Demanded azimuthal angle of first LIDAR π
4 =0.7854

Doppler velocity vector (13.0015, -16.7326, 0.4306)
|∆(θ0,ϕ0)| 0.8977
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.0392, 0.0332, 0.0254)

Demanded azimuthal angle of first LIDAR π
3 =1.0472

Doppler velocity vector (8.9953, -16.7326, 0.4306)
|∆(θ0,ϕ0)| 0.8365
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.0447, 0.0312, 0.0261)
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Demanded azimuthal angle of first LIDAR π
2 =1.571

Doppler velocity vector (-0.5537, -16.7326, 0.4306)
|∆(θ0,ϕ0)| 0.6124
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.0643, 0.0309, 0.0309)

Demanded azimuthal angle of first LIDAR 9π
12 =2.356

Doppler velocity vector (-13.8205, -16.7326, 0.4306)
|∆(θ0,ϕ0)| 0.1477
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.2384, 0.1180, 0.1199)

Comment: Noting that with the azimuthal separation of two of the beams being reduced to just 15 degrees,
then the standard deviations of the velocity reconstruction errors have grown beyond 0.1 m/s.

Demanded azimuthal angle of first LIDAR 19π
24 =2.487

Doppler velocity vector (-15.4079, -16.7326, 0.4306)
|∆(θ0,ϕ0)| 0.0718
Error formula std. devs, svj

, j ∈ I, for uncertainty in
recon. vel. components

(0.4731, 0.2528, 0.2538)

Demanded azimuthal angle of first LIDAR 39π
48 =2.553

Doppler velocity vector (-16.1046, -16.7326, 0.4306)
|∆(θ0,ϕ0)| 0.0353
Error formula std. devs, svj , j ∈ I, for uncertainty in
recon. vel. components

(0.9440, 0.5245, 0.5250)

Comment: Noting that with the azimuthal separation of two of the beams being reduced to just 3.75
degrees, then the standard deviations of the velocity reconstruction errors have grown beyond 0.5 m/s.

Again we observe an approximate “ 1
|∆(θ0,ϕ0)|

” phenomenon manifesting itself, but this time across

all three standard deviations for the reconstruction error in the Cartesian velocity components, at
the lower end of the range for the azimuthal discrepancy between the first and second LIDARs. This
shows that in a practical field deployment, it is advantageous to ensure that the azimuthal angle
separation between the three LIDAR beams is maximized. If any two of the beams approach being
parallel then this tends to increase the uncertainty associated with the reconstructed velocity vector.

5 Conclusions

In this paper the error propagation formulae have been presented for the static convergent beam
LIDAR which can be applied especially in the wind energy industry (and potentially also in aviation,
construction and transportation). By way of examples it is demonstrated to the practitioner how the
formulae may be applied in order to govern deployment of a convergent beam LIDAR. Deployment
of the converging beam LIDAR can take place at a prospective wind farm in order to assess three-
dimensional wind conditions during the planning process. Alternatively the converging beam LIDAR
can be deployed at an operating wind farm in order to understand three-dimensional wind conditions
incident at a specific operational turbine, especially where the turbine is suspected of underperfor-
mance due to complex flow.
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It should be noted that the numeric examples given in the previous section are for the sake of illus-
tration. In general, the results will depend also on the wind velocity being measured, which obviously
varies in magnitude and relative orientation. The possible error distribution may be calculated before
undertaking a converging beam LIDAR measurement campaign, in order to ensure that a proposed
deployment configuration is suitable for a given range of geometries and wind velocities. Some general
principles apply:
(a) the estimated variances of the components of the reconstructed wind velocities tend to increase
when measurement positions approach the plane defined by the three LIDAR locations;
(b) the estimated variances of the components of the reconstructed wind velocities tend to increase
when the angle subtended at the measurement position, by any two LIDAR locations, becomes small.

Acknowledgements

Wind Farm Analytics Ltd would like to acknowledge the input and advice from the following people
and organzations:
Dr MatthewWarden of Fraunhofer UK Research Ltd whose questions and discussion have prompted
this work; Dr Henry Bookey, Dr Simon Sørensen and Dr John Macarthur from Fraunhofer UK

Research Ltd; Dr Mark Silver, Dr Chris Watts and Engineer Ross Henderson of Thales UK Ltd;

Wind Farm Analytics Ltd would also like to thank InnovateUK for 70% funding the beginning of
this work.

References

Billingsley, P. (1995), Probability and Measure, Third edn, Wiley.

Chatfield, C. & Collins, A. J. (1980), Introduction to Multivariate Analysis, Chapman and Hall.

EU Commission (2017), ‘Third Report on the State of the Energy Union’, Brussels, 23.11.2017
COM(2017) 688 final .

Fleming, P. A., Scholbrock, A. K., Jehu, A., Davoust, S., Osler, E., Wright, A. D. & Clifton, A.
(2014), ‘Field-test results using a nacelle-mounted lidar for improving wind turbine power capture
by reducing yaw misalignment’, J. Phys.: Conf. Ser. 524.

Kreyszig, E. (1989), Introductory Functional Analysis with Applications, Revised edn, John Wiley &
Sons.

Liu, J., Liu, H., Jiang, C., Han, X., Zhang, D. Q. & Hu, Y. I. (2018), ‘A new measurement for
structural uncertainty propagation based on pseudo-probability distribution’, Applied Mathematical
Modelling 63.

Luenberger, D. G. (2005), Introduction to Linear and Nonlinear Programming, Second edn, Springer.

Mann, J., Cariou, J.-P., Courtney, M. S., Parmentier, R., Mikkelsen, T., Wagner, R., Lindelöw, P.,
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Appendix

Detailed Proof of Theorem 1
We will work with the inner product space on R9, where, for y, z ∈ R9, the inner product < ·, · > is
given by

< y, z >= yTz

with induced Euclidian norm, || · ||, given by

||y|| =
√

yTy.

Working with the triangle inequality

|Err((θ0,ϕ0, ṽ0), (θ
∗,ϕ∗, ṽ∗))|

≤ 1

4
|var

(
δx(θ0,ϕ0, ṽ0)

THj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))δx(θ0,ϕ0, ṽ0)
)
|

+|cov
(
gT
j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0), δx(θ0,ϕ0, ṽ0)

THj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))δx(θ0,ϕ0, ṽ0)
)
|

≤ 1

4

∣∣∣E [{
δx(θ0,ϕ0, ṽ0)

THj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))δx(θ0,ϕ0, ṽ0)
}2

]∣∣∣
+
1

4

∣∣E [
δx(θ0,ϕ0, ṽ0)

THj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))δx(θ0,ϕ0, ṽ0)
]∣∣2
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+
∣∣E [{

gT
j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0)

}{
δx(θ0,ϕ0, ṽ0)

THj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))δx(θ0,ϕ0, ṽ0)
}]∣∣

+
∣∣E [

gT
j (θ0,ϕ0, ṽ0)δx(θ0,ϕ0, ṽ0)

]∣∣×∣∣E [
δx(θ0,ϕ0, ṽ0)

THj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))δx(θ0,ϕ0, ṽ0)
]∣∣ .

(29)
Since Hj(γ(θ0,ϕ0, ṽ0) + (1 − γ)(θ∗,ϕ∗, ṽ∗)) : R9 7→ R9 is a bounded linear operator, then we can
induce its norm in the standard way (see Kreyszig (1989) for example).
Through a combination of:
• using Jensen’s inequality (see Billingsley (1995) for example), for taking the absolute value norm,
| · | (which is convex on R), inside the expectation operators;
• moving from the absolute value norm, | · |, through to a bound in terms of the Euclidean norm,
defined on R9, via use of the Cauchy-Schwarz inequality;
• using the compatibility property, that is automatically satisfied by induced matrix norms;
then we can bound (29) by

1

4

(
E[||δx(θ0,ϕ0, ṽ0)||4||Hj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))||2]

+
1

4
E[||δx(θ0,ϕ0, ṽ0)||2||Hj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))||]2

)
+E[||δx(θ0,ϕ0, ṽ0)||3||gj(θ0,ϕ0, ṽ0)||||Hj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))||]

+E[||δx(θ0,ϕ0, ṽ0)||||gj(θ0,ϕ0, ṽ0)||]E[||δx(θ0,ϕ0, ṽ0)||2||Hj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))||].
(30)

Clearly vj(·, ·, ·) is twice continuously differentiable over a compact set X , in the sense that all of
its first and second partial derivatives (mixed, or otherwise) are continuous over such a set. It can
be deduced, therefore, that ||Hj(·)|| is continuous with respect to γ (which can be seen to be a
consequence of the fact that, for two matrices X,Y : R9 7→ R9, say: (i) from the triangle inequality∣∣||X|| − ||Y ||

∣∣ ≤ ||X − Y ||; and (ii) the induced norm matrix is equivalent to any entrywise matrix
norm). Hence there exists a finite scalar, Hmax

j (θ0,ϕ0, ṽ0), such that

||Hj(γ(θ0,ϕ0, ṽ0) + (1− γ)(θ∗,ϕ∗, ṽ∗))|| ≤ Hmax
j (θ0,ϕ0, ṽ0)

for all 0 ≤ γ ≤ 1. Indeed, one might select Hmax
j (θ0,ϕ0, ṽ0) to serve as a bound over some appropriate

superset of X in order to circumvent any dependence on a particular (θ0,ϕ0, ṽ0). Also note that since
δx(θ0,ϕ0, ṽ0) ∈ [−B,B]9, then ||δx(θ0,ϕ0, ṽ0)|| ≤ 3B. Thus a further bound on (30) is given by

81

2
B4(Hmax

j (θ0,ϕ0, ṽ0))
2 + 54B3||gj(θ0,ϕ0, ṽ0)||Hmax

j (θ0,ϕ0, ṽ0). (31)
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