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Summary 

A refracting lens is a key component of our image-forming camera eye, however 

its evolutionary origin is unknown, as precursor structures appear absent in 

non-vertebrates [1]. The vertebrate βγ-crystallin genes encode abundant 

structural proteins critical for the function of the lens [2]. We show that the 

urochordate Ciona intestinalis, which split from the vertebrate lineage before the 

evolution of the lens, has a single gene coding for a single domain monomeric βγ-

crystallin. The crystal structure of Ciona-βγ-crystallin is very similar to that of a 

vertebrate βγ-crystallin domain, except for paired, occupied calcium binding 

sites. The Ciona-βγ-crystallin is only expressed in the palps and in the otolith, the 

pigmented sister cell of the light sensing ocellus. The Ciona-βγ crystallin 

promoter region targeted expression to the visual system, including lens, in 

transgenic Xenopus tadpoles. We conclude that the vertebrate βγ-crystallins 

evolved from a single domain protein already expressed in the neuroectoderm of 

the pre-vertebrate ancestor. The conservation of the regulatory hierarchy 

controlling βγ-crystallin expression between organisms with and without a lens 

shows that the evolutionary origin of the lens was based on co-option of pre-

existing regulatory circuits controlling the expression of a key structural gene in 

a primitive light sensing system.  

 

Most living vertebrates possess anterior paired eyes, each with a lens. While anterior 

photoreceptors are known to have evolved before the radiation of the major lineages 

of bilaterally symmetrical animals [3, 4], the vertebrate lens is a more recent 

innovation that evolved in the vertebrate lineage. Indeed, the accurate vision 

facilitated by the lens is one of the key adaptations proposed to underlie the evolution 
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of active predation by ancestral vertebrates, and the subsequent evolutionary success 

of vertebrates themselves [5, 6]. The unique structural properties of the lens are due to 

its very high content of long-lived proteins, the crystallins. These derive 

predominantly from two gene families, the α-crystallin family and the βγ-crystallin 

family [2]. The structure of βγ-crystallins has been elucidated, and found to have 

derived from an ancestral protein domain comprised of two symmetrically organised 

Greek key motifs. 

  

Vertebrates, together with invertebrate urochordates such as the sea squirt Ciona 

intestinalis, comprise phylum Chordata. C. intestinalis larvae share a basic chordate 

body plan with vertebrates, including the possession of a notochord and dorsal neural 

tube in which an anterior photoreceptor resides in a small brain [7]. Urochordates are, 

however, thought to have split from the vertebrate lineage prior to the evolution of the 

lens and the associated co-option of crystallin genes into the visual system. A search 

of the genome [8] of C. intestinalis for βγ-crystallin-like sequences identified one 

gene coding for a single domain protein with homology to vertebrate βγ-crystallins 

(for full details of methods, please see supporting online supplementary material). We 

name this gene Ci-βγ-crystallin. Similar searches of the genome of the related 

urochordate, Ciona savignyi, also identified only one homologous gene 

(http://www.broad.mit.edu). Sequence identity of the Ciona βγ-crystallins with 

vertebrate βγ-crystallins was relatively low, and hence to confirm their evolutionary 

relationship we used X-ray crystallography to solve the structure of Ci-βγ-crystallin 

protein. The crystal structure of recombinant Ci-βγ-crystallin (Supplementary Tables 

S1 and S2; Protein Data Bank accession codes for the coordinates and structure 

factors are 2bv2 and r2bv2sf respectively) shows that the single domain has the 
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standard βγ-crystallin fold, with two consecutive Greek key motifs, organised about 

an approximate 2-fold axis (Fig. 1A, B). As with all solved lens βγ-crystallin 

domains, it has a folded β-hairpin between the first two β-strands of each Greek key 

motif, a tyrosine corner in the second motif, with the sheet exchanged β-strand of the 

first motif shorter than in the second. Although two molecules were found in the 

crystallographic asymmetric unit (Supplementary Table S1), they lack the 

approximate 2-fold symmetrical pairing typical of vertebrate lens βγ-crystallins. This 

is consistent with the lack of conservation of interface hydrophobic residues typical of 

2-domain lens βγ-crystallins, and the monomeric behaviour of purified Ci-βγ-

crystallin. The Ci-βγ-crystallin domain contains two occupied calcium-binding sites 

that are very similar to those observed in microbial βγ-crystallin domains 

(Supplementary Table S3). Each calcium-binding site is built from both motifs by 

virtue of the approximate 2-fold symmetry axis which simultaneously creates two 

similar binding sites (Fig. 1C). In the crystal lattice of Ci-βγ-crystallin, the protein is 

bound in layers by the calcium (Supplementary Figure S1). Thus Ci-βγ-crystallin 

shares structural as well as sequence similarity with vertebrate βγ-crystallins, and in 

addition has calcium ion binding properties similar to those observed for some non-

vertebrate βγ-crystallins and the amphibian protein EDSP [9]. Similar paired calcium-

binding βγ-crystallin domain sequences are absent from the known fish and 

mammalian genomes. 

 

The crystal structure of Ci-βγ-crystallin conclusively confirms its homology to 

vertebrate βγ-crystallins, and allowed us to construct a structure-based sequence 

alignment of βγ-crystallin domains (Fig. 2A). In turn, we were able to use this to 

construct a molecular phylogenetic tree illustrating βγ-crystallin evolution (Fig. 2B). 
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The C. intestinalis sequence is basal to a clade containing vertebrate βγ-crystallins  

and  is related to G. cydonium βγ-crystallin. However, the two Greek key motifs of 

Ci-βγ-crystallin are encoded on separate exons, similar to the organisation of 

vertebrate β-crystallins (Fig. 2B), while the G. cydonium gene is an intron-less gene 

encoding a 2-domain protein [10]. These data show that both Ci-βγ-crystallin and the 

vertebrate βγ-crystallins have evolved from a single ancestral gene, encoding a βγ-

crystallin domain, which was present in the common ancestor of the chordates. 

 

Analysing the expression of relevant genes from species spanning an evolutionary 

transition such as the origin of the lens can allow the deduction of the molecular basis 

for key evolutionary steps. To explore this, we examined the localisation of Ci-βγ-

crystallin mRNA and protein in C. intestinalis embryos, larvae and juveniles by 

whole mount in-situ hybridisation and immunohistochemistry. C. intestinalis has a 

biphasic life cycle (Fig. 3A). Embryos develop into a swimming larva with a dorsal 

neural tube and notochord embedded in a muscular tail. In the larval head is a small 

brain that includes a neuroectodermal sensory vesicle with two sensory organs, the 

ocellus and the otolith [7], together thought responsible for controlling larval 

locomotion in the search for a suitable site for metamorphosis [11]. Once located, the 

larva adheres to the substratum using secretion from three anterior epidermal palps, 

and subsequently undergoes a radical metamorphosis during which the majority of the 

brain and tail are reabsorbed. The remaining tissues are extensively remodelled to 

produce a sedentary adult. The ocellus is a ciliary based photoreceptor system that 

includes a single pigmented cell, and is considered homologous to the vertebrate 

retina [3, 4]. In some urochordate larvae, including those of C. intestinalis, three cells 

lie above the pigment cell and, as light must pass through them to reach the 
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photoreceptors, these are sometimes referred to as lens cells [12, 13]. However, there 

is no evidence that these cells are homologous to vertebrate lens cells. Similarly, the 

otolith is not considered homologous to the vertebrate ear [14]. 

 

The expression of Ci-βγ-crystallin was found to be tightly regulated in a cell specific 

manner (Fig. 3). Ci-βγ-crystallin mRNA was detected in the palps of early and late 

larvae (Fig. 3B, C; see also www.ghost.kyoto-u.ac.jp). Ci-βγ-crystallin protein was 

also detected in the palps of larvae (Fig. 3D, E), where the antibody stained the 

glandular cells, and the protein did not appear to be secreted. Staining of Ci-βγ-

crystallin in the palp cells was maintained during attachment and the early part of 

metamorphosis (Fig. 3G). In later metamorphosis the staining was restricted to a small 

number of scattered cells (Fig. 3H, I). 

 

In late larvae we also detected Ci-βγ-crystallin in the otolith (Fig. 3E, F). Control pre-

immune serum, from the same rabbit as the anti-Ci-βγ-crystallin antibody, did not 

label this structure. We did not observe staining for mRNA in this cell. This was 

probably masked by the pigmentation, something we [SMS, unpublished data] and 

others [15] have observed for other genes. Ci-βγ-crystallin protein in the sensory 

vesicle was maintained during the early part of metamorphosis, but was not detectable 

towards the end of metamorphosis. The two pigmented cells of the ascidian sensory 

vesicle share a common developmental origin, in that they arise from a bilaterally 

symmetrical pair of cells in the anterior nervous system [16]. These cells have been 

shown to be initially equivalent, with the potential to form both types of pigment cell. 

Which forms ocellus and which forms otolith appears to be regulated by Bmp and 

chordin signalling [17]. Additionally both ocellus and otolith lineages express opsins 
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[15]. Since anterior photosensory structures are primitive for the bilateria [3, 4], the 

parsimonious explanation is that both ocellus and otolith evolved from such 

photosensory structures. 

 

Our data therefore suggest that the chordate βγ-crystallin ancestor was already 

expressed in a cell-specific manner in derivatives of a primitive visual system prior to 

the evolution of the lens in the vertebrate lineage. This raises the possibility that the 

evolution of the lens resulted from the co-option of a pre-existing regulatory circuit 

also driving the expression of the ancestor of key structural genes, βγ-crystallins, in 

the visual system. An alternative explanation, however, is that βγ-crystallin genes 

have been independently co-opted in the two lineages. To test these hypotheses, we 

examined whether the Ci-βγ-crystallin promoter region could target expression of a 

heterologous reporter gene to a vertebrate visual system. First we identified the 

putative promoter region from the draft genome of C. intestinalis. We then cloned this 

region upstream of GFP to create Ci-βγ-crystallinPROM, electroporated this construct 

into fertilised C. intestinalis eggs, and allowed the resulting transgenic embryos to 

develop into larvae. Transgenic animals (n=28) showed intense GFP fluorescence in 

the palps (Fig. 4A, B). A number of these transgenics also showed GFP fluorescence 

in the ocellus (4/28) or the otolith (5/28), together with occasional fluorescence in 

cells located adjacent to the ocellus (3/28), which did not appear to include those cells 

previously referred to as lens cells [12, 13]. Control embryos electroporated with the 

Ci-βγ-crystallin promoter region cloned in reverse orientation in front of GFP (Ci-βγ-

crystallinREV) showed no fluorescence. This experiment demonstrates the putative 

promoter contains the regulatory elements necessary to recapitulate endogenous Ci-
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βγ-crystallin expression, although it may not contain all the elements necessary to 

repress ocellus expression.  

 

Next, we introduced Ci-βγ-crystallinPROM into Xenopus laevis. In the resulting 

transgenic X. laevis tadpoles (n=24), the Ci-βγ-crystallin promoter specifically 

directed GFP expression to the developing vertebrate visual system, including the 

optic tectum, the optic nerve/retinal ganglion cells and the lens (67%, 46% and 54% 

of animals respectively) (Fig. 4C-F). Faint expression was also occasionally seen in 

the otic vesicle and nasal epithelium (20% and 25% of animals respectively). X. laevis 

embryos transgenic for control constructs, including Ci-βγ-crystallinREV  and one 

derived from the C. intestinalis Brachyury promoter [18] linked to GFP, did not show 

similar visual-system specific expression (data not shown). This experiment confirms 

that the regulatory circuitry driving βγ-crystallin gene expression in the visual system 

is conserved between C. intestinalis and X. laevis. Vertebrate eyes have a binary 

origin, with the retina, optic nerve and optic tectum arising from the central nervous 

system, while the lens arises from an ectodermal placode. Notably, the Ci-βγ-

crystallin promoter targets expression to both lens (where vertebrate βγ-crystallins are 

primarily expressed) and neural components. This indicates the Ci-βγ-crystallin 

promoter is probably recognising a visual-system wide regulatory cue, not a lens-

specific cue. A degree of higher-level regulatory similarity between eyes in different 

taxa, including the vertebrate lens and neural visual system, has been previously 

recognised [19]. We speculate that such conserved transcription factors may be 

responsible for the observed pattern of Ci-βγ-crystallin promoter activation. 
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Our study demonstrates that the vertebrate βγ-crystallin genes have evolved from a 

single ancestral gene present in the common ancestor of the chordates, and that this 

gene also gave rise to the single βγ-crystallin ortholog in C. intestinalis. While our 

data do not exclude the possibility that the lens itself evolved earlier than currently 

thought, and has degenerated in modern urochordates, there is no evidence to support 

this view. Hence, we propose that this ancestral gene was already expressed in the 

neurectodermal visual system prior to the evolution of the lens, and that its regulation 

was conserved during the evolution of the ectodermal lens. We therefore conclude 

that the evolution of the lens did not derive from a new association between a visual 

system regulatory circuit and co-opted lens structural genes, but from the re-use of a 

pre-existing regulatory interaction linking these components in the central nervous 

system of a primitive chordate. 
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Figure Legends 

Figure 1 

The sequence and crystal structure of Ci-βγ-crystallin. 

(A) The ribbon diagram shows the first Greek key motif (turquoise) pairing with the 

second motif (yellow) and the two calcium ions are shown as red spheres. The rms 

deviation between Ci-βγ-crystallin and a human gamma-crystallin D domain for main 

chain atoms is 1.1 Angstrom. 

(B) The protein sequence, translated from three exons of the DNA sequence from 

17637 to 18636 in Contig 0605, is shown with the two motifs aligned and colour 

coded to match the structure. The first exon sequence (the methionine is cleaved off in 

the recombinant protein) is shown in bold. The region encoded by first exon and that 

encoded by the third exon is underlined. The phase of the exon/intron junction is 0 for 

the first intron and 2 for the second intron. This genomic organisation, including the 

phases of the exon/intron junctions is identical to that of the (first half) of the 

mammalian β-crystallin genes. 

(C) Each calcium-binding site is formed from two main chain oxygen atoms and one 

side chain atom (SER OG) from the same motif and one side chain atom (ASP OD1) 

from the partner motif. In the alignment these calcium-binding residues are 

highlighted in dark blue and red, while the two residues in each motif that bind 

calcium with their side chains are also in bold. The similar backbone and conserved 

side chains of each Ci-βγ-crystallin calcium-binding site are shown in the detailed 

structure, with the backbone in brown and the calcium binding regions in green. The 

residues involved from the first motif are labelled in blue and from the second in 

orange. Each calcium-binding site thus requires a subset of residues from both motifs, 

whereas domain paired calcium-binding sites need all the sequence-highlighted 
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residues. The glutamate side chain shown in blue comes from a symmetry-related 

molecule in the lattice and contributes to the formation of the calcium bound lattice 

layers (Supplementary Figure S1). 

 

Figure 2 

(A) Structure-based sequence alignment of Ci-βγ-crystallin and C. savignyi βγ-

crystallin with βγ-crystallin domains from a selection of vertebrate βγ-crystallins and 

from microbial orthologs. The A type motif is shown above and B type motif below. 

The secondary structure of Ci-βγ-crystallin is indicated at the bottom of each motif 

alignment: beta sheet strands as arrows, helices as cylinders. Calcium binding 

residues are colour coded as follows: residues providing main chain atoms are in pink, 

side chain atoms are in green and both types are in red. Numbers at the start and end 

of each sequence refer to the start and end position respectively of the motif in the 

respective protein. Species, gene abbreviations and associated references are: Geodia: 

Geodia cydonium βγ-crystallin [20]. Cynops: Cynops pyrrhogaster GEP [9]. Human: 

Homo sapiens. Protein S: Myxococcus xanthus spore coat protein S [21]. Spherulin: 

spherulin 3A from Physarum polycephalum [22]. Cholera: Vibrio cholerae [23]. 

Paramecium: Paramecium tetraurelia [24]. Q8N7F1 is the TREMBL identifier for an 

additional human βγ-crystallin homologue. 

  

(B) Molecular phylogeny of βγ-crystallin domains. Maximum likelihood tree based 

on the structure-based sequence alignment of Ci-βγ-crystallin with other βγ-

crystallins. The model used is JTT+I+G8. Branch lengths are not shown, as the 

sequences are too distant for branch lengths to be reliable. Figures adjacent to nodes 

indicate percentage bootstrap support, and only values greater than 70% are shown. 
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For the human β- and γ-crystallins, the human AIM1 protein as well as for Ci-βγ-

crystallin and the G. cydonium βγ-crystallin the gene structure of the domain coding 

regions is shown schematically, where the boxed M indicates a motif coding region. 

Of the 12 βγ-crystallin like motif encoding exons in the human AIM1 gene, only two 

are shown. Note that each motif of Ci-βγ-crystallin is encoded by a separate exon as 

in the vertebrate β-crystallin genes and the AIM1 genes [25]. In the vertebrate γ-

crystallin genes, an exon encodes two motifs, while the G. cydonium βγ-crystallin 

gene is intron-less. 

 

Figure 3 

Localisation of Ci-βγ-crystallin expression in C. intestinalis larvae and metamorphs. 

(A) schematic life cycle of C. intestinalis. A planktonic embryo produces a motile 

larva which seeks a suitable site to settle and metamorphose. Initial attachment is via 

the anterior palps, while metamorphosis involves extensive remodelling of the body, 

including loss of the tail and most of the central nervous system. (B) recently hatched 

larvae, showing expression of Ci-βγ-crystallin mRNA in the palps (p). (C) slightly 

older larva than shown in (B). ot, otolith. oc, ocellus. (D) early larva showing 

localisation of Ci-βγ-crystallin protein (red) in the palps. (E) late larva showing 

localisation of Ci-βγ-crystallin protein in the palps and otolith cell. (F) larva 

immediately before settlement, showing localisation of Ci-βγ-crystallin protein in the 

palps and otolith cell. (G) Metamorph shortly after the initiation of metamorphosis. 

The tail has contracted (asterisk). Ci-βγ-crystallin protein is located in the former palp 

cells (arrow) and the otolith cell. (H) metamorphs in which the stalk that connects the 

animal to the substrate has begun to elongate. Ci-βγ-crystallin protein is still weakly 
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detected in the otolith cell, and in the remnants of the palps (arrow). (I) In older 

metamorphs, the Ci-βγ-crystallin positive palp cells (arrow) begin to disperse. 

 

Figure 4 

The Ci-βγ-crystallin upstream region driving expression of GFP in transgenic Ciona 

intestinalis larvae and Xenopus laevis tadpoles. (A) Larva electroporated with Ci-βγ-

crystallinPROM viewed from the right lateral aspect. GFP fluorescence is visible in one 

palp (p, out of focus), the otolith (ot) and in a cell adjacent to the ocellus (oc). (B) A 

different larva transgenic for the same construct seen in left lateral aspect, showing 

expression in one palp and in the ocellus. The pigmented cells of the otolith and 

ocellus derive from the same lineage on either side of the midline [16, 17], and 

consequently ocellus expression may reflect this shared developmental history (C-F) 

X. laevis tadpoles transgenic for Ci-βγ-crystallinPROM. In the majority of tadpoles 

expression of GFP was restricted to varying combinations of the following tissues: 

brain (most prominent in midbrain) (C, D), lens (C-E) optic nerve (D, E), and otic 

vesicle (arrowheads in F). l, lens; nf, non-specific fluorescence in liver and yolk; on, 

optic nerve; ot, optic tectum. 
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A type motif 
Ciona calcium site        X                                      DX S         
C. intestinalis 001 GKIILFEDVEFGGKKLELE-T-S----VSDLNV-H------G-FNDIVSSIIVES  041 
C. savignyi     003 --IILFEDCDFNGRRLELD-G-S----AAKLVQ-F------D-FNDIVSSIIVES  041 
Geodia m1       001 -STAKVTLVTSGGSSQDFT-S-E----QTNITT-D------------FARVRVTK  035 
Geodia m3       083 VGATLYKHVNFGGKELDLP-N-S----NPRIDI-G------G-----VSSALISQ  119 
Cynops GEP m1   001 DSITVYEGRKLRGLHKTFT-A-D----VPDLTK-E------C-FNDCISSVKVVG  041 
Cynops GEP m3   092 PQITVYENMHEGGKALVLT-Q-E-----SDMVF-G------G-MNNKISSHRVQS  131 
Q8N7F1          009 PSISLFALEHCEGRELHLE-E-A----VNSVLNKD-------LHF-YTQSVWVKS  049 
AIM1 HUMAN m7  1318 AHMIMYSEKNFGSKGSSID-V-L----GIVANLKET-----GYGV-KTQSINVLS 1360 
BetaA1_HUMAN m1 030 WKITIYDQENFQGKRMEFT-S-S----CPNVSE-R------S-F-DNVRSLKVES  069 
BetaA1_HUMAN m3 123 SKMTIFEKENFIGRQWEIS-D-D----YPSLQA-M------GWFNNEVGSMKIQS  164 
BetaB1_HUMAN m1 058 YRLVVFELENFQGRRAEFS-G-E----CSNLAD-R------G-F-DRVRSIIVSA  096 
BetaB1_HUMAN m3 148 HKISLFEGANFKGNTIEIQGD-D----APSLWV-Y------G-FSDRVGSVKVSS  189  
GammaS_HUMAN m1 005 TKITFYEDKNFQGRRYDCD-C-D----CADFHT-Y--------L-SRCNSIKVEG  043  
GammaS_HUMAN m3 093 YKIQIFEKGDFSGQMYETT-E-D----CPSIMEQFH-------M-REIHSCKVLE  133  
GammaB_HUMAN m1 001 GKITFYEDRAFQGRSYECT-T-D----CPNLQP-Y--------F-SRCNSIRVES  039 
GammaB_HUMAN m3 088 YRMKIYDRDELRGQMSELT-D-D----CLSVQDRFH-------L-TEIHSLNVLE  128  
GammN(Q8WXF5)m1 005 GKITLYEGKHFTGQKLEVF-G-D----CDNFQD-R------G-FMNRVNSIHVES  045 
Protein S m2    047 VKAILYQNDGFAGDQIEVV-A-N----AEELGP-L---------NNNVSSIRVIS  085 
Protein S m4    135 LAVVLFKNDNFSGDTLPVNSD-A----PTLGAM-N----------NNTSSIRIS   172 
Spherulin 3a m1 013 GEVFLYKHVNFQGDSWKVT-G-N----VYDFRS-VS-----G-LNDVVSSVKVGP  054 
Cholera m1      175 NVVRLYADHNYTGHYIDI--E-N----STKFLH-G--------FNDTLSSWTIP   212 
Paramecium PCM1 260 ACAVFYSECDYKGASFEFC-S-K----SPDFQK-D-------NIPPQIRSIRVPPQ 301 
Secondary Structure 
 
B type motif 
C. intestinalis 042 GTWFVFDDEGFSGPSYKLT-P----GKYPNPGS---WGG-N---DDELSSVKQQ   083 
C. savignyi     042 GSWVVYDDENFSGASYHLT-P----GKYPNPEA---WGG-N---DDELSSVKPQ   083 
Geodia m2       036 GMWIFYQQANYNDASGGGS-L----WIKLDESS---HLM-D--LPFTPRSFRPVK  079 
Geodia m4       120 GQWRLYEQYDYAGPSTRRG-P----GVYVNAGA---LGV-A---NDALKSMEREF  162 
Cynops GEP m2   042 QPWILYEHPNYQGRCIALE-E----GEHSHLPF---SFL-S-SLTDKISSLKLI   085 
Cynops GEP m4   132 GAWVLYENREKRGRCIVAR-A----GEYLANYC-----D--IGF-NDQVSY-VY   171 
Q8N7F1          050 GLWIAYEGSNFLGRQILLR-P----NEIPNWTAFSRWKT--IGSLRPMKQPAVY   096 
AIM1 HUMAN m8  1361 GVWVAYENPDFTGEQYILD-K----GFYTSFED---WGG---K-NCKISSVQPI  1402   
BetaA1_HUMAN m2 070 GAWIGYEHTSFCGQQFILE-R----GEYPRWDA---WSGSNAYHIERLMSFRPI   115 
BetaA1_HUMAN m4 165 GAWVCYQYPGYRGYQYILE-CDHHGGDYKHWRE---WGSH--AQTSQIQSIRRIQQ 214 
BetaB1_HUMAN m2 097 GPWVAFEQSNFRGEMFILE-K----GEYPRWNT---WS--SSYRSDRLMSFRPI   141 
BetaB1_HUMAN m4 190 GTWVGYQYPGYRGYQYLLE-P----GDFRHWNE---WG----AFQPQMQSLRRLRD 233 
GammaS_HUMAN m2 044 GTWAVYERPNFAGYMYILP-Q----GEYPEYQR---WMG---L-NDRLSSCRAV   085 
GammaS_HUMAN m4 134 GVWIFYELPNYRGRQYLLD-K----KEYRKPID---WG----AASPAVQSFRRIVE 177 
GammaB_HUMAN m2 040 GCWMIYERPNYQGHQYFLR-R----GEYPDYQQ---WMG---L-SDSIRSCCLI   081 
GammaB_HUMAN m4 129 GSWILYEMPNYRGRQYLLR-P----GEYRRFLD---WG----APNAKVGSLRRVMD 172  
GammN(Q8WXF5)m2 046 GAWVCFNHPDFRGQQFILE-H----GDYPDFFR---WNS---H-SDHMGSCRPV   087 
Protein S m1    001 ANITVFYNEDFQGKQVDLP-P----GNYTRAQL---AAL--GIENNTISSVKVPPG 046 
Protein S m3    090 PRARFFYKEQFDGKEVDLP-P----GQYTQAEL---ERYG--IDNNTISSVKPQG  134 
Spherulin 3a m2 055 NTKAFIFKDDRFNGNFIRL-E----ESSQVTDL--TTR--N--LNDAISSIIVAT  098 
Cholera m2      213 HGWSVRFYEHGDYQGRYWT-R----DASGNESG----------FNDVISSIEILK  253 
Paramecium PCM1 302 GRVTLYESTDYNGKKVTYT-Q----DQPCIQNF---------DFSLIQMSANVEGG 343 
Secondary Structure  
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Experimental procedures 
Cloning and Recombinant DNA Methods 
The ~1-kb intergenic region of the head-to-head-oriented cubilin and Ci-βγ-crystallin 
genes (scaffold 605; www.jgi.doe.gov) was amplified by the polymerase chain 
reaction (PCR) from 10 ng Ciona intestinalis DNA using sense primer 5’-AGC TGT 
CGA CTA ATT CTT ACT GTT CGG TTG AAA CTC-3’ and antisense primer 5’-
AGC TAA GCT TGA AAC TTC GAT TGT ACA AAA TGC G-3’ (35 cycles: 30’’, 
95°C; 30’’, 55°C; 2’, 72°C; Fast start high fidelity kit, Roche, Germany). The 
resulting PCR fragment was cloned into the SalI and HindIII sites of the Xenopus 
expression vector pCS2+ [1], yielding pCiCrys2+. The coding sequence for enhanced 
green fluorescent protein (EGFP) was excised from pIRES2-EGFP (BD Biosciences 
Clontech, USA) using MscI and NotI and, via an intermediary step in pBluescript-
SK(-) (Stratagene, USA), ligated into the EcoRI and StuI sites of pCiCrys2+, resulting 
in pCiCrys-GFP (Ci-βγ-crystallinPROM). The control plasmid pCiCrys(rev)-GFP (Ci-
βγ-crystallinREV) was generated by reamplifying the intergenic region from pCiCrys-

Supplemental Data
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GFP using sense primer 5’-AGC TGT CGA CGA AAC TTC GAT TGT ACA AAA 
TGC G-3’ and antisense primer 5’-AGC TAA GCT TTA ATT CTT ACT GTT CGG 
TTG AAA CTC-3’ (35 cycles: 30’’, 95°C; 30’’, 55°C; 2’, 72°C) and cloning it, in the 
reverse orientation, into the SalI and HindIII sites of pCiCrys-GFP. 
Stable transgenesis of Xenopus laevis 
A SalI-NotI fragment, containing the Ci-βγ-crystallin intergenic region in the forward 
or reverse orientation, the EGFP open reading frame and the SV40 polyadenylation 
signal, was gel purified from the pCS2+ vector backbone from Ci-βγ-crystallinPROM 
and Ci-βγ-crystallinREV respectively and recovered using the GFX gel band 
purification kit (Amersham, UK). Transgenesis of Xenopus laevis was performed 
according to Kroll and Amaya [2], with modifications [3]. In summary: 250,000 
sperm nuclei were mixed with ~200 ng DNA fragment, incubated for 15 min at room 
temperature and diluted in 500 µl sperm dilution buffer (250 mM sucrose, 75 mM 
KCl, 0.5 mM spermidine trihydrochloride, 0.2 mM spermidine tetrahydrochloride, 5 
mM MgCl2, pH 7.4). Eggs were dejellied in 2% cystein/1 x MMR (1 x MMR: 0.1 M 
NaCl, 0.02 M KCl, 0.01 M MgCl2, 0.015 M CaCl2 en 0.5 M HEPES pH 7.5), 
transferred to 6% Ficoll/0.4 x MMR and injected with 10 nl of the diluted 
nuclei/DNA mixture at 17°C. At the 4-cell stage, the embryos were transferred to 6% 
Ficoll/0.1 x MMR and incubated overnight at 17°C. At the gastrula stage, the 
embryos were transferred to 0.1 x MMR and incubated at 22°C. EGFP-positive 
tadpoles were photographed at stage 45 [4], using a MZ FLIII fluorescence 
stereomicroscope provided with a DC200 camera (Leica microsystems, Switzerland). 
Expression and purification of recombinant Ci-βγ-crystallin 
The Ci-βγ-crystallin cDNA clone (cilv010f04) was obtained from the National 
Genetics Institute (Japan). The cDNA sequence was excised by PCR, simultaneously 
creating a NdeI site comprising the start codon and a BamHI site 3’of the stop codon. 
The PCR product was cloned in pGEM-T Easy (Promega) and sequence verified. The 
cDNA sequence was then cloned NdeI/BamHI in pET3a. The pET3a recombinant 
was transformed into BL21(DE3) strain (Novagen), grown and induced as described 
previously for lens β-crystallins [5]. Following harvesting by centrifugation, cells 
were resuspended in Bugbuster (Novagen) and Pefabloc SC (Merck).  Cells were 
lysed by two passes through an Emulsiflex Homogeniser (Glen Creston Ltd), 
followed by addition of DNAse I and sonication (4 x 15 seconds) with cooling.  The 
lysate was centrifuged at 18000 rpm at 4°C for 20 minutes, then the supernatant was 
dialysed overnight at 4°C using 6 kDa MWCO dialysis tubing against 25 mM Tris-
HCl, pH 7.5, 2 mM DTT (Buffer A).  The dialysed lysate was then passed through 
0.45 and then 0.2 mm filters before loading onto an ion exchange column (HiPrep 
16/10 Q FF, Amersham Biosciences) attached to an AKTA purifier (Amersham 
Biosciences).  Analysis of the peaks by SDS PAGE showed that the protein eluted in 
a broad peak around 30% Buffer B (Buffer A/1 M NaCl).  A sample of the peaks was 
desalted using a BioSpin column (BioRad), the mass measured using the Micromass 
ESMS and found to agree with the calculated sequence mass without the N-terminal 
methionine.  The peaks from several runs were collected, concentrated in an Amicon 
Ultrafiltration cell fitted with a YM3 membrane and then loaded onto a HiPrep 26/10 
desalting column run in Buffer A.  The eluted protein peak was then loaded onto a 
Mono Q 10/100 column run in Buffer A with a linear gradient of Buffer B, the Ci-βγ-
crystallin peak eluting at 20 % Buffer B.  The final polishing step involved 
concentrating the Mono Q peaks using the Amicon Ultrafiltration cell with YM3 
membrane and then loading the protein solution onto a Sephacryl S300HR run in 50 
mM MES, 200 mM NaCl, pH 6.05 (Buffer C). 
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Crystallisation of Ci-βγ-crystallin 
Protein concentration was estimated from absorption at 280 nm based on an extinction 
coefficient of 1.5 for a 1 mg/ml solution. Protein was initially concentrated in Buffer 
C to around 20 mg/ml. A large number of trials were made which included desalting, 
treating with EDTA and adding calcium acetate. Crystals grew without adding 
calcium but with better morphology when calcium was added. Crystals were grown 
by vapour diffusion at 4°C from 1 µl of protein solution and 1 µl of reservoir solution, 
and equilibrated against 1 ml of reservoir solution. Diffraction datasets were collected 
from 2 crystals grown under slightly different conditions.  
Crystal 1: The protein was in buffer C at 8 mg/ml. The reservoir solution was 0.2 M 
(NH4)2SO4, 1 M sodium acetate pH 4.6, 30% PEGmme 2000, with 10 µl of hexane-
1,6 diol added. 
Crystal 2: The protein was desalted and concentrated to around 8 mg/ml in 100 mM 
sodium acetate, pH 5.5. The reservoir solution was 0.2 M (NH4)2SO4, 0.35 M sodium 
acetate pH 4.6, 20% PEGmme, 1 mM calcium acetate. 
As crystals were stacks of square or hexagonal plates which proved difficult to 
separate, individual stacks were frozen, using 30% glycerol made up in the well 
solution, as cryoprotectant. Crystals were soaked for one to two minutes before being 
flash frozen in liquid nitrogen.   
Estimation of solution molecular weight 
The molecular weight of the protein at 8 mg/ml in Buffer C was evaluated by 
dynamic light scattering on a dp801 dls instrument (Protein Solutions).  The average 
over 15 readings gave a diffusion coefficient DT of 1350 x 10-13 m2/s showing that the 
protein was monomeric in solution when calibrated against protein standards. The 
data was of the highest standard with virtually all baseline values within the range 
1.000+/- 0.001.  Almost all SOS values were below 5 and the majority were below 2 
showing that the quality of the data was statistically valid. 
X-ray diffraction analysis 
A 90° diffraction dataset was collected from crystal 1 on the in-house Rigaku RU-
H3R rotating anode X-ray source with 450 s per 1O oscillation. A crystal to detector 
distance of 150 mm gave diffraction to 2.0 Å. A 180° diffraction dataset on crystal 2 
was collected at ESRF beamline ID14-2, with 1O oscillation and 12 s exposure per 
frame. A crystal to detector distance of 125 mm gave diffraction to 1.50 Å. A second 
dataset was collected from this crystal at a low-resolution (180O with 1O oscillation 
with 4 s exposure per frame, detector at 305 mm). 
Structure solution and refinement 
The data from crystal 1 were processed using MOSFLM [6]. The superimposed 
lattices from the stacked crystals were dealt with by deselecting spots found by the 
spot search before autoindexing. The data were scaled with the CCP4 program [7] 
SCALA followed by TRUNCATE. Phases were obtained using molecular 
replacement with the program PHASER [8] (version 1.1). As vertebrate lens 
crystallins have two domains per polypeptide chain, an ensemble of the C-terminal 
domains of three crystallins was used as the search model. The C-terminal domains 
from human βB1-crystallin (pdb code: 1OKI) (40% identity used as input for 
PHASER), human γD-crystallin (1HK0) (30% identity) and human γS-crystallin 
(1HA4) (30% identity), were superimposed using backbone atoms with MOLMOL 
[9]. The molecular replacement showed two molecules in the asymmetric unit, with 
the first having a log likelihood score of 55.83 and sigma of 7.05 and the second (with 
the first molecule fixed) having a log likelihood score of 181.66 and a sigma of 12.41. 
The human γS-crystallin C-terminal domain was used as the initial model for model 
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building, using ARP_WARP[10], following rigid body refinement with 
REFMAC[11]. Following manual rebuilding, addition of water molecules and 
refinement using XFIT [12] and ARP_WARP and REFMAC it became clear that 
several assigned water sites were metal ions. Examination of these sites showed that 
they were likely to be calcium ions, both from the size of the positive peak in 
weighted difference maps and the similarity of the orientation of the ligands when 
compared to spherulin 3a (pdb code: 1HDF). 
The dataset from crystal 2 was also processed using MOSFLM, although 
autoindexing proved difficult and approximate cell dimensions from the first crystal 
had to be used as a starting point for processing. The data were scaled as before and 
molecular replacement undertaken using MOLREP[13], with the refined solution 
from the first crystal used as search model. The first solution had R = 0.527, 
correlation = 0.384, the second solution (with the first fixed) had R = 0.467, 
correlation = 0.511. Refinement proceeded, with rigid-body refinement using 
REFMAC, automated rebuilding of the structure using ARP_WARP, docking of the 
sequence using GUISIDE, then manual rebuilding, refinement and addition of 
calciums, waters and counterions with XFIT, REFMAC and ARP_WARP. During 
refinement, the resolution was cut-off to 1.55Å, the point where I/sigI fell below 2.0. 
Production of transgenic C. intestinalis embryos 
Transgenic C. intestinalis embryos were made essentially as described by Corbo et al  
[14]. Briefly, oocytes were dissected from adult gonoducts, fertilised in vitro and 
immediatley chemically dechorionated [15]. 200 µl of eggs (typically between 200 
and 500 individual eggs) were gently mixed with 500 µl 0.77 M mannitol containing 
50 µg of circular plasmid DNA, then transferred to a 0.4 cm electroporation cuvette. 
The cuvette was then pulsed once (50 V, 16 milliseconds) in a BTX Electrosquare 
porator T820, after which the eggs were transferred to an agarose-sea water petri dish 
and allowed to develop overnight at 18ºC, by which time they had reached the larval 
stage. Surviving larvae were viewed on a Zeiss Axioskop II equipped with 
fluorescence and a GFP filter set. 
This technique typically results in incorporation of transgene DNA into one of the two 
daughter blastomeres of the first cell division [14]. Since the first cleavage separates 
prospective left and right sides of the embryo, half of each embryo inherits the 
transgene, and half does not. This accounts for the observed transgene expression in 
one or two (but never all three) palps, and in otolith or ocellus but not both, as these 
two cells derive from opposite sides of the embryo [16]. 
Embryos, in situ hybridisation and immunohistochemistry 
Culturing of C. intestinalis embryos and RNA in situ hybridisation were carried out as 
described [17]. For immunohistochemistry, embryos were raised and fixed as for in 
situ hybridisation. They were then rehydrated in phosphate buffered saline with 0.2% 
Triton X100 (PBT), and blocked in 20% sheep serum in PBT (blocking solution) 
overnight at 4ºC. Embryos were then incubated at 4ºC overnight in pre-blocked (4ºC 
overnight, diluted 1:2000 in blocking solution) anti-Ci-βγ-crystallin antibody (rabbit 
polyclonal; raised against recombinant protein using standard procedures), followed 
by 6 one hour washes in PBT at room temperature and a second overnight incubation 
at 4ºC in preblocked (4ºC overnight in blocking solution) secondary antibody 
(Alexifluor 594 donkey anti-rabbit IgG, Molecular Probes). Embryos were then 
washed 6 times for 1 hour each, and viewed under a confocal microscope at 594 nm. 
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Table S1   X-ray Diffraction Statistics 

Parameter Value 
Space group C2 
Unit Cell a) 93.0Å b) 29.8Å c) 57.3Å  α = γ =90O, β = 121.5O 
Wavelength 0.933 Å (ID14-2, ESRF) 
Temperature of data collection 100K 
Molecules in asu. 2 
Matthews Coefficient 2.0 
Solvent Content 37.0% (v/v) 
 All Data  

(40.0 – 1.50Å) 
High Resolution Bin 
(1.58 – 1.50Å) 

Number of Reflections 277325 9285 
Number of Unique Reflections 21220 2879 
Multiplicity 3.6 3.3 
Completeness 93.0% 87.7% 
Rmerge 13.3% 30.9% 
<I>/<Sig I> 2.6 1.8 
 
 
 
Table S2  Refinement Statistics 

Parameter Value 
Number of reflections working (test) set  18383 (2442)  
Rcryst (RFree) after rigid body 33.1% (33.3%) 
Final R cryst (RFree) 20.0% (23.9%) 
Overall Figure of Merit 0.840 
Number of atoms in final refinement round 2807 
Rmsd bond lengths 0.007Å 
Rmsd bond angles 1.13O 
Rmsd main chain B-factor bond (angle) 1.65Å2 (2.35Å2) 
Rmsd side chain B-factor bond (angle) 2.10Å2 (3.19Å2) 
Ramachandran plot: Most favoured region 87.2% 
Ramachandran plot: Additionally allowed region 12.8% 
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Table S3     Comparison of calcium binding between ci-βγ-crystallin and spherulin 3a. 

Ci-βγ-crystallin Spherulin 3a 
First Motif 

Ligand Distance (/Å) 
(Chain A/B) 

Ligand Distance (/Å) 
(Chain A/B) 

Glu 7 O 2.3 / 2.3 Lys 19 O 2.3 / 2.3 
Ile 33 O 2.4 / 2.4 Val 46 O 2.2 / 2.4 
Ser 35 OG 2.4 / 2.3 Ser 48 OG 2.3 / 2.0 
Asp 75 OD1 2.5 / 2.3 Asp 89 OD1 2.3 / 2.3 
Glu 7 OE1 
(symmetry) 

2.2 / 2.3 
B / A Glu 7 

  

HOH 2 / 5 2.4 / 2.5 HOH 37Z / 29Y 2.6 / 2.7 
HOH 9 / 14 2.3 / 2.5 HOH 71Z / 50Y 2.5 / 2.2 

Second Motif 
Asp 48 O 2.3 / 2.3 Lys 62 O 2.4 / 2.3 
Glu 76 O 2.4 / 2.3 Ala 90 O 2.5 / 2.2 
Ser 78 OG 2.3 / 2.3 Ser 92 OG 2.4 / 2.1 
Asp 32 OD1 2.5 / 2.5 Asp 45 OD1 2.5 / 2.5 
Glu 76 OE1 2.6 / 2.8 HOH 28 Z 2.8 
HOH 52 / 27 3.6 / 2.3 HOH 36Z / 26 Y 2.6 / 2.6 
  HOH 41Z / 30 Y 2.7 / 2.7 
 
Ligands in equivalent positions are on the same line. Ligands are listed in the order 
main chain, side chain and finally water. 
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Figure S1. The single domain calcium bound Ci-ββββγ-crystallin in layers in the 
lattice. 
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