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Strongly Constrained Discrete Hashing
Yong Chen, Zhibao Tian, Hui Zhang, Jun Wang, and Dell Zhang, Senior Member, IEEE

Abstract—Learning to hash is a fundamental technique widely
used in large-scale image retrieval. Most existing methods for
learning to hash address the involved discrete optimization
problem by the continuous relaxation of the binary constraint,
which usually leads to large quantization errors and consequently
suboptimal binary codes. A few discrete hashing methods have
emerged recently. However, they either completely ignore some
useful constraints (specifically the balance and decorrelation of
hash bits) or just turn those constraints into regularizers that
would make the optimization easier but less accurate. In this
paper, we propose a novel supervised hashing method named
Strongly Constrained Discrete Hashing (SCDH) which overcomes
such limitations. It can learn the binary codes for all examples
in the training set, and meanwhile obtain a hash function for
unseen samples with the above mentioned constraints preserved.
Although the model of SCDH is fairly sophisticated, we are
able to find closed-form solutions to all of its optimization sub-
problems and thus design an efficient algorithm that converges
quickly. In addition, we extend SCDH to a kernelized version
SCDHK . Our experiments on three large benchmark datasets
have demonstrated that not only can SCDH and SCDHK achieve
substantially higher MAP scores than state-of-the-art baselines,
but they train much faster than those that are also supervised
as well.

Index Terms—Learning to hash, image retrieval, discrete
optimization.

I. INTRODUCTION

In this era of big data, there are more and more data that need
to be stored, indexed, and processed automatically. Learning
to hash, as a promising technique to represent data as compact
binary codes for economical storage and efficient computation,
has attracted much attention from many researchers as well as
practitioners [2], [1], [3], [5], [6], [7], [8], [34]. To facilitate
approximate nearest neighbors search, the binary codes should
try to maintain the semantic similarity between any pair of
samples in the data. The methods for learning to hash that
preserve pairwise similarities in the learned binary Hamming
space have already been shown to deliver impressive results in a
number of applications, particularly large-scale image retrieval.
Nevertheless, how to further improve the effectiveness and
efficiency of such methods is still an important and challenging
research problem today.

Generally speaking, there are two kinds of learning to hash
methods: unsupervised and supervised. The latter usually works
better than the former (due to the exploitation of the label
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information) but can be considerably slower (due to the more
sophisticated optimization algorithm needed).

In the unsupervised category, Spectral Hashing (SH) [9]
first constructs the pairwise similarity matrix of the unla-
beled data with a predefined kernel function and then solves
the semantic hashing problem via spectral decomposition,
which is quite inefficient when the dataset is large. Self-
Taught Hashing (STH) [13] learns compact binary codes
via relaxed SH from the unlabeled training documents and
trains SVM classifiers to predict the binary codes for the
testing documents. Similar to SH, the time-consuming spectral
decomposition would make it impractical for large-scale real-
world applications. Hashing with Graphs (AGH) [10] converts
the pairwise similarity matrix into low-rank adjacency matrices
by utilizing anchor graphs, which makes the corresponding
optimization problem computationally feasible on large-scale
image collections. However, the performance of image re-
trieval using the produced binary codes is sensitive to the
selection of anchors which is sometimes tricky. Scalable
Graph Hashing (SGH) [12] utilizes feature transformation to
approximate the whole pairwise similarity matrix efficiently
and develops a sequential bit-by-bit learning algorithm, but the
bit-wise optimization can be slow on large datasets particularly
when the code length is long. All the above unsupervised
learning to hash methods either make the continuous relaxation
of the binary constraint or adopt just one of the discrete
constraints to simplify the corresponding optimization problem,
which leaves much room for improvement. Discrete Graph
Hashing (DGH) [11] could be considered as an extension of
AGH, which casts the graph-based hashing into a sophisticated
discrete optimization framework. Although DGH also utilizes
strong constraints as our proposed approach, due to the
limitations of its optimization algorithm it often underperforms
as we will show later in the experiments.

Semi-Supervised Hashing (SSH) [14] utilizes the class labels
of data items to infer their semantic similarities/dissimilarities
and then learn binary codes from them. Its eigen-decomposition
based solution can be quite fast when the amount of avail-
able labeled data is not very large. Minimal Loss Hashing
(MLH) [15] models the semantic relationships among data
items in the structural SVM framework in order to learn
similarity-preserving binary codes. Supervised Hashing with
Kernels (KSH) [16] exploits kernel-based hash functions to
learn the binary codes which could represent complex nonlinear
data. Fast Supervised Hashing with Decision Trees (FastH) [18]
leverages the advantages of nonlinear functions over linear
ones, and uses boosted decision trees to generate better binary
codes. All the aforementioned supervised methods for learning
to hash, along with other similar work [20], [19], [21], [22],
[24], [25], face the same problem: when the labeled dataset
is big, the corresponding pairwise similarity matrix would be
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huge and therefore those methods will run very slowly and
sometimes cannot finish in a reasonable time. Column Sampling
Based Discrete Supervised Hashing (COSDISH) [26] is a fast
algorithm using random partial labeled samples which can learn
the binary codes for a large dataset with millions of images in
just a dozen of seconds. However, the supervision information
is not utilized to the fullest in this method, which restricts its
effectiveness. Fast Scalable Supervised Hashing (FSSH) [44]
combines pairwise and pointwise supervision signals in its
discrete optimization algorithm which performs quite well for
image retrieval, but the construction of the pairwise similarity
matrix is quite space-inefficient and time-consuming. Notice
that such supervised hashing methods usually have to ignore or
drop some useful constraints (e.g., the balance and decorrelation
of hash bits) in order to make the corresponding optimization
problems easier to solve. Although recently, there emerges
Discrete Proximal Linearized Minimization (DPLM) [46] and
Binary Deep Neural Network (BDNN) [52] both of which
start to take the balance and decorrelation constraints into
account, they simply convert those constraints into parts of the
objective function and thus make the optimization easier but
less accurate.

There also exist some pairwise similarity based deep learning
approaches to hashing [21], [42], [40], [43], [41]. Such deep-
learning methods could achieve competitive performance, but
they all would require massive training data and computational
resources (with GPUs or TPUs), which makes them fairly
expensive. In this paper, we focus on fast shallow models for
learning to hash, which are cheap to run and practical for most
large-scale real-world applications. How to reduce the cost of
deep-learning based hashing is an open research problem, and
we leave it for future work.

To unleash the full potential of supervised learning to hash,
we propose a novel method named “Strongly Constrained
Discrete Hashing (SCDH)”. Its main characteristics are sum-
marized as follows.
• SCDH is a supervised discrete hashing method with complex

constraints that not only require the hashing model yield
binary codes but also enforce the balance and decorrelation of
hash bits. Although the balance and decorrelation constraints
have been shown to be crucially important for unsupervised
learning to hash, they are typically absent in the existing
supervised learning to hash methods because of the difficulty
arising from discrete optimization.

• To address the tricky discrete optimization problem of SCDH,
we introduce an auxiliary variable and decompose the original
problem into several subproblems each of which has a closed-
form solution. This makes the learning algorithm converge
in just a small number of iterations (usually fewer than
10). Furthermore, we extend SCDH to a kernelized version
dubbed “SCDHK” which could realize non-linear retrieval
functions for complex datasets.

• Extensive experiments on three large-scale image datasets
have confirmed that our proposed methods could substantially
outperform many state-of-the-art competitors with higher
retrieval accuracies and meanwhile lower time costs. For
example, on the NUS-WIDE dataset with 180k+ images,
SCDH/SCDHK could be trained within a couple of minutes

Table I: The notations adopted in this paper.

Symbol Explanation

N a scalar
v a vector
M a matrix
vi a scalar: the (i)-th element of vector v
mi a vector: the (i)-th column of matrix M
mij a scalar: the (ij)-th element of matrix M
0N an N × 1 vector with all 0 elements
1N an N × 1 vector with all 1 elements
IN an N×N identity matrix
O a matrix with all 0 elements

MT the transpose of matrix M
M−1 the inverse of square matrix M
tr(M) the trace of square matrix M :

∑
imii

||v||2 the l2 norm of vector v:
√∑

i v
2
i

||M ||F the Frobenius norm of M :
√∑

ij m
2
ij

sgn(·) the element-wise sign function

using a commodity PC and achieve superior performance to
the alternatives.

II. RELATED WORK

From the perspective of optimization, the development of
learning to hashing techniques could be roughly divided into
three stages as follows.

Stage I: Hashing with spectral relaxation. The spectral
hashing (SH) [9] method, to the best of our knowledge, is
probably the first to propose the balance and decorrelation
constraints, in addition to the apparent binary constraint, for
the task of learning to hash. The balance constraints require
each bit to fire 50% of the time, while the decorrelation
constraints require the bits to be uncorrelated. However, such
a formulation implies an NP-hard mixed-integer optimization
problem. To overcome this obstacle, SH chooses to relax the
binary constraint into a continuous one during the learning
of hash functions. Similarly, Self-Taught Hashing (STH) [13],
Semi-Supervised Hashing (SSH) [14], Hashing with Graphs
(AGH) [10] and Supervised Hashing with Kernels (KSH) [16]
all belong to this family of spectral-based hashing methods
in which the binary constraint is relaxed. This technique of
continuous relaxation would greatly reduce the difficulty of
optimization, but the solution could be suboptimal, i.e., the
binary codes resulting from thresholding the continuous codes
are likely to be inferior to those obtained by optimizing with
the original binary constraint intact [17], [52]. Hence, to avoid
such negative effects for hashing, our proposed SCDH/SCDHK
keeps the binary constraint discrete rather than relax them.

Stage II: Discrete hashing with the binary constraint
only. To make the discrete hashing problem tractable, Super-
vised Discrete Hashing (SDH) [17] does not make continuous
relaxations but discard the “balance” and “decorrelation”
constraints (employed in the above mentioned spectral-based
hashing approaches), and thus develops the “discrete cyclic
coordinate descent” (DCC) algorithm. Fast Supervised Discrete
Hashing (FSDH) [45] enhances SDH using an exchangeable
regression trick that leads to a closed-form solution for efficient
binary codes. Fast Scalable Supervised Hashing (FSSH) [44]
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differs from FSDH mainly in the utilization of both point-
wise and pairwise labeled information; it can achieve better
retrieval performance than FSDH that only leverages pointwise
supervision. Column Sampling Based Discrete Supervised
Hashing (COSDISH) [26] realizes binary hashing to handle
large-scale image datasets by randomly sampling columns
during the iterative learning process. To sum up, such kind of
methods can avoid continuous relaxation and generate binary
codes directly via discrete optimization algorithms. However,
they have all ignored the desirable balance and decorrelation
properties of hash bits, which would hurt the effectiveness of
hashing. Compared with those methods, our SCDH/SCDHK

can also produce binary codes directly, and meanwhile try to
satisfy the balance and decorrelation constraints.

Stage III: Discrete hashing with the other constraints
too. As pointed out in SH [9], the balance and decorrelation
constraints really help to maximize the compactness of binary
codes. Recently, Discrete Proximal Linearized Minimization
(DPLM) [46] and Binary Deep Neural Network (BDNN) [52]
have been proposed to bring all those constraints (binary, bal-
ance and decorrelaiton) together to achieve strongly constrained
discrete hashing. However, what those methods actually do
is to move the balance and decorrelation properties from the
constraints to the objective function, i.e., treat them not as
constraints but as regularizes instead. Although this is a popular
trick for solving hard optimization problems approximately, it
usually requires many iterations for the corresponding algo-
rithms to converge. In contrast, our SCDH/SCDHK attempts to
find closed-form solutions to the strongly constrained optimiza-
tion problem while maintaining both balance and decorrelation
as constraints. Being able to get closed-form solutions makes
our algorithm much faster than the aforementioned iterative
algorithms.

III. PROBLEM STATEMENT

Let D = {(xi, li)}Ni=1 be a set of images, where xi ∈ RM
denotes the (i)-th image represented by an M -dimensional
vector, and li ∈ {0, 1}C is its corresponding label vector, i.e.,
if image xi belongs to the c-th class (c ∈ {1, 2, · · · , C}), then
the c-th element of li is 1; otherwise, it is 0. N and C are
the number of images and the number of classes in the dataset
respectively. As in Ref. [39], the similarity sij between xi and
xj (i, j = 1, 2, · · · , N ) is calculated as:

sij = 2 cos < li, lj > −1

= 2
lTi lj

||li||2 · ||lj ||2
− 1

= 2

(
li
||li||2

)T (
lj
||lj ||2

)
− 1 .

(1)

If we further set:

G =

[
l1
||l1||2

,
l2
||l2||2

, · · · , lN
||lN ||2

]T
, (2)

then the pairwise similarity matrix S = (sij)N×N could be
derived from the label information with:

S = 2GGT − 1N1TN , (3)

where each element sij would be in the range of [−1,+1]. We
aim to learn a set of hash functions that can preserve the label-
based pairwise similarity in the Hamming space. Specifically,
K hash functions H(·) = [h1(·), h2(·), · · · , hK(·)]T embed
each image xi into a K-bit binary code, i.e., bi = H(xi) ∈
{−1,+1}K , and then the whole dataset could be transformed
into B = [b1, b2, · · · , bN ]T ∈ {−1,+1}N×K . In principle, if
xi and xj share more class labels, then the Hamming distance
between their corresponding binary codes bi and bj should
be smaller. The mathematical notations used in this paper are
summarized in Table I.

IV. PROPOSED METHOD

Here we describe in detail SCDH, a novel supervised discrete
hashing method, in the joint learning framework where binary
codes and hash functions are obtained simultaneously.

A. Similarity Preservation

Given a pair of images (xi, xj) each of which is encoded
as a K-bit binary vector in the {−1,+1}K space, the value of
their dot-product (which is in the range of [−K,+K]) should,
ideally, be proportional to their semantic similarity sij . So we
make the binary codes preserve pairwise similarities through
the following optimization:

min
B
||K · S −BBT ||2F (4)

s.t. B ∈ {−1,+1}N×K ,BT1N = 0K ,B
TB = N · IK ,

where the constraint BT1N = 0K requires the hash bits to be
balanced (i.e., each bit fires 50% of the time) and the constraint
BTB = N · IK requires the hash bits to be uncorrelated.
These two constrains, balance and decorrelation, are known to
encourage the generation of compact binary codes [9], [11].

The objective function in (4) is quite common in supervised
hashing with pairwise similarities preserved, but there exist
two computational challenges: (1) how to construct the N ×N
pairwise similarity matrix S efficiently; (2) how to solve the
strongly constrained discrete optimization problem efficiently.
In response to the first challenge, we represent S using
the low-rank matrix G (in general C � N ) as shown in
(3), which would significantly reduce the storage cost and
also greatly accelerate the subsequent computation in the
hashing process. With regard to the second challenge, most
existing hashing methods (e.g., SH [9] and STH [13]) relax the
discrete constraint B ∈ {−1,+1}N×K to a continuous one
B ∈ RN×K , which simplifies the optimization but meanwhile
hurts the retrieval performance. Our solution, however, can
afford to retain the discrete constraints with the help of an
auxiliary variable, as explained below.

B. Joint Learning

Let X = [x1,x2, · · · ,xN ]T . For fast image retrieval, we
use linear hash functions P ∈ RM×K to produce the binary
codes:

B = sgn(XP ) . (5)



JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, MAR. 2019 4

The hash functions P can be learned simultaneously with the
binary codes B by expanding (4) to the following:

min
B,P
||K ·S−BBT ||2F +λ||sgn(XP )−B||2F +β||P ||2F (6)

s.t. B ∈ {−1,+1}N×K ,BT1N = 0K ,B
TB = N · IK ,

where λ is a positive parameter to weigh the relative importance
of binary codes and hash functions, while β is a non-negative
smoothing factor to prevent overfitting or irreversibility.

The sign function sgn(·) is not differentiable, which makes
the optimization problem (6) difficult to solve directly. There-
fore, we replace sgn(XP ) with just XP . That is to say, we
require each element of XP itself rather than its sign to be as
close as possible to the corresponding element of B (which is
either +1 or −1). Moreover, to make this discrete optimization
problem easier, we introduce an auxiliary variable Z as an
alias of B (i.e., Z = B) and rewrite (6) as:

min
B,P,Z

||K · S −BZT ||2F + λ||XP −B||2F + β||P ||2F (7)

s.t.
{

B ∈ {−1,+1}N×K ,
Z = B,ZT1N = 0K ,Z

TZ = N · IK
.

C. The Complete Optimization Problem

Finally, we go further to drop the constraint Z = B and
make the relaxation that Z is a real-valued continuous variable
approximating the discrete variable B. In other words, B and
Z are no longer required to be strictly identical but they should
be similar to each other. Thus, the overall objective function
that takes all the above considerations into account can be
extended from (7) as follows:

min
B,P,Z

O(P,B,Z) = ||K · S −BZT ||2F+

λ||XP −B||2F + α||B −Z||2F + β||P ||2F
(8)

s.t.
{

B ∈ {−1,+1}N×K ,
Z ∈ RN×K ,ZT1N = 0K ,Z

TZ = N · IK .
,

where the additional parameter α controls how closely Z
approximates B.

With the above joint learning framework, the binary codes
for training data and the hash functions for out-of-sample data
(e.g., testing samples, new query samples) can be obtained
simultaneously. Given a set of out-of-sample images Xoos, we
can encode them into binary codes using the hash functions:

Boos = sgn(XoosP ), (9)

which is essentially a linear transformation and therefore can
be computed very efficiently.

D. Kernelization

As demonstrated in KLSH [35], [36], KSH [16] and
FastH [18], nonlinear hash functions can often perform much
better than linear ones because of their ability of fitting
complex patterns in the data. SCDH can also be extended to
nonlinear hashing through kernel functions. Given a nonlinear
mapping Φ : x ∈ RM 7→ Φ(x) ∈ RD (D could be
infinite), the entire image collection could be mapped into

Φ(X) ≡ [Φ(x1),Φ(x2), · · · ,Φ(xN )]T ∈ RN×D. Let us
randomly select Q anchors (i.e., a subset of images) from the
image dataset, and denote them by y1,y2, · · · ,yQ; then we
can view Φ(y1),Φ(y2), · · · ,Φ(yQ) as a set of base vectors
that can be used to represent any vector in RD. This is a
popular trick for handling big data and it usually works well
in practice. Thus, we have:

Φ(P ) = Φ([p1,p2, · · · ,pK ])

= [Φ(y1),Φ(y2), · · · ,Φ(yQ)]A,
(10)

where A ∈ RQ×K . Accordingly, Eq. (5) is extended to:

B = sgn(Φ(X)Φ(P ))

= sgn([Φ(x1),Φ(x2), · · · ,Φ(xN )]
T

[Φ(y1),Φ(y2), · · · ,Φ(yQ)]A)

= sgn
(
(Φ(xi)

TΦ(yj))N×QA
)
.

(11)

Let K : RD × RD 7→ R denote the kernel function
corresponding to the nonlinear mapping Φ and KQ ≡
(Φ(xi)

TΦ(yj))N×Q the kernel matrix. Similar to (8), the
kernelized version of SCDH is formulated as:

min
B,A,Z

||K · S −BZT ||2F + λ||KQA−B||2F

+ α||B −Z||2F + β||A||2F
(12)

s.t.
{

B ∈ {−1,+1}N×K ,
Z ∈ RN×K ,ZT1N = 0K ,Z

TZ = N · IK .
,

which is called SCDHK for short.
After the kernel function K being chosen and the matrix A

being learned, an out-of-sample image xoos can be encoded:

boos = sgn

([
(Φ(xoos)

T
Φ(yj))1×QA

]T)
= sgn

([
(K(xoos,yj))1×QA

]T)
.

(13)

The vector-matrix multiplication involved in the above equation
should be quite computationally efficient, as usually Q� N .

V. OPTIMIZATION

In this section, we explain how the intricate optimization
problem of the above SCDH method can be solved efficiently.
The solution to SCDHK is very similar, so it is omitted here.

The optimization problem (8) has three variables to be
optimized: P , B and Z. Our algorithm is to update each
variable while holding the other two fixed (i.e., alternating
minimization), and iterate this process until convergence.

A. Update P with B and Z Fixed

When B and Z are fixed, the objective function of P is
given by:

min
P
O(P ) = λ||XP −B||2F + β||P ||2F , (14)

which is in fact a least-squares problem with L2 regularization.
Setting ∂O(P )

∂P = O, we get the closed-form solution:

P =

(
XTX +

β

λ
IM

)−1
XTB. (15)
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B. Update B with Z and P Fixed

When P and Z are fixed, the objective function of B is
simplified into:

min
B
O(B) = ||K · S −BZT ||2F+

λ||XP −B||2F + α||B −Z||2F
(16)

s.t. B ∈ {−1,+1}N×K .

This is equivalent to the optimization problem:

max
B

tr(BT {K · SZ + λXP + αZ}) (17)

s.t. B ∈ {−1,+1}N×K

which can be solved by applying the following theorem.

Theorem 1. Given a matrix C ∈ RN×K , the optimization
problem

max
B

tr(BCT ) s.t. B ∈ {−1,+1}N×K , (18)

has the closed-form solution B = sgn(C).

Proof. According to the definition of the trace function,

tr(BCT ) =
∑

i,j
bijcij . (19)

So the optimization problem (18) is the same as:

max
bij

bijcij s.t. bij ∈ {−1,+1} , (20)

for each bij with i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · ,K}.
Obviously, to achieve the maximum, each bijcij needs to be
positive, i.e., bij = sgn(cij). Q.E.D.

Thus, the closed-form solution of (16) is given by:

B = sgn(K · SZ + λXP + αZ) . (21)

C. Update Z with P and B Fixed

When P and B are fixed, the objective function of Z is
written as:

min
Z
O(Z) = ||K · S −BZT ||2F + α||B −Z||2F (22)

s.t. Z ∈ RN×K ,ZT1N = 0K ,Z
TZ = N · IK .

It can be further reduced to:

max
Z

tr(ZT {K · SB + αB}) (23)

s.t. Z ∈ RN×K ,ZT1N = 0K ,Z
TZ = N · IK .

Let E = K ·SB+αB, and then we can get the closed-form
solution through the following theorem.

Theorem 2. The optimization problem

max
Z

tr(ZTE) s.t. ZT1N = 0K ,Z
TZ = N · IK , (24)

has the closed-form solution:

Z =
√
N [U , Ū ][V , V̄ ]T . (25)

The matrices

U = [u1,u2, · · · ,uK′ ] and V = [v1,v2, · · · ,vK′ ]

are obtained via the Singular Value Decomposition (SVD) of
JE with J = IN − 1

N 1N1TN , i.e.,

JE = UΣV T =
∑K′

k=1
σkukv

T
k . (26)

Note that σ1 ≥ σ2 ≥ · · · ≥ σK′ > 0.
Then, the matrices Ū ∈ RN×(K−K′) and V̄ ∈ RK×(K−K′)

are obtained via the Gram-Schmidt process such that
ŪT Ū = IK−K′ , [U ,1N ]T Ū = O, V̄ T V̄ = IK−K′ , and
V T V̄ = O. If K ′ = K, Ū and V̄ will be empty.

Proof. Please refer to Ref. [11].

D. Computational Complexity

The learning algorithm for SCDH is built on top of the above
three subproblems of optimization and formally specified in
Algorithm 1. In each iteration, three closed-form solutions —
Eqs. (15), (21) and (25) — need to be computed for the three
corresponding subproblems respectively.

Regarding the P -subproblem, the main computational oper-
ations are the multiplications of XTX and the inverse of a
M ×M square matrix whose time complexities are O(NM2)
and O(M3) respectively. The whole time complexity of this
subproblem is O(NM2 +M3 +NMK +KM2), where M
is the number of original features and K is the length of hash
codes. Usually M,K � N (the number of samples in the
dataset), which makes the time complexity of this subproblem
linear w.r.t. N .

Regarding the B-subproblem, the most time-consuming part
is the computation of SZ. However, due to the fact that S =
2GGT − 1N1TN , the time complexity could be reduced from
O(KN2) to O(CKN), where C is the number of class labels
(C � N ). Thus, the whole time complexity of this subproblem
is O(CKN +KMN), which is linear w.r.t. N .

Regarding the Z-subproblem, the main step requiring
intensive computation is the SVD for a N ×K matrix whose
time complexity is O(NK2). It is easy to see that the other
operations would require less expenditure of time than this.
Therefore, we can conclude that the whole time complexity of
this subproblem is also linear w.r.t. N .

Algorithm 1: SCDH
Input: Data matrix X , label matrix G, length of hash

codes K, hyperparameters α, β and λ, max
iterations maxIter, precision ε.

Output: Binary codes B, auxiliary variable Z and
hash functions P .

1 Randomly initialize P , B, and Z;
2 while not convergent do

/* Convergence: the number of

iterations is bigger than maxIter,

or the error is less than ε. */

3 Optimize P according to Eq. (15);
4 Optimize B according to Eq. (21);
5 Optimize Z according to Eq. (25);
6 end
7 Return P , B, and Z.
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In summary, the total computational complexity of the
entire SCDH algorithm is linear w.r.t. N for each iteration.
Moreover, in practice, the algorithm usually needs only a few
(< 10) iterations to reach convergence (see Fig. 1). Hence, the
proposed SCDH method is indeed highly efficient.

VI. EXPERIMENTS

We have used several large-scale image datasets to evaluate
SCDH’s retrieval performance on a PC with Intel(R) Xeon(R)
CPU E5-2650 v4 @2.20GHz and 64GB RAM.

A. Datasets

Caltech256 contains 30,607 images belonging to 256 cate-
gories [27]. Each image is represented by a 1,024-dimension
CNN feature vector associated with one category label. We
randomly select 26,000 samples for training and 3,000 samples
for testing (i.e., Train:Test=26,000:3,000).

Cifar10 includes 60,000 color images (of size 32×32) that
are divided evenly into 10 classes (each of which holds 6,000
samples) [28]. We choose 5,400 samples from each class
as the training set and the remaining as the testing set (i.e.,
Train:Test=54,000:6,000). For each image, a 512-dimension
GIST feature vector is extracted as its representation.

NUS-WIDE is a real-world web database originally con-
taining 269,648 images each associated with multiple textual
tags [37]. Following the protocol in Ref. [38], we focus on
186,577 images that cover the top-10 most frequent semantic
concepts. In our experiments, we take 1% of the dataset as
the testing set and the remaining as the training set (i.e.,
Train:Test=184,711:1,866). Each image is converted into a 500-
dimensional bag-of-visual-word features. This is a relatively
larger and more challenging dataset for image retrieval.

B. Evaluation

In the retrieval experiments, those images sharing at least one
class label or tag with the query image would be considered
as relevant results. Mean Average Precision (MAP) is a very
popular metric for evaluating the retrieval performance of
learning to hash methods [31], [32], [30], [18], [26], [24]. For
all our experiments on the above mentioned image datasets,
we would also employ MAP as the measure of effectiveness.
Besides, the running time of each method in the experiments
would also be recorded to assess its efficiency.

Regarding the baseline methods for comparison, we have
chosen the most representative as well as the currently most
competitive ones: LSH1[2], PCAH2[31], ITQ (rotation after
PCA for binary codes)3[3], DGH4[11], SGH5[12], CCA-
ITQ6[3], SDH7[17], HC-SDH4[23], FSDH8[45], FastH9[18],

1http://www.cad.zju.edu.cn/home/dengcai/Data/DSH.html
2http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
3https://goo.gl/AGuu86
4Our own implementation of this algorithm in MATLAB.
5http://cs.nju.edu.cn/lwj/L2H.html
6https://github.com/jfeng10/ITQ-image-retrieval
7https://github.com/bd622/DiscretHashing
8https://tongliang-liu.github.io/publications.html
9https://bitbucket.org/chhshen/fasthash/src/master/

COSDISH5[26], FSSH10[44]. These 12 competitors in our
experiments come from two groups: the first 5 are unsupervised
methods which usually run fast but may yield inferior results;
whereas the other 7 are supervised methods which often
produce high MAPs for image retrieval though their training
speed could be slow. Among them, HC-SDH has just been
evaluated on Cifar10 due to some of its limitations (e.g.,
K ≥ C and single-label only); the other baseline methods
can successfully run on at least two of the three image datasets
mentioned earlier. There also exist many other learning to hash
methods such as SH [9] and KSH [16] which perform well on
small datasets but cannot scale to big datasets and therefore
have to be excluded from the experiments.

C. Settings

All the baseline methods except DGH and HC-SDH have
already been implemented in MATLAB with their source
codes provided by the corresponding authors. To ensure a
fair comparison (especially for the speed), we have also
implemented DGH and HC-SDH as well as our proposed
approaches SCDH/SCDHK in MATLAB. The inputs (i.e., the
data and label matrices) to all the different methods are identical.
The initialization of each baseline method is carried out in
exactly the same way as described in its original paper. The
hyperparameters of each method have been tuned on different
datasets to get the best validation performance, in accordance
with the authors’ proposals.

For our proposed method SCDH, we set maxIter = 10
and ε = 10−10 in Algorithm 1. Note that our method usually
converges in fewer than 10 iterations in the experiments (see
Fig. 1). For the hyperparameters α, β and λ, we have tuned
them by grid search with each of them ranging from 10−9

to 109. SCDH would be able to achieve good MAP scores
using most of the parameter values within the above range, and
the finally chosen combination is (α = 0.1, β = 1, λ = 10).
This set of hyperparameters would be directly adopted by the
kernelized version of our method SCDHK in our experiments.
SCDHK would employ the Gaussian (RBF) kernel K(x,y) =
exp(−||x− y||22/(2σ2)) with σ = 0.4 and make use of 2,000
anchors (see Section VI-F for further details).

D. Results

Table II shows the MAP scores and the training time costs11

of our proposed approaches as well as the baseline methods
on three different image datasets. The code length has been
set to 8, 16, 32, and 64 bits.

Unsurprisingly, the experimental results indicate that the
supervised hashing methods outperform the unsupervised ones,
though they are usually slower. This is consistent with our
intuition and previous research findings that exploiting the
label information can in general enhance the effectiveness of
hashing.

Among the supervised hashing methods, our proposed
SCDHK always delivers the best performance, while most

10https://lcbwlx.wixsite.com/fssh
11Compared with the training time costs, the testing time costs can usually

be ignored, especially on large datasets.
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Table II: The MAP scores and training time costs (in seconds) of different hashing methods. The best results are in bold, the
second-best are underlined, and “—” means that the method was unable to finish in a reasonable time.

(a) Caltech256 {Train:Test = 26,000:3,000}

Methods
/Length

8 bits 16 bits 32 bits 64 bits
MAP score training time MAP score training time MAP score training time MAP score training time

LSH 0.0191 0.007 0.0378 0.002 0.0919 0.006 0.1657 0.004
PCAH 0.0655 0.597 0.1218 0.840 0.1867 1.363 0.2427 1.655
ITQ 0.0842 1.238 0.1578 2.543 0.2434 4.785 0.3236 6.687
DGH 0.0445 97.027 0.1012 41.100 0.1268 42.509 0.2148 58.049
SGH 0.0657 3.693 0.1349 4.491 0.2156 4.940 0.2912 5.328
CCA-ITQ 0.1013 3.327 0.2175 6.465 0.3033 9.052 0.3858 16.722
SDH 0.1535 13.758 0.2789 22.985 0.3498 38.381 0.4102 64.244
FSDH 0.1453 4.978 0.2679 7.217 0.3526 12.136 0.4381 21.123
FastH 0.1847 282.138 0.3872 333.757 0.5303 550.108 0.6501 839.958
COSDISH 0.1130 5.775 0.2322 9.212 0.4045 19.888 0.5699 65.364
FSSH 0.1449 20.844 0.4449 21.221 0.5851 21.323 0.6338 21.898
SCDH 0.1969 8.467 0.3527 4.365 0.4998 7.26 0.6220 5.804
SCDHK 0.3242 16.287 0.5467 11.537 0.6538 19.075 0.7076 14.945

(b) Cifar10 {Train:Test = 54,000:6,000}

Methods
/Length

8 bits 16 bits 32 bits 64 bits
MAP score training time MAP score training time MAP score training time MAP score training time

LSH 0.1186 0.001 0.1230 0.001 0.1408 0.012 0.1480 0.002
PCAH 0.1311 0.373 0.1315 0.385 0.1276 0.438 0.1234 0.727
ITQ 0.1517 1.257 0.1615 2.177 0.1674 5.459 0.1737 8.881
DGH 0.1213 102.784 0.1236 121.674 0.1238 167.458 0.1230 127.135
SGH 0.1388 2.483 0.1474 3.159 0.1442 4.707 0.1430 10.047
CCA-ITQ 0.2087 2.689 0.2267 5.662 0.2713 7.730 0.2879 12.658
SDH 0.2576 11.322 0.2868 23.149 0.3280 28.491 0.3372 49.517
FSDH 0.2356 4.742 0.2932 8.164 0.3295 9.750 0.3417 11.006
HC-SDH n/a n/a 0.5219 4.058 0.5352 4.209 0.5355 4.253
FastH 0.4568 552.276 0.5463 806.598 0.6163 1258.380 0.6670 2495.000
COSDISH 0.2915 7.383 0.3626 11.647 0.4717 33.977 0.5091 136.961
FSSH 0.6037 100.913 0.6280 101.786 0.6738 102.850 0.6988 108.956
SCDH 0.4999 4.560 0.5544 9.263 0.6116 9.901 0.6376 12.186
SCDHK 0.6353 11.426 0.6773 15.499 0.7023 16.692 0.7114 26.673

(c) NUS-WIDE {Train:Test = 18,4711:1,866}

Methods
/Length

8 bits 16 bits 32 bits 64 bits
MAP score training time MAP score training time MAP score training time MAP score training time

LSH 0.3479 0.200 0.3481 0.706 0.3525 0.102 0.3585 0.327
PCAH 0.3722 1.134 0.3678 1.773 0.3620 2.073 0.3569 2.257
ITQ 0.3754 4.072 0.3795 9.224 0.3836 15.831 0.3836 26.666
DGH 0.3388 745.675 0.3389 1412.493 0.3389 614.298 0.3642 1159.796
SGH 0.3425 11.825 0.3422 16.440 0.3418 57.822 0.3432 189.584
CCA-ITQ 0.3987 8.167 0.4232 11.013 0.432 23.447 0.4571 40.779
SDH 0.4422 35.647 0.4506 43.673 0.4629 82.316 0.4707 209.554
FSDH 0.4483 11.334 0.4640 15.440 0.4727 36.629 0.4953 69.578
FastH — — — — — — — —
COSDISH 0.5916 18.424 0.5946 38.527 0.6087 122.010 0.6558 448.665
FSSH 0.6332 1023.477 0.6407 1023.513 0.6528 1023.860 0.6729 1027.045
SCDH 0.6180 9.686 0.6463 17.124 0.6553 38.028 0.6561 96.658
SCDHK 0.6511 59.192 0.6661 72.174 0.6737 89.394 0.6792 155.057

of the time SCDH and FSSH compete for the second spot.
SCDHK ’s noticeable performance gain over the vanilla SCDH
confirms the usefulness of nonlinear hash functions for large
and complex datasets. Although FastH sometimes provides
slightly higher MAP scores than SCDH, it is much more
time-consuming, especially with longer binary codes and
larger image collections. In fact, FastH was not able to finish
the experiments on NUS-WIDE, the largest dataset, in a
reasonable time. SDH, a pointwise hashing method, does not
really preform better than the pairwise similarity preservation

based methods like SCDH/SCDHK in terms of MAP scores;
it is also much slower than our methods in most cases.
Although FSDH, an extension of SDH, exhibits a slightly faster
training speed than SCDH/SCDHK , its retrieval effectiveness
is a lot worse. Moreover, HC-SDH which incorporates the
balance and decorrelation constraints into SDH by Hadamard
operations [23] works significantly better than SDH and FSDH,
which confirms the merit of imposing such constraints for
hashing. However, HC-SDH’s retrieval performance still lags
far behind that of our proposed SCDH/SCDHK .
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(b) 64 bits

Figure 1: The convergence curves of SCDH.

Similar to SCDHK , some baseline methods (i.e., SGH,
FSDH, HC-SDH and FSSH) also use the kernel trick to achieve
nonlinear hashing12. FSSH evidently reaches the best retrieval
performance among the baseline methods, but it is consistently
inferior to SCDHK in terms of both MAP scores and training
speeds on all the three datasets, which testifies the effectiveness
and efficiency of our proposed methods. Specifically, FSSH
utilizes both pairwise and pointwise supervision for hashing,
while SCDHK is based entirely on pairwise similarity preser-
vation. The advantages of SCDHK against FSSH probably
come from the two strong constraints, i.e., the balance and
decorrelation of hash bits (see Section VI-G for a more detailed
analysis of their usefulness).

E. Convergence Analysis

It is clear from Algorithm 1 for SCDH that the value of the
objective function O(P,B,Z) will decrease from iteration
to iteration until it is stabilized:

O(P t,Bt,Zt) ≥ O(P t+1,Bt,Zt)

≥ O(P t+1,Bt+1,Zt)

≥ O(P t+1,Bt+1,Zt+1) .

(27)

Since during the execution of the algorithm, the objective
function can only go down and it cannot go lower than zero,
the iterative algorithm for SCDH is theoretically guaranteed to
converge.

Let us further investigate how fast the algorithm can converge.
Fig. 1 shows the convergence curves of SCDH on all those
three large datasets for 32-bit and 64-bit codes13. In each sub-
graph the x-axis represents the iteration number and the y-axis
represents the normalized14 value of the objective function. It
is obvious that the SCDH algorithm converges very quickly
within just a few iterations. This is probably attributed to
the low-rank representations for the pairwise similarity matrix

12For a fair comparison, in our experiments, all those nonlinear hashing
methods make use of the Gaussian kernel equipped with 2000 anchors, except
that SGH uses 300 anchors only (as that leads to comparable MAP scores but
much less training time).

13The convergence curves of SCDH for other code lengths show the same
trend and therefore are omitted.

14To normalize the value of the objective function at each iteration, it is
divided by its maximum value (which is always received at the first iteration).

Table III: The MAP scores of SCDHK with different kernels.

kernels Cifar10 NUS-WIDE
32 bits 64 bits 32 bits 64 bits

Linear 0.6255 0.6279 0.6436 0.6443
Polynomial (α=1, c=0, d=8) 0.6967 0.7255 0.6524 0.6794
Laplacian (σ=0.4) 0.6655 0.6811 0.6615 0.6726
Sigmoid (γ=0.7, c=0) 0.6670 0.7036 0.6726 0.6854
Gaussian (σ=0.4) 0.7023 0.7114 0.6737 0.6792

and the efficient closed-form solutions to the subproblems of
optimization.

The convergence of SCDHK is similar to that of SCDH, so
its analysis is omitted here.

F. Hyperparameters of SCDHK
SCDHK (with the Gaussian kernel) has two essential

hyperparameters: the number of randomly selected anchors Q
and the kernel bandwidth σ.

Keeping all the other parameters fixed, we vary the number of
anchors Q from 100 to 8,000 and plot the retrieval performance
of SCDHK in Fig. 2. It can be observed on all the datasets that
along with the increase of Q, SCDHK ’s MAP scores would get
higher and higher. This is reasonable because a certain number
of basis vectors (anchors) would be necessary to represent
complex data samples well. However, we can also see that as
Q becomes bigger, the performance gain is diminishing and the
training time cost is rising. Throughout our experiments, Q is
set to 2,000 which enables SCDHK to beat the state-of-the-art
methods while being able to finish within just a couple of
minutes on all the datasets.

Keeping all the other parameters fixed, we vary the kernel
bandwidth σ from 0.01 to 100 and plot the retrieval perfor-
mance of SCDHK in Fig. 3. As can be seen clearly, SCDHK
performs well on all the datasets when σ is between 0.3 and 1.0,
though its optimal value for each dataset is slightly different
from one another. Throughout our experiments, σ is set to 0.4
which can provide decent MAP scores across different datasets.

Furthermore, we explore the possibility of using different
kernels other than the default Gaussian kernel in SCDHK .
Specifically, the popular kernels including linear, polyno-
mial [47], Laplacian [48], Sigmoid [50] and Gaussian [51]
as listed below have been compared empirically.
• Linear kernel: K(x,y) = xTy ;
• Polynomial kernel: K(x,y) =

(
αxTy + c

)d
;

• Laplacian kernel: K(x,y) = exp
(
− ||x−y||2σ

)
;

• Sigmoid kernel: K(x,y) = tanh
(
γxTy + c

)
;

• Gaussian kernel: K(x,y) = exp
(
− ||x−y||

2

2σ2

)
.

In our study, the kernel hyperparameters α and c are set to
their default values 1 and 0 respectively15; the kernel hyperpa-
rameters d, σ and γ are tuned for their corresponding kernel
functions, as shown in Fig. 4 and Fig. 3. The hyperparameter
tuning curves for Laplacian, Sigmoid and Gaussian kernels
exhibit similar patterns, while the polynomial kernel looks not

15We have also tried using many other values for α and c, but their best
results are similar to those using the default values.
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Figure 2: The MAP scores of SCDHK (Gaussian kernel) w.r.t. the number of anchors Q.

Table IV: The MAP scores of SCDHK with the constraints
turned on (“X”) or off (“×”).

balance decorrelation Cifar10 NUS-WIDE
32 bits 64 bits 32 bits 64 bits

× × 0.6504 0.6795 0.6001 0.6171
X × 0.6571 0.6869 0.6351 0.6586
× X 0.6607 0.6816 0.6603 0.6751
X X 0.7023 0.7114 0.6737 0.6792

so stable. Accordingly, the best performances that could be
achieved by these different kernels are summarized in Table III.
It can be seen that (i) all the nonlinear kernels work apparently
better than the linear kernel, and (ii) the nonlinear kernels
produce somewhat similar performances. Overall, the Gaussian
kernel (which has only one hyperparameter σ) seems to be
slightly superior to the other kernels in terms of MAP scores.
It is the kernel of choice for many nonlinear hashing methods
such as KSH [16], SGH [12], FSDH [45], FSSH [44], and
also our own SCDHK .

G. Ablation Study

To investigate the contributions of the “balance” constraint
(BT1N = 0K) and the “decorrelation” constraint (BTB =
N · IK) to our proposed SCDHK , we conduct ablation study,
i.e., we drop either constraint or both from SCDHK and solve
the modified optimization problem. The results on Cifar10

Table V: Retrieval performance: SCDHK vs. DPLM.

Methods/Length 32 bits 64 bits
MAP
score

training
time

MAP
score

training
time

Cifar10 DPLM 0.6671 17.903 0.6889 29.377
SCDHK 0.7023 16.692 0.7114 26.673

NUS-
WIDE

DPLM 0.6703 95.792 0.6782 170.471
SCDHK 0.6737 89.394 0.6792 155.057

and NUS-WIDE are collected in Table IV, from which some
observations can be made.
• Using either constraint would be better than using neither

of them, which means that they are both helpful.
• Between these two constraints, “decorrelation” seems to be

more important than “balance” in the sense of providing
more performance gains.

• Combining these two constraints would make the hashing
method benefit from both of them and thus generate the best
results.

To summarize, the “balance” and “decorrelation” constraints
which have often been ignored due to the optimization difficulty,
can indeed make great improvements to hashing for large-scale
image retrieval.

H. Constraints vs. Regularizers

Recall that the proposed SCDHK model (12) has been
addressed in Section V with a closed-form solution to each sub-
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Figure 3: The MAP scores of SCDHK (Gaussian kernel) w.r.t. the kernel bandwidth σ.

problem of optimization. Actually, it is also possible to tackle
this optimization problem by converting the hard “balance” and
“decorrelation” constraints into two extra regularizers in the
objective function, as in DPLM [46]. To further understand
those two different ways of incorporating “balance” and
“decorrelation” into hashing, we make empirical comparisons
between our SCDHK (that uses hard constraints) and DPLM
(that uses soft regularizers). For SCDHK , the hyperparameter
settings have been explained in Sections VI-C and VI-F. For
DPLM, the hyperparameters have been tuned to get the best
possible performance. As shown in Table V, SCDHK has
not only higher MAP scores but also lower time costs than
DPLM, on both Cifar10 and NUS-WIDE. It turns out that
we do not really have to sacrifice effectiveness for efficiency
(by converting those two strong constraints into regularizers),
thanks to our Algorithm 1 based on closed-form solutions.

I. Shallow vs. Deep
This paper mainly focuses on exploiting the “balance”

and “decorrelation” constraints in the hashing methods that
are not based on deep learning (which typically require
enormous computing power like GPU clusters). Nevertheless,
we are curious about how our proposed SCDH/SCDHK would
compete against the so-called deep hashing methods that have
emerged in the last few years, such as DeepBit [55], [56],
SADH [57], and DPSH [21]. Table VI shows the comparison
between such deep hashing methods and the shallow hashing
method SCDH/SCDHK on Cifar10 and NUS-WIDE. It is

Table VI: Retrieval performance: SCDH(K ) vs. Deep Hashing.

Methods/Length 32 bits 64 bits
MAP
score

training
time

MAP
score

training
time

Cifar10

DeepBit 0.1875 7731.449 0.1969 9671.132
SADH 0.3147 9150.755 0.3308 10981.705
DPSH 0.7037 10795.150 0.7261 12946.728
SCDH 0.6116 9.901 0.6376 5.888
SCDHK 0.7023 16.692 0.7114 12.407

NUS-
WIDE

DeepBit 0.4092 12211.901 0.4203 14903.540
SADH 0.4564 15462.948 0.4732 19432.642
DPSH 0.7275 16397.246 0.7383 19390.623
SCDH 0.6553 38.028 0.6561 96.658
SCDHK 0.6737 89.394 0.6792 155.057

obvious that all the deep hashing methods are several orders
of magnitude slower than SCDH/SCDHK . Moreover, the two
deep hashing methods DeepBit and SADH actually get lower
MAP scores than SCDH/SCDHK , which is probably because
they are unsupervised while SCDH/SCDHK is supervised.
The deep hashing method DPSH which is supervised does
outperform SCDH/SCDHK in terms of MAP scores, though it
requires significantly more training time than SCDH/SCDHK .
This demonstrates the superior ability of deep neural networks
in fitting complex data. It may be possible to utilize a deep
neural network instead of the kernel trick to enable SCDH
for nonlinear hashing, which is a research problem to be
investigated in the future.
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(l) Sigmoid: 64bits

Figure 4: The MAP scores of SCDHK w.r.t. different kernels (except the Gaussian kernel that has been shown in Fig. 3).

Table VII: Retrieval performance: “Binary” vs. “Real-valued”.

Methods/Length 32 bits 64 bits

P@1000 retr.
time P@1000 retr.

time

Cifar10

SCDHK 0.7162 0.012 0.7275 0.022
Real+BF 0.7214 28.37 0.7269 29.102
Real+HI 0.6291 0.074 0.6376 0.129
Real+GH 0.6332 0.037 0.6357 0.044
Real+PQ 0.7106 4.614 0.7133 5.521

NUS-
WIDE

SCDHK 0.6982 0.005 0.7053 0.006
Real+BF 0.7034 28.425 0.7068 29.380
Real+HI 0.6342 0.147 0.6445 0.177
Real+GH 0.6277 0.117 0.6361 0.157
Real+PQ 0.6847 4.876 0.6863 5.869

J. Binary vs. Real-valued

Can we just use real-valued vectors rather than binary
codes for our image retrieval application? In what follows,

we construct a “real-valued” version of SCDHK and compare
it with the original “binary” SCDHK . Specifically, the real-
valued model is made by removing the binary constraint from
SCDHK and represent each data sample with not a binary
code but a real-valued vector.

As discussed in [49], there exist several nearest-neighbor
search strategies including brute-force (BF), hash index (HI),
grouped hamming ranking (GH), and product quantization
(PQ) [58]). The brute-force search strategy should be the most
accurate but also the slowest, while the other three search
strategies are approximate ones that accelerate the retrieval
process in different ways. The standard binary SCDHK simply
uses the hash index search approach (based on hamming
ranking) as in most learning to hash papers. For the real-valued
model, we combine it with each of the above mentioned four
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Table VIII: The MAP scores and training time costs (in seconds) of different hashing methods, for unseen classes.

(a) Caltech256 {Train:Test = 70% classes : 30% classes}

Methods
/Length

8 bits 16 bits 32 bits 64 bits
MAP score training time MAP score training time MAP score training time MAP score training time

LSH 0.0154 0.002 0.0332 0.003 0.0830 0.004 0.1431 0.005
PCAH 0.0548 0.493 0.1009 0.721 0.1586 1.108 0.2088 1.520
ITQ 0.0750 1.094 0.1327 2.174 0.2232 4.100 0.2981 6.184
DGH 0.0388 36.002 0.0834 36.649 0.1131 51.957 0.1914 80.088
SGH 0.0555 3.255 0.1153 3.721 0.1974 3.957 0.2608 4.573
CCA-ITQ 0.0831 2.819 0.1916 5.515 0.2657 7.784 0.3564 14.344
SDH 0.1235 11.341 0.2556 20.128 0.3184 31.998 0.3591 56.078
FSDH 0.1287 4.159 0.2289 6.335 0.3109 10.027 0.4066 18.889
FastH 0.1484 251.928 0.3233 292.161 0.4442 449.008 0.565 790.680
COSDISH 0.0999 4.822 0.1919 7.720 0.3440 17.490 0.4927 56.555
FSSH 0.1163 17.085 0.3791 17.722 0.5197 18.181 0.5783 20.421
SCDH 0.1584 3.525 0.2978 5.245 0.4123 6.191 0.5424 6.986
SCDHK 0.276 9.291 0.4623 14.033 0.5992 15.576 0.6303 17.102

(b) Cifar10 {Train:Test = 70% classes : 30% classes}

Methods
/Length

8 bits 16 bits 32 bits 64 bits
MAP score training time MAP score training time MAP score training time MAP score training time

LSH 0.0871 0.001 0.0971 0.001 0.1160 0.001 0.1222 0.002
PCAH 0.0958 0.258 0.0926 0.261 0.1034 0.313 0.1066 0.482
ITQ 0.1100 0.853 0.1291 1.346 0.1400 3.574 0.1445 6.277
DGH 0.0916 71.532 0.0893 78.963 0.0945 88.605 0.1016 114.303
SGH 0.1099 1.652 0.1059 2.036 0.1142 3.023 0.1156 6.542
CCA-ITQ 0.1607 1.718 0.1653 3.489 0.2188 5.215 0.2197 8.989
SDH 0.2002 6.833 0.2045 15.385 0.2608 19.804 0.2849 33.855
FSDH 0.1781 3.156 0.2292 4.995 0.2776 6.180 0.2778 7.443
HC-SDH n/a n/a 0.4205 3.229 0.4270 3.765 0.4295 3.803
FastH 0.3237 378.261 0.4324 541.176 0.5067 812.296 0.5149 1662.214
COSDISH 0.2288 5.119 0.2756 7.867 0.3607 22.784 0.3846 99.903
FSSH 0.4331 63.881 0.4861 67.397 0.5308 70.957 0.5597 74.212
SCDH 0.3730 3.091 0.3992 4.138 0.4984 6.187 0.5108 7.020
SCDHK 0.4450 7.704 0.5126 8.270 0.5609 10.314 0.5807 11.950

(c) NUS-WIDE {Train:Test = 70% concepts : 30% concepts}

Methods
/Length

8 bits 16 bits 32 bits 64 bits
MAP score training time MAP score training time MAP score training time MAP score training time

LSH 0.2039 0.156 0.2081 0.559 0.2176 0.753 0.2176 0.771
PCAH 0.2412 0.890 0.2572 1.703 0.2588 2.049 0.2613 2.558
ITQ 0.2576 3.057 0.2580 7.021 0.2638 12.098 0.2647 17.291
DGH 0.2068 398.513 0.2148 505.936 0.2155 799.486 0.2187 916.381
SGH 0.2147 8.891 0.2223 12.411 0.2274 39.229 0.2344 143.068
CCA-ITQ 0.3048 6.464 0.3380 8.001 0.3448 17.176 0.3691 27.981
SDH 0.2859 25.959 0.3204 35.711 0.3302 58.444 0.3399 138.303
FSDH 0.3144 7.464 0.3257 11.685 0.3352 27.895 0.3605 44.902
FastH — — — — — — — —
COSDISH 0.3662 11.422 0.3777 25.042 0.3829 90.281 0.3914 282.240
FSSH 0.4100 675.187 0.4268 685.416 0.4302 696.424 0.4381 718.315
SCDH 0.4136 6.219 0.4247 11.408 0.4354 26.034 0.4397 59.489
SCDHK 0.4326 37.024 0.4380 45.143 0.4515 58.865 0.4587 105.689

search strategies, i.e., “+BF”, “+HI”, “+GH” and “+PQ”16. The
results on Cifar10 and NUS-WIDE are reported in Table VII,
where the effectiveness is measured by the precision of the
top-1000 search results (P@1000) on the test set, and the
efficiency is measured by the retrieval time (in seconds). It can
be seen that the standard binary SCDHK reaches similarly high
P@1000 scores as the thorough brute-force search strategy,
but only with a fraction of the retrieval time. Moreover, by

16For “+HI” and “+GH”, the number of clusters and the number of
candidates are set to 10 and 2000 respectively. For “+PQ”, the CPU version
of the faiss [58] implementation is employed, for a fair comparison.

enforcing the binary constraint and directly optimizing the
binary codes to represent the data, SCDHK outperforms the
real-valued model using any of the other three search strategies.

K. Unseen Classes

The experimental results in Table II are obtained under the
traditional configuration where each class has some examples
for training and some examples for testing, as in most learning
to hash papers [14], [18], [17], [52], [26], [24], [45], [44].
However, a new evaluation protocol “retrieval of unseen
classes” [53] has recently been proposed to measure the
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(a) “Killer Whale” (b) “Bowling Ball” (c) “Homer Simpson”

Figure 5: The three randomly selected queries for our image retrieval case study. Their top-20 search results on Caltech256 are
shown in Figs. 6 , 7 and 8 respectively.
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Figure 6: Retrieval results: “Killer Whale” (the bounding boxes are green for correct results and red for wrong ones).

generalization ability of the learned hash functions on unseen
classes (i.e., the classes not appeared in the training stage at
all).

Following the configuration in [53], [54], we randomly select
about 70% of the classes and use their examples to learn the
hash functions, while the examples in the rest 30% classes are
reserved for the purpose of evaluation only. Specifically, on
Caltech256, we have 180 classes for training and the other 76
classes for testing; on Cifar10, we have 7 classes for training
and the other 3 classes for testing; on the multi-labeled dataset
NUS-WIDE, the examples labeled by at least one of the selected
7 classes are used for training and the remaining examples are
used for testing. Under the same settings as described before
in Section VI-C, we conduct experiments on the retrieval of
unseen classes and report the results in Table VIII. Similar to
the previous experimental results, SCDH/SCDHK demonstrates
not only higher effectiveness (in terms of MAP scores) than
all the other hashing methods in comparison but also higher
efficiency (in terms of training speeds) than the supervised
ones among them.

L. Case Study

Here we examine the top-20 image retrieval results for
three randomly selected queries — “Killer Whale” (Fig. 5a),
“Bowling Ball” (Fig. 5b) and “Homer Simpson” (Fig. 5c) —-
on Caltech256 (as described in Section VI-A), using different
hashing methods under our investigation, with the code length
set to 32 bits.

In Figs. 6 , 7 and 8, the first six rows correspond to six
supervised methods while the remaining five rows correspond
to five unsupervised methods. Overall, the supervised methods
perform far better than the unsupervised methods. In particular,
our proposed method SCDHK could achieve 100% accuracy
(20/20) for every given query, significantly outperforming other
methods such as COSDISH, SDH and FastH. Furthermore, the
performances of SCDH/SCDHK are more stable than those of
the other methods across different queries.

Specifically, in Fig. 6, both SCDH and SCDHK could
recognize “Killer Whale” perfectly under different color
backgrounds while the other methods would make some
mistakes. For example, the competitive method COSDISH
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Figure 7: Retrieval results: “Bowling Ball” (the bounding boxes are green for correct results and red for wrong ones).
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Figure 8: Retrieval results: “Homer Simpson” (the bounding boxes are green for correct results and red for wrong ones).

often confuses tires with killer whales; FastH and SGH often
incorrectly returns swans that are similar to killer whales
from the appearance. In Fig. 7, SCDHK successfully tells
the difference between “Bowling Ball” and other ball-like
objects, but the other methods including COSDISH, ITQ, and
SGH often fail to distinguish them and thus perform badly.
In Fig. 8, SCDH/SCDHK again could reach 100% accuracy,
but COSDISH would collapse: it could not find any image of
“Homer Simpson” at all.

It is worth mentioning that FSSH, probably the strongest

baseline method, also performs well for the three given queries.
Nevertheless, FSSH is still slightly inferior to SCDHK in the
case of “Bowling Ball” (Fig. 7), which reflects the outstanding
ability of our proposed methods.

In summary, these three concrete queries have intuitively
illustrated the substantial performance improvements that
SCDH/SCDHK could make on existing methods for large-
scale image retrieval.
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VII. CONCLUSION

In this paper, we improve supervised discrete hashing by
maintaining two strong constraints (balance and decorrelation
of hash bits) and propose a fast optimization algorithm for
it. Although such constraints are known to be beneficial for
hashing in previous studies, to our knowledge this is the first
time that the hard discrete optimization problem with all those
constraints is shown to have efficient solutions. The developed
algorithm SCDH, and its kernelized variant SCDHK , can learn
the binary codes and the hash function from labelled data
simultaneously. They have been demonstrated to outperform
state-of-the-art supervised learning to hash methods for large-
scale image retrieval in terms of both MAP scores and training
speeds.
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