

BIROn - Birkbeck Institutional Research Online

Hart, Sarah and Mcveagh, Dan (2020) Groups with many roots. International Journal of Group Theory 9 (4), pp. 261-276. ISSN 2251-7650.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/30780/

Usage Guidelines: Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively contact lib-eprints@bbk.ac.uk.

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 9 No. 4 (2020), pp. 261-276.
© 2020 University of Isfahan

GROUPS WITH MANY ROOTS

SARAH B. HART* AND DANIEL MCVEAGH

ABSTRACT. Given a prime p, a finite group G and a non-identity element g, what is the largest number of p^{th} roots g can have? We write $\varrho_p(G)$, or just ϱ_p , for the maximum value of $\frac{1}{|G|}|\{x \in G : x^p = g\}|$, where g ranges over the non-identity elements of G. This paper studies groups for which ϱ_p is large. If there is an element g of G with more p^{th} roots than the identity, then we show $\varrho_p(G) \leq \varrho_p(P)$, where P is any Sylow p-subgroup of G, meaning that we can often reduce to the case where G is a p-group. We show that if G is a regular p-group, then $\varrho_p(G) \leq \frac{1}{p}$, while if G is a p-group of maximal class, then $\varrho_p(G) \leq \frac{1}{p} + \frac{1}{p^2}$ (both these bounds are sharp). We classify the groups with high values of ϱ_2 , and give partial results on groups with high values of ϱ_3 .

1. Introduction

Let g be an element of a finite group G, and let p be prime. How many p^{th} roots can g have in G? If we allow g = 1, then the answer is |G|, and this will occur precisely when the group has exponent p. There have been several results giving lower bounds for the number of solutions of $x^p = g$ in a finite group G, where g is any element of G that has at least one p^{th} root. For the case g = 1, a classical result of Kulakov states that if G is a non-cyclic p-group of order p^n , where p is odd, then the number of solutions of the equation $x^p = 1$ in G is divisible by p^2 . (This follows from the fact that the number of subgroups of order p is congruent to 1 modulo p^2 – see for example [6, III, Satz 8.8] for a more modern proof.) This was later improved by Berkovich to show that if G is a finite

Communicated by Gunnar Traustason

MSC(2010): Primary: 20D15; Secondary: 20F99.

Keywords: p^{th} roots, square roots, cube roots.

Received: 30 October 2019, Accepted: 27 February 2020.

^{*}Corresponding author.

http://dx.doi.org/10.22108/ijgt.2020.119870.1582

p-group which is not metacyclic, and if p > 3, then the number of solutions of $x^p = 1$ in G is divisible by p^3 (see [6, III, Satz 11.8]). Blackburn [3] showed further that if G is an irregular p-group that is not of maximal class, then the number of solutions of $x^p = 1$ is divisible by p^p . Later, Lam [9] generalised the problem to consider the number of solutions of $x^{p^k} = g$, where g is any element of a finite group G, p is prime and k is a positive integer. He showed that if G is a finite non-cyclic p-group, where p is odd, then the number of solutions of $x^{p^k} = g$ in G is divisible by p^2 . Berkovich [2] improved this result as follows. Let G be a finite p-group that is neither cyclic nor a 2-group of maximal class, and let $k \ge 1$. If g is an element of G such that $\exp(G) \ge p^k |\langle g \rangle|$, then the number of solutions in G of $x^{p^k} = g$ is divisible by p^{k+1} . In particular, if G is not cyclic or a 2-group of maximal class, then those non-identity elements which do have p^{th} roots each have at least p^2 of them. Our interest, in this paper, will be finding upper bounds for the number of p^{th} roots that a non-identity element can have. More specifically, we investigate upper bounds for the proportion of elements of a finite group G that can be p^{th} roots of a single non-identity element. Before describing our results in more detail, we introduce some notation.

Notation 1.1. Let G be a finite group and p a prime. For any g in G, let $R_p(g) = \{x \in G : x^p = g\}$. Let $\varrho_p(G) = \frac{1}{|G|} \max_{g \in G \setminus \{1\}} \{|R_p(G)|\}$. We write R_p and ϱ_p , R(g) and $\varrho(G)$, or simply R and ϱ , whenever g, G or p are clear from context. We will refer to $\varrho(G)$ as the rootiness or p^{th} -rootiness of G. We will call g a rooty element if $\varrho(G) = \frac{|R(g)|}{|G|}$.

In Section 2 we obtain some general results about p^{th} -rootiness. We will show in Lemma 2.6 that if there is an element of a group G that has more p^{th} roots than the identity, then the rootiness of G cannot exceed that of its Sylow p-subgroups. It therefore makes sense to concentrate mainly on p-groups. We show (Proposition 2.9) that if G is a regular p-group, then $\varrho(G) \leq \frac{1}{p}$. (This bound is attained even for abelian groups, for example in the cyclic group of order p^2 .) If G is a p-group of maximal class, then we establish in Theorems 2.10 and 2.11 that $\varrho(G) \leq \frac{p+1}{p^2}$, and we give an example to show that this bound is sharp. We also show at the end of Section 2 that in the case of cube roots, a group G with $\varrho_3(G) > \frac{7}{18}$ is either the direct product of a group of exponent 3 with a cyclic group of order 2 (in which case $\varrho_3(G) = \frac{1}{2}$), or is a 3-group of exponent 9. Section 3 is devoted to square roots. Just as groups with sufficiently many involutions must be elementary abelian 2-groups, it turns out that groups with a non-identity element with sufficiently many square roots must be 2-groups. Theorem 3.11 gives a classification of all finite groups for which $\varrho_2(G) \geq \frac{7}{12}$. In particular, we show that if $\varrho_2(G) > \frac{7}{12}$, then G is a 2-group. This is best possible, because there are infinitely many non 2-groups G for which $\varrho_2(G) = \frac{7}{12}$.

We end this section by recalling some standard notation that we will use throughout the paper.

Notation 1.2. Let G be a finite group. We follow the conventions that $[x, y] = x^{-1}y^{-1}xy$ and that commutators are left-normed, so that for example [x, y, z] means [[x, y], z], for all $x, y, z \in G$. The

terms of the lower central series of G are written $\gamma_i(G)$ for $i \ge 2$. That is, $\gamma_2(G) = [G, G] = G'$ and $\gamma_{i+1}(G) = [\gamma_i(G), G]$ for i > 2. The terms of the upper central series are denoted $Z_i(G)$ for $i \ge 1$. So $Z_1(G) = Z(G)$, and $Z_i(G)/Z_{i-1}(G) = Z(G/Z_{i-1}(G))$. We will denote by $\Phi(G)$ the Frattini subgroup of G – the intersection of the maximal subgroups of G.

A *p*-group of maximal class is a *p*-group of order p^n for some n > 1 which has nilpotency class n-1. It is well known that if *G* is a *p*-group of maximal class *c*, then $|Z_i(G)| = p^i$ for $1 \le i \le c-1$ and $|G:\gamma_i(G)| = p^i$ for each $2 \le i \le c$. If *G* has maximal class, define $G_1 = C_G(\gamma_2(G)/\gamma_4(G))$. That is, G_1 consists of the elements *x* of *G* such that $[x, \gamma_2(G)] \le \gamma_4(G)$. This subgroup is sometimes called the fundamental subgroup of *G*.

A finite p-group G is regular if for all $x, y \in G$, there is some $z \in \mathcal{O}_1(\langle x, y \rangle')$ such that $(xy)^p = x^p y^p z$. For any finite group G and prime p we define

$$\mathcal{I}(G) = \mathcal{I}_p(G) = \{ x \in G : x^p = 1 \};$$

$$\alpha(G) = \alpha_p(G) = \frac{|\mathcal{I}_p(G)|}{|G|}.$$

If G is a finite p-group we define, for all positive integers i,

$$\Omega_i(G) = \langle x \in G | x^{p^i} = 1 \rangle;$$

$$\mho_i(G) = \langle x^{p^i} | x \in G \rangle;$$

$$M(G) = \{ a \in G : (ax)^p = x^p \text{ for all } x \in G \}.$$

Finally, C_n will denote the cyclic group of order n.

2. General Results

We begin by stating some results on *p*-groups that we will need. Throughout this section we will write $\rho(G)$ for $\rho_p(G)$. An excellent introduction to regular *p*-groups and *p*-groups of maximal class is given by the lecture notes of Fernandez-Alcober [4]; the standard graduate text in English on *p*-groups is Berkovich's book [1]. A large number of results on *p*-groups are also contained in Kapitel III of Huppert [6].

The following theorem is proved in [4]; alternatively it follows from [1, Theorem 9.6].

Lemma 2.1. [1, Theorem 7.1(b)] Let G be a p-group. If G has nilpotency class less than p, or if $|G| \leq p^p$, or if $\exp(G) = p$, then G is regular.

Proposition 2.2. [1, Theorem 7.2(a)–(d)] Let G be a regular p-group and i a positive integer. Then

- (a) For all x, y in G, $x^{p^i} = y^{p^i}$ if and only if $(xy^{-1})^{p^i} = 1$.
- (b) $\Omega_i(G) = \{x \in G : x^{p^i} = 1\};$
- (c) $\mho_i(G) = \{x^{p^i} : x \in G\};$
- (d) $|G| = |\Omega_i(G)| \times |\mho_i(G)|.$

Theorem 2.3. [4, Theorem 4.9(i),(ii)] Let G be a p-group of maximal class of order p^m , where $m \ge p+2$. Then the following statements hold:

- (a) G_1 is regular.
- (b) $\mathfrak{V}_1(G_1) = \gamma_p(G)$ and $\mathfrak{V}_1(\gamma_i(G)) = \gamma_{i+p-1}(G)$ for all $i \ge 2$.

Recall that a *proper section* of a group G is a quotient of a proper subgroup of G.

Theorem 2.4. [1, Theorem 7.4(b)-(c)] Let G be a p-group that is irregular but all of whose proper sections are regular. Then

- (a) $\exp(G') = p;$
- (b) $Z(G) = \mathcal{O}_1(G);$
- (c) M(G) = G'.

If G is a p-group of maximal class and order p^{p+1} , then Z(G) has order p and G' has index p^2 . Moreover any proper subgroup has order at most p^p , so is regular. Thus we may apply Theorem 2.4 to obtain the following immediate corollary.

Corollary 2.5. Let G be a p-group of maximal class and order p^{p+1} . Then $Z(G) = \mathcal{O}_1(G) \cong C_p$, and G' = M(G) has exponent p and index p^2 .

In groups such as $C_p^n \times C_2$, half the elements of the group are p^{th} roots of the unique involution. But this rootiness is really just an artefact of G having many elements of order p. Lemma 2.6 shows that when an element of a group G has more p^{th} roots than the identity, its rootiness $\varrho(G)$ is determined by the rootiness of its Sylow p-subgroups, and G can never be rootier than these groups.

Lemma 2.6. Suppose G is a finite group, and g is a rooty element of G which has more p^{th} roots than the identity. Then $\varrho(G) \leq \varrho(P)$, for any Sylow p-subgroup P of G. Write $|G| = p^n m$, where gcd(m, p) = 1. If $\varrho(G) = \varrho(P)$, then G has exactly m Sylow p-subgroups.

Proof. Let g be a rooty element of G that has more p^{th} roots than the identity and let r be a positive integer coprime to p. Then there are integers s, t with rs + tp = 1. If x and y are roots of g such that $x^r = y^r$, then

$$x = x^{rs+tp} = (x^r)^s (x^p)^t = (y^r)^s (g)^t = y^{rs+tp} = y.$$

Hence g^r has at least as many roots as g. If the order of g is coprime to p, this implies that the identity element has at least as many roots as g, a contradiction. Hence p divides the order of g. Write $o(g) = p^k u$ for some positive integers k and u. Then g^u again has at least as many roots as g, and is contained in some Sylow p-subgroup P of G. Moreover any p^{th} root of g^u has order p^{k+1} , so is also contained in some Sylow p-subgroup. If the Sylow p-subgroups are P_1, \ldots, P_λ for some λ , then $R(g^u) \subseteq P_1 \cup P_2 \cup \cdots \cup P_\lambda$. Since all the P_i are isomorphic, $\varrho(P_i) = \varrho(P)$ for all i. Thus $|R(g^u)| \leq \lambda |P|\varrho(P)$. But $g^u \neq 1$, and so g^u cannot have more roots than g (because g is a rooty element). Therefore, $|R(g^u)| = |R(g)|$. Hence

$$G|\varrho(G) = |R(g^u)| \le \lambda |P|\varrho(P).$$

That is, $\varrho(G) \leq \frac{\lambda}{m} \varrho(P)$. If we have equality, then $\lambda = m$.

Lemma 2.6 shows that if we wish to understand groups G in which $\rho(G)$ is highest, and in particular higher than $\alpha_p(G)$, it makes sense to restrict our attention to p-groups. We begin with an observation about direct products.

Lemma 2.7. Let G and H be p-groups with $\varrho(G) \ge \varrho(H)$. Then $\varrho(G \times H) \le \varrho(G)$ with equality if and only if $\exp(H) = p$.

Proof. If $\exp(G) = p$, then $\varrho(G) = 0$, which implies $\varrho(H) = 0$ and thus $\exp(H) = p$. Therefore, $\varrho(G \times H) = 0 = \varrho(G)$, so the result holds. Assume, then, that $\exp(G) > p$. For a in G and bin H we have |R((a,b))| = |R(a)||R(b)|. Suppose (a,b) is a rooty element of $G \times H$. Then either $a \neq 1$ or $b \neq 1$, or both, and $|G||H|\varrho(G \times H) = |R((a,b))|$. If $a \neq 1$, then $|R(a)| \leq |G|\varrho(G)$. Thus $\varrho(G \times H) \leq \varrho(G) \times \frac{|R(b)|}{|H|} \leq \varrho(G)$, with equality if and only if R(b) = |H|, which is possible precisely when b = 1 and H has exponent p. Now suppose a = 1. Then $b \neq 1$ and by the same argument $\varrho(G \times H) \leq \varrho(H)$ with equality only when G has exponent p. Since G does not have exponent p, in this case we have $\varrho(G \times H) < \varrho(H) \leq \varrho(G)$. Thus $\varrho(G \times H) \leq \varrho(G)$ with equality if and only if $\exp(H) = p$.

Lemma 2.7 means that the existence of a group G with a given rootiness ρ implies that there are infinitely many such groups, obtained by taking the direct product of G with any group H of exponent p. The fact that $\rho(C_{p^2}) = \frac{1}{p}$ therefore provides infinitely many examples of groups whose rootiness is $\frac{1}{p}$; if p is odd, then in particular we can obtain both abelian and non-abelian examples in this manner.

Lemma 2.8. Suppose G is an abelian p-group. Then $\varrho(G) \leq \frac{1}{p}$, with equality if and only if $G \cong C_{p^2} \times C_p^k$ for some $k \geq 0$.

Proof. If G has exponent p, then $\varrho(G) = 0$ and there is nothing to prove. So suppose not. If G is cyclic of order p^n , then n > 1 and $\varrho(G) = \frac{1}{p^{n-1}}$, which is at most $\frac{1}{p}$ with equality precisely when $G \cong C_{p^2}$. If G is not cyclic, then $G \cong A \times B$ for some non-trivial A and B and without loss of generality $\varrho(A) \ge \varrho(B)$. Inductively $\varrho(A) \le \frac{1}{p}$ with equality if and only if $A \cong C_{p^2} \times C_p^i$ for some non-negative *i*. By Lemma 2.7, $\varrho(G) \le \varrho(A)$ with equality if and only if $\exp(B) = p$. The result follows immediately.

Proposition 2.9. Let G be a regular p-group. Then either $\exp(G) = p$ and $\varrho(G) = 0$, or $\varrho(G) = \frac{1}{|\mathcal{V}_1(G)|} \leq \frac{1}{p}$. Moreover, $\varrho(G) = \frac{1}{p}$ if and only if G has subgroup A of index p and exponent p, along with a cyclic subgroup H of order p^2 , such that $|A \cap H| = p$ and G = AH.

Proof. Assume that $\exp(G) > p$, or there is nothing to prove. Then $\mathcal{O}_1(G)$ is a nontrivial subgroup of G and, by Proposition 2.2(b), $\Omega_1(G)$ has exponent p. Let X be a transversal of $\Omega_1(G)$. For x in X and a in $\Omega_1(G)$, setting y = ax we have $(xy^{-1})^p = a^{-p} = 1$. Hence $y^p = x^p$ by Proposition 2.2(a). Conversely, if $x, y \in X$ with $x^p = y^p$, then $(xy^{-1})^p = 1$, meaning $xy^{-1} \in \Omega_1(G)$ and so x = y. Therefore, the set of roots of x^p is precisely $x\Omega_1(G)$. Hence, by Proposition 2.2(d), $\varrho(G) = \frac{|\Omega_1(G)|}{|G|} = \frac{1}{|\Omega_1(G)|} \leq \frac{1}{p}$. We have equality precisely when $|\mathcal{O}_1(G)| = p$. In this case, write $A = \Omega_1(G)$. Then Ahas exponent p and index p. For any element x of G - A, the subgroup H generated by x has order p^2 . Moreover $|A \cap H| = p$ and G = AH, as required. Conversely, if G has subgroups A and H as described, then since H contains an element of order p^2 we know $\mathcal{O}_1(G)$ is nontrivial, but since Ahas exponent p we know $\Omega_1(G)$ has index at most p. The only possibility is that $|\mathcal{O}_1(G)| = p$, and thus $\varrho(G) = \frac{1}{p}$.

Theorem 2.10. Let *m* be any positive integer with $m \ge p+2$. If *G* is a *p*-group of maximal class and order p^m , then $\varrho(G) \le \frac{1}{p} + \frac{1}{p^{m+1-p}} \le \frac{1}{p} + \frac{1}{p^3}$.

Proof. Let m be any positive integer with $m \ge p+2$. Suppose G is a p-group of maximal class and order p^m , and let g be a rooty element of G. By Theorem 2.3, G_1 is regular and $\mathcal{O}_1(G_1) = \gamma_p(G)$. Therefore, $\varrho(G_1) = \frac{1}{|\gamma_p(G)|}$ by Proposition 2.9. Since G has maximal class, $|\gamma_p(G)| = p^{m-p}$, so that $\varrho(G_1) = \frac{1}{p^{m-p}}$. At most $\frac{1}{p-1}$ of the elements of $G - G_1$ can be roots of g (as if x is a root, then x^2 , x^3, \ldots, x^{p-1} are not). Hence

$$\begin{split} \varrho(G)|G| &= |R(g)| \leq \frac{1}{p-1}|G - G_1| + |G_1|\varrho(G_1) \\ &= \frac{p^m - p^{m-1}}{p-1} + \frac{p^{m-1}}{p^{m-p}} \\ &= p^{m-1} + p^{p-1} \\ \varrho(G) \leq \frac{1}{p} + \frac{1}{p^{m+1-p}} \leq \frac{1}{p} + \frac{1}{p^3}. \end{split}$$

Theorem 2.11. Suppose $|G| = p^{p+1}$. If $\varrho(G) > \frac{1}{p}$, then $\varrho(G) = \frac{p+1}{p^2}$.

Proof. Suppose $\varrho(G) > \frac{1}{p}$ and let g be a rooty element. Then G must be irregular by Proposition 2.9. Hence G is of maximal class. Then, by Corollary 2.5, $\mho_1(G)$ has order p, meaning $\exp(G) = p^2$. Moreover M(G) has index p^2 and exponent p. If there is an element a of order p lying outside of M(G), then the subgroup $\langle a \rangle M(G)$ also has exponent p, so $R(g) \cup R(g^2) \cup \cdots \cup R(g^{p-1}) \subseteq G - \langle a \rangle M(G)$. Hence $\varrho(G) \leq \frac{1}{p}$. So we can assume all elements outside M(G) have order p^2 , meaning precisely $\frac{1}{p-1}$ of them are roots of g. Hence $\varrho(G) = \frac{p+1}{p^2}$.

The case $\rho(G) = \frac{p+1}{p^2}$ in Theorem 2.11 does occur, as the following example shows. It is one of two commonly given examples of irregular *p*-groups of minimal order; the other being the Sylow *p*-subgroups of the symmetric group on p^2 elements (which can be show to have rootiness $\frac{1}{p}$).

Example 2.12. Let $G = \langle a_1, a_2, \ldots, a_{p-1}, b \rangle$, where $a_1^{p^2} = 1$, $a_i^p = 1$ for $2 \le i \le p-1$, $b^p = a_1^p$ and all generators commute except that $b^{-1}a_ib = a_ia_{i+1}$ when $1 \le i < p-1$, and $b^{-1}a_{p-1}b = a_{p-1}a_1^{-p}$. That G is of maximal class, irregular, and of order p^{p+1} , is shown in [4, Example 2.4]. It is also shown that $G' = \Omega_1(G) = \langle a_1^p, a_2, \ldots, a_{p-1} \rangle$ in this group. Therefore, G' has exponent p and no element outside of G' can have order p. As in the proof of Theorem 2.11, we now have $\varrho(G) = \frac{p+1}{p^2}$.

We end this section with a couple of results limiting, for odd primes, the possible kinds of non p-groups with high values of ρ_p . We first state a result due to Laffey.

Theorem 2.13. [7, Laffey] Let p be an odd prime. If G is not a p-group, then $\alpha_p(G) \leq \frac{p}{p+1}$.

Theorem 2.14. Let p be an odd prime. Suppose $\varrho_p(G) > \frac{p}{2(p+1)}$. Then either G is a p-group, or $G \cong H \times C_2$, where H is a p-group, and $\varrho_p(G) = \frac{1}{2}\alpha_p(H)$.

Proof. Let g be a rooty element, and write $\lambda = |R(g)|$, so that $\lambda > \frac{p}{2(p+1)}|G|$. Now g^r also has λp^{th} roots, whenever r is coprime to p. If m > p, then g, g^2 and g^{p+1} each have λ roots. If $p > m \ge 3$, then g, g^2 and g^3 each have λ roots. But $3\lambda > |G|$, a contradiction. Therefore, either m = 2 or m = p. For any root x of g, both x and x^2 lie in the centralizer of g. Hence, $|C_G(g)| \ge \frac{p}{p+1}|G| > \frac{1}{2}|G|$. Therefore, g is central in G. Now consider $\overline{G} = G/\langle g \rangle$. If m = 2, then the 2λ elements of G that are roots of elements of $\langle g \rangle$ map onto λ elements of $G/\langle g \rangle$ that have order dividing p. Hence $\alpha_p(\overline{G}) > \frac{p|G|}{2(p+1)|\overline{G}|} = \frac{p}{p+1}$. Theorem 2.13 now implies that \overline{G} is a p-group. Hence $|G| = 2p^n$ for some n. This means G has a unique Sylow p-subgroup H, which is therefore normal. Hence $G = H\langle g \rangle \cong H \times C_2$, and clearly $\varrho_p(G) = \frac{1}{2}\alpha_p(H)$. The remaining possibility is that o(g) = p. In this case, each of g, g^2, \ldots, g^{p-1} has λp^{th} roots. So in \overline{G} , they become $\frac{p-1}{p}\lambda$ elements of order p. Hence (not forgetting that the identity element of \overline{G} also has order dividing p), we get

$$\alpha_p(\overline{G}) > \tfrac{p-1}{p} \cdot \tfrac{p}{2(p+1)} \cdot \tfrac{|G|}{|\overline{G}|} = \tfrac{p(p-1)}{2(p+1)} \geq \tfrac{p}{p+1}.$$

Hence \overline{G} is a *p*-group, which implies that *G* is also a *p*-group.

We remark that there do exist 'non-trivial' instances of non *p*-groups with high rootiness – that is, groups with elements having more p^{th} roots than the identity. For example there is a group *G* of order 36 with $\rho_3(G) = \frac{1}{3}$ but $\alpha_3(G) = \frac{1}{12}$. We can improve slightly on Theorem 2.14 for the case p = 3, thanks to another result of Laffey.

Theorem 2.15. [8, Laffey] Let G be a finite group. If $\alpha_3(G) \ge \frac{7}{9}$, then G is a 3-group and either $\alpha_3(G) = \frac{7}{9}$ or G has exponent 3.

This allows us to show that the only non-trivial examples of groups with cube rootiness greater than $\frac{7}{18}$ occur in 3-groups.

Theorem 2.16. Suppose G is a finite group with $\rho_3(G) \geq \frac{7}{18}$. Then either

- (a) $G \cong H \times C_2$, where H is a group of exponent 3, and $\varrho(H) = \frac{1}{2}$;
- (b) $G \cong H \times C_2$, where H is a 3-group with $\alpha_3(H) = \frac{7}{9}$, and $\varrho(H) = \frac{7}{18}$; or
- (c) G is a 3-group of exponent 9 and nilpotency class at most 4.

Proof. Suppose G is a finite group with $\varrho(G) \geq \frac{7}{18}$. Suppose first that G is not a 3-group. By Theorem 2.14 then, $G \cong H \times C_2$, where H is a 3-group with $\varrho_3(G) = \frac{1}{2}\alpha_3(H)$. By assumption $\varrho_3(G) \geq \frac{7}{18}$. Hence by Theorem 2.15, either $\alpha_3(G) = \frac{7}{9}$ or G has exponent 3. This deals with parts (a) and (b). It remains to deal with the case that G is a 3-group. Suppose this is the case, and let g be a rooty element, with R the set of cube roots of g. Now g^{-1} and g^2 , which as G is a 3-group are both distinct from g, also have |R| cube roots. Therefore, $g^{-1} = g^2$ and o(g) = 3. More than $\frac{7}{9}$ of the elements of G cube to an element of $\langle g \rangle$, because every element of $R \cup R^{-1} \cup \langle g \rangle$ has this property. Hence g is central; write as usual, \overline{G} for $G/\langle g \rangle$. We have $\alpha_3(\overline{G}) > \frac{7}{9}$, which implies, by Theorem 2.15, that \overline{G} has exponent 3. Consequently every element of G cubes to an element of $\langle g \rangle$, meaning G has exponent 9. Clearly G must have class at least 3, or else G would be regular and its rootiness would be most $\frac{1}{3}$. It is well-known that a group of exponent 3 has class at most 3. Thus \overline{G} has class at most 3, forcing G to have class at most 4.

We note that there are groups G with $\rho_3(G) > \frac{7}{18}$. Example 2.12 provides an irregular 3-group G of order 81 with $\rho(G) = \frac{4}{9}$. It can also be shown that there is a 3-group K of order 3⁷ such that $\rho_3(K) = \frac{13}{27}$ so, at least for p = 3, it is possible for $\rho_p(G) > \frac{p+1}{p^2}$. As we shall see in the next section, this is very different from the case p = 2.

3. Square Roots

In this section we investigate groups with many nontrivial square roots. Just as groups with sufficiently many involutions must be elementary abelian 2-groups, it turns out that groups with a non-identity element with sufficiently many square roots must be 2-groups. As an indication of what happens, the database of small groups in Magma's free online calculator [10], or in GAP [5], can be interrogated easily to find all 2-groups G of order at most 64 such that $\rho_2(G) > \frac{1}{2}$. The outcome is summarised in Observation 3.2. In all cases, if $\rho_2(G) > \frac{7}{12}$, then $\rho_2(G) \in \{\frac{5}{8}, \frac{3}{4}\}$. Theorem 3.11 will show that this holds for all finite groups G, by classifying all finite groups for which $\rho_2(G) \geq \frac{7}{12}$. In particular, we show that if $\rho_2(G) > \frac{7}{12}$, then G is a 2-group. Before we proceed, we need to establish some notation that will be used in this section.

Notation 3.1. We denote by C_n the cyclic group of order n; D_{2n} is the dihedral group of order 2n, and Q_{4n} is the generalised quaternion group of order 4n given by

$$Q_{4n} = \langle a, b : a^{2n} = 1, b^2 = a^n, ba = a^{-1}b \rangle.$$

We write D_8^{*r} for the central product of r copies of D_8 (with the convention that D_8^{*0} is the trivial group). Note that D_8^{*r} is one of the extraspecial 2-groups of order 2^{2r+1} , for $r \ge 1$: the other is

 $D_8^{*(r-1)} * Q_8$. For each positive integer r we define a group

$$W_r = \langle c, x_1, y_1, \dots, x_r, y_r \rangle,$$

where $c^2 = x_i^2 = y_i^2 = 1$ and all pairs of generators commute except $[c, x_i] = y_i$, for all *i*. Finally, we will encounter a certain group of order 32 for which it will be useful to have a name:

$$\mathcal{M}_{32} := \langle a, b, c : a^4 = b^4 = c^4 = 1, ba = ab, ca = a^{-1}c, cb = b^{-1}c, c^2 = a^2 \rangle.$$

During this section, we will write $\alpha_2(G)$ and $\varrho_2(G)$ (as defined in Section 1) in the formal statements of results, for easy cross-referencing, but will usually write $\alpha(G)$ and $\varrho(G)$ elsewhere. Similarly, we will write $\mathcal{I}(G)$ for $\mathcal{I}_2(G)$, the set of elements x of G for which $x^2 = 1$.

Observation 3.2. There are eighteen 2-groups G of order at most 64 with $\rho_2(G) > \frac{1}{2}$. Of these, four have $\rho_2(G) = \frac{3}{4}$. These are precisely the groups $Q_8 \times E$, where E is trivial or an elementary abelian 2-group. A further seven groups have $\rho_2(G) = \frac{5}{8}$. These are precisely the groups $Q_{16} \times E$, or $(D_8 * Q_8) \times E$, or $\mathcal{M}_{32} \times E$, where E is trivial or elementary abelian, and \mathcal{M}_{32} is the group of order 32 defined in Notation 3.1. The remaining seven of the eighteen groups have $\frac{1}{2} < \rho_2(G) \leq \frac{9}{16}$.

We note that there are infinitely many groups G with $\rho_2(G) > \frac{1}{2}$, because Q_{8n} , where n is any even positive integer, has square rootiness $\frac{1}{2} + \frac{1}{4n}$. There are also infinitely many 2-groups with this property. For example the extraspecial group $D_8^{*r} * Q_8$ of order 2^{2r+3} has square rootiness $\frac{1}{2} + \frac{1}{2^{r+2}}$ (see Proposition 3.5).

We first state Wall's classification of groups with many involutions.

Theorem 3.3. [11, Wall] Suppose H is a finite group for which $\alpha(H) > \frac{1}{2}$. Then H is either an elementary abelian 2-group, or the direct product of an elementary abelian 2-group with a group H_0 of one of the following types.

(I) H_0 is generalised dihedral. Specifically, H_0 has an abelian subgroup A_0 of index 2 which does not admit a cyclic group of order 2 as a direct factor, and H_0 is generated by A_0 along with an involution c with the property that $cac^{-1} = a^{-1}$ for all $a \in A_0$;

(II) $H_0 \cong D_8 \times D_8;$ (III) $H_0 \cong D_8^{*r}$, some $r \ge 1;$ (IV) $H_0 \cong W_r$, some $r \ge 1.$

Lemma 3.4. Suppose $\varrho_2(G) > \frac{1}{2}$, with g a rooty element. Then g is a central involution, G is non-abelian, and Z(G) is an elementary abelian 2-group. Moreover

- (a) If $Z(G) \leq \Phi(G)$, then $G \cong G_0 \times E$, where E is an elementary abelian 2-group, $\varrho_2(G_0) = \varrho_2(G)$ and $Z(G_0) \leq \Phi(G_0)$.
- (b) For any $h \in Z(G) \langle g \rangle$, $\varrho_2(G/\langle h \rangle) = \varrho_2(G)$.

Proof. Both g^{-1} and any conjugate of g have the same number of roots as g. Therefore, $g = g^{-1}$ and g is central. Suppose $a \in Z(G)$. Then for any root x of g we have $(xa)^2 = ga^2$. Thus, to avoid a contradiction, it must be that $ga^2 = g$. Hence $a^2 = 1$ and Z(G) is an elementary abelian 2-group. Clearly now G cannot be abelian, else Z(G) would equal G and g would have no square roots at all.

- (a) Suppose Z(G) is not contained in $\Phi(G)$. Let *a* be an element of $Z(G) \Phi(G)$. Then there is a maximal subgroup *U* of *G* which does not contain *a*. Moreover since *a* is central, *a* is an involution that centralises, but is not contained in, *U*. Hence $G \cong U \times \langle a \rangle$, and clearly $\varrho_2(G) = \varrho_2(U)$. Note too that $\Phi(G) \cong \Phi(U)$. Repeating this step for any further elements of $Z(G) - \Phi(G)$ we obtain the required decomposition of *G*.
- (b) For any $h \in Z(G) \langle g \rangle$, and any x in G, we have that $(xh)^2 = x^2$. That is, x is a root if and only if xh is a root. Hence $\varrho_2(G/\langle h \rangle) = \varrho_2(G)$, as required.

The next result obtains $\alpha_2(G)$ and $\varrho_2(G)$ in the case where G is an extraspecial 2-group.

Proposition 3.5. Let $r \ge 1$.

Proof. Note that for any extraspecial 2-group G, we have $\mathcal{O}_1(G) = Z(G) \cong C_2$. Therefore, if g is the unique central involution, every element is either contained in $\mathcal{I}(G)$ or in R(g). Thus $\alpha(G) + \varrho(G) = 1$. Therefore, it is sufficient in each case to verify the expression for $\alpha(G)$. We proceed by induction, the result being easy to check for r = 1 (where the groups involved are D_8 and Q_8), so suppose r > 1. Write D for $D_8^{*(r-1)}$. The elements of $D * D_8$ are of the form xy where $x \in D$ and $y \in \{1, a, b, c\}$, with $a^2 = 1, b^2 = 1$ and $c^2 = g$, where g is the central involution of D. Now $(xy)^2 = x^2y^2$, so $(xy)^2 = 1$ when $x^2 = y^2$, and $(xy)^2 = g$ otherwise. Hence

$$\alpha(D * D_8) = \frac{|D|}{|D * D_8|} \left(3\alpha(D) + \varrho(D)\right) = \frac{1}{4} \left(\frac{3(2^{r-1} + 1)}{2^r} + \frac{2^{r-1} - 1}{2^r}\right) = \frac{2^r + 1}{2^{r+1}}$$

For $D * Q_8$ we follow the same procedure, except that in this case elements of G are of the form xy where $x \in D$ and $y \in \{1, u, v, w\}$ where $u^2 = v^2 = w^2 = g$. The recurrence relation this time is $\alpha(D * Q_8) = \frac{1}{4}(\alpha(D) + 3\varrho(D))$, and a quick check shows that this results in $\alpha(D * Q_8) = \frac{2^r - 1}{2^{r+1}}$. \Box

Proposition 3.6. Suppose $\alpha(H) > \frac{7}{12}$. Then either H is an elementary abelian 2-group, with $\alpha(H) = 1$, or H is the direct product of an elementary abelian 2-group with a group H_0 , where $\alpha(H) = \alpha(H_0)$ and H_0 is one of the following groups (listed in decreasing order of $\alpha(H_0)$).

- $\alpha(H) = \frac{3}{4}$ and $H_0 \cong D_8;$
- $\alpha(H) = \frac{2}{3}$ and $H_0 \cong D_6$;

- $\alpha(H) = \frac{5}{8}$ and H_0 is one of D_{16} , $D_8 * D_8$, W_2 , or the generalised dihedral group whose abelian index 2 subgroup is $C_4 \times C_4$;
- $\alpha(H) = \frac{3}{5} \text{ and } H_0 \cong D_{10}.$

Proof. Assume H is not elementary abelian. Since $\alpha(H) > \frac{1}{2}$, we have that H is one of the groups described in Theorem 3.3, so that H is the direct product of an elementary abelian 2-group with an H_0 of one of the given four types. Observe that $\alpha(H) = \alpha(H_0)$.

First, let H_0 be of type I. That is, H_0 is generalised dihedral, the semidirect product of a nontrivial abelian group A_0 with a group $\langle c \rangle$, where c is an involution which inverts every element of A_0 . Moreover A_0 does not have C_2 as a direct factor. Write $A_0 = \mathcal{O} \times \mathcal{T}$, where \mathcal{O} is a subgroup of odd order ω and \mathcal{T} is an abelian 2-group (or the trivial group). Then $|\mathcal{I}(H_0)| = \frac{1}{2}|H_0| + |\mathcal{I}(\mathcal{T})|$. Hence $\alpha(H) = \alpha(H_0) = \frac{1}{2} + \frac{1}{2\omega}\alpha(\mathcal{T})$. By assumption, none of the components of \mathcal{T} is cyclic of order 2. If $\mathcal{T} \cong \{1\}$, then $\alpha(\mathcal{T}) = 1$. If $\mathcal{T} \cong C_4$, then $\alpha(\mathcal{T}) = \frac{1}{2}$; for all other \mathcal{T} we have $\alpha(\mathcal{T}) \leq \frac{1}{4}$. So, if $\omega \geq 7$, then $\alpha(H) \leq \frac{1}{2} + \frac{1}{14} < \frac{7}{12}$. If $\omega = 5$, then either $A_0 \cong C_5$ and $\alpha(H) = \frac{3}{5}$, or $\alpha(H) \leq \frac{1}{2} + \frac{1}{20} < \frac{7}{12}$. If $\omega = 3$, then either $A_0 \cong C_3$ and $\alpha(H) = \frac{2}{3}$, or $\alpha(H) \leq \frac{1}{2} + \frac{1}{12} = \frac{7}{12}$. If $\omega = 1$, then $A_0 \cong C_4$ results in $\alpha(H) = \frac{3}{4}$; $A \cong C_8$ or $A_0 \cong C_4 \times C_4$ give $\alpha(H) = \frac{5}{8}$; all other possibilities give $\alpha(H) \leq \frac{9}{16}$. In summary, if $\alpha(H) = \frac{3}{4}$, then $H_0 \cong D_8$. If $\alpha(H) = \frac{2}{3}$, then $H_0 \cong D_6$. If $\alpha(H) = \frac{3}{5}$, then $H_0 \cong D_{10}$. If $\alpha(H) = \frac{5}{8}$, then $H_0 \cong D_{16}$ or H_0 is the generalised dihedral group whose abelian index 2 subgroup is $C_4 \times C_4$. In all other cases, $\alpha(H) \leq \frac{7}{12}$.

For types II and III, if $H_0 \cong D_8 \times D_8$, then it is easy to check that $\alpha(H_0) = \frac{9}{16} < \frac{7}{12}$. If H_0 is extraspecial, then by Proposition 3.5, $\alpha(H) > \frac{7}{12}$ if and only if either $H_0 \cong D_8$, with $\alpha(H) = \frac{3}{4}$, or $H_0 \cong D_8 * D_8$, with $\alpha(H) = \frac{5}{8}$. The final type to consider is when $H_0 \cong W_r$. Let $A_0 = \langle x_1, \ldots, x_r, y_1, \ldots, y_r \rangle$. Certainly $A_0 \subseteq \mathcal{I}(H_0)$, so consider $x \in H_0 - A_0$. Then $x = c \prod_{i=1}^r (x_i^{a_i} y_i^{b_i})$ where each a_i and each b_i is either zero or one. Because conjugation by c sends x_i to $x_i y_i$, and fixes y_i , we have $x^2 = \prod_{i=1}^r y_i^{a_i}$. Hence $x^2 = 1$ if and only if $a_i = 0$ for all i, which implies that $\mathcal{I}(H_0) = |A_0| + 2^r$. Since $|H_0| = 2^{2r+1}$, we obtain $\alpha(H) = \frac{1}{2} + \frac{1}{2^{r+1}}$. The only instances where $\alpha(H) > \frac{7}{12}$ are when r = 1 (which gives D_8 again) or when r = 2, which gives W_2 , with $\alpha(W_2) = \frac{5}{8}$.

Theorem 3.7. If $\varrho_2(G) > \frac{1}{2}$, g is a rooty element and $G/\langle g \rangle$ is elementary abelian, then $G \cong D_8^{*r} * Q_8$ or $G \cong (D_8^{*r} * Q_8) \times E$, where E is an elementary abelian 2-group and r is a non-negative integer. Moreover, $\varrho_2(G) = \frac{2^{r+1}+1}{2^{r+2}}$.

Proof. Notice that g is a central involution of G, by Lemma 3.4. Hence $\langle g \rangle$ is normal in G, so $G/\langle g \rangle$ is well-defined. Moreover $|G| = 2|G/\langle g \rangle|$, which means in particular that G is a 2-group. Consequently, $\Phi(G)$ is contained in every normal subgroup with an elementary abelian quotient. Thus $\Phi(G) \leq \langle g \rangle$. Obviously $\Phi(G)$ cannot be trivial; hence $\Phi(G) = \langle g \rangle$. By Lemma 3.4 (a), we may reduce to the case where $Z(G) \leq \Phi(G)$. The fact that G is a non-abelian 2-group now forces $Z(G) = G' = \Phi(G)$. Hence G is extraspecial. The result now follows immediately from Proposition 3.5.

Corollary 3.8. If $\rho_2(G) \geq \frac{3}{4}$, then $\rho_2(G) = \frac{3}{4}$ and G is either Q_8 or the direct product of Q_8 with an elementary abelian 2-group.

Proof. Suppose $\varrho_2(G) \ge \frac{3}{4}$ with g a rooty element. The proportion of elements of G whose square is either 1 or g is just $\varrho_2(G) + \alpha(G)$. Now g is a central involution, meaning that $(xg)^2 = x^2$ for any $x \in G$. Hence $\alpha(G/\langle g \rangle) = \varrho_2(G) + \alpha(G) > \varrho_2(G) \ge \frac{3}{4}$. Using Proposition 3.6, we see that $G/\langle g \rangle$ is an elementary abelian 2-group. Now we employ Theorem 3.7. The only case in that theorem which gives $\varrho_2(G) \ge \frac{3}{4}$ is when r = 0, meaning that $\varrho_2(G) = \frac{3}{4}$ and G is either Q_8 or the direct product of Q_8 with an elementary abelian 2-group.

Theorem 3.9. Suppose $\varrho_2(G) > \frac{1}{2}$, and let g be a rooty element of G. Suppose $G/\langle g \rangle \cong D_{2q} \times E$, for some odd prime q and some elementary abelian 2-group E. Then $\varrho_2(G) \leq \frac{2q+1}{4q}$, with equality if and only if G is isomorphic to either Q_{8q} or the direct product of Q_{8q} with an elementary abelian 2-group.

Proof. Write $\overline{G} = G/\langle g \rangle$, and for x in G write \overline{x} for the corresponding element of \overline{G} . Let x be an element of order q in G, and write $N = \langle x \rangle$. Then $\overline{N\langle g \rangle}$ is the unique Sylow q-subgroup of \overline{G} . Since $\overline{x}^{\overline{G}} = \{\overline{x}, \overline{x}^{-1}\}$, we see that $x^{\overline{G}} \subseteq \{x, x^{-1}, xg, (xg)^{-1}\}$. But xg and xg^{-1} have order 2q, so cannot be conjugate to x. Moreover x cannot be central in G because Z(G) is an elementary abelian 2-group (Lemma 3.4). Hence $x^{\overline{G}} = \{x, x^{-1}\}$, which means $C_G(x)$ has index 2 in G, and is therefore normal. Let K be a Sylow 2-subgroup of $C_G(x)$; it has index q in $C_G(x)$. Both K and N normalise K, which means (since $C_G(x) = \langle K, N \rangle$) that K is normal in $C_G(x)$, and so K is the unique Sylow 2-subgroup of $C_G(x)$; hence it is characteristic in $C_G(x)$ and consequently normal in G. Therefore, K is contained in, and has index 2 in, every Sylow 2-subgroup of G. There must be more than one Sylow 2-subgroups; call them P_1, \ldots, P_q . Note that, when $i \neq j$, we have $P_i \cap P_j = K$. By Corollary 3.8, we have that $\rho_2(P_1) \leq \frac{3}{4}$. Hence $|R \cap P_1| \leq \frac{3}{4}|P_1|$. Therefore,

$$\begin{split} R &\subseteq P_1 \cdot \cup (P_2 - K) \cdots \dot{\cup} (P_q - K) \\ |R| &\leq \frac{3}{4} |P_1| + \sum_{i=2}^{q} |P_i - K| \\ |R| &\leq \frac{3}{4} |P_1| + (q-1) \frac{|P_1|}{2} \\ \varrho_2(G) &\leq \frac{3}{4q} + \frac{q-1}{2q} = \frac{2q+1}{4q} \end{split}$$

with equality precisely when $\rho_2(P_1) = \frac{3}{4}$ and K is a subgroup of index 2 in P_1 such that every element of $P_1 - K$ has order 4. By Corollary 3.8 we have that $P_1 \cong Q_8 \times C_2^k$ for some $k \ge 0$, and the only suitable K is (isomorphic to) $C_4 \times C_2^k$. Recalling that x centralises K, we have that $G = NP_1 \cong NQ_8 \times C_2^k \cong Q_{8q} \times C_2^k$. For example, if u is any element of order 4 in K, and b is any element of order 4 in $P_1 - K$, then setting a = ux we have $\langle a, b \rangle \cong Q_{8q}$ and $G \cong \langle a, b \rangle \times C_2^k$.

Lemma 3.10. If $\alpha(H) > \frac{1}{2}$, then Z(H) is an elementary abelian 2-group.

Proof. Since $\alpha(H) > \frac{1}{2}$, we have, by Theorem 3.3, that H is either an elementary abelian 2-group, or the direct product of an elementary abelian 2-group with a group H_0 of one of four given types. It is therefore sufficient to show that $Z(H_0)$ is an elementary abelian 2-group for all possible H_0 . If H_0 is generalised dihedral and A_0 is the abelian subgroup of index 2, then conjugation by any involution outside A_0 inverts every element of A_0 . Hence the central elements are precisely the involutions of A_0 (plus the identity), and we are done. If H_0 is $D_8 \times D_8$, then $Z(H_0)$ is $C_2 \times C_2$. If H_0 is extraspecial, then $Z(H_0)$ is cyclic of order 2. Finally if H_0 is W_r , then c conjugates x_i to x_iy_i and commutes with y_i , for all i. Thus $Z(H_0) = \langle y_1, \ldots, y_r \rangle$. Therefore, in all cases, Z(H) is an elementary abelian 2-group.

We may now complete the classification of groups with square rootiness at least $\frac{7}{12}$. Recall that \mathcal{M}_{32} is the group of order 32 whose presentation was given in Notation 3.1.

Theorem 3.11. Suppose $\varrho_2(G) \geq \frac{7}{12}$. Then G is isomorphic to G_0 , or the direct product of G_0 with an elementary abelian 2-group, where G_0 is one of the following groups.

- (a) $G_0 \cong Q_8 \text{ and } \varrho_2(G) = \frac{3}{4};$
- (b) $G_0 \cong Q_{16} \text{ and } \varrho_2(G) = \frac{5}{8};$
- (c) $G_0 \cong D_8 * Q_8$ and $\varrho_2(G) = \frac{5}{8}$;
- (d) $G_0 \cong \mathcal{M}_{32}$ and $\varrho_2(G) = \frac{5}{8}$;
- (e) $G_0 \cong Q_{24}$ and $\varrho_2(G) = \frac{7}{12}$.

For the purposes of the proof, we write B for the generalised dihedral group of order 32 whose abelian subgroup of index 2 is $C_4 \times C_4$. This is one of the groups given in Proposition 3.6.

Proof. Let g be a rooty element of G, and as usual write $\overline{G} = G/\langle g \rangle$. The fact that $\varrho(G) \geq \frac{7}{12}$ implies that $\alpha(\overline{G}) > \frac{7}{12}$, so \overline{G} is one of the groups H listed in Proposition 3.6. If H_0 is D_6 or D_{10} , then by Theorem 3.9 the only possibility for which $\varrho(G) \geq \frac{7}{12}$ is when G is Q_{24} (or its direct product with an elementary abelian 2-group), and here $\varrho(G) = \frac{7}{12}$. All the other possible H given by Proposition 3.6 are 2-groups. Hence if G is not a 2-group, the theorem holds.

We assume from now on that G is a 2-group, and proceed by induction on |G|. For the base case, if $|G| \leq 64$, then the result holds by Observation 3.2. If H is an elementary abelian 2-group, then by Theorem 3.7 $\rho(G) = \frac{2^r+1}{2^{r+1}}$ for some positive integer r. Since $\rho(G) \geq \frac{7}{12}$ the only possibilities are r = 1 and r = 2. These result in the cases $G_0 \cong Q_8$ and $G_0 \cong D_8 * Q_8$ above. If $\rho(G) \geq \frac{3}{4}$, then by Corollary 3.8, we have the case $G_0 \cong Q_8$. We may therefore assume that $\frac{7}{12} < \rho < \frac{3}{4}$, and that H_0 is either D_8 , $D_8 * D_8$, D_{16} , B or W_2 . In the first case $\alpha(H_0) = \frac{3}{4}$; in the last four cases $\alpha(H_0) = \frac{5}{8}$. Suppose $\alpha(H_0) = \frac{5}{8}$. If $Z(G) \neq \langle g \rangle$, then G has a central involution h with $h \neq g$, and $\varrho(G/\langle h \rangle) = \varrho(G)$, which by assumption lies strictly between $\frac{7}{12}$ and $\frac{3}{4}$. By induction $\varrho(G) = \frac{5}{8}$. But since $\alpha(H_0) = \frac{5}{8}$, at most $\frac{5}{8}$ of the elements of G square to 1 or g. Since G contains at least one involution, we have $\varrho(G) < \frac{5}{8}$, a contradiction. Therefore, if $\alpha(H_0) = \frac{5}{8}$, then $Z(G) = \langle g \rangle$.

Return now to the general case where $\alpha(H_0) \in \{\frac{3}{4}, \frac{5}{8}\}$. Let K be the subgroup of G such that $\overline{K} = Z(G/\langle g \rangle)$. We will analyse the elements of K - Z(G). Let $a \in K - Z(G)$. Then $a^x \in a\langle g \rangle$ for all $x \in G$. Thus, since a is non-central, $C_G(a)$ has index 2 in G. Write $X = G - C_G(a)$. For any $x \in X$ we have $(ax)^2 = a(xax^{-1})x^2 = a^2x^2g$. Lemma 3.10 tells us that \overline{K} is an elementary abelian 2-group. Therefore, $a^2 \in \{1, g\}$, meaning either a is an involution, or a is a root of g.

Assume first, for a contradiction, that a is an involution. Then $(ax)^2 = x^2g$. Thus x is a root if and only if $ax \in \mathcal{I}(G)$. Hence at most half the elements of X are roots. That is, $|R \cap X| \leq \frac{1}{4}|G|$. This forces

$$|R \cap C_G(a)| \ge |R| - \frac{1}{4}|G| \ge \frac{7}{12}|G| - \frac{1}{4}|G| = \frac{1}{3}|G| = \frac{2}{3}|C_G(a)|.$$

Inductively, this forces $C_G(a)$ to be Q_8 or its direct product with an elementary abelian 2-group. Therefore, $\rho(C_G(a)) = \frac{3}{4}$ and every element of $C_G(a)$ must square to 1 or g.

Now $\alpha(\overline{G}) > \varrho(G)$, so $\alpha(\overline{G}) > \frac{7}{12}$. We see from Proposition 3.6 that either \overline{G} is elementary abelian, or $\alpha(\overline{G}) \leq \frac{3}{4}$. The case where \overline{G} is elementary abelian has been dealt with in Corollary 3.8, so we can assume $\alpha(\overline{G}) \leq \frac{3}{4}$. That means at least a quarter of the elements h of G have the property that $h^2 \notin \{1, g\}$. Such elements, then, cannot be contained in $C_G(a)$. Therefore, X contains at least $\frac{1}{4}|G|$ elements h such that $h^2 \notin \{1, g\}$. The remaining elements of X consist of pairs $\{x, ax\}$ exactly one of which is a root (the other being an involution). So at most a quarter of the elements of X are roots. But now

$$|R| = |R \cap X| + |R \cap C_G(a)| \le \frac{1}{4}|X| + \frac{3}{4}|C_G(a)| = \frac{1}{2}|G|,$$

a contradiction.

Hence every element of K - Z(G) is a root. Let us consider the case where $H_0 \cong D_8 * D_8$ in a little more detail. We have shown above that, since $\alpha(H_0) = \frac{5}{8}$, we have $Z(G) = \langle g \rangle$. As H_0 is extraspecial, |K| = 4. Let *a* be either of the two elements of K - Z(G). Then \overline{a} is the non-identity element of $Z(\overline{G})$. Elements of *G* which do not square to 1 or *g* must then square to *a* or *ag*. Thus, $\frac{5}{8}$ of the elements of *G* square to 1 or *g*, and $\frac{3}{8}$ of the elements of *g* square to *a* or *ag*. If $x^2 = a$, then *x* commutes with *a* and so $x \in C_G(a)$. Also *a* is conjugate to *ag* (because *a* isn't central) via some element *w* of *G* and so if $x^2 = a$, then $(x^w)^2 = ag$. Now $C_G(a)$ is a normal subgroup of *a* and thus contains x^w . Therefore, $C_G(a)$ contains all of the $\frac{3}{8}|G|$ roots of *a* and *ag*. The remaining $\frac{1}{8}|G|$ elements of $C_G(a)$ are either roots or square to the identity. Now for any root $b \in C_G(a)$, we have $(ab)^2 = 1$; and vice versa, if $z \in \mathcal{I}(C_G(a))$, then $(az)^2 = g$. That is $|R \cap C_G(a)| = |\mathcal{I}(C_G(a))|$. Hence $C_G(a)$ contains precisely $\frac{1}{16}|G|$ involutions and the same number of roots. So even if every element of $G - C_G(a)$ is a root, $\varrho(G) \leq \frac{9}{16} < \frac{7}{12}$, a contradiction. Therefore, H_0 must be one of D_8 , D_{16} , B, or W_2 , and we have noted that if $\alpha(H_0) = \frac{5}{8}$, then $Z(G) = \langle g \rangle$. By Lemma 3.4(a), we may further assume that $Z(G) \leq \Phi(G)$. We will show that under these assumptions, $|G| \leq 64$.

Since every element of K - Z(G) is a root, we see from Corollary 3.8 that $|K:Z(G)| \leq 4$. Now

$$|G:K| = |\overline{G}:\overline{K}| = |\overline{G}:Z(\overline{G})| = |H_0:Z(H_0)|.$$

Thus

$$|G| = |G: K||K: Z(G)||Z(G)| \le 4|H_0: Z(H_0)||Z(G)|.$$

If H_0 is any of W_2 , D_{16} or B, then $|H_0: Z(H_0)| = 8$. Combining this with the fact that |Z(G)| = 2 gives $|G| \le 64$.

We are left with the case $H_0 = D_8$. Here $|H_0 : Z(H_0)| = 4$, so $|G| \le 16|Z(G)|$. Recall that $Z(G) \le \Phi(G)$. In particular, $\langle g \rangle \le \Phi(G)$, which means that $\langle g \rangle$ is contained in every maximal subgroup V of G. Therefore, \overline{V} is maximal in \overline{G} if and only if V is maximal in G. Hence $\overline{\Phi(G)} = \Phi(\overline{G}) \cong \Phi(H_0) \cong C_2$. Therefore, $|Z(G)| \le |\Phi(G)| = 2|\Phi(\overline{G})| = 4$. Hence, again, $|G| \le 64$. By Observation 3.2, G is one of the groups listed in the statement of Theorem 3.11, and the proof is complete.

We note that the classification of all finite groups with $\rho_2(G) > \frac{1}{2}$ is one of the aims of the second author's thesis, which is in preparation.

References

- [1] Y. Berkovich, Groups of prime power order, Vol. 1, Walter de Gruyter, Berlin (2008).
- [2] Y. Berkovich, On the number of solutions of the equation $x^{p^k} = a$ in a finite *p*-group, *Proc. American Math. Soc.*, **116** (1992) 585–590.
- [3] N. Blackburn, Note on a paper of Berkovich, J. Algebra, 24 (1973) 323–334.
- [4] G. A. Fernández-Alcober, An introduction to finite p-groups: regular p-groups and groups of maximal class, Mat. Contemp., 20 (2001) 155–226.
- [5] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.10.2; 2019. https://www.gap-system. org.
- [6] B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin, (1967).
- [7] T. J. Laffey, The Number of Solutions of $x^p = 1$ in a Finite Group, Mathematical Proceedings of the Cambridge Philosophical Society, **80** (1976) 229–31.
- [8] T. J. Laffey, The Number of Solutions of $x^3 = 1$ in a 3-group, Math. Zeitschrift., **149** (1976) 43–45.
- [9] T. Y. Lam, On the number of solutions of $x^{p^k} = a$ in a *p*-group, *Illinois J. Math.*, **32** (1988) 575–583.
- [10] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993), J. Symbolic Comput., 24 (1997) 235–265.
- [11] C. T. C. Wall, On groups consisting mostly of involutions, Proc. Camb. Phil. Soc., 67 (1970) 251–262.

Sarah B. Hart

Department of Economics, Mathematics and Statistics, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

Email: s.hart@bbk.ac.uk

Daniel McVeagh

Department of Economics, Mathematics and Statistics, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

Email: d.mcveagh@bbk.ac.uk