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Abstract
Background: Many algorithms for finding transcription factor binding sites have concentrated on the characterisation 
of the binding site itself: and these algorithms lead to a large number of false positive sites. The DNA sequence which 
does not bind has been modeled only to the extent necessary to complement this formulation.

Results: We find that the human genome may be described by 19 pairs of mosaic classes, each defined by its base 
frequencies, (or more precisely by the frequencies of doublets), so that typically a run of 10 to 100 bases belongs to the 
same class. Most experimentally verified binding sites are in the same four pairs of classes. In our sample of seventeen 
transcription factors — taken from different families of transcription factors — the average proportion of sites in this 
subset of classes was 75%, with values for individual factors ranging from 48% to 98%. By contrast these same classes 
contain only 26% of the bases of the genome and only 31% of occurrences of the motifs of these factors — that is 
places where one might expect the factors to bind. These results are not a consequence of the class composition in 
promoter regions.

Conclusions: This method of analysis will help to find transcription factor binding sites and assist with the problem of 
false positives. These results also imply a profound difference between the mosaic classes.

Background
The DNA sequence has no landmarks to guide the search
for transcription factor binding sites: these binding sites
may be near the transcription start site but may also be
far from it [1,2]. Many papers have examined how these
sites might be found computationally [3]. Some methods
use a comparison between orthologous regions of differ-
ent species [4], often treating the problem as one of mul-
tiple alignment [5,6]. Other algorithms use a collection of
subsequences containing a binding site (for example the
promoter regions of coregulated genes or subsequences
derived from ChIp-chip experiments) to deduce the form
or motif of the binding site which is then used to identify
sites in other sequences  — reviews of these methods are
given in [7,8]. These methods include Weeder [9], MEME
[10], ANN-SPEC [11], MORPH [12] and GLAM [13].
Some authors have proposed a statistical test to decide
whether a region of DNA is a regulatory region: two
methods [14,15] tested on fly data have been motivated

by the hypothesis that the local region around the binding
site should be similar to the motif itself. Interestingly,
such a tendency would not explain the results of this
paper. A distantly related line of research is the modeling
of nucleosome positions with the expectation that tran-
scription factor binding sites avoid these positions [16-
18]. A number of projects have combined data of several
types to predict binding sites: for example [19-21].

The motif-finding methods give the immediate context
for the current work. These methods commonly find a
large number of false positive binding sites in new
sequences [22-24]. As well as a model for the binding site,
these methods need a model of the non-binding
sequence. The complexity of this model ranges from
using single nucleotide frequencies (the default for
MEME [10]), to modeling the background as a number of
states [25]. Using a Hidden Markov Model, that study
found that a useful level of complexity was four states
with the probability of a base at a given position depend-
ing on the state and the previous base. It is convenient to
refer to these states as "mosaic classes" because they are
short  — about 50-100 bases long. However, the emphasis
has been on using no more complexity than is needed to
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assist the motif finding: there appears to have been little
work to find the best model for the bulk DNA and this
paper addresses this problem. It is plausible that such an
analysis will be useful because much of the genome gets
its character from local evolutionary processes [26-28]
which would be well modeled by these kinds of classes.
Short repetitive elements would also be well described.

In this paper, we draw a distinction between occur-
rences of motifs in the DNA sequence which are sites
where a transcription factor might bind (and do bind in in
vitro experiments [29]), and binding sites where factors
are experimentally found to bind in vivo. There is also the
difference between binding sites and the subset which are
proven to affect transcription [30], but this point is not
considered in this paper.

We find that the DNA sequence may be described in
terms of short subsequences: each subsequence belong-
ing to one of 38 states, or mosaic classes, each with its
own distribution of base frequencies. These classes come
in pairs because of the equivalence between the strands.
For a set of seventeen transcription factors from different
families of factors, 75% of actual binding sites are in the
same set of four pairs of preferred classes which account
for only 26% of the bases of the genome. However, only
31% of the motifs for these factors are in the same classes.
This tendency is observed for all seventeen transcription
factors. These results are not a consequence of the differ-
ent base composition near transcription start sites.

Results and discussion
Classes Found
By analysing sequences taken at random from the whole
human genome, we find the pairs of mosaic classes
described in Table 1. The parameters of the mathematical
model describing these classes are given in Additional
File 1. The classes are generally short in the range 10 to
100 bases, but one pair (number 6) has an average length
of over 500 bases. As one would expect most classes are
poor in CpG doublets, but one pair (number 14) has a
CpG doublet proportion of 10%.

To visualise the mosaic classes, we have plotted them
by their A, C, G, T content. To do this we have used the
variables T+A, T+C, T+G  —  see Figure 1. These vari-
ables have been used because the A, C, G, T proportions
form a three dimensional space (one degree of freedom is
lost as the proportions sum to one), which is most natu-
rally interpreted as a tetrahedron. Plotting the space
using any two of these variables gives an undistorted view
of the tetrahedron with the four corners of the tetrahe-
dron at the four corners of the plot. These variables also
maintain the symmetry between the bases as the vari-
ables T+A, T+C, T+G are one minus the remaining three
pairs of variables C+G, A+G, A+C.

It would be possible to use sequences from a defined
subset of the human genome to derive the mosaic classes,
and such an analysis might give different results. Interest-
ing possibilities include promoter regions, transcribed
regions, non-transcribed regions and the genome masked
of transposons and/or repetitive elements. Using the
whole genome has the advantage of simplicity and
ensures that nothing has been left out: it is the obvious
baseline analysis and is justified by the results we obtain.
Whether a different subset of the genome gives a more
biologically relevant set of classes is a matter for research.

Symmetries
DNA has two strands which are chemically indistinguish-
able, with the structure found by Watson and Crick of As
paired to Ts and Cs to Gs. When the base frequencies of a
class are counted, it is necessary to choose one of the
strands arbitrarily for the measurement. To discuss the
effect of this symmetry, consider a hypothetical class,
(called H), in which 40% of the bases are A, 20% are C,
20% G, and 20% T. There are logically two contradictory
possibilities: a) Such a class as H cannot exist — exact
strand symmetry applies everywhere including within a
class, so that in a class there will be the same number of
As as Ts and Cs as Gs. This would imply strong con-
straints on the base frequencies of any class. b) When the
genome is examined — with the strands being equally
likely to be used as the measurement strand — it will
appear that there is another class K whose characteristics
are the reverse complement of H, that is 40% T, 20% G,
20% C, 20% A. We find from our analyses that statement
a) is false: if it were true, then the classes found would
occur on the line of symmetry T+C = 50% in Figure 1A.
This result is not unexpected because there is a literature
[31,32] on A-T and C-G strand symmetry, which suggests
that both on the small scale [28,33] and the large scale
[34,35] there may a preferred strand.

It is possible for a large scale feature of the genome to
be used to break the symmetry between the strands by
defining one strand as the measurement strand — for
example, in DNA replication one of the strands is the
leading strand. However, we expect that classes will still
be found in symmetric pairs, even if some class-pairs
have a preferential orientation with respect to the defined
strand. This remark is based on early analyses concerning
transcription — details not shown.

In Figure 1, there are hints of other approximate sym-
metries, (about a vertical axis in Figure 1A and 1B and
about a sloping line from lower left to upper right in Fig-
ure 1C).

Transcription factor binding sites
As explained in the Methods Section, we found the exact
position of a set of experimentally verified transcription
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factor binding sites (TFBSs) and ran our model to dis-
cover which mosaic classes contained these sites.
Detailed results will be presented for seventeen transcrip-
tion factors and the average for these TFs is shown in Fig-
ure 2A. Four pairs of classes contain most of the binding
sites: 2, 7, 9 and 14. We will refer to these classes as the
"preferred classes" and they are shown in red in the Fig-
ures. Table 2 shows the proportion of sites in these classes
for these transcription factors. The balance between the
four pairs of classes varies with the factor and there may
be a preferred orientation/choice of strand as may be
seen from the example results for ZNF263 and SRF
shown in Figures 2B and 2C. This tendency for binding
sites to occur in these classes applies to every transcrip-
tion factor — the lowest proportion of sites is 48% which
is still nearly twice the proportion expected from the
number of bases in these classes.

We ensured that in finding the positions of the binding
sites we used the same motifs that had been previously
reported. Logos for these motifs and cross references to
previous work are given in Additional File 2. In the hand-
ful of cases where the known motif was not found the
results were discarded.

We had little choice for which TF to use for a TF family
and for which cell line to use for a TF, and where there is a
choice, it is usually immaterial. This is shown in Table 3,
which gives a table of ENCODE experiments for those
TFs for which we have results. For consistency, the cell
line K562 has been used where possible for the detailed
analyses. (We discuss later whether the cell line influ-
ences the result.) Only for the ap1 family is there a real
choice, where the c-Fos result for GM128 is an outlier
from all the other results: here we have used the dataset
(c-Fos/K562) that gave 60%.

Table 1: Summary statistics for the mosaic classes of the human genome

Class pair A C G T Length CpG 
proportion

Proportion 
of genome

1 2 3 4 5 6 7 8

1 0.169 0.234 0.104 0.492 5.4 0.006 0.143

2 0.230 0.220 0.243 0.307 84.7 0.011 0.134

3 0.314 0.139 0.118 0.428 71.5 0.003 0.132

4 0.235 0.281 0.133 0.351 64.9 0.005 0.120

5 0.279 0.175 0.185 0.361 55.3 0.004 0.116

6 0.215 0.165 0.188 0.432 504.7 0.005 0.092

7 0.183 0.336 0.205 0.276 55.6 0.009 0.069

8 0.177 0.392 0.194 0.237 33.6 0.029 0.044

9 0.167 0.379 0.236 0.218 48.2 0.027 0.042

10 0.145 0.242 0.309 0.303 18.2 0.017 0.022

11 0.199 0.453 0.240 0.108 14.4 0.056 0.017

12 0.175 0.021 0.079 0.725 14.4 0.000 0.014

13 0.252 0.359 0.126 0.263 10.5 0.003 0.012

14 0.125 0.454 0.252 0.169 25.8 0.096 0.009

15 0.217 0.357 0.124 0.301 71.4 0.010 0.008

16 0.223 0.045 0.261 0.471 14.0 0.007 0.007

17 0.003 0.066 0.006 0.925 11.9 0.000 0.006

18 0.099 0.402 0.071 0.429 5.1 0.024 0.006

19 0.021 0.434 0.023 0.522 33.5 0.003 0.005

Each row refers to two classes, which we refer to as the a and b classes, each with the reverse complement properties of the other. The a class 
is the one with the higher percentage of T+C, and the base frequencies for this class are shown in columns 2-3-4-5. The frequencies for the b 
class are the same but with the A/T and C/G frequencies interchanged. Column 6 gives the mean length of the class in bases and column 7 
gives the proportion of doublets within the class that are CpG: these two quantities are the same for both the a and b classes. Column 8 gives 
the proportion of bases in the genome within both classes of the class pair: the total of column 8 is therefore 1.0. The class pairs have been 
numbered by the proportion of bases they contain. All values have been calculated from the fitted HMM: the parameters of this model are 
given in Additional File 1.
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We have also calculated the proportions of classes for
bases for the whole length of the subsequences in the
data. Given that this data is supposed to be enriched with
TFBSs, (at least with one BS and more if BSs come in
clusters), it would be a corollary of our results that these
sequences would be enriched with the preferred classes.

In fact, the proportion of bases in the preferred classes in
these subsequences is very similar to that for the binding
sites, (Figure 3). If it could have been assumed that bind-
ing sites were in typical positions on the subsequence,
then this result implies that the main thrust of our results

Figure 1 The mosaic classes of the human genome. Each circle represents one of the mosaic classes. The position of the circle shows the A/C/G/
T content:-(a) T+C by A+T, (b) T+G by A+T, (c) T+G by T+C. The area of the circle shows the proportion of the genome contained in the class. The 
preferred classes (pairs 2, 7, 9 and 14) contain the most transcription factor binding sites and are shown in red. The classes of pair 6 are comparatively 
long: they are plotted in the same way as the others but are shown in blue. The purpose of this plot is to give a visualisation of the mosaic classes. The 
genome is AT rich so it is not surprising that there is a preponderance of classes on the right hand side of Figures 1A and 1B. Strand symmetry gives 
an exact symmetry about the horizontal line T+C = 0.5 in (a) and T+G = 0.5 in (b). In (c), the strand symmetry shows itself as an axial symmetry--that is 
the line between paired classes is bisected by the central point. All proportions have been calculated from the steady state of the HMM.
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could have been deduced without knowing the exact
position of the binding site within the subsequence.

The experimental procedure is to break the DNA near
to and on each side of the TF binding site to give frag-
ments that are a few hundred bases long. The subse-
quence finally reported as containing the binding site is
defined by the position of the two ends estimated from

the distribution of the genomic positions of the fragment
ends. The neutral baseline sample of breakpoints, where a
particular TF is not being "pulled down", is variously
called the input signal or control library. The nature of
the bias inherent in a control library has been discussed
by [36], which observes biases from the copy number and
from different kinds of repeat regions being under or over

Figure 2 Classes at binding sites and in the promoter regions. The position of each mosaic class has been plotted as in Figure 1A. The area of each 
circle shows the proportion of binding sites in the class for (a) all 17 transcription factors (b) the transcription factor ZNF263 (c) the transcription factor 
SRF. Subplot (d) gives a comparison for bases in promoter regions (defined as the 1000 bases upstream of the TSS — the plot is based on all coding 
genes). The preferred classes are shown in red and contain (a) 75%, (b) 86% and (c) 79% of the binding sites. In (d) the preferred classes contain 60% 
of the bases--this percentage is high but not as high as for (a). The lack of symmetry in Figures 2B and 2C implies a preferred orientation/strand of the 
binding site within the class.
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represented, but the most important bias they report is
an enhancement near the transcription start site (TSS),
especially for highly expressed genes. This later point is
confirmed by [37,36] also make the point that the cell line
may affect the bias in the control library. The reader
might ask if any of these biases have affected our results.

A number of general arguments indicate that our
results are not affected by experimental bias. For 14 of the
TFs analysed the experimental protocol included direct
control for these biases [38,39] and the other experi-
ments, that is for CTCF, sp1 and p53, also included their

own checking procedures [2,40,41]. If there is any
remaining bias in these experiments, it must be well
behaved because the protocol produces uncontroversial
motifs, as noted above. Although control libraries have a
bias towards the TSS, as we discuss later, most of our
binding sites are in fact far from the TSS, so that this
aspect of the control bias is not represented in our final
results. There is some evidence concerning TFBSs: DNA-
seI hypersensitive sites are usually taken to be indicative
of regions containing a TFBS and reference [37] finds that
there is a moderate enhancement for DNAseI hypersensi-

Table 2: Distribution of transcription factor binding sites across mosaic classes

Data Source Factor P Sites Pair 2 Pair 7 Pair 9 Pair 14 Total

Note 1 Note 2 Note 3 Note 4 Note 5 Note 5 Note 5 Note 5 Note 6

HAIB-K562 GABP 0.71 2557 0.054 0.035 0.113 0.774 0.976

HAIB-K562 NRSF 0.74 2006 0.236 0.231 0.254 0.142 0.862

HAIB-K562 SRF 0.64 367 0.370 0.083 0.111 0.229 0.794

YALE-GM128 NFKB 0.50 2653 0.322 0.156 0.139 0.069 0.686

YALE-HCT116 TCF7L2 0.50 3386 0.281 0.111 0.060 0.030 0.483

YALE-HepG2 SREBP1 0.50 4958 0.237 0.092 0.137 0.276 0.742

YALE-K562b GATA1 0.52 3367 0.322 0.221 0.146 0.048 0.736

YALE-K562b TR4 0.51 541 0.144 0.083 0.216 0.426 0.870

YALE-K562b ZNF263 0.64 5098 0.049 0.194 0.466 0.147 0.856

YALE-K562 cFos 0.53 3746 0.287 0.186 0.111 0.018 0.603

YALE-K562 Max 0.60 3176 0.210 0.100 0.180 0.185 0.675

YALE-K562 NF-E2 0.81 4700 0.273 0.149 0.088 0.026 0.536

YALE-NT2D1 YY1 0.50 2967 0.252 0.135 0.157 0.333 0.876

YALE-K562-Ia30 STAT1 0.50 1039 0.398 0.104 0.077 0.059 0.638

ORegAnno CTCF 1.00 4858 0.202 0.181 0.353 0.169 0.905

TRANSFAC sp1 0.62 693 0.045 0.075 0.332 0.512 0.966

TRANSFAC p53 0.91 608 0.266 0.203 0.081 0.021 0.571

Average of 
above

0.232 0.138 0.178 0.204 0.751

Genome 
proportions

0.134 0.071 0.042 0.009 0.256

Model 
proportions

0.134 0.069 0.042 0.009 0.255

Promoter 
region

0.170 0.069 0.128 0.233 0.600

1) For Encode data, this column gives the track, cell line and a possible note on the experimental protocol. For the HAIB data replication 1 was 
used. 2) Name of factor. 3) This column shows, P, the proportion of sequences for which MAST found a binding site. 4) The number sites found 
by MAST: later columns show the proportion of these sites in the class pair specified. 5) The values quoted are the average probabilities of the 
site being in the class(es); they are not maximum likelihood estimates. 6) Total of preceding columns. 7) Three lines of comparative figures 
are given. The line "genome proportions" gives the result of applying the analysis to 20 thousand bases chosen at random from the genome: 
the line "model proportions" gives those of the long term average of the HMM: the line "promoter region" gives the proportions found from 
applying the model to the bases within 1000 bases upstream of the transcription start site of all coding genes. The equality of "genome 
proportions" and "model proportions" is a cross check on the consistency of the calculations.
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tive sites near TSSs, but there is very little enhancement
for distant sites. We also note that the binding site tends
to be at the middle of the reported subsequence, Figure 4:
that is away from any end effect which might be associ-
ated with the breakpoint itself. There is some complexity,
because Auerbach et al. [37] suggest that protein binding
in a region makes it more likely for that region to be
enhanced in a control library and this would imply that
TFBSs are more likely to occur in regions of higher tag
density in the control library: and we have observed such
a bias in the data — details not shown. However, we are
confident that our results are true because of the follow-
ing analysis. There are many TFBSs in regions where the
tag density in the control library is low and we have anal-
ysed the mosaic classes of these TFBSs. In the data, the
tag density is given in integral values and we have found
the median value M of 10 k bases chosen at random
[chromosome 1 was used to find M]: we then found the
subset of TFBSs for which the tag density in the control
library at the binding site was zero or strictly less than M.
The results for the TFs in the cell lines K562/K56b from

the YALE track show that the BSs from low tag density
regions in the control data have the same character as the
other BSs — see Table 4.

To see if our results depend on the cell line, we have
divided the ENCODE experiments into three groups:
GM128, K562 and "Other". Many of the results are for
K562, which appears to be a favourite cell line for this
experiment. K562 is derived from cancerous cells, and it
is plausible that this might affect the results. The other
lines are also derived from cancer cells except for GM128
which has therefore been examined separately. Using a
representative TF for each TF family, we calculated the
mean proportion of sites in the preferred classes in each
group of cell lines — see Table 5. Table 5 also shows the
lower 95% confidence limit for a one tailed t-test. We
conclude that each of these three groups of cell lines gives
the same result and that our conclusions do not rely on
any one cell line.

We now discuss if our results have a simple biological
explanation. Most binding sites are far from the TSS: see
[2] which reports only 22% of actual binding sites being

Table 3: Summary of available experiments by cell line giving proportion of binding sites in the preferred classes

Factor Cell line

GM128 K562 HeLa HepG2 NT2D1 HCT116

GABP 0.991 0.976

NRSF 0.844 0.862

SRF 0.851 0.794

JunD 0.293 0.687

cFos 0.603 0.475

cJun 0.602

Max 0.675

SREBP1 0.742

SREBP2 0.734

STAT1 0.638 0.519

TR4 0.870 0.871 0.910

GATA1 0.736

GATA2 0.625

NF-E2 0.536

TCF7L2 0.483

Rad21 0.721

NFKB 0.686

YY1 0.876

ZNF263 0.856

This table summarises the ENCODE data for those transcription factors for which we found a motif from the MEME analysis and for which we 
had permission to use at the time of writing: it includes the JunD-GM128 result which is anomalously low. Other experimental treatments for 
cJun-K562 gave Ia6 = 0.637, Ig6 = 0.554, Ig30 = 0.573. For STAT1, the treatments were K562-Ia30 and HeLa-Ig30.
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Figure 3 Binding sites versus entire subsequences -- proportion 
of bases in the preferred classes. For each transcription factor, the 
proportion of binding sites in the preferred classes has been plotted 
against the proportion of all bases in the preferred classes in all the se-
quences of the dataset. The latter proportion has been calculated for 
each sequence separately and then averaged over the sequences of 
the dataset. There is a strong relationship between the plotted vari-
ables: the correlation coefficient is 0.78.
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binding site, we have calculated p = the number of bases to the nearer 
end of the subsequence divided by the length of the subsequence; 
and for each dataset we have calculated the histogram of these pro-
portions. The Figure shows the average heights of the histograms of 
individual datasets and shows a strong tendency for the binding site to 
be in the middle of the subsequence.
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Table 4: Proportion of binding sites in the preferred classes for regions of low tag density in the control library

Factor Number TFBS Number TFBS Ratio (3)/(2) Proportion in 
preferred classes

Proportion in 
preferred classes

All Low tag All Low tag

1 2 3 4 5 6

GATA1 3367 1681 0.499 0.736 0.703

TR4 541 247 0.457 0.870 0.860

ZNF263 5098 3297 0.647 0.856 0.835

cFos 3746 1834 0.490 0.603 0.561

Max 3176 1382 0.435 0.675 0.614

NF-E2 4700 2322 0.494 0.536 0.489

Average of above 0.504 0.713 0.677

Column 2 gives the number of sites and column 5 the proportion of TFBSs in the preferred classes for all TFBS (as in columns 4 and 9 of Table 
2). Columns 3 and 6 give this information for regions of low tag density in the control library, "sparse regions". Column 4 gives the proportion 
of sites in these regions. Note that the final column is very close to the preceding column and that often a substantial fraction of TFBSs are in 
"sparse regions". We conclude that the final results are not affected by experimental bias reflected in the control library. This analysis has been 
done for the "YALE" experiments using cell lines K562 and K562b. For K562, "sparse regions' were defined as a tag density of 0 or 1 in the input 
signal, and for K562b as a tag density of 0, 1 or 2.
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within 1 kb of the TSS: compare the figure given by [1] of
53.5% of DNaseI hypersensitive sites as being further
than 2500 bases from a TSS. For the TFs analysed in the
current datasets, the proportion of actual binding sites
further than 1500 bases from the TSS varies from TF to
TF, but a typical figure is 80% to 90%, (Table 6, column 3).
It is therefore not possible to explain our results by argu-
ing that the proportions of classes found for binding sites
reflect the proportions of classes in promoter regions.
Sites far from the TSS (Table 6) show the same tendency
as all sites to occur in the preferred classes (Table 2). For
sites close to the TSS, an even higher proportion of sites,
87%, are in the preferred classes, but this result comes
from the predominance of pair 14, which has a high pro-
portion of CpG doublets (Table 7). There are, however,
some points of similarity between the proportion of sites
in the preferred classes and the proportion of bases in
promoter regions — see Figure 2D — and we speculate
that this could arise because promoter regions must be
suitable for TFBSs.

Another trivial explanation of our results might be that
subsequences are generated at random within each class
and the preferred classes shown in Table 2 are merely
those classes which are most likely to generate the motif
of the factor. This explanation is not likely to work for as
many as seventeen factors, but this possibility has been
tested as follows. For each transcription factor we used
the motif found by MEME in finding the exact binding
site positions, and counted the number of occurrences of
this motif in artificial sequences representative of each
class — see the Methods Section for details. The propor-
tion of occurrences of motifs in each class is not a useful
predictor of the proportion of sites in each class, neither
for individual classes (see Figure 5), nor for the total in
the preferred classes (see Figure 6). More detailed results
are given in Table 8.

Using the data plotted in Figure 6, we find the following
statements to be statistically significant. The proportion
of sites in the preferred classes is greater than the propor-
tion of bases in the genome: a one-sided T-test gives n =

Table 5: Comparison between cell lines--total of preferred classes

Factor Cell line

GM128 K562 Other

GABP 0.991 0.976

NRSF 0.844 0.862

SRF 0.851 0.794

JunD 0.293

cFos 0.603 0.475

Max 0.675

SREBP1 0.742

STAT1 0.638 0.519

TR4 0.870 0.871

GATA1 0.736

NF-E2 0.536

TCF7L2 0.483

NFKB 0.686

YY1 0.876

ZNF263 0.856

Count 5 10 6

Average 0.733 0.755 0.661

Confidence Limit 0.477 0.674 0.503

This table gives a comparison between cell lines using a representative transcription factor for each family from Table 3. The last row gives 
the lower 95% confidence limit for the mean of the values in the column based on a one-sided t-test. The calculation includes the 
anomalously low value for JunD. We conclude that the choice of cell line does not affect the conclusion that TFBSs mainly occur in the 
preferred classes.
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17, df = 16, t = 13.4, p = 2.0e-10, and the 95% lower confi-
dence limit of average proportion of sites = 0.68 (~0.43
more than the proportion of bases). The difference
between the proportion of sites and the proportion of
motifs in these classes is greater than zero: a one-sided T-
test gives n = 17, df = 16, t = 11.2, p = 2.7e-9, and the 95%
lower confidence limit of average difference = 0.37. On
the other hand, a comparison between the proportion of
motifs and the proportion of bases has a much higher p-
value:- a one-sided T-test gives n = 17, df = 16, t = 1.8, p =
0.047, and the 95% lower confidence limit of average pro-
portion of motifs = 0.257 (to be compared with the pro-
portion of bases, 0.256). A prior Shapiro-Wilk test did not
show any departure from normality for the samples: the

sample of site proportions gave p = 0.54 and for the motif
proportions p = 0.75.

Conclusions
We find that the preferred mosaic classes contain 75% of
experimentally verified binding sites for transcription
factors from seventeen families of transcription factors.
The same mosaic classes constitute 26% of the genome
and contain only 31% of the motifs for these factors.
These results are shown in Figure 6. This method of anal-
ysis will help with the problem of false positive binding
sites found by computational methods. These results
must mirror the biological and physical processes
involved and imply a profound difference between the
mosaic classes.

Table 6: Distribution of transcription factor binding sites across mosaic classes for sites more than 1500 bases from a TSS

Data Source Factor Q Sites Pair 2 Pair 7 Pair 9 Pair 14 Total

Note 1 Note 2 Note 3 Note 4 Note 5 Note 5 Note 5 Note 5 Note 6

HAIB-K562 GABP 0.23 593 0.087 0.126 0.254 0.458 0.925

HAIB-K562 NRSF 0.85 1714 0.261 0.254 0.264 0.069 0.849

HAIB-K562 SRF 0.76 280 0.424 0.098 0.119 0.112 0.752

YALE-GM128 NFKB 0.85 2267 0.336 0.169 0.132 0.021 0.658

YALE-HCT116 TCF7L2 0.91 3075 0.280 0.116 0.057 0.012 0.466

YALE-HepG2 SREBP1 0.57 2844 0.283 0.132 0.135 0.065 0.615

YALE-K562b GATA1 0.89 3011 0.330 0.231 0.139 0.021 0.721

YALE-K562b TR4 0.35 191 0.144 0.162 0.322 0.110 0.738

YALE-K562b ZNF263 0.80 4079 0.051 0.221 0.501 0.073 0.845

YALE-K562 cFos 0.94 3523 0.290 0.190 0.107 0.011 0.598

YALE-K562 Max 0.77 2453 0.237 0.121 0.193 0.065 0.615

YALE-K562 NF-E2 0.93 4380 0.275 0.152 0.086 0.011 0.524

YALE-NT2D1 YY1 0.61 1804 0.338 0.203 0.189 0.099 0.828

YALE-K562-Ia30 STAT1 0.86 898 0.414 0.111 0.067 0.019 0.611

ORegAnno CTCF 0.90 4368 0.212 0.192 0.363 0.134 0.901

TRANSFAC sp1 0.41 281 0.063 0.151 0.529 0.206 0.949

TRANSFAC p53 0.95 579 0.271 0.210 0.075 0.004 0.560

Average of 
above

0.253 0.167 0.208 0.088 0.715

Genome 
proportions

0.134 0.071 0.042 0.009 0.256

Model 
proportions

0.134 0.069 0.042 0.009 0.255

Promoter region 0.170 0.069 0.128 0.233 0.600

Note 8) Column 3 gives the proportion, Q, of sites that are more than 1500 bases from a transcription start site, and column 4 gives the number 
of these sites. Other notes are as for Table 2.
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Recent research shows that biologically effective bind-
ing sites have a range of binding affinities which lead to a
corresponding range of gene expression levels [42,43]. It
would be interesting to see if the mosaic class which con-
tains a transcription factor binding site also affects the
expression level.

Another area for research would be to repeat the analy-
sis for a defined subset of the genome to see if a different
set of mosaic classes emerged. One interesting result
would be if some parts of the genome showed mosaic
classes preserved from an earlier stage of evolution — for
example before CpG doublets degraded to CpA doublets.
It would also be instructive to perform similar analyses
using a large scale biological feature to identify a pre-
ferred strand. We have done some exploratory work on
the approximate symmetries shown in Figure 1, and we
think there is more to be said on this subject.

Methods
The mathematical framework
Our results on mosaic classes come from using a Hidden
Markov Model (HMM) to model a large sample of the
human genome. The analysis is entirely independent of
any data on the position of transcription factor binding
sites. In the HMM, each mosaic class has been modeled
as a single state which implies that the length distribution
in the model will be a simple exponential distribution.
The probability of a base has been taken to depend on the
class and the immediately previous base. The model was
trained using the Expectation-Maximisation (E-M) algo-
rithm — references and formulae are given in Additional
File 3. The training was continued until convergence was
achieved for the proportion of the genome represented
by each class and for the base proportions within each

Table 7: Distribution of transcription factor binding sites across mosaic classes for sites less than 1500 bases from a TSS

Data Source Factor Q Sites Pair 2 Pair 7 Pair 9 Pair 14 Total

Note 1 Note 2 Note 3 Note 4 Note 5 Note 5 Note 5 Note 5 Note 6

HAIB-K562 GABP 0.77 1964 0.045 0.007 0.071 0.869 0.991

HAIB-K562 NRSF 0.15 292 0.091 0.091 0.192 0.567 0.940

HAIB-K562 SRF 0.24 87 0.197 0.035 0.087 0.609 0.928

YALE-GM128 NFKB 0.15 386 0.238 0.081 0.184 0.347 0.850

YALE-HCT116 TCF7L2 0.09 311 0.295 0.062 0.089 0.207 0.652

YALE-HepG2 SREBP1 0.43 2114 0.174 0.036 0.141 0.560 0.911

YALE-K562b GATA1 0.11 356 0.256 0.132 0.201 0.276 0.865

YALE-K562b TR4 0.65 350 0.145 0.040 0.158 0.599 0.943

YALE-K562b ZNF263 0.20 1019 0.041 0.089 0.329 0.443 0.902

YALE-K562 cFos 0.06 223 0.242 0.137 0.176 0.133 0.688

YALE-K562 Max 0.23 723 0.121 0.029 0.136 0.592 0.877

YALE-K562 NF-E2 0.07 320 0.249 0.106 0.120 0.225 0.699

YALE-NT2D1 YY1 0.39 1163 0.119 0.029 0.107 0.696 0.951

YALE-K562-Ia30 STAT1 0.14 141 0.298 0.061 0.140 0.313 0.812

ORegAnno CTCF 0.10 490 0.110 0.081 0.258 0.486 0.935

TRANSFAC sp1 0.59 412 0.033 0.024 0.198 0.722 0.977

TRANSFAC p53 0.05 29 0.166 0.062 0.194 0.365 0.787

Average of above 0.166 0.065 0.164 0.471 0.865

Genome 
proportions

0.134 0.071 0.042 0.009 0.256

Model 
proportions

0.134 0.069 0.042 0.009 0.255

Promoter region 0.170 0.069 0.128 0.233 0.600

Note 8) Column 3 gives the proportion, Q, of sites that are less than 1500 bases from a transcription start site, and column 4 gives the number 
of these sites. Other notes are as for Table 2.
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class. All emission and transition probabilities may have
different values when the model is trained.

Classes have been matched in pairs, with the emission
probabilities of the paired classes showing A/T and C/G
symmetry. This symmetry also means that the transition
probability between two classes is the same as that
between their matched counterparts. These symmetries
have been imposed at initialisation and maintained at
each iteration.

Variability in the analyses comes from two sources: the
initialisation of the HMM and the choice of sequence
used to train the HMM. The variability has been con-
trolled by using eight replications with different initialisa-
tion and different training sequences, with each
replication using 6000 sequences of 2000 bases. These
sequences were taken at random positions from the
whole genome, assembly NCBI36, taken from Ensembl
[44].

A common subset of classes from these replications
was obtained as follows. The classes were considered in
the space defined by the three coordinates T+A, T+C,
T+G as defined by the steady-state model average and

classes of different replication runs were matched if they
were close together in this space. Classes were put into
sets, so that each set contained one class from each run,
with the aim of firstly maximising the number of sets and
secondly minimising the average distance between
classes within a set. A class was not put into a set unless it
could be put into a set where it was close to other classes
in the set. The procedure was as follows: in step one, the
classes from runs 1 and 2 were matched and the position
of each resulting pair was averaged: in the second step
these positions were then matched with the classes from
run 3: this step was repeated with the average position
from the previous step being matched with the classes of
the next run. Matching was only allowed between classes
(or positions) within a distance, (D, taken as 0.12) in the
base-proportion-space, but within that constraint, at
each step, the algorithm made a complete search of how
the classes should be matched to find the optimum in
terms of number of sets and average distance. When find-
ing the average position of pairs of classes, weights were
used so that each run made an equal contribution to the
final average. This procedure does not guarantee the
global optimum and the heuristic was used of taking the
best result when the runs were arranged in different

Figure 5 Proportion of binding sites versus proportion of motifs 
for individual classes. For each of the 17 transcription factors, the pro-
portion of binding sites in each mosaic class has been plotted against 
the proportion of motifs found in this class. The preferred classes have 
been plotted in red and the other classes in blue. As there are 19 pairs 
of classes, (4 pairs of preferred classes and 15 pairs of non-preferred 
classes), each transcription factor contributes 8 red points and 30 blue 
points to the graph. There is a correlation between the variables 
(Spearman coefficient = 0.68), but this comes from the mass of points 
near the x-axis, so that the proportion of motifs is not a useful predictor 
of the proportion of sites. Not plotted is a red point outlier at (0.01, 
0.62).
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Figure 6 Proportion of binding sites versus proportion of motifs 
in the preferred classes. For each of the 17 transcription factors, the 
proportion of binding sites in the preferred classes has been plotted 
against the proportion of motifs in these classes. The height of the hor-
izontal line gives the proportion of all bases in the genome in these 
classes. The Figure shows that for the preferred classes the proportion 
of sites is greater than the proportion of motifs: it also shows that the 
proportion of motifs is not a good predictor of the proportion of sites 
for these classes. It can also be seen that the proportion of sites is great-
er than the proportion of the genome in the preferred classes.
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orders: we used (8 × 7 × 6 × 5) orders: that is all the orders
of the replication runs which differ in the first four places.

When a common subset of classes had been obtained
the emission probabilities and transition probabilities of
the matched classes were averaged and strand symmetry
of paired classes reimposed. This average-model was
used to initialise a final round of training using the same
48 thousand sequences of 2000 bases as were used in the
initial eight replications. The parameters of the final
HMM are given in Additional File 1.

This protocol was designed after earlier experiments in
which classes were merged during the HMM training if
they came close together in the space of base proportions.
These experiments suggested that there were around
three dozen classes and therefore to allow for some spuri-
ous classes in some runs, 50 classes were used to initialise
the eight replications.

To give an indication of the statistical robustness of the
method, Figure 7 shows the results of the eight constitu-
ent runs. This Figure shows that the classes are well
defined. It also shows — as is to be expected — that using

different sequences for the analysis will affect the results.
Figure 8 gives a quantitative demonstration of statistical
robustness. This Figure shows the position of the classes
in the average-model, and an estimate of the uncertainty
in these positions. This uncertainty is shown by the
radius of the circles and can be seen to be small: the
uncertainty has been calculated analogously to the stan-
dard error to the mean, as the root mean square distance
from the composite-class to the constituent classes
divided by the square root of the number of classes. Fig-
ure 8 also shows the position of the final classes after the
final training run: in general the final position is near the
initial position.

Finding classes for the Binding Sites
The positions of subsequences containing binding sites
was obtained from the UCSC browser [45] using tracks
created for the ENCODE project [1] and the tables
labeled "peaks":- for three factors from the "HAIB TFBS"
data [38], (ENCODE November 2008 and February 2009
freezes) and for eleven factors from the "YALE TFBS"

Table 8: Distribution of motifs across mosaic classes

Transcription 
factor

Mosaic classes

Pair 2 Pair 7 Pair 9 Pair 14 Total

GABP 0.133 0.102 0.058 0.021 0.314

NRSF 0.176 0.148 0.096 0.011 0.430

SRF 0.131 0.033 0.009 0.001 0.173

NFKB 0.211 0.108 0.058 0.008 0.385

TCF7L2 0.125 0.039 0.009 0.001 0.175

SREBP1 0.198 0.101 0.074 0.014 0.387

GATA1 0.079 0.027 0.006 0.001 0.112

TR4 0.180 0.097 0.046 0.005 0.328

ZNF263 0.055 0.099 0.052 0.010 0.216

cFos 0.183 0.094 0.042 0.002 0.322

Max 0.141 0.079 0.060 0.010 0.290

NF-E2 0.159 0.090 0.037 0.002 0.288

YY1 0.111 0.045 0.016 0.002 0.174

STAT1 0.160 0.039 0.012 0.002 0.213

CTCF 0.159 0.168 0.164 0.041 0.532

sp1 0.082 0.152 0.182 0.074 0.491

p53 0.182 0.126 0.086 0.013 0.406

Average of above 0.145 0.091 0.059 0.013 0.308

This table gives the proportion of motifs in the class pair for each transcription factor: the value has been derived from artificial sequences 
and adjusted for the relative proportion of bases in each class in the human genome. This table is to be compared with Table 2 which gives 
the distribution of actual binding sites.
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data [39], (release 2 of October 2009). We also used data
[40] for CTCF from the ORegAnno database (version
17th September 2008) [46], and for sp1 [2] and p53 [2,41]:
the data for sp1 and p53 was extracted from TRANSFAC
[47] professional version 11.4 and the flanking bases
added by TRANSFAC were removed. (For the ENCODE
and CTCF data, if there were more than 5000 sequences
in a dataset then about 5000 sequences were chosen
evenly from the dataset for further analysis. Sequences
longer than 700 bases were then excluded: sequences less
than 30 bases were extended by 15 bases on each side.
Sequences were also excluded from the masked data if
more than a quarter of the bases were masked. In some
cases the motif was found from a different subset of
sequences than later used to find the binding sites.) The
genomic coordinates of these subsequences were used to
obtain the RepeatMasked sequence [48] from Ensembl
[44], which was then analysed by MEME [10,49] to find
the binding site motif of the transcription factor. MEME
generated three motifs for consideration. Logos for these
motifs were drawn with Weblogo [50] and checked
against logos previously reported. (MEME does not find
the motif for sp1 unaided and was initialised with the
motif CCCCGCCCCC.) Using the version of the known

motif found by MEME and the corresponding unmasked
sequences, the positions of the binding sites within these
sequences were found by MAST, a companion tool of
MEME. MAST needs a parameter, mt, the threshold for
the p-value, to determine how many sites will be reported
and we normally used the default, (0.0001), for this. How-
ever, in some cases this procedure only finds a motif in a
small proportion of sequences, and if necessary the value
of mt was increased so that a motif was found in at least
half the sequences. In fact, the final results are largely
unaffected by the choice of mt. The position of all sites
found by MAST in the subsequences was then cross ref-
erenced to the position in the genome.

The non-masked sequence of length 4000 bases with
the motif in the middle was analysed using the final
HMM model to determine the class in which the motif
occurred. For this we calculated the probability (of a base
being in each class) as in the expectation step of the EM-
algorithm. This is not the same as using the maximum
likelihood estimate (as in the Viterbi algorithm) of the
class containing the binding site to calculate the class
proportions. For the classes selected for Table 2, the max-

Figure 7 Classes from constituent runs — T+C versus A+T. The 
classes found from each of the 8 preliminary replication runs have 
been overlaid on the same plot. The classes have been plotted by their 
A+T and T+C content as in Figure 1A, except that the figure includes 
only classes with T+C > 0.5 — the omitted classes mirror those shown. 
The plot shows a strong similarity between the results of the replica-
tion runs, showing the reproducibility of the method--a point taken up 
in Figure 8. Each replication run was randomly initialised with 25 pairs 
of matched classes, and trained on 6000 sequences of 2000 bases tak-
en at random from the human genome.
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Figure 8 Uncertainty in the A+T and T+C proportions of the mo-
saic classes. The circles show the position of the classes used to initia-
lise the final HMM training run. The radius of these circles is the 
standard error of this initial position calculated from the positions of 
the classes averaged to produce these initial classes--compare Figure 
7. The line from each circle shows the position of the class after the final 
HMM training run, which is also shown in Figure 1A. The figure shows 
only the region T+C > 0.5--the omitted region mirrors the region 
shown. The statistical robustness of the method for deriving the mosa-
ic classes is demonstrated by i) the consistency of the results of the pre-
liminary runs shown by the small size of the circles and ii) the small 
difference between the classes at the beginning and end of the final 
training run shown by the short length of the lines.
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imum likelihood estimates are slightly higher than those
shown, and lead to a slight (apparent) discrepancy
between the theoretical model distribution and the
observed genome distribution.

Analyses of promoter regions are based on all coding
genes as defined by Ensembl 52.

Estimating proportion of motifs by class
For each class, the HMM was used to generate artificial
sequences (10 sequences of 1 million bases). For each
transcription factor, MAST [10], a sister tool of MEME,
was used to identify and count positions of the motif in
the artificial sequences using its default parameters and
the motif found by MEME. The proportion of motifs in
each class was calculated in proportion to a × b × c where
a = the number of bases in the genome, b = the propor-
tion of all bases in the mosaic class, and c = the number of
motifs per 10 million bases found from the MAST analy-
sis.
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