
ORBIT - Online Repository of Birkbeck Institutional Theses

Enabling Open Access to Birkbeck’s Research Degree output

Glue TAG semantics for binary branching syntactic
structures

https://eprints.bbk.ac.uk/id/eprint/40168/

Version: Full Version

Citation: Burke, Luke Edward (2016) Glue TAG semantics for binary
branching syntactic structures. [Thesis] (Unpublished)

c© 2020 The Author(s)

All material available through ORBIT is protected by intellectual property law, including copy-
right law.
Any use made of the contents should comply with the relevant law.

Deposit Guide
Contact: email

https://eprints.bbk.ac.uk/id/eprint/40168/
https://eprints.bbk.ac.uk/theses.html
mailto:lib-eprints@bbk.ac.uk

Glue TAG semantics for binary branching
syntactic structures

Luke Edward Burke

A thesis presented for the degree of
M.Phil Studies in Philosophy

Department of Philosophy
Birkbeck college, University of London

UK

Declaration

I declare that this thesis is solely my own work. To the best of my knowledge, it does not contain
material created by another person for a comparable purpose. Wherever other peoples work has
been used (either from a printed source, Internet or any other source), this has been properly
acknowledged and referenced.

Abstract

This thesis presents Gl-TAG, a new semantics for a fragment of natural language including simple
in/transitive sentences with quantifiers. Gl-TAG utilises glue semantics, a proof-theoretic seman-
tics based on linear logic, and TAG, a tree-based syntactic theory. We demonstrate that Gl-TAG is
compositional, and bears similarities to other approaches towards the semantics of quantifiers.

Chapter 1, rather than discussing the arguments of the thesis as a whole, outlines the global pic-
ture of language and semantic theory we adopt, introducing different semantics for quantification,
so that Gl-TAG is understood in the proper context.

Chapter 2, the heart of the thesis, introduces Gl-TAG, illustrating its application to quantifier
scope ambiguity (Qscope ambiguity) and binding. Ways of constricting quantifier scope where
necessary are suggested, but their full development is a topic of future research.

Chapter 3 demonstrates that our semantics is compositional in certain formal senses there dis-
tinguished. We then conclude our findings, pointing out ways in which our research could be
developed further.

In closing we mention one particularly interesting philosophical and logical aspect of Gl-TAG:
that it depends on proof theoretic methods. Glue semantics combines semantic values both by
harnessing the inferential power of linear logic and by exploiting the Curry-Howard isomorphism
(CHI) familiar from proof theory (see chapter 2 for an explanation of the CHI). The semantic value
of a proposition is thus a proof, as some proof theorists have desired (see Martin-Löf (1996). This
raises a question for future research; namely, whether Gl-TAG is an inferential semantics in the
sense that some philosophers have discussed (Murzi and Steinberger (2015)).

An appendix is provided, showing how our account of quantification bears striking similarities
to that proposed in Heim and Kratzer (1998), and also to Cooper storage (Cooper ((1983))); in fact,
we can set up a form of Cooper storage within Gl-TAG. We suggest that the features in common
between frameworks highlight the possible formal similarities between the approaches.

Acknowledgements

I want to thank Paul Elbourne, Ash Asudeh, Matthew Gotham, Wilfred Meyer-Viol and Patrick
Elliott, for wonderful help.

I also thank Wilfrid Hodges, Dag Westerståhl, Herman Hendriks, Florian Steinberger, Owen
Rambow, Neil Barton, Karl Egerton, Simon Hewitt, Dide Siemmond, Benoı̂t Gréan and my par-
ents.

Special thanks go to Beñat. Without the dynamic dislocation his physical theories have uncov-
ered and the shock unloading (Gurrutxaga-Lerma et al. (2013)) I would never have glued myself
together (nor the trees, oh the trees!).

Contents

Technical preliminaries 0
0.0.1 Syntax . 1
0.0.2 X-bar theory . 2
0.0.3 Semantics . 4
0.0.4 Basic type theory . 4
0.0.5 The lambda calculus . 6
0.0.6 Algebra . 7

1 Introduction 9
1.1 Language and semantic theory . 9

1.1.1 Semantic values and meanings . 10
1.1.2 Semantic theory: through thick and thin 11

1.2 Approaches to quantification . 13
1.2.1 Two syntactic approaches . 13
1.2.2 Two semantic approaches . 16
1.2.3 Conclusion . 23

2 A taste of glue 24
2.1 Introduction . 24

2.1.1 What is linear logic? . 24
2.2 Glue: an introduction . 26

2.2.1 Example I: Transitive with Proper Name Arguments 28
2.2.2 Example II: Transitive with Quantifier Object 28
2.2.3 Example III: Scope Ambiguity . 29

2.3 Glue parse trees and TAG . 30
2.3.1 Parse trees . 30
2.3.2 TAG grammars . 34

2.4 Gl-TAG . 37
2.4.1 Simple in/transitive sentences . 37
2.4.2 Quantifiers . 42
2.4.3 Q scope ambiguities . 48
2.4.4 Binding . 62
2.4.5 Constraints on adjunction . 63
2.4.6 Conclusion . 69

3 Gl-TAG and compositionality 70
3.0.7 Introduction . 70

3.1 Compositionality . 70
3.1.1 Montague-Hendriks-Jannsen . 70
3.1.2 Hodges (2001) . 72
3.1.3 Strengthening compositionality . 73

3.2 Compositionality and Qscope ambiguities . 74
3.2.1 Approach 1: Jonnsen compositionality . 75
3.2.2 Approach 2: Westerståhl’s relational compositionality 80

3.3 Conclusion . 82
3.3.1 Future research and reflections . 83

Technical preliminaries

We here provide the necessary technical background for our thesis.
0.0.1 sketches the syntactic theory we presuppose. 0.0.3 discusses the simply typed λ-calculus

and type theoretical semantics assumed in much of the literature. Finally, (0.0.6), introduces the
algebra needed for chapter 3.

0.0.1 Syntax
Sentences have structure. Parts of sentences contribute to other sentences and act as units, called
constituents (Carnie (2010)). In “My cup of tea is without milk”, “My cup of tea” is a constituent,
whereas “of tea is without” is not. Constituency tests (Adger (2003)), which sort expressions
into syntactic categories of the same type, provide evidence that sentences are structured into
constituents.

Our semantics, Gl-TAG, applies to constituent-structure trees, such as the following:

S

VP

V

smokes

DP

N

Kim

The tree consists of a root node, labelled ‘S’, representing the syntactic category of a sentence,
and two branches, one for the two main constituents of the sentence, a determiner phrase and a verb
phrase. N and V are terminal nodes with expressions attached to them. The categories DP and VP
are immediate constituents of S, and S is said to immediately dominate its immediate constituents.
A category immediately dominates its immediate constituents and dominates the constituents of
its constituents.

Definition 1 (see Blackburn and Meyer-Viol (1997))

A finite binary branching tree is a tuple (W ,�1 ,�2 , root ,Θ) where
W is a finite, non-empty set, the set of tree nodes; Θ(⊆W) contains all and only the trees

terminal nodes; and root is the (unique) root node of the tree. �1 and �2 are binary relations
such that:

1

Glue TAG semantics for binary branching syntactic structures

for all w ,w ′ ∈W ,w �1 w ′ iff w ′ is the left hand side daughter of w ; and

w �2 w ′ iff w ′ is the right hand side daughter of w .

Note that �1 and �2 are partial functions, for any node in an ordered binary tree has at most one
left hand side daughter and at most one right hand side daughter.

Further note that if w �2 w ′ then there exists a unique w ′′ such that w �1 w ′′.

Moreover, w ′′ 6= w .

Constituent structures are mathematically defined and axiomatised in (Hodges 2012: 588-589).
The axiomatisation captures the role constituents play in any Bare Grammar ((Keenan and Stabler
1999)), a formalism distilling the common formal core of various syntactic frameworks.

Hodges’ axiomatisation is based on the intuition that, if f is a constituent of e, some part of f
coincides with e, and we can remove this part of e to produce a frame which can be filled in by
other expressions:

Definition 2 (Hodges (2012))
A constituent structure is an ordered pair of sets (E, F), where E is the set of grammatical expres-
sions (e, f, ...) and F is the set of frames (F,G,H, ...), satisfying the following four conditions:

1. F is a set of nonempty partial functions on E. The partial function F (ξ1 , ..., ξn) yields a
member of E when e1 , ..., en are plugged into it, namely F (e1 , ..., en).

2. Nonempty Composition: If F (ξ1 , ..., ξn) and G(η1 , ..., ηm) are frames, 1 6 i 6 n, and
there is an expression

F (e1 , ..., en ,G(f1 , ..., fm), ei+1 , ..., en)
then
F (ξ1 , ..., ξi−1 ,G(η1 , ..., ηm), ξi+1 , ..., ξn))
3. Nonempty Substitution: If F (e1 , ..., en is an expression, n > 1 and 1 ≤ i ≤ n, then
F (ξ1 , ..., ξi−1 , ei , ξi+1 , ..., ξn)
is a frame.
4. Identity : There is a frame 1(ξ) such that for each expression e, 1 (e) = e.
(b) An expression e is a constituent of an expression f if f is G(e) for some frame G ; e is a

immediate constituent of an expression f if e is a constituent of f and e 6= f .
(c) A set Y of expressions is cofinal if every expression of L is a constituent of an expression

in Y.

Hodges (2012) defines a syntactic category as follows:

Definition 3 The syntactic category of e and f are identical (e ∼X f) iff for each 1-ary G ∈
F, G(e) ∈ X iff G(f) ∈ X .

The set of expressions of syntactic category X is then the equivalence class [X] with respect to
preservation of grammaticality under ∼X .

0.0.2 X-bar theory
X-bar theory (Carnie (2010), Kornai and Pullum (1990)) postulates that every head X of whatever
syntactic category projects the same type of basic tree structure:

2 Chapter 0 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(1)

XP

X′

X′

YPX′

WPX

YP

ZP

Basic schemes
X-bar

• XP : (ZP) X
A phrase (XP) comprises at least a bar-level projection (X) and an optional specifier, ZP.
(brackets indicate optionality).

• X : YP X or X: X YP
A bar-level projection (X) can contain another bar level projection X and an adjunct, YP.
Since YP is a phrase which can again contain another phrase we account for recursive
structures in the syntax.

• X : X (WP)
A bar-level projection (X) consists of a head of the same category (X) and a complement,
WP.

We note three facts:

1. The specifier is immediately dominated by XP.

2. A phrase that is a sister to a single bar level (N’) and a daughter of a single bar level (N’) is an
adjunct.

3. The sister to X and daughter of X′ is the complement of the head.

X-bar theory allows us to characterise a structural distinction between complements and ad-
juncts. X bar theory also allows us to rule out given phrase structure rules which do not correspond
to structures in natural language, such as (2):

Chapter 0 Luke E. Burke 3

Glue TAG semantics for binary branching syntactic structures

(2) NP→ V AdjP

X-bar theory is endocentric: it ensures that every XP contains a head of type X, and thus (2) is not
possible.

0.0.3 Semantics
The lambda calculus and type theory are often used by semanticists (see Montague (1975), Cress-
well (1973), Partee (1975), Williams (1983), Dowty et al. (1981), Dowty (1979), Janssen (1983),
Heim and Kratzer (1998)) and so we now introduce them.

0.0.4 Basic type theory
In a typed language, well-formed expressions that denote the same kinds of entity are assigned
a type, and types are collected into domains called frames (The frame Da is the set of possible
denotations of expressions of type a).

We adopt an extensional type theory (see Henkin (1950) and Gallin (1975) for model-theoretic
details). The set of types is defined recursively as follows:

Definition 4 1. e is a type.

2. t is a type.

3. If α and β are types then 〈α, β〉 is a type.

In lieu of 3, the following rule may be adopted: (i) If 〈a1 , ..., an〉 and b are types, then
〈a1 , ..., an , b〉 is a type.)

Definition 4 generates 〈α, 〈α, β〉〉, 〈〈α, 〈α, β〉〉, 〈α〈α, β〉〉, as the reader should check.

Central to applications are curried functions:

Definition 5 Given a function f : (X × Y)→ Z , we have an equivalent series of functions,
Curry(f) : X → (Y → Z) . Curry(f) takes an argument of type X and returns a function of
type (Y → Z), reducing many-place functions to chains of single-argument functions. Thus,
Curry(〈a1 , ..., an , b〉) = 〈a1 , 〈a2 , 〈a3 , 〈...〈an , b〉〉〉〉〉.

Currying allows us to produce a denotation for a transitive VP which can then combine with
the denotation for the subject.

A standard model for our type theory is a tuple, <F, I>, where F is a frame and I is an
interpretation function. The interpretation function takes a constant of type τ to a member of
the frame of objects of that type, Dτ . Typical domains are the following:

Definition 6 1. De = A 6= ∅ : the domain of individuals

2. Dt = {0 , 1}: the domain of truth-values

4 Chapter 0 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

3. D〈a,b〉: the domain of type 〈a, b〉 functions, (often notated DDa
b)

An intensional model adds a domain, Ds, consisting of the domain of intensions (often the
set of indices or points). Sometimes a domain of primitive propositions is assumed (Thomason
(1980)).

An interpretation function I for a frame F is a function such that: I has the set of all constants
(for each type, we assume a countably infinite set of variables and a countably infinite set of
constants of that type) I(cα) ∈ Dα for each constant cα of type α:

Definition 7 1. Varτ =
⋃
τ

Varτ for any variable of type τ

2. Conτ =
⋃
τ

Conτ for any constant of type τ

Definition 8 For every type τ , the set of terms type τ terms the smallest set such that:

1. every type τ constant or variable for any type τ is a term

2. if φ and ψ are terms of type τ (formulas), then : ¬φ and φ ∧ ψ are formulas;

3. if φ is a formula and x is a variable of any type, then ∀xφ is a formula;

4. if A is a term of type 〈α, β〉 and B is a term of type α, then 〈A,B〉 is a term of type β;

5. if A is a term of type β and x is a variable of type α, then λx. (A) is a term of type 〈α, β〉;

6. if A and B are terms of the same type, then (A = B) is a formula.

The other logical operators have their usual definitions. When parentheses are omitted, associ-
ation is to the left.

Common types include:

• Dt
De is a characteristic function of a set of individuals. An intransitive verb such as smokes is

of this type, for it takes an individual to true iff that individual is a member of a given set. (Dt
Ds

is the type of propositions, conceived as (characteristic) functions from intensions to extensions.
But since we are sticking to extensional type theory, this need not concern us.)

• Dt
D<e,e> is a characteristic function of a binary relation between individuals. A transitive verb

such as smokes can be understood to be of this type, for it takes an ordered pair of individuals
to true iff the first individual stands in a certain relation to the second individual.

• Dt
D〈e,t〉 is the type of generalised quantifiers (functions from predicates of type 〈e, t〉 to truth

values (type t functions). These include quantifiers such as everyone, someone, etc. Semanti-
cally, for universe E, a so-called type 〈1〉 generalised quantifier is a function f : f ∈ P (P (E)),
or a set of sets of individuals.

• Dt
Dt is the type of extensional (boolean) truth functions (functions from truth values to truth

values). These include the truth-functional connectives.

Chapter 0 Luke E. Burke 5

Glue TAG semantics for binary branching syntactic structures

0.0.5 The lambda calculus
The simply-typed lambda calculus expresses functions of a given type by lambda abstraction:

Definition 9 Syntax: λ− abstraction:
If u is a variable of type a and α is an expression of type b, then λu.α is an expression of type

〈α, β〉.

Quantifiers and lambda operators bind variables. But quantifiers make formulas from formulas,
whereas the λ-operator changes the type of its argument (α in our case) to the type of a function
from the type of a variable (u in our case) to the type of its argument, as follows:

Definition 10 Semantics: λ− abstraction): If u is a variable of type a, α is an expression of type
b, J((λu.α)KM,g is that function f : ua 7→ αb such that:

for any object k ∈ Da , f (k) = JαKM,g where g ′ is an assigment function just like g except that
g ′(u) = k

Definition 11 Lambda/Beta Conversion (denoted⇒β)) :

(λx .M)N = M ′

(M ′ the formula obtained by replacing every occurrence of x in M by N such that any free
variable in N is assigned a suitable alphabetic variant)

For definitions of free and bound variables, logical equivalence and axioms for the simply typed
λ-calculus, consult Carpenter (1997).

Definition 12 The denotation of a term α, I(α)gM, with respect to the modelM and assignment
function g is written JαKgM, and is defined as follows:

1. JxKg
M = g(x) if x ∈ Var

2. JcKg
M = JcK if c ∈ Con

3. Jα(β)Kg
M = JαKg

M(JβKg
M)

4. Jλx .αKg
M = f such that f (a) = JαKg 7→a

M

The lambda calculus and type theory allow us to assign semantic values to sentences.
Consider the sentence “Some man smokes”. We can represent the expressions in the sentence

and the way they combine by using the following lambda terms:

• some: λQ〈e,t〉λP〈e,t〉.∃x [Q(x) ∧ P(x)]

• man: λye .man ′(y)

6 Chapter 0 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

• some man: λQ〈e,t〉λP〈e,t〉.∃x [Q(x) ∧ P(x)](λy .man ′(y))
(by lambda conversion) λP〈e,t〉.∃x [(λye .man ′(y))(x) ∧ P(x)]
(by lambda conversion) λP〈e,t〉.∃x [(man ′(x) ∧ P(x)]

• walks: λze .walks ′(z)

• some man walks: λP〈e,t〉.∃x [man ′(x) ∧ P(x)](λz .walks ′(z))
(by lambda conversion) λP〈e,t〉.∃x [man ′(x) ∧ (λz .walks ′(z)(x)]
(by lambda conversion) ∃x [man ′(x) ∧ walks ′(x)]

We can then assign a denotation to each node of the following simplified tree:
S ∃(x)[man ′(x) ∧ walks ′(x)] : t

VP λz .walks(z) : 〈e, t〉

V

walks

DP λP .∃(x)[man ′(x) ∧ P(x)] : 〈〈e, t〉, t〉〉

N λy .man ′(y) : 〈e, t〉

man

D λQλP .∃(x)[Q(x) ∧ P(x)] : 〈e, t〉, 〈〈e, t〉, t〉〉

Some

0.0.6 Algebra
Syntax and semantics can be represented as algebras (see Hendriks (2001)). The syntactic algebra
consists of a set of expressions, A (the carrier set), and a set of syntactic operations F , and the
semantic algebra consists of a set of semantic valuesB and a setG of semantic operations on them.
It is standard (Janssen (1997)) to treat the syntactic (semantic) algebra as many-sorted (syntactic
(semantic) rules then apply only to expressions of a certain category) in the following sense:

Definition 13 〈(As)s∈S , (Fγ)γ∈Γ 〉 is a total many-sorted algebra of signature π (a π-algebra) iff

• S is a non-empty set of sorts (intuitively the set of syntactic categories such that As is the set of
expressions of category s)

• (As)s∈S is an indexed family of sets (As is the carrier of s)

• Γ is a set of operator indices (total functions that are intuitively the set of syntactic rules)

• π assigns to each γ ∈ Γ a pair 〈〈s1 , ..., sn〉, sn+1 〉, where n ∈ N+, s1 ∈ S , ..., sn+1 ∈ S ; and

• (Fγ)γ∈Γ is an indexed family of operators such that if
π(γ) = 〈〈s1 , ..., sn〉, sn+1 〉, then Fγ : As1 × ...× Asn 7→ Asn+1

Some concepts useful to chapter 3 include the following:

Definition 14 A subalgebra of 〈(As)s∈S , (Fγ)γ∈Γ 〉 is a π-algebra 〈(Bs)s∈S , (F ′γ)γ∈Γ 〉, where Bs ⊆ As

for any s. and for γ ∈ Γ: if π(γ) = 〈〈s1 , ..., sn〉, sn+1 〉,, then F ′
γ is the restriction of Fγ to (Bs)s∈S ,

that is: F ′
γ = Fγ ∩ ((Bs1 × ...×Bsn) 7→ Bsn+1).

Chapter 0 Luke E. Burke 7

Glue TAG semantics for binary branching syntactic structures

Definition 15 If (Hs) ⊆ (As) for all s, then we say that the π algebra includes (Hs)s∈S . The small-
est subalgebra ofA that includesH is the subalgebra generated byH . Suppose A = 〈(As)s∈S , (Fγ)γ∈Γ 〉
includesH = (Hs)s∈S . ThenH is a generating family forA iff 〈[H] , (Fγ)γ∈Γ 〉 = 〈(As)s∈S , (Fγ)γ∈Γ 〉,
where 〈[H] , (Fγ)γ∈Γ〉 is the subalgebra generated by H .

Def 14 enables us to define the term algebra of A with respect to H (〈(TA,H ,s)s∈S , (F T
γ)γ∈Γ 〉:

Definition 16 For 〈(As)s∈S , (Fγ)γ∈Γ 〉 generated by (Hs)s∈S , 〈(TA,H ,s)s∈S , (F T
γ)γ∈Γ 〉 is a term

algebra iff, for all s ∈ S and all γ ∈ Γ:

• (TA,H,s) is the smallest set such that {bhcs | h ∈ Hs} ⊆ (TA,H ,s), and if t1 ∈ TA,H ,s1), ..., tn ∈ TA,H ,sn)
and π(γ) = 〈〈s1 , ..., sn〉, s〉,, then F T

γ (t1, ..., tn) ∈ (TA,H,s); and

• F T
γ (t1, ..., tn) = bγ t1, ..., tncs

f

8 Chapter 0 Luke E. Burke

Chapter 1

Introduction

1.1 Language and semantic theory

Philosophers and Linguists have articulated strikingly divergent conceptions of the nature of lan-
guage and semantic theory (Katz (1980), Chomsky (1986), Stokhof and Van Lambalgen (2011),
Scholz and Pullum (2015)). The first half of this chapter therefore briefly surveys the global picture
of language and semantic theory we assume, leaving its defence for another occasion.

Our approach to language is constrained by the aim of providing a compositional semantic the-
ory (see chapter 3 for a discussion of compositionality). This narrows down the candidates for a
semantic theory, for a technical reason: most technically well-developed accounts of composition-
ality are algebraic; they identify languages with algebras (Hodges (2001), Janssen (1983), Hendriks
(2001), Janssen (1997), Montague (1975)) and semantic theories with mathematical structures.

This identification is controversial, perhaps for good reason; it is not prima facie obvious how
the conception of language as a mathematical structure squares with the naturalistic perspective
that Chomsky (1986) and others espouse, according to which language is part of our biological
endowment. Nor is it obvious how the algebraic picture squares with the conception of language as
governed by mutable social conventions (Lewis (2008), Dummett (1993)) and their communicative
rôle.

Since our semantics does not depend on any of these theories, we remain neutral between
these conceptions, opting for a weaker position than identifying languages and semantic theories
with mathematical structures. Rather, we assume that we can characterise a language, or core
features thereof, using a mathematical structure of a certain kind; to wit, a pair 〈E , J K〉 consisting
of a partial syntactic algebra, E and an interpretation function J K taking structural analyses of
expressions to their semantic values. A partial syntactic algebra, 〈E ,A,Σ 〉 consists of a set of
basic expressions, A ⊆ E, and a set of partial syntactic operations on those expressions, Σ, that
derive the expressions of the language, E.

The distinction between identifying a language with an algebra and characterising a language
as an algebra amounts to this: we can use algebras to model salient aspects of natural language
without assuming the model is identical to the object modeled. This is perhaps the dominant
approach towards model-theoretic natural language semantics. It is also the approach taken by
certain formal linguists (Stabler (1997), Graf (2013)), who characterise syntax by means of a set
theoretic structure but endorse a broadly chomskyean view of language (Stabler (2011)).

9

Glue TAG semantics for binary branching syntactic structures

By assuming that languages can be characterised by mathematical structure we leave space for
an appropriate conception of language and semantic theory to emerge from an inspection of our
mature theories and the function they serve, as opposed to taking a stand a priori on conceptual
grounds. A functional approach of this kind to terms such as “language”, “semantic theory” and
“semantic value”, is encapsulated in Lewis’ statement (Lewis (1970)) that “In order to say what a
meaning is, we may first ask what a meaning does, and then find something that does that”.

With this broadly functional approach in mind, we spend the following two subsections clari-
fying the function of the following expressions in our semantic theory, and then give examples of
theoretical approaches towards quantification:

• Semantic values and meanings

• Semantic theory

1.1.1 Semantic values and meanings
Much ink has been spilled over what meanings are and whether they are the same thing as mental
contents or semantic values (see ft. 1). The medieval Latin linguists operated with a range of dif-
ferent terms to differentiate types of meaning: sensus, sententia, significatio, consignificatio, etc
(see Hodges (2012)). How can we proceed in the face of such diversity? We will take the position
recently articulated by Hodges:

“If these disagreements are just about how to use the word ‘meaning’ then they aren’t worth
spending a minute more on... They become significant only when there is an agreed answer to the
question ‘What facts about language are we aiming to capture with the word ‘meaning’? ”

Here Hodges echoes the functionalist view about “meaning” and semantic value that we at-
tributed to Lewis above: instead of asking what such terms denote, we try to characterise the
explanatory role they play within a particular theory.

Since the expression meaning has been used in multiply conflicting ways throughout history
we use the term semantic value, which is arguably (slightly) less tarnished by diversity of usage.1

But there seems to be simple considerations that urge a distinction between the semantic value
of an expression and the meaning of an expression. Those theorists that identify a semantic value
of a sentence with either a truth value or a function from indices to a truth value may assign the
same semantic value to extensionally equivalent sentences that they consider to differ, intuitively,
in meaning. So such theorists also have grounds for distinguishing semantic values and meanings
((Glanzberg 2009:287)). This opens up the possibility that the functional role that the semantic
value of e has and the functional role that the meaning of e has may sometimes differ, and that the
facts about language they help us capture may also differ.

The relevant facts about language we are aiming to capture in our semantic theory with the
word semantic value are facts concerning the truth conditions of simple intransitive and transi-

1More substantive grounds have been offered to distinguish semantic values from meanings. A plethora of theorists
(Lewis (1981), Rabern (2012), Zimmermann (2006, 2012), Yalcin (2014), Stanley (1997), Ninan (2010), Dummett
(1973) argue that meanings cannot be identified with compositional semantic values, largely on the grounds that the
two concepts play distinct explanatory roles.

10 Chapter 1 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

tive sentences involving names and quantifiers. We take the following principles regarding truth
conditions as basic (for defence, see Cresswell 1982, Zimmermann 2011, Williams 2005):

1. Sentences have truth conditions: truth conditions are the semantic property of sen-
tences that, given our knowledge of given extra-linguistic facts, enable us to track
the truth of a given sentence in counterfactual circumstances.

2. Sentences have truth conditions as their semantic values.

3. The truth condition of a sentence is systematically sensitive to its syntactic compo-
sition.

4. The semantic value of a sub-sentential expression in a sentence s is its contribution
to the truth conditions of s.

These four principles articulate a functional role for semantic values in a semantic theory.
Given the functional role described, a semantic theory that respects such principles must represent
the truth conditions of arbitrary sentences in a way compatible with what syntacticians tell us about
their structure.

1.1.2 Semantic theory: through thick and thin
We can characterise a semantic theory as n-tuple, 〈G , J K, ψ 〉 consisting of a term algebra G, an
interpretation function J K and a set of rules ψ. This covers a reasonably large class of semantic
theories, since we can fit many semantic theories into this mould by having the carrier set G be the
set of syntactic structures and ψ be the operations that combine semantic values assigned by J K to
elements of G. An algebraic structure, or mathematical structure of some kind, that characterises
the truth conditions of sentences and the way the semantic values of parts of the sentence combine,
we call a thin semantic theory. (If the basic semantic values of the theory are not truth conditions
then we may say that a thin semantic theory of this kind characterises the φ-conditions of sentences
(for some type of entity φ) and the way the semantic values of parts of the sentence combine.)

A thick semantic theory, by contrast, is a theory about the ontology of meaning and its place in
the cognitive and social world;2 it specifies a role for semantic theorising aside from characterising
the truth conditions of sentences, articulating its broader goals, scope and methodology.

The danger of confusing thin and thick semantic theories is perceptively diagnosed by Carpen-
ter:

...model theory as applied to natural-language semantics has often been miscon-
strued as making stronger claims than its proponents are comfortable with...the objects
employed in models are usually not intended to be provided with a metaphysical in-
terpretation, though many proponents of model theory have done just that. These

2For a similar distinction see (Murzi and Steinberger 2015: 4): “Semantics concerns itself with the question
of which types of semantic values to assign to different categories of expressions, and how, on the basis of these
assignments, the semantic values of complex expressions are functionally determined by the semantic values of their
constituent expressions. Metasemantics,in contrast, asks two questions: the metaphysical question as to what makes it
the case that a given expression has the semantic value it does; and the epistemological question as to what a speaker
needs to know to count as understanding the expression.”

Chapter 1 Luke E. Burke 11

Glue TAG semantics for binary branching syntactic structures

properties of model-theoretic semantics can be productively compared with the the-
ory of differential equations as applied to the motion of a football. No one would
claim that a football computes a differential equation, or even represents one, as it flies
through the air....Physicists also realise that most differential equations provide only an
approximation of a football’s movement, abstracting away from considerations such
as turbulence, air temperature, and other details. Nevertheless, differential equations
do provide useful approximations... (Carpenter 1997:34)

We agree with Carpenter that, minimally, a semantic theory should expresses useful approxi-
mations about the truth conditions of sentences and that it is not necessarily something from which
our ontology can be transparently read off. For this reason, we remain neutral on what thick
theories are correct. But our choice is also strategic: we wish to avoid getting bogged down in
controversial metaphysical questions (viz., about what meanings are) at the outset of our enquiry.
We thus concur with Jonnsen that thin semantic theories can be studied apart from thick ones:

It is worth emphasizing that not all semantic theorizing is concerned with the meta-
physical question of what meanings are. Hence, the invocation of a certain kind of se-
mantic value, as part of a semantic theory, is not necessarily a metaphysical proposal...
most semantic research done in linguistics and cognitive psychology is concerned with
other questions... semantic research in linguistics might instead be concerned with the
exploration of the relations between the semantic values of structurally related expres-
sions... Theories... might be seen, by the relevant theoreticians, as instruments of
prediction, and possibly explanation, but the theoreticians in question might have no
wish to commit themselves to the existence of the entities invoked by their theories.
(Jönsson 2008:10)

Our characterisation of semantic theory as the structure 〈G , J K, ψ 〉 has two advantages. Firstly,
it leaves space for a multi-dimensional view of what semantic theory is about. This allows us to
maintain the view we articulated above, according to which the nature of a semantic theory and
of language are questions to be answered by reference to our mature theories. Since a language,
〈E , J K 〉, is a subset of a semantic theory, 〈G , J K, ψ 〉, a semantic theory can be said to be about
the language it contains. Likewise, a semantic theory as being about our semantic competence in
the sense that the partial term algebra G, the interpretation function J K and the semantic rules Ψ
may be taken to correspond to a mechanism in the speaker by which she is able to interpret and
understand arbitrary utterances (Chomsky (1965), Evans (1981)).

Secondly, our characterisation of a semantic theory furnishes criteria for the equivalence of
semantic theories and for their correctness. A semantic theory correctly describes the language
generated by a certain algebra, if the syntactic algebra of the language and the semantic theory
are identical, and the interpretation function of the language and the semantic theory are identical.
A stronger criterion of correctness requires in addition that the semantic and syntactic rules of
the algebra must correspond to something in the brain of the speaker that explains their linguistic
competence.

We can then say that two semantic theories are strongly equivalent if the syntactic algebra
and the interpretation function of both the theories are identical and the semantic and syntactic

12 Chapter 1 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

rules of both theories correspond to the same thing in the brain of the speaker that explains their
competence. (see Quine (1972) for scepticism about this) 3

1.2 Approaches to quantification

We now turn to some approaches to quantification. Theories of quantification must account for
Qscope ambiguities. Consider (1):

(1) Some boy admires every girl.

This sentence is ambiguous between the following two readings:

(2) a. ∃x .[Boy ′(x) ∧ ∀y [girl ′(y)→ admires(x , y)]]
b. ∀y [girl ′(y)→ ∃x [boy ′(x) ∧ admires(x , y)]]

A theory of quantification must generate such ambiguities where necessary, from the meaning of
the parts of (1) and their mode of composition. A theory of quantification must also solve the
following problem. Consider (3):

(3)

S ????

VP ????

DP 〈e, t〉, t〉

N 〈e, t〉

girl

D 〈e, t〉, 〈〈e, t〉, t〉〉

every

V 〈e, 〈e, t〉〉

admires

DP <e>

N <e,t>

boy

D 〈e, t〉, 〈〈e, t〉, t〉〉

Some

Since transitive verbs are of type 〈e, 〈〈e, t〉〉 and quantifiers are of type 〈〈e, t〉, t〉, they cannot
combine by functional application, resulting in a composition problem (the problem of the object).
We now give a taste of theories of quantification, so that our semantics will be better understood.
We distinguish them according to whether they account for the problem of the object and Qscope
ambiguities via primarily syntactic or semantic means. 4

1.2.1 Two syntactic approaches

Montague: Quantifying in

Montague (1975) derives the inverse scope reading of “Some boy admires every girl”, by gener-
ating two expression, category pairs (t is the category of sentences and T is the category of noun

3Our criteria for equivalence are similar to those proposed in Zimmermann (2012)
4Some of them arguably account for the ambiguity by both syntactic and semantic means.

Chapter 1 Luke E. Burke 13

Glue TAG semantics for binary branching syntactic structures

phrases):5

(4) α1, category t : some boy admires herzn

(5) α2, category T : every girl

A quantification rule (S14) then substitutes the pronoun in α1 for the quantifier in α2, to produce
“some boy admires every woman”.

Corresponding to this S14 is a semantic rule which allows the pronoun to act as a placeholder
for the quantifier “every woman” by representing it as a free variable. We then abstract over “some
boy admires herzn:

(6) λz3 .∃y . boy(y) ∧ admires(y , z3)

(6) then combines with “Every woman”:

(7) λQ .∀x .[woman(x)→ Q(x)](λz3 .∃y . boy(y) ∧ admires(x , z3)

lambda reduction ∀x .[woman(x)→ ∃y . boy(y) ∧ admires(y , x)]

Montague’s approach to Q-scope ambiguities is potentially problematic. For (Janssen 1997)
proved that a Montague grammar can generate any recursively enumerable language and its com-
positionally interpretation, and since the recursively enumerable languages contain all formal
grammars (Type-0 grammars in the Chomsky hierarchy), (Janssen 1997)’s result shows that the
syntactic rules Montague employs need to be constrained (unless compositionality is a trivial prin-
ciple satisfied by any formal grammar).

Furthermore, a uniform procedure for dealing with all scopally ambiguous expressions is ar-
guably preferable to a construction specific role for quantifier scope, such as Montague’s quantify-
ing in. For these reasons, other theories of quantification may be preferred.

QR

Some generative linguists (Heim and Kratzer (1998)) account for Qscope ambiguities by positing
operations mapping a single sentence string to two distinct covert syntactic structures, which re-
ceive a distinct interpretation. They posit a rule, QR, which moves a DP from its base position in a
syntactic structure to adjoin to a t node higher in the structure, leaving a trace which is co-indexed
with the moved quantifier phrase. The problem of the object is resolved by supposing that the
trace is of type e (which saturates the verb) and an index is postulated below the moved quantifier
which combines with the lower part of the tree by the rule of predicate abstraction, which performs
abstraction over the trace:

5A rule takes sequences of expressions and their categories and generates an expression category pairs (αn, cate-
gory θ)

14 Chapter 1 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Composition Rule 6:
Predicate Abstraction Heim and Kratzer (1998)

If γ is a branching node whose daughters are βi and α, where β is a relative pronoun or
‘such’, and i ∈ N a pronoun or trace, then for any variable assignment a, JγKa = λ x.JγKax/i

(8)

CPt

C′〈e, t〉

TP 〈t〉〉

VP 〈e, t〉〉

DPe

NP

ti e

V 〈e, 〈e, t〉〉

saw

DPe

N

Pate

λi

DP〈e, t〉, t〉

something

On this account, Qscope ambiguities arise when quantifiers move to different positions at a
distinct level of syntactic representation, LF, at which their surface order is not preserved. Evidence
for QR involves parallels between covert QR and overt wh-movement (see Aoun and Li 1993), as
well as the capacity of QR to contribute to solving problems in syntactic theory (Heim and Kratzer
(1998)).

Some theorists have supposed that QR is a particularly natural way to account for quanti-
fier scope (see Von Stechow (1990)). Von Stechow (1990) states that it is “the most transparent
method” for dealing with Qscope ambiguities since other methods simply accomplish QR by other
means. But Heim and Kratzer (1998) point out that QR sometimes involves complicating the
syntactic structure in ways which are contested. Consider the following LF:

(9)

Chapter 1 Luke E. Burke 15

Glue TAG semantics for binary branching syntactic structures

DP

NP

NP

NP

S

NP

N

PP

t2P

of

N

representative

t1

λ1

DP2

some company

λ1

DP1

PRO

D

Every

In this LF, the subject position within the NP is filled by a semantically and phonologically null
pronoun, PRO, postulated solely in order to derive an interpretable structure. Thus it is not obvious
that QR always assigns transparent structures to a sentence.

1.2.2 Two semantic approaches

Cooper storage

Cooper storage is motivated by the idea that “there is no reason from a syntactic point of view to
give ... more than one syntactic structure” to Qscope ambiguous sentences. Accordingly, Qscope
ambiguities are represented without positing QR. Cooper gives a semantic cast to Montague’s
syntactic operation of quantifying in, which works as follows. Suppose we have the sentence John
loves some politician. We first compute John loves xn and store away < some politician, xn >.
We then retrieve the quantifier and form λxn .John loves xn which combines with the quantifier.

Cooper storage assigns a store to each node of the syntax tree. A store is an n-place sequence
containing the lexical entry, alongside pairs (β, i) of NP denotations and indices, present in the
core denotation β they are paired with:

16 Chapter 1 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Cooper storage
Storage

• If the store 〈φ, [β, j], ..., [β′, k] 〉 is the denotation of a quantifier phrase Q, then, for i,
where i is an index, the store 〈λP .P(zi), [φ, i], [β, j], ..., [β

′, k] 〉 is also the denotation
of Q.

Storage allows us to adopt a new denotation for a quantifier phrase, stowing away the ordinary
denotation of a quantifier. The computation of the sentence can then proceed by utilising a place
holder, 〈λP .P(zi) instead of the quantifier denotation.

The first of the following two trees shows the calculation of the ordinary semantic value of each
node of the tree, where storage has not applied (the verb has been type raised to take a quantifier
as direct object). The second of the following trees shows the storage rule being applied to the two
quantifiers in the sentence

(10)

S ∀(x)[man ′(x)→ ∃y [politician ′(y) ∧ (saw(x , y)]]

VP λx .∃y [politician ′(y) ∧ (saw(x , y)]

DP λP .∃y [politician ′(y) ∧ P(y)]

N

politician

D

a

V λQ〈e,t〉,t〉λx〈e〉.Q(λv .saw(x , v))

saw

DP λP .∀(x)[man ′(x)→ P(x)]

N

man

D

Every

(11)

S 〈Saw(z1 , z2), (λP∀(x)[man ′(x)→ P(x), 1), (λP .∃y [politician ′(y) ∧ P(y), 2)〉

VP 〈λx .Saw(x , z2), [λP .∃y [politician ′(y) ∧ P(y), 2)]〉]

DP 〈λP .P(z2), [λP.∃y[politician′(y) ∧ P (y), 2)〉]]

N

politician

D

a

V λQ〈e,t〉,t〉λx〈e〉.Q(λv .saw(x , v))

saw

DP 〈λP .P(z1), [λP .∀(x)[man ′(x)→ P(x), 1]]〉

N

man

D

Every

To proceed, we apply retrieval to the root of (11):

Chapter 1 Luke E. Burke 17

Glue TAG semantics for binary branching syntactic structures

Cooper storage
Retrieval

• Let [σ1] and [σ2] be sequences of binding operators (which may be empty), and [β, i] be
given stored quantifier. If the denotation of the root node is the store 〈φ, [σ1], [β, i], [σ2]

〉, then the denotation of the root node is also 〈β(λzi .φ), [σ1], [σ2] 〉.

Retrieving “Every man” first derives the inverse scope reading (Retrieving “a politician” first
derives the surface scope reading):

1. 〈Saw(z1 , z2), [λP∀(x)[man ′(x)→ P(x), 1], [λP.∃y[politician′(y) ∧ P (y), 2]〉

2. by retrieval 〈λP∀(x)[man ′(x)→ P(x)(λz1 .Saw(z1 , z2), [λP.∃y[politician′(y) ∧ P (y), 2)]〉

3. by lambda conversion 〈λP∀(x)[man ′(x)→ (λz1 .Saw(z1 , z2)(x),
[λP.∃y[politician′(y) ∧ P (y), 2)]〉

4. by lambda conversion 〈∀(x)[man ′(x)→ Saw(x , z2), [λP.∃y[politician′(y) ∧ P (y), 2)]〉

5. by retrieval 〈λP .∃y [politician ′(y) ∧ P(y)(λz2∀(x)[man ′(x)→ Saw(x , z2)〉

6. by lambda conversion 〈∃y [politician ′(y) ∧ λz2∀(x)[man ′(x)→ Saw(x , z2)(y)〉

7. by lambda conversion 〈∃y [politician ′(y) ∧ ∀(x)[man ′(x)→ Saw(x , y)〉

Cooper storage encounters problems, however, when dealing with nested DPs. Consider the
following sentence:

(12) John saw every owner of an espresso machine.

The sentence node before retrieval is the following:

(13) 〈Saw(John, z3), [λP .∀x [owner(x) ∧ of (x , z4)→ P(x)], 3],
[λQ .∃y [espressomachine(y) ∧Q(y)], 4]〉

If we retrieve the universal first and then the existential and perform lambda conversion we get:

(14) λP .∀x [owner(x) ∧ of (x , z4)→ Saw(John, x), [λQ .∃y [espressomachine(y) ∧Q(y)], 4]〉

∃y [espressomachine(y) ∧ (∀x [owner(x) ∧ of (x , y)→ Saw(John, x)〉
If we retrieve the existential first and then the universal and perform lambda conversion we get:

(15) ∃y [espressomachine(y) ∧ Saw(John, z3), [λP .∀x [owner(x) ∧ of (x , z4)→ P(x), 3]

18 Chapter 1 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

λP .∀x [owner(x) ∧ of (x , z4)→ P(x)(λz3 .∃y [espressomachine(y) ∧ Saw(John, z3)
But then we end up with a free variable in the antecedent of the formula:

(16) ∀x [owner(x) ∧ of (x , z4)→ ∃y [espressomachine(y) ∧ Saw(John, x)

Keller (1988) avoids this problem, by redefining storage and retrieval, so that stores can be
nested within one another:

Keller storage
K.Storage

• If the store 〈φ, σ〉 is the denotation of a quantifier phrase Q, then, where i is an index, the
store 〈λP .P(zi), (φ, σ, i)〉 is also the denotation of Q.

Keller retrieval
K.Retrieval

• Let [σ], [σ1] and [σ2] be sequences of binding operators (which may be empty), and [β, i]

be some chosen stored quantifier we wish to retrieve. If the denotation of the root node is
the nested store 〈φ, [σ1], [(β, σ), i], [σ2] 〉, then the denotation of the root node is also
〈β(λzi .φ), [σ1], [σ], [σ2] 〉, where β takes (λzi .φ) as its argument.

Consider (13), repeated here:

(17) 〈Saw(John, z3), [λP .∀x [owner(x) ∧ of (x , z4)→ P(x)], 3],
[λQ .∃y [espressomachine(y) ∧Q(y)], 4]〉

By Keller retrieval we can put “owner of an espresso machine” in a store:

1. 〈Saw(John, z3), [λP .∀x [owner(x) ∧ ∃y expresso machine(y) ∧ of (x , y)→ P(x), 3]]〉

2. By retrieval 〈∀x [owner(x) ∧ ∃y expresso machine(y) ∧ of (x , y)→ Saw(John, x)]]〉

To get the inverse scope reading we store “an espresso machine” separately:

1. 〈Saw(John, z3), [λP .∀x [owner(x)→ P(x)], [λQ .∃y expresso machine(y) ∧Q(y)]3], 4]

2. We then retrieve the universal followed by the existential (I have admitted the steps of lambda
abstraction and reduction):

Chapter 1 Luke E. Burke 19

Glue TAG semantics for binary branching syntactic structures

〈∀x [owner(x) ∧ of (x , z4)→ Saw(John, x)], [λQ .∃y expresso machine(y) ∧Q(y), 4]

〈∃y expresso machine(y) ∧ (λz4∀x [owner(x) ∧ of (x , z4)→ Saw(John, x)]

3. by lambda reduction: 〈[∃y expresso machine(y) ∧ (∀x [owner(x) ∧ of (x , y)→ Saw(John, x)]]

But even the revision does not solve all the problems (see Blackburn and Bos (2005). In par-
ticular, Cooper storage overgenerates scope readings (Fox and Lappin (2008)). A simple sentence
such as the following turns out to have 120 (5!) readings, if we allow any arbitrary scoping of its
quantifiers:

(18) Some representatives of every department in most companies saw a few samples of each
product.

This means that we have to specify some mechanism by which certain scope readings are rendered
unavailable. Cooper proposed a way of making his mechanism sensitive to islands, by requiring
that all stored quantifiers in the interpretation of an island node be retrieved before it can seman-
tically with another constituent. But islands are not the only factor that prevents free scoping of
quantifiers, thus Cooper needs to make his mechanism sensitive to other constraints.

Hendriks: flexible types

Hendriks (1993) accounts for Qscope ambiguity by assigning a richer denotation to expressions in
the grammar, associating each syntactic category with the possibly infinite set of types to which it
can shift. The following rules are used to shift types:

Flexible types
n-value raising:

• For a sequence of types #»a , if α is of type 〈 #»a , bi〉 it is also of type 〈 #»a 〈〈b, d〉, d〉〉〉, for
possibly empty #»a

• Semantics: α〈 #»a ,b〉 7→ λ #»x αλP〈b,d〉.[P(α(#»x))]

• When #»a = ∅ and b = e, d = t , this derives a 〈e, t〉, t〉〉 denotation for a proper name of
type e

20 Chapter 1 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Flexible types
n-argument raising:

• If α is of type 〈 #»a , 〈b, 〈 #»c , d〉〉〉, then it is of type 〈 #»a , 〈〈〈b, d〉, d〉, 〈 #»c , d〉〉〉

• Semantics: α〈 #»a ,〈b,〈 #»c ,d〉〉〉 7→ λ #»x αλP〈〈b,d〉,d〉λ
#»z c[P(λybα(#»x)(y)(#»z))]

• n-argument raising shifts a transitive verb of type 〈e, 〈e, t〉〉 to a verb taking a quantifier
in direct object position of type 〈e, t〉, t〉〉, 〈e, t〉.

By applying argument raising twice to a transitive verb, depending on the order of these op-
erations, the verb denotes either of the following relations between generalised quantifiers (which
derive the surface scope and inverse scope readings of Qscope sentences):

• S > O : λx〈e〉λy〈e〉.[saw(x , y)] 7→ λB〈e,t〉,t〉〉.λA〈e,t〉,t〉〉.[A(λy .[B(λx .[Saw(x , y)])])]

• O > A : λx〈e〉λy〈e〉.[saw(x , y)] 7→ λB〈e,t〉,t〉〉.λA〈e,t〉,t〉〉.[B(λx .[A(λy .[Saw(x , y)])])]

A sentence such as “Every man saw a politician” then has the following semantics:

(19)

S [∀(x)[man ′(x)→ ([∃y [politician ′(y) ∧ ([Saw(x , y)])])]

VP λA〈e,t〉,t〉〉.[A([∃y [politician ′(y) ∧ (λx .[Saw(x , y)])])]

DP λP .∃y [politician ′(y) ∧ P(y)]

N

politician

D

a

V λB〈e,t〉,t〉〉.λA〈e,t〉,t〉〉.[A(λy .[B(λx .[Saw(x , y)])])]

saw

DP λP .∀(x)[man ′(x)→ P(x)]

N

man

D

Every

(20)

Chapter 1 Luke E. Burke 21

Glue TAG semantics for binary branching syntactic structures

S [∃y [politician ′(y) ∧ ([∀(x)[man ′(x)→ [Saw(x , y)])])]

VP λA〈e,t〉,t〉〉.[∃y [politician ′(y) ∧ (λx .[A[Saw(x , y)])])]

DP λP .∃y [politician ′(y) ∧ P(y)]

N

politician

D

a

V λB〈e,t〉,t〉〉.λA〈e,t〉,t〉〉.[B(λx .[A(λy .[Saw(x , y)])])]

saw

DP λP .∀(x)[man ′(x)→ P(x)]

N

man

D

Every

Let us compute the surface scope reading of the above sentence. First, apply argument raising
to the first argument of a transitive relation to derive:

(21) [1AR](saw) = λQ1 〈e,t〉,t〉.λx〈e〉.[Q1 (λy .Saw(y , x))

Then apply argument raising to the second argument of (21) to derive:

(22) [2AR][1AR](saw) = λQ1 〈e,t〉,t〉λQ2 〈e,t〉,t〉.Q2 (λx〈e〉[1AR](saw)(Q1)(x)
= λQ1 〈e,t〉,t〉λQ2 〈e,t〉,t〉.Q2 (λx〈e〉Q1 (λy .saw(y)(x)))

(22) takes “a politician” as argument:

(23) [2AR][1AR](saw)(a politician) = λQ2 〈e,t〉,t〉.Q2 (λx〈e〉λP〈e,t〉∃z [Pol(z) ∧ P(z)](λy .Saw(y)(x)))
= λQ2 〈e,t〉,t〉.Q2 (λx〈e〉∃z [Pol(z) ∧ saw(z)(x)))

(23) takes “Every man” as argument:

(24) [2AR][1AR](saw)(a politician)(every man)
= λQ2 〈e,t〉,t〉.Q2 (λx〈e〉∃z [W (z) ∧ saw(z)(x)])(λP〈e,t〉∀v [M (v)→ P(v)]
= ∀[M (v)→ ∃zPol(z) ∧ saw(z)(v)]]

To derive the inverse scope reading we first apply argument raising to the second argument of a
transitive relation, and the computation is as above.

Hendriks’ approach, insofar as it is a theory of our semantic competence, is problematic, since
it requires a strong empirical hypothesis for which we need evidence: that speakers know the rules
which generate an infinite set of semantic values for any expression and that positing such rules is
desirable for a semantic theory. Note that this is a distinct empirical hypothesis from the assump-
tion made by syntacticians that speakers have knowledge of a grammar, generating an infinity of
sentences. Hendriks’ requires evidence for his particular hypothesis. A further problem with Hen-
driks’ approach is that it requires a set-valued function between the syntax and the semantics if it
is to be compositional and retain its distinctive, semantic explanation of Qscope ambiguity. Set-

22 Chapter 1 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

valued functions of this kind have been shown to be problematic in some cases (see Westerstahl
(2007), so we might wish to see if Hendriks’ approach can be compositional under a relational
version of compositionality, such as Westerstahl (2007). It can’t. For Westerståhl’s account re-
quires, contrary to Hendriks’ approach, that a semantics is bounded, in that every expression has
finitely many semantic values (the requirement might be based on the lack of empirical evidence
that speakers know general procedures that generate the infinite set of an expressions types). A
semantics R is bounded if for each operation α of the syntax the number of semantic values of a
term of the form α(q1, ..., qn), where any qi has mi as some meaning, is less than or equal to some
finite number k:

Definition 17
∣∣∣∣ ⋃
i=1

{
Rα(q1 ,...,qn) :

∧
1≤i≤n R(qi ,mi)

}∣∣∣∣ ≤ k

Westerståhl (p.c) suggests Hendriks’ semantics could be made bounded if the infinitely many
types of an expression corresponded to infinitely many distinct syntactic terms. But then Hendrik’s
explanation of Qscope ambiguity would no longer be purely semantic; it would account for such
ambiguities by positing distinct terms. Furthermore, it would entail that the speaker has knowledge
of an infinitely many syntactic terms, which may be problematic given our finite capacities. Even if
Hendriks’ can account for Qscope ambiguities by purely semantic means, Hendriks (p.c) has con-
ceded that, given the brain of the language user is finite, there may be a problem with his semantics
satisfying compositionality, since the homomorphic algebras involved in defining a compositional
semantics must be finitely generated, which is not the case in his account.

Von Stechow (2009) argues that Hendriks’ approach is a kind of QR by other means:

“... a closer look at the meta-language in which these type shifters is formulated shows that QR
is hidden in the formulation of the rules.”

We agree that something achieves the effects of QR in the semantic metalanguage. But Von
Stechow is being tendentious, and is making a category mistake; QR is no more a semantic oper-
ation than type shifting is a syntactic rule. Most theories of quantifier scope ambiguity have the
same effect of QR; they assign some predicate abstract to a sentence which a quantifier scopes
above and takes as argument. This feature is present in Montague’s quantifying in, in Cooper se-
mantics and in most other approaches. Thus Von Stechow could equally have said that the rule of
quantifying in, or storage is hidden in the formation of the rules.

1.2.3 Conclusion
We have described our approach to language and to semantic theory, according to which languages
and semantic theories can be characterised as algebras and the semantic values of sentences are
their truth conditions. We have outlined various theories of quantification and their explanations of
Qscope ambiguity. In the next chapter we outline our semantics and in the final chapter we show
that it is compositional.

Chapter 1 Luke E. Burke 23

Chapter 2

A taste of glue

2.1 Introduction
This chapter outlines Gl-TAG, a novel approach to the syntax-semantics interface based on se-
mantic trees derived by the operations of a TAG grammar. Parts of the constituent structure of
a sentence are systematically mapped to semantic trees, which are parse trees corresponding to
a glue semantics proof. The glue semantics proof then receives a model theoretic interpretation.
Gl-TAG allows us to pair two semantic interpretations with one syntactic structure. Sentences that
give rise to quantifier scope ambiguities (Qscope ambiguities) are then analysed as syntactically
unambiguous, but giving rise to a set of Gl-TAG trees, each of which has a model theoretic inter-
pretations. Gl-TAG trees bear resemblances to the LFs postulated in Heim and Kratzer (1998), and
to Cooper Storage (Cooper ((1983)).

In 2.1.1 we introduce linear logic and the Curry Howard Isomorphism (CHI), which glue se-
mantics is based on. In 2.2.1 we give a taste of glue proofs. We then introduce our semantics
gradually; first discussing parse trees (2.3), and then (2.3.2) TAG,before moving on to discuss sim-
ple in/transitive sentences (2.4.1), quantifiers (2.4.2) and Qscope ambiguities (2.4.3) and binding
(2.4.4). Finally, we suggest ways in which the scope of quantifiers can be restricted (2.4.5).

2.1.1 What is linear logic?
Linear logic was invented by the proof theorist Girard (Girard (1987)). We shall use a very weak
implicational fragment of linear logic, whose only connective is ().

Linear logic is a substructural logic (see Restall (2002), Restall (2006)) since it abandons some
of the structural rules of the sequent calculus: contraction and weakening. Suppose we have a
sequent Γ ` ∆ (for formulas Γ,∆ and entailment relation `). Weakening (on theLW /RW) weakens
the antecedent (succedent) of a sequent by introducing an extra formula, D:

Γ ` ∆

D,Γ ` ∆
LW

Γ ` ∆

Γ ` ∆, D
RW

Contraction discards repetitions of formulas in the antecedent (succedent) of a given sequent:

24

Glue TAG semantics for binary branching syntactic structures

D,D,Γ ` ∆

D,Γ ` ∆
LC

Γ ` ∆, D,D

Γ ` ∆, D
RC

The abandonment of contraction entails that the relata of logical consequence are not sets
of premises, but rather multisets. (If the relata were sets then contraction would be valid since
{A,A} = {A}.)

Consider a classically valid inference:

(1) A→ (B → C),A→ B ` A→ C

The sequent calculus proof of (1) uses contraction, and is therefore not derivable in linear logic
(unless special modalities are used):

Nor can (1) be proven in a linear logic natural deduction system, since contraction corresponds
in natural deduction to discharging a hypothesis more than once, and the natural deduction proof
of (1) requires A to be discharged more than once:

Inferences such as those in (1) seem intuitively valid. Why would a logic abandon the structural
rules that undergird such validities? Linear logic abandons these structural rules due to the possible
benefits in certain domains (Girard (1987)) of conceiving of premises as non-renewable resources;

Chapter 2 Luke E. Burke 25

Glue TAG semantics for binary branching syntactic structures

a premiss is therefore modeled as a finite resource which must be used once. Consequently, a given
hypothesis cannot be endlessly reused in proof, and has a limited shelf life.

An example illustrates the resource conception of premisses. Suppose £1 will purchase exactly
one coffee, or exactly one copy of the newspaper. Let A be ‘I have £1’, B be ‘I can buy a coffee’
and C be ‘I can buy the newspaper’. Then, where → denotes “if...then”, we have A → B and
A → C. But A → (B ∧ C) doesn’t follow in this situation: I cannot both buy a newspaper and
a coffee. Nonetheless, (A → B,A → C ` A → B ∧ C) is classically correct. In order for
(A→ B,A→ C ` A→ (B ∧C)) to hold we have to discharge A twice, which is not permissible
in linear logic.

The resource-theoretic conception of logic has been argued to have advantages over other proof
theoretic rivals (Asudeh (2012), Crouch and van Genabith (2000). For a proof theoretic semantics
that allows hypotheses to be freely assumed and discharged risks allowing certain semantic values
to be used more than once in the sentence. Consider the sentence, “I kissed the philosopher’s
alleged son”. We want the contribution of “alleged” to be made only once, in modifying “son”,
and we do not want “alleged” to be able to modify “philosopher” thereby deriving “I kissed the
alleged philosopher’s alleged son.” By restricting re-use of hypotheses, glue avoids this problem.

2.2 Glue: an introduction

Glue originated in the semantics-syntax interface for LGF syntax (Dalrymple (1999)). It has since
been applied to a number of syntactic frameworks, including HPSG (Asudeh and Crouch (2001b)),
Categorial Grammar (Asudeh and Crouch (2001a)), TAG and Minimalism (Gotham (2015)), and
we here apply glue to the simplified binary syntactic structures familiar from Minimalism (Adger
(2003)). Since our treatment of glue is quite detailed we do not have the space to consider these
alternative approaches and compare them to our own.

In glue, lexical entries for constituents of the sentence are two part meaning constructors, which
are of the formM : G, whereM is some term of the simply-typed λ-calculus that represents the
semantic value of the given lexical item and G is a term of linear logic (representing the type of
the lambda function). The Curry-Howard isomorphism (CHI) proves terms of whatever type in
the simply typed λ-calculus can be assigned a formula of linear logic which is valid iff the term
is.1 For example, if we have a lambda term of type 〈e, t〉, we can pair this with the linear logic
propositional formula A(B and if we have a lambda term of type 〈e, t〉, 〈e, t〉, t〉〉 we can pair
this with the linear logic propositional formula (A → B) → ((A → B) → B)). In this way,
formulas of linear logic can stand proxy for typed formulas. Consequently, lexical entries for parts
of the sentence can be treated as premises for proofs, thus harnessing the proof theoretical features
of natural deduction to give denotations to sentences.

Glue proofs exploit two particular properties of the CHI. Firstly, they exploit the correspon-
dence between implication elimination and function application which the CHI establishes. The
following diagram shows the correspondence in schematic terms:

1In computer science, the CHI is used to show that formulas can be correlated with types in such a way that each
proof of a formula corresponds to a program having a certain type.

26 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(2.1) Function application = Implication Elimination
···

a : A

···
f : A(B

(E
f (a) : B

The diagram shows a function, f (paired with a linear logic conditional), applied to the meaning
constructor a : A.

Suppose we have the meaning constructor j ′ : A denoting an individual and the meaning con-
structor λx .P(x) : A(B , denoting the characteristic function of set P . Then, by 2.2 we have:

···
j ′ : A

···
λx .P(x) : A(B

(E
λx .P(x)(j ′) : B

By lambda reduction (⇒β) we have:

···
j ′ : A

···
λx .P(x) : A(B

(E ,⇒β
P(j ′) : B

The second property of the CHI glue proofs exploit is the correspondence it establishes between
implication introduction and lambda abstraction. The CHI establishes that implication introduction
is equivalent to a variable being assumed and then abstracted over by lambda abstraction when the
assumption is discharged. The following diagram shows the correspondence schematic terms:

(2.2) Lambda abstraction : Implication Introduction

[x : A]1
···

f : B
(I,1

λx .f : A(B

To give a flavour of how glue proofs work, we give glue proofs, of the sort glue semanticists
give, for the following simple sentences

(2) a. Kim sleeps.
b. Kim hugs Robin.
c. Kim hugs everyone.
d. Everybody hugs someone.

Pay attention to the meaning constructors in these proofs, and remember that instances of function
application and abstraction in lambda terms correspond to implication elimination and introduction
in the linear logic formulas to the right of the colon.

Chapter 2 Luke E. Burke 27

Glue TAG semantics for binary branching syntactic structures

2.2.1 Example I: Transitive with Proper Name Arguments
(2.3) Kim hugs Robin.

Instantiated lexicon/premises for (2.3):
Kim e kim : A
Robin e robin : B
hugged e → (e → t) λy .λx .hug(x , y) : B((A(C)

Full Proof for (2.3):
hug
λy .λx .hug(x , y) :
B(A(C

Robin
robin :
B

(E
(λy .λx .hug(x , y))(robin) : A(C

⇒β
λx .hug(x , robin) : A(C

Kim
kim :
A

(E
(λx .hug(x , robin))(kim) : C

⇒β
hug(kim, robin) : C

2.2.2 Example II: Transitive with Quantifier Object
(2.4) Kim hugged everybody.

Instantiated lexicon/premises for (2.4):
Kim e kim : B
hugged e → (e → t) λy .λx .hug(x , y) : A((B(C)
everybody (e → t)→ t λP .∀y .[person(y)→ P(y)] : ∀X .(A(X)(X

Proof for (2.4), abridged for⇒β:

λP .∀y .[person(y)→ P(y)] :
∀X .(A(X)(X

∀E [h/X]
λP .∀y .[person(y)→ P(y)] :
(A(C)(C

λy .λx .hug(x , y) :
A(B(C [z : A]1

(E ,⇒β
λx .hug(x , z) : B(C kim : B

(E ,⇒β
hug(kim, z) : C

(I,1
λz .hug(kim, z) : A(C

(E ,⇒β
∀y .[person(y)→ hug(kim, y)] : C

Note that ′∀X ′ in the denotation for “every” means that any of a given resource may be con-
sumed, rather than all resources at once ((Crouch and van Genabith 2000:89)): it tells us that
some property holds of anything in the domain and allows selection and utilisation of that resource
as need be. This chimes with the resource-based nature of linear logic, since we don’t wish to
consume all our resources in one go, using up all resources. The universal elmination rule is as
follows:

28 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Universal Elimination
...···
∀X .A

∀E [h/X]
A[h/X

2.2.3 Example III: Scope Ambiguity
(2.5) Everybody hugged somebody.

Expression Type Meaning Constructor
hugged e → (e → t) λy .λx .hug(x , y) : (A((B(C)
everybody (e → t)→ t λP .∀y .[person(y)→ P(y)] : (B(C)(C
somebody (e → t)→ t λP .∃x .[person(x) ∧ P(x)] : (A(C)(C

Simplified ∃ > ∀ proof for ‘Everybody hugs somebody’:

λP .∃x .[person(x) ∧ P(x)] :
(A(C)(C

λP .∀y .[person(y)→ P(y)] :
(B(C)(C

λy .λx .hug(x , y) :
(A((B(C) [z : A]1

(E ,⇒β
λx .hug(x , z) : B(C

(E ,
∀y .[person(y)→ hug(y , z)] : C

(I,1
λz .∀y .[person(y)→ hug(y , z)] : A(C

(E ,⇒β
∃x .[person(x) ∧ ∀y .[person(y)→ hug(y , x)]] : C

Simplified ∀ > ∃ proof for ‘Everybody hugs somebody’:

λP .∀y .[person(y)→ P(y)] :
(B(C)(C

λP .∃x .[person(x) ∧ P(x)] :
(A(C)(C

λyλx .hug(x , y) :
A((B(C) [y1 : A]1

(E ,⇒β
λx .hug(x , y1) : (B(C) [z : B]2

(E ,⇒β
hug(z , y1) : C

(I,1
λy1 .hug(z , y1) : (A(C)

(E ,⇒β
∃x .[person(x) ∧ hug(z , x)] : C

(I,2
λz .∃x .[person(x) ∧ hug(z , x)] : (B(C)

(E ,⇒β
∀y .[person(y)→ ∃x .[person(x) ∧ hug(y , x)]] : t

In the glue proofs above denotations are not assigned to each constituent of the syntax tree. For
example, in 2.2.3 no part of the glue proof seems to correspond to the verb phrase “hugs some-
body” and it is not clear what part of the syntax tree the second and third line of the glue proof
correspond to. In fact, glue semanticists see no problem with semantics operating with a greater
degree of freedom from syntax. (for a version of glue semantics for binary branching syntax trees
which adopts this looser degree of fit between semantics and syntax, see Gotham (2015).)

Chapter 2 Luke E. Burke 29

Glue TAG semantics for binary branching syntactic structures

Nevertheless, Gl-TAG establishes a much tighter correspondence between the syntax and the
semantics and satisfies the “Principle of Interpretability” (Heim and Kratzer (1998) according to
which all nodes in a phrase structure tree must be in the domain of the interpretation function.
In Gl-TAG, a function takes a node of the tree to part of a glue proof, which receives its model-
theoretic interpretation. In this way we adopt a modified principle of interpretability according to
which all nodes in a phrase structure tree are in the domain of a function whose value is some
particular set of nodes of a (semantic glue) tree. A semantic tree is simply the parse tree of a
glue proof. This function is, moreover, stable: verb phrases in the syntax trees are always mapped
to the same region of semantic trees, and quantifier phrases are similarly mapped. The function
mapping a mother node to a part of the semantic tree is a function that applies to some region of
the semantic tree to which one of daughters corresponds and some region of the semantic tree to
which the other daughter corresponds, to yield a semantic tree that incorporates both of these tree
regions. Since there is then a function from parts of these semantic trees to their model theoretic
interpretation, our semantics systematically maps parts of the syntactic structure to their model
theoretic interpretation. The semantic trees act as an intermediary language, much as IL was
for Montague an intermediary language. Whether the resulting semantics is compositional is a
question we shall pursue in the next chapter. We now give some examples of semantic trees, and
then specify the operations of TAG that apply to them.

2.3 Glue parse trees and TAG

2.3.1 Parse trees

In logic, parse trees (Chiswell and Hodges (2007)) represent the derivational history of formulas.
The following parse trees describe the formation of p → q and p → (q → r):

(3) a. →

qp

b. →

→

rq

p

Since each step of a glue proof in implicative linear logic proceeds by either functional ap-
plication or by abstraction, one daughter of a node is labeled by a function and the other by its
argument, and thus every glue proof can be represented as a binary tree. (In the case of abstraction,
the CHI guarantees (see 2.2) that there is a function combining the reintroduced hypothesis and
the denotation of its sister.)

Consider a simple sentence, “Kim hugs Robin”. This has the following binary tree, where e
and t are linear logic formulas corresponding to types e and t (from now on we use e and t as
variables for linear logic formulae corresponding to types):

30 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(4)

hugs(k , r ′) :
t

λx .hugs(x , r ′) :
(e(t)

r′ :
e

λy .λx .hugs(x , y) :
(e((e(t))

k′ :
e

We establish a mapping from any given node of the syntax tree to its denotation, as follows: first
we assign a part of a semantic tree as denotation of a given terminal node in the syntax tree; then
we specify (i) rules for combining the semantic trees (these correspond to rules that combine con-
stituents in the syntax tree) and (ii) rules that govern how non-branching nodes in the syntax trees
inherit the semantic values they directly dominate. The following rules govern our syntactic trees:

Composition Rule 1a:
Functional Application (FA)

Let γ be a tree whose only two subtrees are α and β. Then if α ∈ dom (J KM, g) and β ∈
dom (J KM, g) and β is a function such that Jα KM, g ∈ dom (J β KM, g), then γ ∈ dom (
J KM, g) and

JγK = JβK(JαK).

Note that the order of α and β in the tree doesn’t matter (as (i) and (ii) below show):

(i)

u

wwwww
v

γ

βα

}

�����
~

M, g

=
r
β

zg
(Jα Kg) (ii)

u

wwwww
v

γ

αβ

}

�����
~

M, g

=
r
β

zg
(Jα Kg)

Chapter 2 Luke E. Burke 31

Glue TAG semantics for binary branching syntactic structures

Composition Rule 2:
Non-Branching Nodes (NN)

If α is a tree whose only subtree is β, then J α K = J β K.u

wwwww
v

α

β

}

�����
~

g

= J β K

Composition Rule 3:
Lexical Terminals (LT)

If α is a terminal node, then its translation is specified in its lexical entry:

...

α

= J α K

Such type driven rules (Klein and Sag (1985)) require the nodes of a semantic tree to combine
in a certain way. But, unlike Heim and Kratzer (1998), who stipulate these additional rules, glue
proofs require them to hold automatically: with the exception of composition rule 2, they actually
flow from the fragment of linear logic used, since each step of a proof proceeds by functional
application or by abstraction and one of the binary branches always corresponds to a function and
the other to its argument. Consequently, we can deduce the semantic value of a given mother node
from its daughters, and we get the type-driven rules above for free.

To give a taste of what a more complicated example would look like, consider Kim hugged
every man, whose parse tree and the original proof are here presented:

(5)

Proof for (2.4), abridged for⇒β:

λP .∀y .[man(y)→ P(y)] :
∀X .(e(X)(X

∀E [h/X]
λP .∀y .[man(y)→ P(y)] :
(e(t)(t

λy .λx .hug(x , y) :
e((e(t) [z : e]1

(E ,⇒β
λx .hug(x , z) : e(t kim : e

(E ,⇒β
hug(kim, z) : t

(I,1
λz .hug(kim, z) : e(t

(E ,⇒β
∀y .[man(y)→ hug(kim, y)] : t

32 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(6)

∀x [man ′(x)→ hugged ′(k , x)] :
t : ∗

λm.hugged(k ′,m) :
(e(t)

hugged(k ,m) :
(t : ∗)

λx .hugged(x ,m) : (e(t)

m : e
λyλx .hugged(x , y) :

(e((e(t)

k′ : e

e

λQ .∀x [man ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx.man(x):
(e(t)

λPλQ∀x [P(x ′)→ Q(x ′)] :
(e(t)(

(∀X (e(X)(X))

We discuss the details of such trees later, but for now, note that we have enclosed the hypotheses
in circles, and drawn arrows which point to the part of the tree structure at which the abstraction
operation is carried out (the implication introduction operation in the linear logic formula). The
fundamental idea behind Gl-TAG is to map constituents of the syntax tree to parse trees of the
above form. In the same way that constituents group together to form larger constituents, parse
trees group together to form larger constituents. Corresponding to these ways in which parts of
parse trees combine are semantic functions that combine the denotations of nodes of the parse
trees.

Before describing a simple TAG grammar, and introducing our semantics, we will address the
question of how the parse trees of glue proofs are obtained from the (surface) syntactic structure
of the sentence. Heim and Kratzer (1998) assume LFs are generated by the syntax. But in Gl-
TAG this is not the case. What is the relevant relationship? Barker (Barker and Jacobson (2007))
describes the relationship well (albeit he is speaking of continuations):

Clearly, continuations exist independently of any framework or specific analy-
sis, and all occurrences of expressions have continuations in any language that has
a semantics...they are present whether we attend to them or not. The question...then,
is...how natural language expressions do or don’t interact with them. (Barker, 2002:
5).

We take the following position. Given an assignment of lambda terms to expressions in a sentence,
a glue proof is generated. The proof is a mathematical object that we “attend to or not”, as are

Chapter 2 Luke E. Burke 33

Glue TAG semantics for binary branching syntactic structures

the parse trees of glue proofs. So the question of how they are derived is transparent: they must
exist, given the lexical assignments we have given, and we can explore how they relate to natural
language sentences. This is a rather desirable situation; after all, the principles of LF construction
are not so robust as to be mathematically necessary. We therefore need not have substantial doubts
about the derivability of a glue tree from lexical assignments made to expressions in a sentence,
whereas the syntactic processes that generate LFs are mired in controversy.

2.3.2 TAG grammars
TAG grammar (Joshi and Schabes (1997)) permits us to construct syntax trees by means of various
operations which piece trees together. A TAG grammar has a set of initial trees which are incom-
plete, in that they may contain empty terminal nodes. The terminal nodes marked with (↓) indicate
we may substitute in other trees whose root share the categorial label of the terminal node.

Here is an elementary example. Suppose we have the following initial trees:

(7) a. S

VP

V

smoked

DP↓

b. DP

N

Kim

The initial tree, (7a), contains an empty terminal node, with a (↓) symbol. This indicates that
we may substitute a tree with a root node DP into this position and so we can produce the following
tree (substituting the tree in (7b)):

(8) S

VP

V

smoked

DP

N

Kim

Another operation, adjunction, expands initial trees by means of a special class of auxiliary
trees. An auxiliary tree is a tree whose root is labeled identically to some node along its frontier,
the foot node (which is marked with an asterisk). Take the following auxiliary trees:

34 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(9) a. S

S*Adv

Yesterday

b. S

Adv

openly

S*

By adjunction, an auxiliary tree breaks up and inserts itself into an initial tree one of whose
nodes is labelled by the same label (in this case, S) that labels the root and foot of the auxiliary
tree. Two applications of adjunction derive (10b) from (10a):

(10) a. S

VP

V

smoked

DP

N

Kim

b. S

Adv

openly

S

S

VP

V

smoked

DP

N

Kim

Adv

Yesterday

The class of Tree-adjoining grammars, and the operations of substitution and adjunction are
now defined.

Definition 18 (see Joshi and Schabes (1997) for a similar definition):

A tree-adjoining grammar (TAG) consists of a quadruple (Σ ; I ; A; t), where

• Σ is a finite set of symbols for types such that a member of Σ is either of type e, t or a type
derived from e and t via the rules of type formation (see the technical prelimary)

• t is the starter symbol, and a subset of Σ

• I is a set of finite trees, initial trees, such that:

- interior nodes are labeled by a member of Σ ; (The initial trees we consider are simply terminal
frontier nodes, which are vacuously interior nodes)

- the nodes on the frontier of initial trees are labeled by a member of Σ ; certain terminal symbols
on the frontier of the trees in I are marked for substitution by a down arrow (↓);

• A is a finite set of finite trees, called auxiliary trees, characterized as follows:

- interior nodes and nodes on the frontier are labeled by a member of Σ ;

Chapter 2 Luke E. Burke 35

Glue TAG semantics for binary branching syntactic structures

- Certain symbols on the frontier of the trees in A are marked for substitution except for one
node, called the foot node, which is marked with an asterisk (*); the label of the foot node must
be identical to the label of the root node.

Definition 19 Adjoining builds a new tree from an auxiliary tree β and a tree α (α is any tree,
initial, auxiliary or derived). Let α be a tree containing a non substitution node n labeled by X and
let β be an auxiliary tree whose root node is also labeled by X . The resulting tree, γ, obtained by
adjoining β to α at node n is built as follows:

1. the sub-tree of α, dominated by n, call it t, is excised, leaving a copy of n behind.

2. the auxiliary tree β is attached at the copy of n and its root node is identified with the copy of
n.

3. the sub-tree t is attached to the foot node of β and the root node of t (i.e. n) is identified with
the foot node of β.

Definition 20 Substitution takes place on nodes of the frontier of a tree. When substitution oc-
curs on a node n, the node is replaced by the tree to be substituted. When a node is marked for
substitution, only trees derived from initial trees can be substituted for it.

Gl-TAG utilises the TAG operations of adjunction and substitution defined above. In particular,
quantifier phrases in glue proofs correspond to auxiliary trees in parse trees and the scope of a
quantifier in the glue proof corresponds to the position at which an auxiliary tree structure has
adjoined in the parse tree.

But there are two complications. Firstly, our analysis actually uses tree-local MC-TAG (see
Weir (1988), for its formal properties). An MC-TAG has a finite set S of sets s1, ..., sn of multi-
component trees. Multi-component trees are sets containing a single tree s decomposed into parts.
Any operation applying to s must adjoin or substitute its parts simultaneously to an elementary
tree, and we can define functions that are only defined if these operations are simultaneous.

MC-TAG has the same weak and strong generative capacity as TAG and has been used for
identical purposes for which we use it here; namely, to allow for quantifier scope and discontinuous
syntactic dependencies (see (Han and Hedberg 2008:356)).

Gl-TAG depends on a specific function, the SNAP function. Suppose we substitute an argument
into a node n of a tree. The range of this operation is in the domain of the function γ which is
its sister in the tree. The range of γ is the domain of the mother node of n. Since this holds all
the way up a tree, we can in fact compose all these functions into one huge function, the SNAP
function. Thus when we substitute, we also apply function application up the tree as far as we can
go. Furthermore, when a quantifier tree adjoins to a position, it may adjoin again. We specify that
the quantifier first adjoins to the nearest t node. But since, if it adjoins to another place after this
moment, the range of the initial adjunction α0 operation is the the domain of the next operation
α1 of adjunction, and the range of α1 is the domain of α2, we can compose these operations into
a single function. We then require that substitution is only defined when the ultimate adjunction
in the series occurs (for if not, the substition would have to be supplied once for each adjunction).
Gl-TAG thus uses TAG functions as semantic operations.

36 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

2.4 Gl-TAG

2.4.1 Simple in/transitive sentences

In Gl-TAG, the semantic value of a mother node in the syntax tree is a function of the semantic
values of its daughters. But the function that combines the semantic values of the two daughters
is a function that combines two glue proof parse trees, one corresponding to the DP and one
corresponding to the VP (this function from syntax to semantics trees is denoted d e). Suppose we
have the syntax tree for “smokes”:

(11) VP

V

smokes

Intransitive verbs are mapped to TAG initial trees of the following kind:

(12)

t

e (↓)λx .sleeps(x) :
e(t

e and t are in bold to mark the fact that they are are variables over linear logic formulas that
correspond to simply typed λ calculus formulas of type e and t (the down arrow next to the e
indicates a substitution site). Suppose we substitute in an appropriate meaning constructor, such
as the following lexical entry:2

(13) Kim′: e

Since the node is labelled e, this is a legitimate substitution, provided that we suppose that substitu-
tion is only sensitive to the formula of glue logic on the right hand side of the meaning constructor.
Substitution of Kim′ for δ produces the following tree:

2Our procedure is far from ad hoc, and is in fact required by the operation of substitution in TAG. In TAG, substi-
tution requires that the categorial label into which a substitution is being made is a variable over syntactic objects of
that category. Hence, our insisting that this is the case is in fact explained by the nature of the substitution operation
we are applying. Furthermore, our distinguishing the nodes substituted into the tree from the initial tree itself receives
support from consideration of the underlying linear logic. In the underlying liner logic formula the hypotheses are
distinguished from formulae to which they apply. Thus our requirement that e and t in the parse tree being variables
over objects of type e and t is well supported by the theoretical tools we are using.

Chapter 2 Luke E. Burke 37

Glue TAG semantics for binary branching syntactic structures

(14)

t

Kim′: eλx.sleeps(x) :
e(t

Since the range of the substitition function is the domain of the function λx.sleeps(x), we form
one SNAP function, the composition of the substitution operation with function application:

(15)

λx.sleeps(x)(Kim′) (= Kim sleeps) :
t

Kim′ : eλx.sleeps(x) :
e(t

Each word in a sentence has a lexical entry, its core semantic value (for sleep this is λx .sleeps(x)).
However, in Gl-TAG, an expression e has a peripheral semantic value (the e and t nodes in (12)).
The peripheral semantic value of e is the set of all the rest of the node labels on the tree (without
the core semantic value). So in the case of “sleep”, the peripheral semantic value of “sleep” is
{e, t}, where e and t are variables over linear logic formulae that correspond to simply typed λ
calculus formulae of type e and t respectively.

The semantic value of an expression is the set containing its core semantic value, a lexical
entry, and its peripheral semantic value, and the entire tree is an elementary tree. 3 The present
view of the semantic value of sleep brings out nicely the fact that the core semantic value of sleep
will enter into inference with the semantic value for another term to produce the semantic value
of a sentence. In fact, since the elementary tree exhibits the dependency of the verb as a predicate
on its two arguments, it satisfies the semantic analogue, as regards predicate structure, of what
Frank (2004) has termed “The fundamental hypothesis of TAG-based work...that dependencies
must be expressed within the structural context of an elementary tree”. Our proposal that verbs are
elementary trees of the sort described therefore fits nicely with the TAG-theoretic conception of
elementary trees.

A number of analogies with alternative theories clarify our distinction between core and pe-
ripheral semantic value. For example, the distinction gives rise to a conception of semantic value
similar to that of a continuation. According to (Kelsey et al. 1998:p.71) “a continuation represents
the entire (default) future for the computation.” In Gl-TAG the semantic tree for a verb represents

3Instead of distinguishing core and peripheral semantic value, we could simply equate the semantic value of a verb
with the (model theoretic interpretation of) a set of meaning constructors. The problem with this approach is that it
fails to explain where the premises of the glue proof are coming from. The intuitive answer to this question is that the
premises are lexical entries for words in the sentence, including verbs. But this answer is not available if we simply
identify the semantic value of a verb with a set of meaning constructors. For this reason the distinction between core
and peripheral semantic value is conceptually superior.

38 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

the future of the semantic computation when it is incomplete. However, unlike in (Barker (2002)),
the semantic value of an expression is not identified with a continuation. Thus, we avoid equating
semantic values with continuations, but we can maintain the simple lexical entries of Heim and
Kratzer (1998) for core semantic values, whilst representing aspects of the continuation approach.

A second way of understanding the contrast between core and peripheral semantic value is as
analogous to the distinction between heads and non heads in X-bar theory. In X-bar theory a head
projects a maximal projection. The non-head nodes of the maximal projection are all members of
this projection. The lexical entry in the semantic tree for an intransitive is the semantic analogue of
the head of a maximal projection and the peripheral semantic value as being the semantic analogue
of the maximal projection of a head.

There are however disanalogies; the lexical entry for sleep is an independent item in the gram-
mar, whereas in X-bar theory heads do not exist without their projections (unless we allow a lexical
entry to have itself as a trivial projection).

We now consider transitive clauses of the following kind:

(16)

S

VP

DP

N

Kim

V

saw

DP

N

Pat

We will describe a TAG function that maps a semantic tree for the following syntactic tree of a VP
((17b)) and a semantic tree for the following subject DP ((17a)) to a semantic tree for the syntactic
tree in (16):

(17) a. DP

N

Pat

b. VP

DP

N

Kim

V

saw

We must first map the semantic tree for the object DP ((18b)) to the semantic tree for the V
((18a)):

(18) a. V

saw

b. DP

N

Kim

Chapter 2 Luke E. Burke 39

Glue TAG semantics for binary branching syntactic structures

(18a)

is mapped to the following parse tree:

(19)

t

e(t

e (↓)λy.λx.saw(x, y) :
e((e(t)

e (↓)

(18b)

is mapped to the following trivial semantic tree, a lexical entry:

(20) Kim′ : e

So the VP is mapped to the following semantic tree, by substituting (20) into the rightmost branch
of the semantic tree:

(21)

t

e(t

Kim′ : eλy.λx.saw(x, y) :
e((e(t)

e (↓)

Since the range of the substitition function is the domain of the function λy.λx.saw(x, y), we
form one SNAP function, the composition of the substitution operation with function application:

(22)

40 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

t

λx .saw(x ,Kim ′) :
e(t

Kim′ : eλy.λx.saw(x, y) :
e((e(t)

e (↓)

Note that we cannot first substitute a lexical entry into the leftmost node in semantic tree for
the verb, since the function node e(t needs to assume a specific value before it can combine with
its sister, which it can’t until the bottom-most variable in the semantic tree is substituted with an
appropriate meaning constructor.

We next combine the semantic tree for the DP subject with the semantic tree for the VP. This
is done by substituting the semantic tree for Pat into the leftmost branch of the semantic tree for
the VP, producing the following semantic tree:

(23)

t

λx .saw(x ,Kim ′) :
λe(t

Kim′ : eλy .λx .saw(x , y) :
e((e(t)

Pat′:
e

Since the range of the substitition function is the domain of the function λx.saw(x,Him′), we
form one SNAP function, the composition of the substitution operation with function application:

(24)

Saw(Pat ′,Kim ′) :
t

λx .saw(x ,Kim ′) :
λe(t

Kim′ : eλy .λx .saw(x , y) :
e((e(t)

Pat′:
e

We now consider quantifiers.

Chapter 2 Luke E. Burke 41

Glue TAG semantics for binary branching syntactic structures

2.4.2 Quantifiers
A theory of quantification ought to answer the following questions (see Von Stechow (2009),
Barker (2002)):

1. How is the problem of the object resolved? (see chapter 1, section 1.3)

2. Scope ambiguity: How is Qscope ambiguity accommodated?

3. How is variable binding achieved?

4. Duality of NP meaning: What (if anything) unifies the meanings of quantificational vs. non-
quantificational NPs?

5. Scope displacement: Why does the semantic scope of a quantified NP sometimes differ from
its syntactic scope?4

During the course of the following sections we will see how each of these questions are given
a distinctive answer in our framework.

We now want to map the following type of syntactic tree to a semantic tree:

(25)

DP

N

man/men

D

every/some/most/many...

First we need to show what semantic trees the following parts of the syntax correspond to:

(26) a.

D

every/some/most/many...

b. N

man

We then show how they combine. Following (Barker and Shan (2014), Bernardi (2010), Joshi
et al. (2007)) in Gl-TAG a quantifier phrase has two parts; a part that satisfies a given predicate
and a part that accounts for scopal properties. For this reason, the semantic value of a quantifier
phrase is in fact an elementary tree set of the following form (in the sense described above (p36),
consisting of a lexical entry and an auxiliary tree (one of whose foot nodes is labelled with the
lexical entry), whose members are simultaneously adjoined and substituted respectively to the
verb:

4Barker distinguishes 2 from 5 for two reasons: (i) on some theories (May 1985) relative scope is determined by
a separate mechanism from scope displacement and (ii) the existence of scope ambiguity has been disputed but the
existence of scope displacement has not. Ultimately we will show that our theory, like Barker’s, can give a unified
answer to 2, 4 and 5. Whether this is an advantage or not depends on whether a unified explanation of the three
phenomena is empirically warranted, a question we do not have space to consider.

42 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

m : e

t

(e(t)

t∗m : e

λQ .∀x [P(x)→ Q(x)]:
(∀X (e(X)(X))

(e(t) : (↓))λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

(2.6)

The core semantic value of “every” is
λP .λQ .∀x [P(x)(Q(x)] : (e(t)((∀X (e(X)(X)). The peripheral semantic value of
“every” is the set containing the meaning constructors of the other nodes in the elementary tree set.

A quantifier is an auxiliary tree (since its root is the same as one of the footnodes marked with
an asterisk) and can therefore adjoin to the t nodes of other trees, a fact of crucial importance.

Nominal predicates like man have lexical entries of the following kind:

(27) λx.man(x): (e(t)

The semantic tree for “Every man” is derived by substituting the semantic tree for “man” into the
semantic tree for “Every”, at the node adjacent to the core semantic value of “every” in (60). This
derives the following semantic tree:

(28)

t

(e(t)

te

λQ .∀x [P(x)→ Q(x)]:
(∀X (e(X)(X))

λx.man(x): (e(t)λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

Since the range of the substitition function is the domain of the function λP .λQ .∀x [P(x)→ Q(x)],
we form one SNAP function, the composition of the substitution operation with function applica-
tion:

(29)

Chapter 2 Luke E. Burke 43

Glue TAG semantics for binary branching syntactic structures

t

(e(t)

te

λQ .∀x [man ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx.man(x): (e(t)λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

One nice feature of this analysis is that nominal predicates such as “man” are treated similarly
to how we treated names above, albeit they have a distinct type. This is the reflex in the semantic
trees, of the fact that “man” and “John” are both noun phrases.

Paul Elbourne (p.c) asked how we prevent “sleep” from being substituted in where λx.man(x)
has been substituted, given they both have the same type. There are two ways. Firstly, “Every
sleep” is not a syntactic structure that can be interpreted. Since Gl-TAG only takes well-formed
syntactic structures as its input, this issue doesn’t arise, since it is only for every well-formed
operation of the syntax we provide an operation in the semantics.

Secondly, for selectional restrictions of the non-syntactic kind, we can always adopt substitu-
tion constraints, familiar from TAG theory, which impose selectional restrictions on what can be
substituted and where. In the case of (28), for example, if we had evidence that “Every sleep” was
ruled out semantically by the selectional requirements of “Every”, we could say that an intransitive
verb cannot be substituted in where λx.man(x) has been substituted, since this would violate the
selectional restrictions that every imposes on its complement; namely that it be nominal. 5

How does the elementary tree set for “Every man” combine with an intransitive VP such as
smoke, the following tree?

(30)

t∗

e : (↓)λx .smokes(x) :
(e(t)

Since the semantic tree for “Every man” has a foot node and root note labelled t, we adjoin
it to the root node of smokes. But since we are taking every man to have two parts (which are
the members of the same elementary tree set) we require one operation which both adjoins the
auxiliary tree and substitutes the hypothesis that corresponds to it into the node of the tree, for the
verb. The existence of such an operation is guaranteed by the nature of multi-component sets in
MC-TAG, and results in the following structure:

5We leave the formulation of such constraints for further research.

44 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(31)

t

(e(t)

t

m : eλx .smokes(x) :
(e(t)

m : e

λQ .∀x [man ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx .man(x) :
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

Since the range of the substitution operation is the domain of λx .smokes(x) and the range of
λx .smokes(x) is the domain of the t node, and the range of the abstraction function is the domain
of λQ .∀x [man ′(x)→ Q(x)], we can form the composition of all these operations. Thus for every
adjunction/substitution operation in our semantics there exists a SNAP function, the composition
of the substitution operation with a chain of functions (and thus we have a joint adjunction/SNAP
operation) that results in the semantic value of the tree:

(32)

∀x [man ′(x)→ smoke(x)]
t

λm.smokes(m) :
(e(t)

(m smokes) :
t

m : e
λx .smokes(x) :

(e(t)

m : e

λQ .∀x [man ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx .man(x) :
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

We now derive the semantic value of “Kim saw every man”. “Saw every man” corresponds to
the following semantic tree:

Chapter 2 Luke E. Burke 45

Glue TAG semantics for binary branching syntactic structures

(33)

t

(e(t)

(t)

λx .saw(x ,m) :
(e(t)

m : e
λyλx .saw(x , y) :

(e((e(t)

e : ↓

e

λQ .∀x [man ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx .man(x) :
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

The tree is built by an operation on the elementary tree set for a quantifier, which simultane-
ously adjoins one member of this set, the semantic tree for “every man”, to the semantic tree for
“saw” and substitutes another member of this set,m, in the tree for saw. As before, the substitution
operation can be composed with the function λy.λx.saw(x, y). Note that in Gl-TAG a VP does not
have a core semantic value in an incomplete tree. Furthermore, the semantic value of a VP is not
obtained by applying the core semantic value of the verb to the core semantic value of the object.
Nevertheless, the semantic value of the VP is a function of the semantic value of the direct object.

The tree illustrates our solution to the problem of the object (see chapter 1, section 1.3). The
type clash between the core semantic value of a transitive verb and a quantifier is resolved once we
enrich our conception of meaning to accommodate the core and peripheral semantic value of a verb
and a quantifier, and utilise the machinery of MC-TAG by putting the parts of a quantifier into an
elementary tree set. When considering both the core and peripheral semantic value of a transitive
verb and a quantifier, the problem of the object disappears. Thus our solution to the problem of the
object flows naturally from the conception of semantic value we have articulated.

The tree also illustrates our answer to the question of scope displacement. Scope displacement
follows from the dual nature of quantifiers, whose semantic values comprise a part which satisfies a
predicative part and a scopal part. This ensures that the scopal part of a quantifier in the syntax tree
does not match the position of the quantifier in the syntax. Again, without viewing the semantic
value of a quantifier in this dual way, such a solution would not be possible, thus our conception
of semantic value allows a simple answer to the question of displacement. Thus our solution to the
problem of the object flows naturally from the conception of semantic value we have articulated.

46 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

We now substitute “Kim” into this structure:

(34)

∀x [man ′(x)→ saw ′(k ′, x)] :
t : ∗

λm.saw(k ,m) :
(e(t)

saw(k ,m) : (t : ∗)

λx .saw(x ,m) :
(e(t)

m : e
λyλx .saw(x , y) :

(e((e(t)

k : e

e

λQ .∀x [man ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx .man(x) :
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

Note that the core semantic value of the VP can be obtained from the completed tree by sub-
stituting a variable (σ) over expressions for k′ in the root node denotation. (We have also explored
an equivalent system to Gl-TAG in which the core semantic value is reflected also in incomplete
trees, but this needs development).

The only special rule of semantic combination operant in our fragment (apart from the general
rules governing trees we discussed above) is thus the following:

(35)

Chapter 2 Luke E. Burke 47

Glue TAG semantics for binary branching syntactic structures

Composition Rule for our fragment
Parse tree combination

Let γ be a syntax tree whose only two daughters are α and β and suppose that d eM is
the SNAP function from syntax trees to semantic trees. Then if α ∈ dom(d eM, g) and
β ∈ dom(d eM, g), then:
(i) If α is a name or a nominal predicate, substitute dαe in dβe (or If β is a name or a nominal
predicate, substitute dβe in dαe), and compose the substitution operation with the function
f1 on the sister node of the predicate, and compose the value of f1 with its sister (repeating
this process as far up the tree as possible and so forming a single SNAP function)
OR
(ii) adjoin dαe to a t node in dβe (or adjoin dβe to a t node in dαe) and substitute the
hypothesis in its tree set into the subject (object) position of the verbal semantic tree. (Again,
composing the substitution operation with the function f1 on the sister node of the predicate,
and composing the value of f1 with its sister (repeating this process as far up the tree as
possible and so forming a single SNAP function)).

From now on we treat names and quantifiers as equivalent, since they are interderivable in the
underlying linear logic. This has the advantage that we can treat both names and quantifiers as
adjoining structures governed by condition (ii) above, thus simplifying our semantic theory, and
we can shift quantifiers to names as and when is necessary.

2.4.3 Q scope ambiguities

We now see how our semantics accounts for Qscope ambiguities. Consider the sentence “Some
woman hugged every man”. This is ambiguous between the surface ((36a)) and inverse scope
((36b)) readings:

(36) a. ∃x [woman(x) ∧ ∀y [man(y)→ hugged(x , y)]]
b. ∀y [man(y)→ ∃x [woman(x) ∧ hugged(x , y)]]

Quantifier scope ambiguities in Gl-TAG semantics are generated by quantifiers adjoining to differ-
ent t nodes in the structure. In the following semantic tree for “hugs every man”, you will notice
an asterisk on each t node, indicating adjoining sites:

(37)

48 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

t∗

(e(t)

t∗

λx .hugs(x ,m) :
(e(t)

m : e
λyλx .hugs(x , y) :

(e((e(t)

e : ↓

e

λQ .∀x [man ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx .man(x) :
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

To derive (36a), a single operation simultaneously adjoins ”some woman” to the root node of
(37) and substitutes in the hypothesis in the elementary tree set (the range of this operation is the
domain of a chain of function which can be composed into a single SNAP function). To derive
(36b), a single operation simultaneously adjoins ”some woman” to the other t node in (37) and
substitutes in the hypothesis in the elementary tree set (the range of this operation is the domain
of a chain of function which can be composed into a single SNAP function). This is show on the
following page, where squares have been put around each adjunction site:

Chapter 2 Luke E. Burke 49

Glue TAG semantics for binary branching syntactic structures

(38)

S

V
P

D
P

N m
an

D

ev
er

y

V hu
gs

D
P

N

w
om

an

D

so
m

e

⇒

∃y
[w

om
an
′ (

y
)
∧

[∀
x

[m
an
′ (

x
)
→

hu
g
′ (

y
,x

)]
]

:
t

λ
k
.∀

x
[m

an
′ (

x
)
→

hu
gs
′ (

k
′ ,

x
)]

:
(e
(

t)

∀x
[m

an
′ (

x
)
→

hu
gs
′ (

k
′ ,

x
)]

:
t

λ
m
.h

u
gs

(k
′ ,

m
′)

:
(e
(

t) hu
gs

(k
,m

)
:

(t
)

λ
x
.h

u
gs

(x
,m

)
:

(e
(

t)

m
′
:
e

λ
y
λ

x
.h

u
gs

(x
,y

)
:

(e
(

(e
(

t)

k
′
:
e

m
′
:
e

λ
Q
.∀

x
[m

an
′ (

x
)
→

Q
(x

)]
:

(∀
X

(e
(

X
)
(

X
))

λ
x
.m
a
n

(x
):

(e
(

t)
λ

P
.λ

Q
.∀

(x
)[

P
(x

)
→

Q
(x

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)
(

X
))

k
:
e

λ
Q
.∃

y
[w

om
an
′ (

y
)
∧

Q
(y

)]
:

(∀
X

(e
(

X
)
(

X
))

λ
z.
w
om

a
n

(z
):

(e
(

t)
λ

P
.λ

Q
.∃

y
[w

om
an
′ (

y
)
∧

Q
(y

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)
(

X
))

∀y
[m

an
′ (

y
)
→

[∃
x

[w
om

an
′ (

x
)
→

hu
g
′ (

x
,y

)]
]

:
t

λ
m
.∃

x
[w

om
an
′ (

x
)
∧

hu
gs
′ (

x
,m
′)

]
:

(e
(

t)

∃x
[w

om
an
′ (

x
)
∧

hu
gs
′ (

x
,m
′)

]
:

t

λ
k
.h

u
gs

(k
′ m
′)

:
(e
(

t) hu
gs

(k
′ m
′)

:
(t

)

λ
x
.h

u
gs

(x
,m
′)

:
(e
(

t)

m
′
:
e

λ
y
λ

x
.h

u
gs

(x
,y

)
:

(e
(

(e
(

t)

k
′
:
e

k
:
e

λ
Q
.∃

(y
)[

w
om

an
′ (

y
)
∧

Q
(y

)]
:

(∀
X

(e
(

X
)
(

X
))

λ
x
.m
a
n

(x
):

(e
(

t)
λ

P
.λ

Q
.∃

(y
)[

P
(y

)
∧

Q
(y

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)
(

X
))

m
′
:
e

λ
Q
.∀

y
[m

an
′ (

y
)
→

Q
(y

)]
:

(∀
X

(e
(

X
)
(

X
))

λ
z.
w
om

a
n

(z
):

(e
(

t)
λ

P
.λ

Q
.∀

y
[P

(y
)
→

Q
(y

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)
(

X
))

50 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

A single syntactic structure is thus mapped to two parse trees, which we put in a set. We thus
have a simultaneous operation (of SNAP and adjunction) which, applied to the semantic values of
the sub-constituents of the syntax tree, produces a set of semantic values for our syntactic structure.

Consider a more complicated example: “Every representative of some company saw a sample”.
Our informants detect the first 5 readings of this sentence, but not the 6th:

(39) a. ∀x∃y [Company(y) ∧ Representative − of (x , y)→ ∃z [sample(z) ∧ saw(x , z)]
b. ∃z [sample(z) ∧ ∀x∃y [Company(y) ∧ Representative − of (x , y)→ saw(x , z)]]
c. ∃z [company(z) ∧ ∀x∃y [sample(y) ∧ Representative − of (x , z)→ saw(x , y)]
d. ∃z∃y [company(z) ∧ sample(y) ∧ ∀x [Representative − of (x , z))→ saw(x , y)]
e. ∃y∃z [sample(y) ∧ company(z) ∧ ∀x [Representative − of (x , z))→ saw(x , y)]
f. ∀x [rep − of (x , y)→ ∃y [company(y) ∧ ∃zsample(z) ∧ see(x , z)]]

((39f) contains an unbound variable y in the antecedent and is ruled out in glue because it is not
derivable in linear logic (see Asudeh and Crouch (2001b)))

Here are the semantic trees for “saw a sample” and “every representative of a company” (re-
naming of alphabetic variants is a constant feature of the trees below):

Chapter 2 Luke E. Burke 51

Glue TAG semantics for binary branching syntactic structures

(40) t*

(e (t)

t *

λx .saw(x ,m) :
(e(t)

m : e
λyλx .saw(x , y) :

(e((e(t)

e

m′ : e

λQ .∃x [sample(x) ∧Q(x)] :
(∀X (e(X)(X))

λx .man(x) :
(e(t)

λP .λQ .∃x [P(x) ∧Q(x)] :
(e(t)(

(∀X (e(X)(X))

(41) t

et

te

λQ .∀x∃z [company ′(z) ∧ R.of (x , z)
(∀X (e(X)(X))

(λm.∃z [company ′(z) ∧ R.of (m, z)) :
e(t

∃z [company ′(z) ∧ R.of (m, z) :
t

(λl .R.of (m, l)) :
e(t

(R.of (m, l)) :
t

(λx .R.of (x , l)) :
e(t

l : e

l: e3
λx .x

e(e

λyλx .R.of (x , y) :
(e(e(t)

m : e2

l : e3

λQ .∃z [company ′(z) ∧Q(z)] :
(∀X (e(X)(X))

λd .company ′(d) :
(e(t)

λP .λQ .∃z [P(z) ∧Q(z)] :
(e(t)(

(∀X (e(X)(X))

m : e2

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

52 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

In (40), “a sample” has been adjoined to the root node of the semantic tree for saw and a hypothesis
has been substituted in the object position of the semantic tree. We then adjoin (41), the semantic
tree for “Every representative of some company”, (and substitute in its hypothesis), to derive the
full semantic tree:

(42)

∀x
∃z

[c
om

pa
n

y
′ (

z
)
∧

R
.o

f
(x
,z

)
→
∃y

[s
am

pl
e
′ (

y
)
∧

sa
w
′ (

x
,y

)]
(∀

X
(e
(

X
)

(
X

))

λ
k
′ .
∃x

[s
am

pl
e
′ (

x
)

∧s
aw
′ (

k
′ ,

x
)]

:
(e
(

t)
:
∗

∃x
[s

am
pl

e
′ (

x
)

∧s
aw
′ (

k
′ ,

x
)]

:
t

:
∗

λ
m
.s

aw
(k
′ ,

m
)

:
(e
(

t) sa
w

(k
′ ,

m
)

:
(t

:
∗)

λ
x
.s

aw
(x
,m

)
:

(e
(

t)

m
:
e

λ
y
λ

x
.s

aw
(x
,y

)
:

(e
(

(e
(

t)

k
′
:
e

m
:
e

λ
Q
.∃

x
[s

am
pl

e
(x

)
∧

Q
(x

)]
:

(∀
X

(e
(

X
)

(
X

))

λ
x
.m

an
(x

)
:

(e
(

t)
λ

P
.λ

Q
.∃

x
[P

(x
)
∧

Q
(x

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

k
′
:
e

λ
Q
.∀

x
∃z

[c
om

pa
n

y
′ (

z
)

∧R
.o

f
(x
,z

)
→

Q
(x

)
(∀

X
(e
(

X
)

(
X

))

(λ
m
.∃

z
[c

om
pa

n
y
′ (

z
)

∧R
.o

f
(m
,z

)
)

:
e
(

t

∃z
[c

om
pa

n
y
′ (

z
)

∧R
.o

f
(m
,z

)
:

t

(λ
l.

R
.o

f
(m
,l

)
)

:
e
(

t (R
.o

f
(m
,l

)
)

:
t

(λ
x
.R
.o

f
(x
,l

)
)

:
e
(

t

l
:
e l:

e 3
λ

x
.x

e
(

e

λ
y
λ

x
.R
.o

f
(x
,y

)
:

(e
(

e
(

t)

m
:e

2

l:
e 3

λ
Q
.∃

z
[c

om
pa

n
y
′ (

z
)

∧Q
(z

)]
:

(∀
X

(e
(

X
)

(
X

)) λ
d
.c

om
pa

n
y
′ (

d
)

:
(e
(

t)
λ

P
.λ

Q
.∃

z
[P

(z
)

∧Q
(z

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

m
:e

2

λ
P
.λ

Q
.∀

x
[P

(x
)

→
Q

(x
)]

:
(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

Chapter 2 Luke E. Burke 53

Glue TAG semantics for binary branching syntactic structures

How is representative of some company formed? In our system, of has the following
semantic tree:
(43) (e (t)

t*

(e (t)

e

eλxe .xe :
(e(e)

(e (e (t)

e

e

Of then combines with some company by a simultaneous operation of substitution and adjunction
to form the following tree. The range of substitution is in the domain of a function λx.x and so we
can compose these functions:

(44)
54 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(e (t)

e (t

(e (t)

t∗

(e (t)

l:e

l: e3
λxe .xe :
(e(e)

(e (e (t)

e

l : e3

λQ .∃x [company ′(x)
∧Q(x)] :

(∀X (e(X)
(X))

λx .company ′(x) :
(e(t)

λP .λQ .∃x [P(x)
∧Q(x)] :

(e(t)(
(∀X (e(X)
(X))

e

We then suppose that relational predicates such as representative have as their denotation
elementary tree sets comprising the lexical denotation of representative alongside a hypothesis:

(45)

{
λy .λx .R.of (x , y)

m : e

}
(2.7)

Chapter 2 Luke E. Burke 55

Glue TAG semantics for binary branching syntactic structures

Both members of this tree set are simultaneously inserted at the (e (t) node and a SNAP function
is formed by composing all the functions up the tree as far as possible:

(46) (λx .R.of (x , l)) :
e(t

(λx .R.of (x , l)) :
e(t

(λx .R.of (x , l)) :
e(t

(λx .R.of (x , l)) :
t

(λx .R.of (x , l)) :
e(t

e

l: eλxe .xe :
(e(e)

λyλx .R.of (x , y) :
(e(
e(t)

l: e

m : e

λQ .∃x [company ′(x)
∧Q(x)] :

(∀X (e(X)
(X))

λx .company ′(x) :
(e(t)

λP .λQ .∃x [P(x)
∧Q(x)] :

(e(t)(
(∀X (e(X)
(X))

m : e

Every combines with representative of some company by substituting the root of the latter at ↓ in
(47) below, producing “Every representative of some company”. Since the range of the substitution
is the domain of the sister, λP.λQ.∀x[P (x) → Q(x)], we compose the substition operation with
one step of function application:

56 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(47) t

et

te

λQ .∀x∃z [company ′(z) ∧ R.of (x , z)
(∀X (e(X)(X))

(λm.∃z [company ′(z) ∧ R.of (m, z)) :
e(t

∃z [company ′(z) ∧ R.of (m, z) :
t

(λl .R.of (m, l)) :
e(t

(R.of (m, l)) :
t

(λx .R.of (x , l)) :
e(t

l : e

l: e3
λx .x

e(e

λyλx .R.of (x , y) :
(e(e(t)

m : e2

l : e3

λQ .∃z [company ′(z) ∧Q(z)] :
(∀X (e(X)(X))

λd .company ′(d) :
(e(t)

λP .λQ .∃z [P(z) ∧Q(z)] :
(e(t)(

(∀X (e(X)(X))

m : e2

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

Reading b. (∃z [sample(z) ∧ ∀x∃y [Company(y) ∧ Representative − of (x , y)→ saw(x , z)]])
comes about by adjoining “Every representatitive of some company” at the foot node of “a sample”
in the semantic tree for “saw some sample”:

(48)
Chapter 2 Luke E. Burke 57

Glue TAG semantics for binary branching syntactic structures

∃z [sample(z) ∧ ∀x∃y [Company(y) ∧ Representative − of (x , y)→ saw(x , z)]]
t

λm.∀x∃z [company ′(z) ∧ R.of (x , z)
→ ∃y [sample ′(y) ∧ saw ′(x , y)]

((e(t)

∀x∃z [company ′(z) ∧ R.of (x , z)
→ ∃y [sample ′(y) ∧ saw ′(x , y)]

t

λk ′.saw(k ′,m) :
(e(t)

saw(k ′,m ′) :
t

λx .saw(x ,m ′) :
(e(t)

m : e
λyλx .saw(x , y) :

(e(
(e(t)

k′ : e

k′ : e

λQ .∀x∃z [company ′(z)
∧R.of (x , z)→ Q(x)

(∀X (e(X)
(X))

λn.∃z [company ′(z)
∧R.of (n ′, z)] :

(e(t

∃z [company ′(z)
∧R.of (n ′, z)] : t

λl .R.of (n ′, l ′) :
(e(t)

R.of (n ′, l ′) :
(t)

λx .R.of (x , l ′) :
(e(t)

l ′ : e

l′ : e
λxe .xe :
(e(e)

λyλx .R.of (x , y) :
(e(

(e(t)

n : e

l : e

λQ .∃z [company ′(z)
∧Q(z)] :

(∀X (e(X)
(X))

λd .company ′(d) :
(e(t)

λP .λQ .∃z [P(z)
∧Q(z)] :

(e(t)(
(∀X (e(X)
(X))

n : e

λP .λQ .∀x [P(x)
→ Q(x)] :
(e(t)(

(∀X (e(X)
(X))

m : e

λQ .∃z [sample ′(z)
∧Q(z)] :

(∀X (e(X)
(X))

λd .sample ′(d) :
(e(t)

λP .λQ .∃z [P(z)
∧Q(z)] :

(e(t)(
(∀X (e(X)
(X))

Reading c. (∃z [company(z) ∧ ∀x∃y [sample(y) ∧ Representative − of (x , z)→ saw(x , y)]) comes
about by adjoining “Every representatitive of some company” at the root of the semantic tree for
“saw some sample” and then taking “representative of some company” and excising “some com-
pany”, adjoining it to the root t node of the universal quantifier:

58 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(49)

∃z
[c

om
pa

n
y

(z
)
∧
∀x
∃y

[s
am

pl
e
(y

)
∧

R
ep

re
se

n
ta

ti
ve
−

of
(x
,z

)
→

sa
w

(x
,y

)]
:t

λ
l′
.∀

x
[R
.o

f
(x
,l
′)

:
→
∃z

[s
am

pl
e
′ (

z
)
∧

sa
w

(x
,z

)]
:

e
(

t

∀x
[R
.o

f
(x
,l
′)

:
→
∃z

[s
am

pl
e
′ (

z
)
∧

sa
w

(x
,z

)]
:

t

λ
k
′ .
∃z

[s
am

pl
e
′ (

z
)

∧s
aw

(k
′ ,

z
)]

:
e
(

t

∃z
[s

am
pl

e
′ (

z
)

∧s
aw

(k
′ ,

z
)]

:
t

λ
m
′ .

sa
w

(k
′ ,

m
′)

:
e
(

t sa
w

(k
′ ,

m
′)

:
t

λ
x
.s

aw
(x
,m
′)

:
(e
(

t)

m
:
e

λ
y
λ

x
.s

aw
(x
,y

)
:

(e
(

(e
(

t)

k
′
:
e

m
:
e

λ
Q
.∃

z
[s

am
pl

e
′ (

z
)

∧Q
(z

)]
:

(∀
X

(e
(

X
)

(
X

)) λ
d
.s

am
pl

e
′ (

d
)

:
(e
(

t)
λ

P
.λ

Q
.∃

z
[P

(z
)

∧Q
(z

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

k
:
e

λ
Q
.∀

x
[R
.o

f
(x
,l
′)

:
→

Q
(x

)]
:

(∀
X

(e
(

X
)

(
X

)) λ
n
′ .

R
.o

f
(n
′ ,

l′
)

:
(e
(

t) R
.o

f
(n
′ ,

l′
)

:
(t

)

λ
x
.R
.o

f
(x
,l
′)

:
(e
(

t)

l′
:

e

l
:
e

λ
x e
.x

e
:

(e
(

e
)

λ
y
λ

x
.R
.o

f
(x
,y

)
:

(e
(

e
(

t)

n
:
e

n
:
e

λ
P
.λ

Q
.∀

x
[P

(x
)

→
Q

(x
)]

:
(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

l
:
e

λ
Q
.∃

c
[c

om
pa

n
y
′ (

c
)

∧Q
(c

)]
:

(∀
X

(e
(

X
)

(
X

)) λ
d
.c

om
pa

n
y
′ (

d
)

:
(e
(

t)
λ

P
.λ

Q
.∃

c
[P

(c
)

∧Q
(c

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

Reading d. (∃z∃y [company(z) ∧ sample(y) ∧ ∀x [Representative − of (x , z))→ saw(x , y)]) comes
about by adjoining “every representative of some company” at the t node in the middle of “saw
some company”. Then, “some company” is excised from the structure and adjoined to the root t
node of “some sample”.

Chapter 2 Luke E. Burke 59

Glue TAG semantics for binary branching syntactic structures

(50) ∃z∃y [company(z) ∧ sample(y) ∧ ∀x [Representative − of (x , z))→ saw(x , y)] : t

λl ′.∃z [sample ′(z)
∧] :

∀x [R.of (x , l ′)
→ Saw(x , z)] :

e(t

∃z [sample ′(z)
∧] :

∀x [R.of (x , l ′)
→ Saw(x , z)] :

t

λm ′.∀x [R.of (x , l ′)
→ Saw(x ,m ′)] :

e(t

∀x [R.of (x , l ′)
→ Saw(x ,m ′)] :

t

λk ′.saw(k ′,m ′) :
e(t

saw(k ′,m ′) :
t

λx .saw(x ,m ′) :
(e(t)

m : e
λyλx .saw(x , y) :

(e(
(e(t)

k′ : e

k′ : e

λQ .∀x [R.of (x , l ′)
→ Q(x)] :

(∀X (e(X)
(X))

λn ′.R.of (n ′, l ′) :
e(t

R.of (n ′, l ′) :
t

λx .R.of (x , l ′) :
(e(t)

l : e

l′ : e
λxe .xe :
(e(e)

λyλx .R.of (x , y) :
(e(

(e(t)

n′ : e

n′ : e

λP .λQ .∀x [P(x)
→ Q(x)] :
(e(t)(

(∀X (e(X)
(X))

m : e

λQ .∃z [sample ′(z)
∧Q(z)] :

(∀X (e(X)
(X))

λd .sample ′(d) :
(e(t)

λP .λQ .∃z [P(z)
∧Q(z)] :

(e(t)(
(∀X (e(X)
(X))

l′ : e

λQ .∃z [company ′(z)
∧Q(z)] :

(∀X (e(X)
(X))

λd .company ′(d) :
(e(t)

λP .λQ .∃z [P(z)
∧Q(z)] :

(e(t)(
(∀X (e(X)
(X))

Finally, reading e. (∃y∃z [sample(y) ∧ company(z) ∧ ∀x [Representative − of (x , z))→ saw(x , y)])
comes about in the same way as e., except by adoining “some company” lower than “some sam-
ple”.

60 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

(51)

∃y
∃z

[s
am

pl
e
(y

)
∧

co
m

pa
n

y
(z

)
∧
∀x

[R
ep

re
se

n
ta

ti
ve
−

of
(x
,z

))
→

sa
w

(x
,y

)]
:

t

λ
m
′ .
∃z

[c
om

pa
n

y
′ (

z
)

∧∀
x

[R
.o

f
(x
,z

)
→

S
aw

(x
,m
′)

]]
:

t

∃z
[c

om
pa

n
y
′ (

z
)

∧∀
x

[R
.o

f
(x
,z

)
→

S
aw

(x
,m
′)

]]
:

t

λ
l′
.∀

x
[R
.o

f
(x
,l
′)

→
S

aw
(x
,m
′)

]
:

e
(

t

∀x
[R
.o

f
(x
,l
′)

→
S

aw
(x
,m
′)

]
:

t

λ
k
′ .

sa
w

(k
′ ,

m
′)

:
e
(

t sa
w

(k
′ ,

m
′)

:
t

λ
x
.s

aw
(x
,m
′)

:
(e
(

t)

m
′
:
e

λ
y
λ

x
.s

aw
(x
,y

)
:

(e
(

(e
(

t)

k
′
:
e

k
′
:
e

λ
Q
.∀

x
[R
.o

f
(x
,l
′)

→
Q

(x
)]

:
(∀

X
(e
(

X
)

(
X

)) λ
n
′ .

R
.o

f
(n
′ ,

l′
)

:
e
(

t

R
.o

f
(n
′ ,

l′
)

:
t

λ
x
.R
.o

f
(x
,l
′)

:
(e
(

t)

l
:

e

l′
:
e

λ
x e
.x

e
:

(e
(

e
)

λ
y
λ

x
.R
.o

f
(x
,y

)
:

(e
(

e
(

t)

n
′
:
e

n
′
:
e

λ
P
.λ

Q
.∀

x
[P

(x
)

→
Q

(x
)]

:
(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

l′
:
e

λ
Q
.∃

z
[c

om
pa

n
y
′ (

z
)

∧Q
(z

)]
:

(∀
X

(e
(

X
)

(
X

)) λ
d
.c

om
pa

n
y
′ (

d
)

:
(e
(

t)
λ

P
.λ

Q
.∃

z
[P

(z
)

∧Q
(z

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

m
′
:
e

λ
Q
.∃

z
[s

am
pl

e
′ (

z
)

∧Q
(z

)]
:

(∀
X

(e
(

X
)

(
X

)) λ
d
.s

am
pl

e
′ (

d
)

:
(e
(

t)
λ

P
.λ

Q
.∃

z
[P

(z
)

∧Q
(z

)]
:

(e
(

t)
(

(∀
X

(e
(

X
)

(
X

))

We now can claim the same advantage for our theory of quantification that Barker claims
for his continuation-based approach: it gives a single unified answer to the question of scope
displacement, scope ambiguity and duality of NP meaning identified above. Quantified NPs denote
the same kind of object as NPs and thus there is no type clash when quantifiers appear in object
position. Scope displacement is achieved merely by the nature of the operation (adjunction) by
means of which a verb is combined with a NP. Finally, scope ambiguity is simply a result of the

Chapter 2 Luke E. Burke 61

Glue TAG semantics for binary branching syntactic structures

fact that such displacement can happen in different ways. We now turn to the final question in our
list: how is variable binding achieved in our system?

2.4.4 Binding
How can the Gl-TAG cope with cases in which quantifers bind pronouns, such as the following?

(52) Every actor likes himself.

Our approach to binding is based on Heim and Kratzer (1998). In Heim and Kratzer’s semantics,
quantifiers and the pronouns they bind are co-indexed. Pronouns and traces are interpreted as vari-
ables that have a denotation of type e relative to an assignment function, according to the trace and
pronouns rule:

If α is a trace or a pronoun, g is a variable assignment, and i ∈ dom(g), then J αi Kg = g(i).

Predicate abstraction causes the pronoun or any trace with the same index as the quantifier
to become bound by the lambda operator created by predicate abstraction, as in the following
example:

(53)

CP t

C′〈e, t〉

TP t

VP 〈e, t〉

DPe

himself1 g(1)

V 〈e, 〈e, t〉〉

admires

DPe

N

t1 e

λi

DP〈e, t〉, t〉

Every actor1

We then have:

1. J VP K = λy .λx .A(x , y)(g(1))

2. λx .A(x , g(1)) (by⇒β)

3. J TP K = λx .A(x , g(1)) (J t1 Kg(t1 7→z))

4. A(J t1 Kg(t1 7→z), g(1)) (by⇒β)

5. A(z, z) (trace and pronoun rule)

62 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

6. J C′ K = λz.A(z, z)

7. J CP K = ∀x[Actor(x)→ λz.A(z, z)(x)

8. ∀x[Actor(x)→ A(x, x) by⇒β

No rule governing traces is necessary in Gl-TAG (unlike in Heim and Kratzer (1998)), since
hypotheses in the glue proof play the role of traces in the above LF, and they follow from the
underlying linear logic. Suppose we have the following syntax tree, where the reflexive pronoun is
coindexed with the quantifier phrase and the core semantic values of each constituent are written:

(54)

TP t

VP e(t

DPe;

himself1 g(1)

V e((e(t)

admires

DP(e(t)(t

Every actor1;

The hypothesis in the tree set for every man has the same denotation as the reflexive pronoun
(k), which is interpreted as the result of applying the assignment function to the index associated
with it and with the quantifier.

In the glue proof for (54), predicate abstraction abstracts over both the quantifiers hypothesis
and the object hypothesis (the assignment function assigns k to the index 1 and the hypothesis in
the tree set is k):

∀x [Actor ′(x)→ admires ′(x , x)] :
t : *

λk .admires(k , k) :
(e(t)

admires(k , k) :
(t∗)

λx .admires(x , k) :
(e(t)

g(1) : eλyλx .admires(x , y) :
(e((e(t)

k : e

k : e

λQ .∀x [Actor ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx.Actor′(x):
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)((∀X (e(X)(X))

This approach may need to be refined in a number of ways. It does however constitute the basis
for an account of binding in our framework.

2.4.5 Constraints on adjunction

Scope constraints as restrictions on adjunction and other scope bearing items

Quantifiers do not scope freely. Consider (55):

Chapter 2 Luke E. Burke 63

Glue TAG semantics for binary branching syntactic structures

(55) A teacher thinks that every student smokes.

(55) does not have the reading on which for every student x there is some teacher y who thinks
x smokes; therefore, we need to propose a mechanism to block the free scoping of quantifiers. A
further question is what explains why the quantifiers in a given case are unable to freely scope. We
do not answer this question.

We consider 3 cases in which quantifier scope is constrained. Firstly, quantifiers are not usually
able to scope outside of certain so-called syntactic islands. Secondly, there are so-called scope
freezing effects, whereby only the surface scope order of a number of quantifiers is available.
Thirdly, there are restrictions on whether a quantifier can intervene between the scope of two
quantifiers.

Scope islands

Quantifiers do not seem to be able to scope freely outside of tensed clauses. Syntacticians (Sz-
abolcsi (2006)) have proposed that certain syntactic configurations act as islands, blocking move-
ment of quantifiers outside a given island. QR is thus thought to be restricted by conditions per-
taining to the restriction of covert movement. In Glue TAG semantics, unattested quantifier scope
relations are regulated similarly, by appropriate adjunction constraints, which prevent quantifiers
from adjoining at certain t nodes. This fits in very nicely with the TAG architecture, according
to which adjunction constraints may be imposed when necessary (see Joshi and Schabes (1997)).
Consider the following semantic tree for (55):6

(56)

6This has been simplified by assuming an extensional denotation for think

64 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

∃y [teacher ′(y)∧
thinks ′(y , [∀x [student ′(x)→

smokes ′(x)]] :
(t)

λk .thinks ′

(k ,∀x [student ′(x)→ smokes ′(x)] :
e((t

thinks ′(k ,∀x [student ′(x)→
smokes ′(x)] :

(e(t)

λz .thinks ′(z ,∀x [student ′(x)→
smokes ′(x)] :

t

∀x [student ′(x)
→ smokes ′(x)] :

t)

λm.smokes ′(m) :
e((t)

smokes ′(m) :
t)

m : e3

λx .smokes ′(x) :
(e(t)

m: e3

λQ .∀x [student ′(x)
→ Q(x)] :

(∀X (e
(X)(X))

λx .man(x) :
(e(t)

λP .λQ .
∀(x)[P(x)→ Q(x)] :

(e(t)(
(∀X (e(X)
(X))

λ pt λz .
thinks ′(z , p)
t((e(t)

k : e2

e2

λQ .∃y [teacher ′(y) ∧Q(y)] :
(∀X (e(X)
(X))

λz.teacher′(z):
(e(t)

λP .λQ .
∃y [teacher ′(y) ∧Q(y)] :

(e(t)(
(∀X (e(X)(X))

We prevent the unattested reading by requiring that the quantifier “Every student” adjoins be-
low “think” in the semantic tree. This prevents the reading where the universal takes wide scope
from coming about. Whatever the details of such an account, we therefore know that adjoining
constraints must be formulated and justified, in order to block such readings. The fact that ad-
junction constraints in TAG have been used to block unattested readings gives us some measure of
hope.

More generally, when considering scope islands, adjoining may be prevented from occurring
above a certain node in the semantic tree. The advantage of this account is that it can state re-
strictions on quantifier scope in terms of restrictions on movement. It can thus potentially emulate
certain restrictions on QR that have been proposed by minimalists, the only difference being that
the restrictions are stated in the semantics. Thus, at least philosophically speaking, we can agree
with those who pose an intimate link between restrictions on syntactic scope and restrictions on

Chapter 2 Luke E. Burke 65

Glue TAG semantics for binary branching syntactic structures

semantic scope restrictions. In particular, Gl-TAG does not rule out the possibility that Reinhardt’s
hypothesis is correct (Reinhart (1978)):

(57) ”The scope of a linguistic operator coincides with its domain in some syntactic represen-
tation that the operator is part of.

This is comforting, given the hypothesis is an open question in syntactic theory.

Scope freezing effects

So-called scope freezing effects arise in ditransitive constructions (amongst others):

(58) John gave a politician every report ((∃ > ∀) / ??(∀ > ∃))

There is no reading of this sentence where for every report x John gave x to some politician y.
Scope freezing effects in Gl-TAG are achieved in two ways. Firstly. we prevent that the quan-

tifier “every report” adjoins above the t node of “a politician”. Secondly, we postulate that certain
groups of quantifiers form a scope block. A scope block is a tree comprising two quantifiers,
one adjoined to the other, whose root and foot is a t node. Scope blocks may in certain circum-
stances be broken up by other scopally relative operators (for example, negation), in which case
they are flexible scope blocks. However inflexible do not permit this (more on this soon). Some-
times a scope block may be non-rigid; that is, the relative order of quantifiers in the block may
be changed. However, in other cases a scope block is rigid; the relative order of quantifiers in the
block is invariant. To deal with scope freezing effects we therefore propose that “a politician” and
“every report” form a rigid scope block. This ensures that the order of the quantifiers in the block
cannot be reversed. The question of why the relevant scope blocks are formed, and why they have
the properties that they do remains. But we do not have the space to go into it.

Larson’s generalisation

Larson noted that in sentences with quantifiers embedded in PPs headed by quantifiers, free scoping
of the quantifiers is not available. Consider the following sentence:

(59) More than half of the students will investigate [DP at least one dialect [PP of every lan-
guage]].

(59) does not have an interpretation in which, for each language x, more than half of the students
y investigated a dialect of x, but no student investigated the same dialect as any another.

Our example earlier ”Every representative of some company saw a sample” already shows
how such readings are blocked, since the unattested reading is not derivable in glue (see Asudeh
and Crouch (2001b)). But suppose this were not the case. In that case, such restrictions would
be accounted for by treating “at least one dialect” and “every language” as forming an inflexible
scope block (an inflexible, non-rigid scope block, to be exact). This would prevent a quantifier
from being adjoined at the t node in-between the two quantifiers.

Again, the question of why the relevant scope blocks are formed, and why they have the prop-
erties that they do cannot be considered here.

66 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Negation

Quantifiers interact scopally with negation. Consider the following sentences (in the following
examples a > b indicates the reading where a scopes over b and ”??” indicates that the given
reading is infelicitous):

(60) Every student didn’t show up (∀ > ¬) / (¬ > ∀)

(61) More than three students didn’t show up. (∃ > ¬) / ??(¬ > ∃)

(62) John didn’t meet every student (¬ > ∀) / ??(∀ > ¬)

(63) John didn’t meet more than three students (Q>3 > ¬) / (¬ > Q>3)

In Gl-TAG the semantic value of negation as an auxiliary tree:

(64)

t

t *λpt.¬(p) :
t(t

There are three nice feature of this analysis. Firstly, the fact that quantifiers and negation share
the property of being scope bearing items is brought out by the fact that they are both auxiliary
trees. Secondly, our analysis allows a uniform treatment of predicate and sentential negation, at
least in cases such as (60).

Chapter 2 Luke E. Burke 67

Glue TAG semantics for binary branching syntactic structures

(65)

¬∀x [student ′(x)→ show .up ′(x)] : ∗
t

∀x [student ′(x)→ show .up ′(x)] : ∗
t

λl .shows .up(l)
e(t

shows .up(l)
t

l : e3

λx .shows .up(x)
e(t

e

λQ .∀x [student ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx.student′(x):
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)((∀X (e(X)(X))

λpt.¬(p) :
t(t

(66)

∀x [student ′(x)→ ¬show .up ′(x)] : ∗
t

λl .¬shows .up(l) : ∗
e(t

¬shows .up(l)
t

shows .up(l)
t

l : e3

λx .shows .up(x)
e(t

λpt.¬(p) :
t(t

e

λQ .∀x [student ′(x)→ Q(x)] :
(∀X (e(X)(X))

λx.student′(x):
(e(t)

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)((∀X (e(X)(X))

68 Chapter 2 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Thirdly, and finally, since negation is an auxiliary tree recursive on t, we can restrict the scope of
negation by restricting the nodes to which it can adjoin. This allows space for adjoining constraints
that prevent negation from scoping high. Thus, our account allows for restrictions on the scope of
negation, although we still need to answer the question of why relevant scope restrictions arise,
and why they have the properties that they do.

2.4.6 Conclusion
We have shown that Gl-TAG semantics offers a novel theory of quantification and can deal with a
fragment involving simple transitive and intransitive sentences. Our approach involves making a
distinction between the core and peripheral semantic value of an expression, which we argued was
motivated and explanatory. In the next chapter we will explore some of the interesting properties
of our semantics in comparison to the approaches outlined in the first chapter.

Chapter 2 Luke E. Burke 69

Chapter 3

Gl-TAG and compositionality

3.0.7 Introduction
We now show that Gl-TAG is compositional. We first provide an overview of technical work
on compositionality, distinguishing and strengthening versions of the principle. We then discuss
two formulations of compositionality, Jonnsen compositionality and Westerståhl compositionality,
which permit an analysis of Qscope ambiguous sentences as having a single syntactic structure
that is paired with more than one semantic interpretation. We then show that TAG Glue semantics
is compositional in both formulations. We finish the chapter with some brief reflections on the
similarities between our semantics for Qscope ambiguities and those discussed in chapter 1.

3.1 Compositionality

3.1.1 Montague-Hendriks-Jannsen
The principle of compostiionality (POC) is a semantic principle assumed to play a number of ex-
planatory roles (such roles are not important for our purposes, but see Jönsson (2008), Pelletier
(1999) for critical discussion of these issues). The principle can be formulated as follows:

(POC) The semantic value of a complex expression α(e1, ..., en) is a function only of the se-
mantic values of its immediate constituents (e1, ..., en) and the syntactic mode α in which they are
combined.

According to Bach (1976), the principle states the rule-to-rule hypothesis: for every syntactic
rule combining some immediate constituents there is a semantic rule, combining their semantic
values. The MHJ (Montague-Hendriks-Jannsen) approach1 assigns the hypothesis a precise in-
terpretation: the hypothesis entails the syntax and semantics, when represented respectively as
many-sorted algebras S1 and S2, are such that there is a function which associates the operators of
S1 and S2, and there is a homomorphism from S1 to S2.

Let the syntax be a many sorted π-algebra A = 〈(As)s∈S , (Fγ)γ∈Γ 〉 with generating family
H = (Hs)s∈S . (As is the set of surface expressions of category syntactic category s and Fγ is the

1There are however a number of differences between the approaches of Jannsen, Hendriks and Montague

70

Glue TAG semantics for binary branching syntactic structures

set of syntactic operators)). Let the semantics be a many sorted ω-algebra B = 〈(Bt)t∈T , (Gδ)δ∈∆〉
(Bt is the carrier set of meanings of type t and Gδ is the semantic operations).2 3 Let σ : S 7→ T
and ρ : Γ 7→ ∆ be functions. Then if B is compositional with respect to A then (1) and (2) hold:

(1) A is (σ, ρ)-interpretable in B iff for all γ ∈ Γ: if π(γ) = 〈〈s1, ..., sn〉, sn+1〉, then ω(ρ(γ)) =
〈〈σ(s1), ..., σ(sn)〉, σ(sn+1)〉.

Suppose A is (σ, ρ)-interpretable in B and let h[As], for some homomorphism h, denote {h(a) |
a ∈ Asn}. Then:

(2) h :
⋃
s∈S

As 7→
⋃
t∈T

Bt is a (σ, ρ)-homomorphism from A to B iff

• for all s ∈ S : h[As] ⊆ Bσ(s)

• if π(γ) = 〈〈S1 , ..., sn〉, sn+1 〉 and a1 ∈ As 1 , ..., an ∈ As n ,
then h(Fγ(a1, ..., an)) = Gρ(γ)(h(a1), ..., h(an)

Since A is the set of surface expressions, structurally distinct expressions receive the same in-
terpretation, a result we don’t want. Therefore a (σ, ρ)-homomorphism must also hold between an
fully disambiguated algebra and the semantic algebra, where the fully disambiguated algebra rep-
resents the immediate constituents of a given expression and their structural features. One such al-
gebra is the term algebra of A with respect to generating set H , TA,H = 〈 (TA,H ,s)s∈S , (Fγ)γ∈Γ 〉
(see the technical preliminary). In the term algebra, a constituent is simply a term and an im-
mediate constituent t′ of a term t is simply a proper constituent of t such that there is no proper
constituent t′′ of t such that t′ is a proper constituent of t′′. The grammatical structure of a term t is
simply the operation γ in the term algebra which, applied to t′s immediate constituents, produces
t (γ is nullary for atomic terms).

Hendriks (2001) and Janssen (1983) point out that a term τ is usually associated with a trans-
lation tr(τ) into some logic which in turn receives an interpretation with respect to the semantic
algebra I(tr(τ)). For this reason, the composition tr ◦ I of the translation and the interpretation
function must in addition constitute a homomorphism. Furthermore, meaning postulates are often
used to ensure certain terms are always assigned a specific interpretation, and these reduce the
space of models available for the logical language, making the definition of compositionality more
complicated. Hendriks and Jannsen end up imposing quite specific requirements on a semantics
in order that it be compositional with respect to a given syntax. Such complexity give rise to a
potential problem of applicability, as Partee remarks:

“The relation between a linguist’s syntactic component and syntax as an algebra is not always
easy to see, and it can be non-trivial to determine whether and how a given syntax can be presented
as an algebra, and more particularly,... as a homomorphism to a corresponding semantic algebra.”

2The algebras A and B contain families of sorts, (As)s ∈ S, (Bt)t ∈ T respectively in order to represent the fact
that expressions may belong to different syntactic categories which are paired with different semantic categories in the
semantic algebra. The operators of the two algebras are also a family of sorts, (Fγ)γ ∈ Γ, (Gδ)δ ∈ ∆〉 respectively
and the operations of (Fγ)γ ∈ Γ apply to expressions of a given syntactic category and may concatenate, insert,
permute or delete material.

3Montague instead worked with a more complicated one-sorted algebra

Chapter 3 Luke E. Burke 71

Glue TAG semantics for binary branching syntactic structures

A simpler, more general formulation of compositionality (Hodges (2001)) has since been for-
mulated. This formulation if the operations of the syntax are restricted in certain ways (Pagin and
Westerståhl (2010)), defines a directly compositional semantics in the sense of (Barker and Jacob-
son (2007)), where a directly compositional semantics requires that for every syntactic rule there
is a semantic rule and thus that every constituent is assigned an interpretation. The formulation
also makes minimal assumptions about what meanings are, assuming only that meanings form a
set; likewise, minimal assumptions are made also about the operations in the syntax and the strings
they derive (unless a directly compositional semantics is desired).

Hodges’ framework can help determine whether a given semantics is compositional or not
more easily than MHJ’s framework; it can also be applied to many different syntactic and semantic
frameworks without requiring some of the encumbering assumptions of the MHJ framework. To
give one example, MHJ require that the semantics be an algebra structured similarly to the syntax,
whereas (Hodges (2001)) does not. (POC) itself is neutral about whether meanings are so struc-
tured: it says only that there is a meaning assigning function for any syntactic operator. Since
Hodge’s framework, to which we now turn, avoids imposing too many restrictions on semantic
and syntactic frameworks in order that they be compositional, it is in a better position to capture
the essential features of compositionality more elegantly than the baroque technical formalities of
MHJ.

3.1.2 Hodges (2001)
For Hodges (2001) a grammar is a partial algebra, E = (E ,A,Σ), where Σ is a set of partial
functions over E (the set of syntactic rules), a set of (possibly ambiguous) expressions of finite
arity which are generated from a set of basic expressions, A ∈ E .4

The grammatical term algebra GT (E ,A,Σ) of the grammar (E ,A,Σ) assigns possibly dif-
ferent structures to the same surface expressions, and is defined as the smallest set such that:

1. Every atomic term t is in GT and val(t) is t.

2. For any αn ∈ Σ the terms t0, ..., tn−1 ∈ GT and if val(ti) = ei for all t0, ..., tn−1 and
α(e0, ..., en−1) is defined, then “α(t0, ..., tn−1” ∈ GT and val(”α(t0, ..., tn−1” = α(e0, ..., en−1.

By 2, val is a surjective homomorphic map from the grammatical terms to expressions in E,
which implies that, for a complex term V (α(t1 , ..., tn)) we have (where α names the relevant syn-
tactic constructor, α in the grammatical term algebra)

V (α(t1 , ..., tn)) = α(V (t1), ...,V (tn))

The interpretation function for a grammar E is a (partial) map, µ, from terms to their semantic
values, whose domain is a subset of the GT of E.

If µ(φ) is defined φ is µ−meaningful 5

4Alternatively, by standard algebraic convention we define a grammarE as a partial algebra E = (E , αE)α∈Σ where
E is the set of expressions and the (αi) ∈ Σ are n-ary partial functions on E (for some n ≥ 0), Atomic expressions
being zero-place functions.

5In order to give a relatively theory neutral characterisation of compositionality, Hodge makes no particular as-
sumption about meanings, other than that a relation of synonymy can be defined between them, as follows:

72 Chapter 3 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Hodge, defining immediate constituent and mode of combination as MHJ have above (p.c),6

then defines compositionality in the following two ways, which are equivalent if every constituent
of an expression is µ-meaningful:

Hodgean compositionality 1
Funct(µ) :

For every syntactic rule α ∈ Σ there is a meaning operation rα such that if

α(u1 , ..., un) is meaningful and (u1, ..., un) are immediate constituents of α ∈ Σ , then
µ(α(u1 , ..., un)) = rα(µ(u1), ..., µ(un)).

The right hand side of the equation in Funct presupposes that every sub-constituent of α(u1 , ..., un)
is µ-meaningful. Hodge’s second formulation of compositionality does not assume this is the case,
and is designed to render precise the idea that a complex expression’s meaning is invariant under
certain substitutions of its constituents.

Hodgean compositionality 2
(Subst)

If φ[u1 , ..., un] and φ[t1 , ..., tn] are both meaningful expressions (where the bracketing

[u1 , ..., un] indicates possibly disjoint occurrences of the (possibly not immediate) subterms
[u1 , ..., un] and if ui ≡µ ti for 1 ≤ i ≤ n, then φ[u1 , ..., un] ≡µ φ[t1 , ..., tn].

Let us now consider whether (Funct) requires strengthening.

3.1.3 Strengthening compositionality
These formal definitions of compositionality tell us that the meaning of a complex expression e is a
function of the meaning of its immediate constituents but they do not tell us what kind of function.

In particular, they do not ensure that an average human can compute the function from the
semantic values of e′s parts, which is desirable if the semantics is to underpin a theory of our
language use:

”Strictly speaking, that compositionality holds is not enough for making sure that
an interpreter can figure out the meaning of a complex expression. It is not enough
that the meaning of a complex expression is a function of the meaning of the parts and

(Where≡ is a partial equivalence relation between terms), u ≡µ t iff µ(u), µ(t) are both defined and µ(u) = µ(t).
We can then say that two semantics, µ, υ for a grammar are equivalent if their synonymy relations are identical: if

≡µ=≡υ .
6We can also define syntactic categories from this notion of constituency, by taking a syntactic category X to be

an equivalence class (∼X) of terms with respect to the relation of substitutability:

For X ⊆ GT , t ∼X u iff all terms s[t], s[t] ∈ X ↔ s[u] ∈ X (where s[t] indicates a subterm occurrence of t in s,
and su results from replacing it by u.
Semantic categories can also be defined as equivalence classes with respect to preservation of meaningfulness under
substitutability, by restricting σX to dom(µ).

Chapter 3 Luke E. Burke 73

Glue TAG semantics for binary branching syntactic structures

the mode of composition, for the function need not be computable. If it is not, the
interpreter cannot work out what the value of the function is for new arguments”

A simple solution to this problem is to claim that speakers derive the meaning of an expression
by a recursive clause which specifies the value of the function with respect to both atomic elements
of the semantics and complex semantic values. A structured semantics of this kind is an algebra,
M = (M ,B , ω), comprising a set of partial C∗ functions (ω) whose domain is a finite set of basic
meanings (B) and whose range is a derived set of meanings, M . Suppose we have a precise idea
of what function an average human can computer (for suggestions see Pagin (2012)). Call it a
C ∗ −function/operation. By recursion over M we have:

Rec(µ1) There is a C∗ function b ∈ ω and for every α ∈ Σ a C∗ operation rα ∈ ω such that
for every meaningful expression s,

µ(s) =

{
b(s) if s is atomic

rα(µ(u1), ..., µ(un), u1, ..., un) if s = α(u1, ..., un)

The modesty of Hodgean compositionality is also evident from the fact that it does not demand
that the semantic value of one daughter of every node is a function and the semantic value of its
sister an argument; such a requirement enables us to reduce redundancy in the semantics since the
denotation of each node in the tree is predictable from the type of its daughters (the requirement
that the semantics be type driven). However, hodgean compositionality is compatible with there
being construction specific compositional rules.

3.2 Compositionality and Qscope ambiguities

Funct(µ) presupposes two claims (Jönsson (2008)). According to the determination claim, the
semantic value of a complex expression is determined by the semantic values of its immediate
constituents and their syntactic combination. According to the quantified claim a complex expres-
sion has a unique value relative to a structural analysis. But (Subst), the more general version of
compositionality, does not seem to entail the quantified claim.7. Jonnsen argues that the quanti-
fied claim is not necessary in order for POC to discharge its explanatory duty (Jönsson 2008:30).
Since he seeks the minimal formulation of POC which serves this purpose, he rejects the quantified
claim. Whether or not he is correct, he points out two further difficulties with the quantified claim.

Firstly, the quantified claim forecloses an open empirical matter. It is surely better to leave it
open in principle that a part of syntactic structure may receive no semantic interpretation. Although
it may be a working assumption to assign meaning to every part of constituent structure, this does
not imply that a semantic theory which does not assume this is mistaken from the outset, unless
there is evidence that the theory assigns no meaning to parts of syntactic structure which intuitively
have meaning.

Secondly, the quantified claim requires that a syntactically unambiguous sentence can only
have two interpretations if we can form a set of its interpretations (a set-valued function from the

7Westerståhl points out that, relative to certain definitions of synonymity, (Subst) also requires each term have a
unique meaning: “(Subst) does [suppose expressions have a unique semantic value] too, in a less perspicuous way, in
that it uses a straightforward notion of synonymy: two expressions are synonymous if (both are meaningful and) they
have the same meaning.”

74 Chapter 3 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

syntax to the semantics). We analysed Qscope ambiguities as a function from a single syntactic
structure to a set of parse trees of glue proofs (Cooper storage and the flexible types approach to Q
scope ambiguities also adopt this option). But we may wish to see whether a version of composi-
tionality can be adopted which does not depend on there being such a set-valued function between
the syntax and the semantics; and, in any case, we wish to see whether our semantics allows such
a set-valued function. In the following two subsections, we explore two revisions of Hodges’
version of compositionality: the first pairs a syntactic structure with a set of interpretations; the
second formulates a relational version of compositionality. We then see if our semantics comes out
compositional on these versions.

3.2.1 Approach 1: Jonnsen compositionality
Jonnsen’s revision of Hodge’s version of compositionality introduces the notion of a semantic
range, “the possibly empty set of meanings of a grammatical term” (Jönsson 2008:31). The in-
terpretation function µ is a total function, assigning semantic ranges to grammatical terms, drawn
from the power set of meanings, such that for grammatical term p, we have:

Definition 21 µ(p) ⊆ P {µ(x) : x is a GT in the domain of µ}

Derivately, the semantic value of an expression e is the (possibly infinite) union of the semantic
ranges of its structural analyses (for i-many n-ary (n ≥ 0) syntactic rules σni):

Definition 22 µ(e) =
∞⋃

i=1

µ(σi(e)))

On this picture, compositionality is defined as follows:

Definition 23 A semantic theory is Jonssen compositional iff
For every complex grammatical term s = σ(e0 , ..., en−1), there is a function r such that

µ(s) = r(σ, µ(e0), ..., µ(en−1)).

Call a semantic theory thinly compositional if it is Jonssen compositional and does not require
that a grammatical term have a non-empty, unique semantic range. Call a semantic theory thickly
compositional which is Jonssen compositional and requires that a grammatical term have a unique
semantic range.

A thinly compositional semantic theory allows that syntactic rules may be associated with more
than one semantic rule of combination. A single syntactic structure can then be associated with a
semantic range ≥ 1. A thickly compositional theory cannot allow this, since a grammatical term
must have a unique semantic range. Is the semantics we have proposed thinly compositional? Let
us go through the types of sentence found in our fragment.

First off we have intransitive sentences with proper names as subjects. Let σ be the syntactic
operation that merges a DP subject with an intransitive VP. So we have that

(3) σ(eDP , eV P)

By Jonnsen compositionality, there must be some r such that

(4) µ(σ(eDP , eV P) = r(σ, (µeDP , µeV P)))

Chapter 3 Luke E. Burke 75

Glue TAG semantics for binary branching syntactic structures

In Gl-TAG (in which proper names are quantifiers) µ(eDP) is an auxiliary tree corresponding to
a quantifier which combines with a tree corresponding to the VP by a simultaneous operation on
the tree set for the quantifier that adjoins one of its members (the auxiliary tree) to the VP and
substitutes the other member in at the variable node in the VP semantic tree. The operation of
substitution can in turn be composed with the other functions on the tree all the way up to the root
node (in the way we described in the previous chapter). We require that the substitution operation is
only defined if it applies simultaneously to the final adjoining site of the quantifier (The adjunction
of the quantifier tree several times can itself be composed into a single function, since the range
of the operation is the domain of the next adjunction operation). Thus there is a function, r,
of simultaneous adjunction (this may be a composition of several adjunctions) and substitution
composed with chains of function application, that satisfies the requirements of compositionality.

For a simple transitive sentence let σ0 be the syntactic operation that combines the verb with
its direct object and σ1 be the syntactic operation that combines the subject with the VP. Then we
have

(5) σ(eV , eDP)
(6) σ(eDP , eV P)

By Jonnsen compositionality, there must be some r such that

(7) µ(σ(eV , eDP)) = r(σ, (µeV , µeDP))

Again, there is such an r, namely, simultaneous adjunction and substitution (composed with
a chain of functions that reaches up the tree). We adjoin the semantic tree for quantifier DP to
the semantic tree for the verb and substitute in its hypothesis. As regards (6) the relevant function
r is (again) the operation of simultaneous adjunction and substitution (composed with a chain of
functions that reaches up the tree), which adjoins the QP subject at a t node of the semantic tree
for the VP and substitutes the quantifier’s hypothesis in at the object node of the VP. Since there
are two sites where adjunction can take place, there are two different semantic trees that can be
derived. Thus there are two semantic modes of combination associated with one syntactic rule,
which is permitted by Jonnsen compositionality.

The same function is in fact the sole function needed to satisfy Jonnson compositionality, as
the reader may check. Even in the case of Qscope ambiguous sentences, whenever a complex VP
combines with a DP, this involves adjoining the semantic tree for a quantifier at any t node in the
structure and substituting its hypothesis in. There are finitely many ways in which a quantifier can
be adjoined to a given tree of finite length, each representing a possibly different implicit semantic
rule that corresponds to the syntactic rule that merges the DP subject with the VP.

Let us consider relational nouns, such as “Every representative of some company”.
By Jonnsen compositionality, there must be some r such that

(8) µ(σ(eD, eNP)) = r(σ, (µeD, µeNP))

From chapter 2 it will be recalled that a simultaneous operation substitutes the semantic tree for
“representative of some company” into the sister of the “Every” node and substitutes a hypothesis
into the this tree (the substitution operation being function composed with a chain of functions that
compute the nodes of the tree). So there is an r, namely two joint operations of substitution, that

76 Chapter 3 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

combines µeD with µeNP . But by Jonnsen compositionality, there must also be ri, rj such that

(9) µ(σ(eNP , ePP)) = ri(σ, (µeN , µePP))

(10) µ(σ(eP , eDP)) = rj(σ, (µeP , µeDP))

(10) is satisfied by simultaneously adjoining some company at the t node of of and substituting in
a hypothesis in the bottom-most node of the tree for of (composed with a chain of functions that
reaches up the tree). The tree for of and of some company are as follows:

(11) (e (t)

t*

(e (t)

e

eλxe .xe :
(e(e)

(e (e (t)

e

e

(12)
Chapter 3 Luke E. Burke 77

Glue TAG semantics for binary branching syntactic structures

(e (t)

e (t

(e (t)

t∗

e (t)

e

m: e3

λxe .xe :
(e(e)

(e (e (t)

e

m : e3

λQ .∃x [company ′(x)
∧Q(x)] :

(∀X (e(X)
(X))

λx .company ′(x) :
(e(t)

λP .λQ .∃x [P(x)
∧Q(x)] :

(e(t)(
(∀X (e(X)
(X))

e

We satisfy (9) by a joint operation of substituting the lexical entry for representative at the
(e (e (t) node and substituting its hypothesis l in (both of these operations can be composed
with a chain of functions that reaches up the tree)):

(13)

78 Chapter 3 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

λl .∃y [Company(y)
∧R.of (l , y) :

e((t

∃y [Company(y)
∧R.of (l , y) :

t

λm.R.of (l ,m) :
e(t

R.of (l ,m) :
(t : ∗)

(λx .R.of (x ,m)) :
e(t

m : e

m : e3

λxe .xe :
(e(e)

λyλx .R.of (x , y) :
(e((e(t)

l : e

m : e

λQ .∃y [Company ′(y)
∧Q(x)] :
(∀X (e

(X)(X))

λy .company(y) :
(e(t)

λP .λQ .
∃(y)[P(y) ∧Q(y)] :

(e(t)(
(∀X (e(X)
(X))

l : e

Chapter 3 Luke E. Burke 79

Glue TAG semantics for binary branching syntactic structures

An operation then takes this predicate and both simultaneously substitutes it into the semantic
tree for every and inserts a hypothesis in the remaining node of the tree. Thus the r referred to in
(8) is more complicated than described above.

Note that at this point there is only one place at which “some company” can adjoin, hence there
can be no scopal ambiguity. But when “representative of some company” is substituted into the
semantic tree for “every”, “some company” can adjoin to the root of “every”, outscoping it (or it
can stay in the original position it has adjoined to). There is a distinct operation of adjunction, rj′

for any site at which “some company” can adjoin. This is Jonnsen compositional so long as there
is a finite number of implicit semantic rules for a given syntactic rule which adjoin a quantifier in
a given place.

3.2.2 Approach 2: Westerståhl’s relational compositionality
Westerståhl formulates a version of compositionality on which there is there is a relation between
grammatical terms and their semantic values:

(14)

(RuleAmb): For every syntactic rule rsyn there are corresponding semantic operations (r1,sem, ..., rk,sem)
such that the meanings of the result of applying rsyn to certain expressions is the result of applying
ri,sem, for some i, to meanings of those expressions.

Take the following examples of Qscope ambiguities, assuming all proper subterms of (16) are
unambiguous (α, β, γ are syntactic rules):

(15) Four critics reviewed three films

(16) α(β(four , critic), γ(reviewed , β(three, film)))

There are three semantic operators, rα1 , rα2 , and rα3 , corresponding to the syntactic operator
α. Westerståhl proposes that interpreting (15) involves selecting the appropriate semantic oper-
ator, based on contextual and performance-based factors. This is little different from the sort of
contextually-based decision to select an interpretation of a particular lexically ambiguous expres-
sion, such as “bank”.

The semantic value µR(p) of p is a subset of E ×M (Where E and M are respectively the set
of expressions (p0, ..., pi) and the set of meanings (m0, ...,mj) for i, j):

Definition 24 µ(p) = Rp = {m : R(p,m)}

Definition 22 defines a set-valued function from a grammatical term to the set of its interpreta-
tions.

We may then formalise Westerståhl’s relational compositionality as follows. Call a semantics
R bounded if for each operation α of the syntax the number of semantic values of a grammatical
term of the form α(q1, ..., qn) is less than or equal to some finite number k:

Definition 25
∣∣∣∣ ⋃
i=1

{
Rα(q1 ,...,qn) :

∧
1≤i≤n R(qi ,mi)

}∣∣∣∣ ≤ k

80 Chapter 3 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Then a semantics is compositional iff it is bounded by k and the following holds:

Westerståhl compositionality
Rulek(R):

For each syntactic rule α there are semantic operations r1
α, ..., r

k
α such that for each semantic

value m of the grammatical term α(p1, ..., pn), m ∈ Rα(p1,...,pn) there is some j-ary semantic
operation, and mi ∈ Rpi for each pi ∈ α(p1, ..., pn), such that

(a) m = rjα(m1, ...,mn)

(b) for any j′, 1 ≤ j′ ≤ k, rj
′
α (m1, ...,mn) ∈ Rα(p1,...,pn)

In the k = 1 case Rulek(R) reduces to Hodges’ Funct(µ), the form of compositionality
reviewed above.

Clause (a) ensures that for each semantic value m a grammatical term has, there is a unique
semantic operation rj

′
α that, together with any meanings assigned the immediate constituents,

(p1, ..., pn) of that grammatical term, produces m. Clause (b) ensures that the semantic value
m produced is a subset of Rα(p1,...,pn), which entails it belongs to the following set:

Rα(p1 ,...,pn) = {m : R(α(p1 , ..., pn),m)}

Let us see if Gl-TAG is Westerståhl compositional.
First off we have intransitive sentences with proper names as subjects. Let α be the syntactic

operation that merges a DP subject (where the DP is either one quantifier or a proper name) with
an intransitive VP. So we have that

(17) α(eDP , eV P)

There is an rjα, namely a simultaneous operation on the tree set for the proper name which adjoins
the quantifier tree and substitutes its hypothesis in the semantic tree for the verb (the substitu-
tion operation is again composed with a chain of functions that reaches up the tree), such that
µ(α(eDP , eV P) = rjα(µ(eDP), µ(eV P)).

Next we have transitive sentences whose subjects and objects may be either quantifiers or
proper names. Let α, β and γ be the relevant syntactic rules:

(18) α(eDP , eV P)

(19) β(eV , eDP)

(20) γ(eD, eNP)

The last two rules we have already accounted for: the last is by substitution of µ(eNP into µ(eD and
the penultimate is by the simultaneous operation of adjoining the semantic tree for the quantifier
DP to the root of µ(eV and substituting its hypothesis in the remaning node of the structure (the
substitution operation is again composed with a chain of functions that reaches up the tree). The

Chapter 3 Luke E. Burke 81

Glue TAG semantics for binary branching syntactic structures

first is again by simultaneous adjunction and substitution (composed with the functions on the tree),
so there is an rjα such that µ(α(eDP , eV P) = rjα(µ(eDP), µ(eV P)). But there are two adjunction
sites: one at the root of the semantic tree for the VP, and the other at the t node at the root of the
semantic tree for the verb. Hence in addition to rjα, there is a distinct relation of adjunction rj′α .
Each of rjα and rj′α satisfy (a) and (b) where k = 2.

What about relational nouns? We have the following syntactic rules:

(21) (α(eNP , ePP)

(22) (β(eP , eDP)

Regarding (22), a DP combines with the semantic tree for of by adjoining the DP to the t node
(substitution is not applied until the quantifier reaches its final adjoining site). Regarding (21),
NP “representative” combines with the PP “of some company” by substitution of the lexical en-
try for representative into the semantic tree for of (see the example above) and substitution of
its hypothesis in the remaining variable node of the structure (the substitution operation is again
composed with a chain of functions that reaches up the tree). At this point there is only one place
at which “some company” can adjoin, hence there can be no scopal ambiguity. But when “repre-
sentative of some company” is substituted into the semantic tree for “every”, “some company” can
adjoin to the root of “every”, outscoping it (or it can stay in the original position it has adjoined
to). There is a distinct operation of adjunction, rj′ for any site at which “some company” can
adjoin, thus satisfying clause (a) of Westerståhl’s definition. The Glue TAG semantics is therefore
Westerståhl compositional.

3.3 Conclusion

We now review what we have demonstrated in the thesis, and discuss some open questions and
topics for future research. An appendix details the similarities between Gl-TAG and the theories
of quantification discussed in chapter 1 and shows how we can reformulate a Cooper-style storage
system in Gl-TAG.

In chapter 1 we outlined a conception of language, according to which languages can be
modeled by algebras without being identified with them. We then distinguished thin and thick
semantic theories, and claimed to be offering a thin semantic theory. Roughly, a thin semantic
theory represents the truth conditional contribution of words and constituents within sentences, and
how they combine, without taking a position on the purpose of a semantic theory more generally,
or its metaphysical characteristics. Within a thin semantic theory of the kind we explore in the
thesis, semantic values are truth conditions, and a semantic theory represents the truth conditions
of arbitrary sentences.

We claimed our conception of semantic theory to have some advantages; in particular, that it
leaves space for a diversity of answers to the question of what a semantic theory is about and it
allows us to define criteria for the correctness and the equivalence of semantic theories. Our un-
willingness to prescribe the nature of a semantic theory outside of its core role in representing truth
conditions was motivated by a Lewisian functional perspective to semantic enquiry, according to
which questions about the nature of semantics and language are thought best answered at a later
stage of enquiry, by inspecting mature, well-developed theories and testing the predictions and ob-

82 Chapter 3 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

servations they make about sentence meaning. In the final part of chapter 1, we introduced various
theories of quantification, discussing potential problems with each approach and emphasising that
these problems may well be solvable.

Chapter 2 introduced Gl-TAG, explaining its basis in glue semantics, linear logic and TAG.
We showed that glue can be reformulated in order to obtain a tighter fit between the syntax and
the semantics, using binary parse trees and the TAG operations of adjunction and substitution.
We adopted a distinction between the core and peripheral semantic value of a constituent, which
we argued captured certain features of other formal frameworks (e.g, continuations) without their
complications. The main point of interest was our treatment of quantifiers, which for us denote
multi-component TAG trees. Quantifiers combine with verbs via a single joint operation of ad-
junction and substitution. The operation of substitution can be composed, sister by sister, with the
functions in a tree, resulting in what we called the SNAP function. We then discussed how binding
is achieved in our framework and concluded by suggesting ways of restricting quantifier scope by
adjunction constraints. We speculate that adjunction constraints enable us to potentially mimic
any minimalist explanation of restricted quantifier scope, insofar as the reasons for positing cer-
tain restrictions on adjunction of a quantifier by minimalists would simply translate into adjoining
constraints in our framework.

Finally, in chapter 3 we discussed technical accounts of the principle of compositionality, and
showed that Gl-TAG is compositional according to the theories of Jönsson (2008) and Westerstahl
(2007).

3.3.1 Future research and reflections

1. In future research we will explore further the distinction that we noted some theorists draw
between semantic values and meanings. Important work by semanticists and philosophers sug-
gests that an answer to this question could have interesting repercussions on our approach to
semantic theorising.

2. In future research we will explore the extent to which we can mimic restrictions on adjunction
that minimalists posit. We will also give a technical description of Gl-TAG, which specifies its
formal characteristics.

3. In future research we will consider whether and in what respect Gl-TAG is an inferential seman-
tics. Philosophers have been attracted to proof theoretic approaches to meaning for a number
of reasons (Dummett (1991), Martin-Löf (1996)), not least because knowledge of the meaning
of at least certain expressions (logical connectives, for example), has been supposed to derive
from knowledge of their inferential role (Boghossian (2011), Brandom (2007)). Glue could of-
fer an inferential semantics that is not open to the same sorts of objections that are made against
inferential theories of semantics (see Prior (1960), Williamson (2008), Murzi and Steinberger
(2015)).

For example, Williamson (2010) points to truth-conditional semantics as ”basic to the massive
development development of mainstream formal semantics over recent decades...for natural and
artificial languages” and objects that inferentialists don’t have an explicit theory of how linguis-
tic constructions contribute to the semantic value of sentences in which they occur. But insofar

Chapter 3 Luke E. Burke 83

Glue TAG semantics for binary branching syntactic structures

as Gl-TAG is an inferential semantics, we take Gl-TAG and the vast proof theoretic formal se-
mantic literature in linguistics (Moortgat (2010), Bernardi and Moortgat (2007), Morrill (2010),
Steedman (2000)) as proving him wrong; there is no opposition between truth-conditional se-
mantics and inferentialism.

That said, we suspect, however, and this speculation shall end our thesis, that many of the
inferential characteristics that philosophers suppose meaning to have, putting aside the logical
connectives, stem not from the semantic value of expressions, but rather from their meanings.
This makes the distinction between semantic values and meanings ever more important to pin
down.

84 Chapter 3 Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

Appendix
We here outline a number of similarities and differences between the account of Qscope ambiguity
in Gl-TAG, and the accounts of Qscope ambiguity that we surveyed in chapter 1. In particular,
we show how we can reformulate a Cooper-style storage system in Gl-TAG and then look at a
concrete example of the similarities between QR and glue. But before, we will briefly consider
some similarities between glue and other approaches.

One similarity between the approaches we surveyed in chapter 1 is their use of placeholder
variables or constants. These allow us to combine a given syntactic construction with a (possibly
indexed) pronoun instead of combining it directly with a quantifier. The reader will recall that in
Montague semantics and in Cooper storage we derive one of the readings of “some boy admires
every girl”, by substituting “every girl” with a pronoun, represented as a free variable, that acts as
a placeholder for the quantifier (this substitution occurs in the syntax in Montague semantics but
in the semantics in Cooper storage). We then lambda abstract over “some boy admires z3, to form
λz3 .∃y . boy(y) ∧ admires(y , z3), which combines with “every girl”.

Placeholder variables are also present in QR and in flexible Montague grammar. In QR,
traces act essentially as placeholders that allow semantic computation to proceed; these are then
abstracted over so that the moved quantifier can combine with the structure. In the flexible types
approach the placeholder variables are present both in the original denotation of the verb before it
is lifted, and nested within the lifted lambda denotation.

The hypotheses in Gl-TAG may seem to play the role of being placeholders which are ab-
stracted over at the point indicated by an arrow in a glue tree. However, in Gl-TAG these hy-
potheses belong to the denotation of a quantifier phrase, which is a tree set containing a quantifier
semantic tree and a hypothesis. This enables Gl-TAG to provide constants that serve the same
purpose as placeholder variables whilst being part of the denotation of quantifiers.

Another similarity between the approaches is the fact that they all incorporate something
like quantifier movement, whether in semantic or in syntactic form; in Montague grammar and QR
movement happens in the syntax, but in Cooper Storage and flexible Montague grammar quantifier
movement is effected by operations in the semantics. In Gl-TAG adjunction moves quantifiers
around the semantic tree.

Gl-TAG storage

We can replicate certain features of Cooper semantics in our framework. The two cardinal features
of Cooper storage are mechanisms for storing and retrieving quantifier denotations. We replicate
cooper storage by enriching the denotations we assign to nodes; a node of the semantic tree is now
a tuple of a meaning constructor and a (possibly empty) sequence of stores. In Cooper storage
variables are substituted with the quantifier denotations, which are placed in the store and paired
with an index which refers to the variable that has substituted the quantifier denotation.

In our reformulation of the storage mechanism (example trees are found below), glue proof
hypotheses play the role of placeholder variables. The placeholder variables, unlike in Cooper
storage, play a dual role; they are both supplied as arguments to a predicate and placed in the
store (which is indicated with brackets). The fact that we can represent both of these functions via
one mechanism suggests that our approach may be more economic than Cooper storage; however,

Chapter Luke E. Burke 85

Glue TAG semantics for binary branching syntactic structures

since our presentation of a storage mechanism is informal this suggestion is only tentative.

Retrieval of a variable occurs at the point in the glue proof where a hypothesis is discharged,
and this is equivalent to lambda abstraction over the variable. Consequently, the store containing
the variable is crossed out and any node higher up in the tree contains a store with the empty set
in it, to indicate that the store has been emptied of that particular variable. In Gl-TAG storage the
store does not contain a quantifier denotation (as in Cooper storage) but a variable, equivalent to
the index present in the binding store in cooper storage (see p.17). Thus in Gl-TAG storage a single
item is both introduced as a placeholder in semantic structure and stowed away for further use.

Alternatively, we could follow Cooper and store the core semantic denotation of a quantifier
alongside an index. However, the retrieval mechanism would then have to provide a rule reintro-
ducing the core semantic value of a quantifier and a variable into the non-stored part of a semantic
tree. Since the mechanism of hypothesis discharging enables this for free, we prefer our reformu-
lation of Cooper storage. Consider (23) and the following representation of its surface and inverse
scope readings, (24):

(23) S

VP

DP

N

cat

D

a

V

saw

DP

N

person

D

Every

(24)
86 Chapter Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

< ∀x [Person(x)→
[∃y [Cat(y) ∧ Saw(x , y)]]] :

t , [∅],
[∅] >

< λm.[∃y [Cat(y)∧
Saw(m, y)]] :

(e2 (t), [e2], [∅] >

< ∃y [Cat(y) ∧ Saw(m, y)] :
t , [e2], [∅] >

< λl .Saw(m, l) :
(e3 (t), [e2], [e3] >

< Saw(m, l) : t ,
[e2], [e3] >

< λx .Saw(x , l) :
(e2 (t), [e3] >

l : e3

(< λy .λx .Saw(x , y) :
e3 (e2 (t), [∅] >

m : e2

l : e3

< λQ .∃y [Cat(y) ∧Q(y)] :
(e3 (t)(t),

[e2], [∅] >

e2

< λQ .∀x [Person(x)
→ Q(y)] :

(e2 (t)(t),
[e3] >

(25)
Chapter Luke E. Burke 87

Glue TAG semantics for binary branching syntactic structures

∃y [Cat(y) ∧ ∀x [Person(x)→ Saw(x , y)] :
< t , [∅], [∅] >

< λl .∀x [Person(x)→ Saw(x , l)] :
(e2 (t),
[e3], [∅] >

< ∀x [Person(x)→ Saw(x , l)] :
t , [∅], [e3] >

< λm.Saw(m, l) :
(e3 (t), [e2], [e3] >

< Saw(m, l) : t ,
[e2],
[e3] >

< λx .Saw(x , l) :
(e2 (t), [e3] >

e3(< λy .λx .Saw(x , y) :
e3 (e2 (t), [∅] >

e3

e3

< ∀x [Person(x)→ Q(x)] :
(e3 (t)(t),

[∅], [e3] >

e3

< λQ .∃y [Cat(y) ∧Q(y)] :
(e2 (t)(t),

[e3] >

We will now briefly compare QR and our semantics, focusing on the role of movement.

QR and Gl-TAG

The similarities between QR and the Gl-TAG semantics that we have discussed can be seen by
considering the LF in (26) and its Gl-TAG counterpart, (27):

(26)

88 Chapter Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

DP

NP

NP

NP

S

NP

N

PP

t2P

of

N

representative

t1

λ1

DP2

some company

λ1

DP1

PRO

D

Every

(27)
Chapter Luke E. Burke 89

Glue TAG semantics for binary branching syntactic structures

t

et

te

λQ .∀x∃z [company ′(z) ∧ R.of (x , z)
(∀X (e(X)(X))

(λm.∃z [company ′(z) ∧ R.of (m, z)) :
e(t

∃z [company ′(z) ∧ R.of (m, z) :
t

(λl .R.of (m, l)) :
e(t

(R.of (m, l)) :
t

(λx .R.of (x , l)) :
e(t

l : e

l: e3
λx .x

e(e

λyλx .R.of (x , y) :
(e(e(t)

m : e2

l : e3

λQ .∃z [company ′(z) ∧Q(z)] :
(∀X (e(X)(X))

λd .company ′(d) :
(e(t)

λP .λQ .∃z [P(z) ∧Q(z)] :
(e(t)(

(∀X (e(X)(X))

m : e2

λP .λQ .∀x [P(x)→ Q(x)] :
(e(t)(

(∀X (e(X)(X))

In our semantics, we represent implication introduction in the glue proof as abstraction over
a hypothesis that has semantically moved from the place where it satisfies the verbal predicate.
Such movement occurs after a quantifier in the semantic tree simultaneously adjoins at a t node
and its associated hypothesis is substituted in. This is similar to QR, which syntactically moves
a quantifier phrase from its in situ position leaving behind a trace which is abstracted over (via
predicate abstraction) and combined with the denotation of the moved quantifier phrase. However,
in Gl-TAG the hypothesis is part of the dentation of the quantifier.

QR (at least Heim and Kratzer style) and glue differ in that predicate abstraction is a stipulated
rule of composition that doesn’t follow strictly from Heim and Kratzer’s rules of composition,
whereas abstraction in glue proof semantic trees is simply part of the linear logic used. Since the
rule governing hypothesis introduction and discharge in glue proofs accounts for both abstraction
and for the interpretation of the hypothesis, whereas both predicate abstraction and the traces and
pronoun rule are required in the Heim and Kratzer system, our semantics is more economical in
this particular way. However, since we introduce both a core and a peripheral semantic value
for expressions it may be thought that this economy comes at a certain price (we motivate this
distinction in chapter 2).

We close this appendix with a speculative point. In chapter 1 we discussed Von Stechow’s
argument that (i) non-QR based approaches to quantification have a mechanism similar to QR and
(ii) in a Hendriks’ flexible Montague grammar approach “... a closer look at the meta-language in
which these type shifters is formulated shows that QR is hidden in the formulation of the rules.”

We should like to say the following. Whereas Von Stechow takes such similarities to be
problematic for those approaches, for us, this instead suggests the approaches may converge at a
deeper level of analysis. We conjecture and leave open for future research, that all the approaches
share formal properties, and thus perhaps ought not to be seen antagonistically, although at this

90 Chapter Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

current stage of research they may make different predictions.

Chapter Luke E. Burke 91

Bibliography

Adger, D. 2003. Core syntax: A minimalist approach, volume 33. Oxford University Press Oxford.
Aoun, J. and Li, Y.-H. A. 1993. Syntax of scope, volume 21. Mit Press.
Asudeh, A. 2012. The logic of pronominal resumption. Oxford University Press.
Asudeh, A. and Crouch, R. 2001a. Glue semantics: A general theory of meaning composition.

Talk given at Stanford Semantics Fest 2, March 16.
Asudeh, A. and Crouch, R. 2001b. Glue semantics for hpsg. Technology 3.
Asudeh, A., Crouch, R., Butt, M., and King, T. H. 2002. Coordination and parallelism in glue

semantics: Integrating discourse cohesion and the element constraint. In Proceedings of the
LFG02 Conference, 19–39, Citeseer.

Bach, E. 1976. An extension of classical transformational grammar. in Problems in Linguistic
Metatheory (Proceedings of the 1976 conference), pp. 183224. East Lansing, Michigan: Michi-
gan State University .

Barker, C. 2002. Continuations and the nature of quantification. Natural language semantics
10:211–242.

Barker, C. and Jacobson, P. I. 2007. Direct compositionality .
Barker, C. and Shan, Chung-chieh. 2014. Continuations and natural language, volume 53. Oxford

University Press.
Bernardi, R. 2010. Scope ambiguities through the mirror. The Linguistics Enterprise: Cognition,

Methodology, Modelling 11–54.
Bernardi, Raffaella and Moortgat, Michael. 2007. Continuation semantics for symmetric categorial

grammar. In Logic, Language, Information and Computation, 53–71, Springer.
Blackburn, P. and Bos, J. 2005. Representation and inference for natural language. A first course

in computational semantics. CSLI .
Blackburn, P. and Meyer-Viol, W. 1997. Modal logic and model-theoretic syntax. In Advances in

Intensional Logic, 29–60, Springer.
Boghossian, Paul. 2011. Williamson on the a priori and the analytic. Philosophy and Phenomeno-

logical Research 82:488–497.
Brandom, Robert. 2007. Inferentialism and some of its challenges. Philosophy and Phenomeno-

logical Research 74:651–676.
Carnie, A. 2010. Constituent structure, volume 5. Oxford University Press.
Carpenter, B. 1997. Type-logical semantics. MIT press.
Chiswell, I. and Hodges, W. 2007. Mathematical logic, volume 3. Oxford University Press.
Chomsky, N. 1965. Aspects of the Theory of Syntax. 11, MIT press.
Chomsky, N. 1986. Knowledge of language: Its nature, origin, and use. Greenwood Publishing

Group.

92

Glue TAG semantics for binary branching syntactic structures

Cooper, R. (1983). Quantification and Syntactic Theory. Dordrecht: Reidel.
Cresswell, M. J. 1973. Logics and languages .
Cresswell, M. J. 1982. The autonomy of semantics. In Processes, Beliefs, and Questions, 69–86,

Springer.
Crouch, R. and van Genabith, J. 2000. Linear logic for linguists. URL: http://www2. parc.

com/istl/members/crouch .
Dalrymple, M. 1999. Semantics and syntax in Lexical Functional Grammar: The resource logic

approach.. Cambridge, MA: MIT Press.
Di Cosmo, R. and Miller, D. 2006. Linear logic .
Dowty, D. 1979. Word meaning and montague grammar: The semantics of verbs and times in

generative semantics and in montague’s ptq, d. Reidel, Dordrecht .
Dowty, D. R., Wall, R., and Peters, S. 1981. Introduction to Montague semantics, volume 11.

Springer Science & Business Media.
Dummett, M. 1973. Frege: Philosophy of Language. London: Gerald Duckworth.
Dummett, M. 1991. The Logical Basis of Metaphysics.. Cambridge, MA: Harvard University Press

and London: Gerald Duckworth.
Dummett, M. 1993. What do i know when i know a language? .
Evans, G. 1981. Semantic theory and tacit knowledge .
Fox, C. and Lappin, S. 2008. Foundations of intensional semantics. John Wiley & Sons.
Frank, R. 2004. Phrase structure composition and syntactic dependencies, volume 38. MIT Press.
Gallin, D. 1975. Intensional and higher-order modal logic: with applications to montague seman-

tics .
Girard, J.-Y. 1987. Linear logic. Theoretical Computer Science .
Glanzberg, M. 2009. Semantics and truth relative to a world. Synthese 166:281–307.
Gotham, M. 2015. Towards glue semantics for minimalist syntax. Cambridge Occasional Papers

in Linguistics 8:5683.
Graf, T. 2013. Local and transderivational constraints in syntax and semantics. Ph.D. thesis, Uni-

versity of California Los Angeles.
Gratzer, G. A. 2008. Universal algebra. Springer Science & Business Media.
Gurrutxaga-Lerma, Beñat, Balint, Daniel S, Dini, Daniele, Eakins, Daniel E, and Sutton, Adrian P.

2013. A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation
under shock loading. In Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, volume 469, 20130141, The Royal Society.

Han, Chung-Hye and Hedberg, N. 2008. Syntax and semantics of it-clefts: a tree adjoining gram-
mar analysis. Journal of Semantics 25:345–380.

Heim, I. and Kratzer, A. 1998. Semantics in generative grammar, volume 13. Blackwell Oxford.
Hendriks, H. 2001. Compositionality and model-theoretic interpretation. Journal of Logic, Lan-

guage and Information 10:29–48.
Hendriks, H. L. W. 1993. Studied flexibility: Categories and types in syntax and semantics. Institute

for Logic, Language and Computation.
Henkin, L. 1950. Completeness in the theory of types. The Journal of Symbolic Logic 15:81–91.
Hodges, W. 2001. Formal features of compositionality. Journal of Logic, Language and Informa-

tion 10:7–28.
Hodges, W. 2004. Compositionality is not the problem. Logic and Logical Philosophy 6:7–33.
Hodges, W. 2012. Requirements on a theory of sentence and word meanings. Prospects for Mean-

Chapter Luke E. Burke 93

Glue TAG semantics for binary branching syntactic structures

ing. Berlin 583–608.
Jacobson, P. 2002. The (dis) organization of the grammar: 25 years. Linguistics and Philosophy

25:601–626.
Janssen, T. 1983. Foundations and applications of montague grammars. Ph.D. thesis, University of

Amsterdam.
Janssen, T. 1997. Compositionality .
Jönsson, M. 2008. On Compositionality. Lund University.
Joshi, A. K., Kallmeyer, L., and Romero, M. 2007. Flexible composition in ltag: Quantifier scope

and inverse linking. In Computing meaning, 233–256, Springer.
Joshi, A. K. and Schabes, Y. 1997. Tree-adjoining grammars. In Handbook of formal languages,

69–123, Springer.
Katz, J. J. 1980. Language and other abstract objects.
Keenan, E. L. and Stabler, E. P. 1999. Bare grammar. Citeseer.
Keller, W. R. 1988. Nested cooper storage: The proper treatment of quantification in ordinary

noun phrases. Springer.
Kelsey, R., Clinger, W., and Rees, J. 1998. The revised5 report on the algorithmic language

scheme–higher-order and symbolic computation, 11 (1).
Klein, E. and Sag, I. A. 1985. Type-driven translation. Linguistics and Philosophy 8:163–201.
Kornai, A. and Pullum, G. K. 1990. The x-bar theory of phrase structure. Language 24–50.
Lewis, D. 1970. General semantics. Synthese 22:18–67.
Lewis, D. 1981. Index, context, and content. In Philosophy and grammar, 79–100, Springer.
Lewis, D. 2008. Convention: A philosophical study. John Wiley & Sons.
Martin-Löf, P. 1996. On the meanings of the logical constants and the justifications of the logical

laws. Nordic journal of philosophical logic 1:11–60.
Montague, R. 1975. Formal philosophy .
Moortgat, Michael. 2010. 2 categorial type logics. Handbook of logic and language 95.
Morrill, Glyn. 2010. Categorial grammar: Logical syntax, semantics, and processing. Oxford

University Press.
Murzi, J. and Steinberger, F. 2015. Inferential role semantics. in preparation for A Companion to

the Philosophy of Language (Second Edition), B. Hale, A. Miller and C. Wright (eds), Blackwell
.

Ninan, D. 2010. Semantics and the objects of assertion. Linguistics and Philosophy 33:355–380.
Pagin, P. 2003. Communication and strong compositionality. Journal of Philosophical Logic

32:287–322.
Pagin, P. 2012. Communication and the complexity of semantics .
Pagin, P. and Westerståhl, D. 2010. Compositionality i: Definitions and variants. Philosophy Com-

pass 5:250–264.
Partee, B. 1975. Montague grammar and transformational grammar. Linguistic inquiry 203–300.
Partee, B., Ter Meulen, A., and Wall, R. 2012. Mathematical methods in linguistics, volume 30.

Springer Science & Business Media.
Pelletier, F.J. 1999. Semantic compositionality: Free algebras and the argument from ambiguity. .
Peters, S. and Westerståhl, D. 2006. Quantifiers in language and logic .
Prior, Arthur N. 1960. The runabout inference ticket. Analysis 21:38–39.
Quine, W. V. 1972. Methodological reflections on current linguistic theory. Springer.
Rabern, B. 2012. Against the identification of assertoric content with compositional value. Syn-

94 Chapter Luke E. Burke

Glue TAG semantics for binary branching syntactic structures

these 189:75–96.
Reinhart, Tanya. 1978. Syntactic domains for semantic rules. In Formal semantics and pragmatics

for natural languages, 107–130, Springer.
Restall, G. 2002. An introduction to substructural logics. Routledge.
Restall, G. 2006. Relevant and substructural logics. Handbook of the History of Logic 7:289–398.
Ruys, E. G. and Winter, Y. 2011. Quantifier scope in formal linguistics. In Handbook of philosoph-

ical logic, 159–225, Springer.
Scholz, F., B. Pelletier and Pullum, G. 2015. Philosophy of linguistics .
Stabler, E. 1997. Derivational minimalism. In Logical aspects of computational linguistics, 68–95,

Springer.
Stabler, E. P. 2011. Meta meta linguistics. Theoretical Linguistics 37:69–78.
Stanley, J. 1997. Names and rigid designation. A Companion to the Philosophy of Language 555–

85.
Steedman, M. 2012. Taking scope: The natural semantics of quantifiers. MIT Press.
Steedman, Mark. 2000. The syntactic process, volume 24. MIT Press.
Stokhof, M. and Van Lambalgen, M. 2011. Abstractions and idealisations: The construction of

modern linguistics. Theoretical linguistics 37:1–26.
Szabolcsi, Anna. 2006. Strong vs. weak islands. The Blackwell companion to syntax 4:479–531.
Thomason, R. H. 1980. A model theory for propositional attitudes. Linguistics and Philosophy

4:47–70.
Von Stechow, A. 1990. Categorial grammar and linguistic theory. Studies in Language 14:433478.
Von Stechow, A. 2009. Syntax and semantics: an overview. Manuscript, University of Tübingen .
Weir, D. 1988. Characterizing mildly context-sensitive grammar formalisms. Ph.D. thesis, Univer-

sity of Pennsylvania.
Werning, M., Hinzen, W., and Machery, E. 2012. The Oxford handbook of compositionality. Ox-

ford University Press.
Westerstahl, D. 2007. Compositionality and ambiguity .
Williams, Edwin. 1983. Semantic vs. syntactic categories. Linguistics and philosophy 6:423–446.
Williams, J. R. G. 2005. The inscrutability of reference. Ph.D. thesis, University of St. Andrews.
Williamson, T. 2010. Review of robert brandom, reason in philosophy: Animating ideas. Times

Literary Supplement 5579, 2223 .
Williamson, Timothy. 2008. The philosophy of philosophy. John Wiley & Sons.
Yalcin, S. 2014. Semantics and metasemantics in the context of generative grammar. Metaseman-

tics: New Essays on the Foundations of Meaning 17.
Zimmermann, T. E. 1999. Meaning postulates and the model-theoretic approach to natural lan-

guage semantics. Linguistics and Philosophy 22:529–561.
Zimmermann, T. E. 2006. The values of semantics. In Form, Structure, and Grammar: A

Festschrift Presented to Günther Grewendorf on Occasion of His 60th Birthday, 383, Walter
de Gruyter GmbH & Co KG.

Zimmermann, T. E. 2011. Model-theoretic semantics. Semantics: An International Handbook of
Natural Language Meaning 1:762–802.

Zimmermann, T. E. 2012. Equivalence of semantic theories. Prospects for Meaning. Berlin 629–
649.

Chapter Luke E. Burke 95

