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Abstract

It was widely thought that the paradoxes of Russell, Cantor, and Burali-Forti had

been solved by the iterative conception of set. According to this conception, the

sets occur in a well-ordered transfinite series of stages. On standard articulations

– for example, those in Boolos (1971, 1989) – the sets are implicitly taken to

constitute a plurality. Although sets may fail to exist at certain stages, they all

exist simpliciter. But if they do constitute a plurality, what could stop them from

forming a set? Without a satisfactory answer to this question, the paradoxes

threaten to reemerge. In response, it has been argued that we should think of

the sets as an inherently potential totality: whatever things there are, there could

have been a set of them. In other words, any plurality could have formed a set.

Call this potentialism. Actualism, in contrast, is the view that there could not

have been more sets than there are: whatever sets there could have been, there

are. This thesis explores a particular consideration in favour of actualism; namely,

that certain desirable second-order resources are available to the acutalist but not

the potentialist.

In the first part of chapter 1 I introduce the debate between potentialism and

actualism and argue that some prominent considerations in favour of potentialism

are inconclusive. In the second part I argue that potentialism is incompatible with
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the potentialist version of the second-order comprehension schema and point out

that this schema appears to be required by strong set-theoretic reflection princi-

ples. In chapters 2 and 3 I explore the possibilities for reflection principles which

are compatible with potentialism. In particular, in chapter 2 I consider a recent

suggestion by Geoffrey Hellman for a modal structural reflection principle, and in

chapter 3 I consider some influential proposals by William Reinhardt for modal

reflection principles.
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Chapter 1

Potentialism and reflection

It was widely thought that the paradoxes of Russell, Cantor, and Burali-Forti had

been solved by the iterative conception of set. According to this conception, the

sets occur in a well-ordered transfinite series of stages. On standard articulations

– for example, those in Boolos (1971, 1989) – the sets are implicitly taken to con-

stitute a plurality. Although sets may fail to exist at certain stages, they all exist

simpliciter. But if they do constitute a plurality, what could stop them from form-

ing a set? Without a satisfactory answer to this question, the paradoxes threaten

to reemerge. In response, it has been argued that we should think of the sets

as an inherently potential totality: whatever things there are, there could have

been a set of them. In other words, any plurality could have formed a set. Call

this potentialism. Actualism, in contrast, is the view that there could not have

been more sets than there are: whatever sets there could have been, there are.

The central question of this thesis is which of potentialism and actualism is true.

This chapter serves as an introduction to the debate and to the central aim of the

thesis; namely, to investigate the bearing of set-theoretic reflection principles on
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CHAPTER 1. POTENTIALISM AND REFLECTION 9

the central question.

Here’s the plan. In section 1 I introduce the debate between potentialism

and actualism. I argue that some prominent considerations in that debate are

inconclusive and that we should look for others. In sections 2 and 3 I develop

a new consideration based on the idea that certain second-order resources are

desirable but unavailable to the potentialist. In particular, in section 2 I argue

that potentialism is incompatible with the potentialist version of the second-order

comprehension schema and in section 3 I show that this schema follows from certain

strong set-theoretic reflection principles. Assuming these principles are the best

way we have to answer various questions left open by the standard axioms of

ZFC, and given that they are compatible with actualism, this gives us a reason to

prefer actualism over potentialism. The rest of the thesis will then consider some

proposals for resisting this conclusion.

1.1 Potentialism and actualism

In this section I introduce the debate between potentialism and actualism, and ar-

gue that some prominent considerations in favour of potentialism are inconclusive.

1.1.1 The paradoxes

Russell’s paradox

The set-theoretic paradoxes take a number of forms. Perhaps the simplest is

Russell’s. Suppose:
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∃x∀y(y ∈ x↔ y 6∈ y) (1.1)

Instantiating y with x we then get:

∃x(x ∈ x↔ x 6∈ x) (1.2)

which is a contradiction in classical logic. This shows that 1.1 is false. For some,

the falsity of 1.1 demands explanation. As Dummett puts it:

merely to say, ‘If you persist in talking about the [Russell set], you will

run into contradiction’, is to wield the big stick, but not to offer an

explanation. (p. 316, 1991)

Why is the purely logical argument for the falsity of 1.1 unexplanatory? It is

unclear. Logic seems to be as capable of providing explanations as theories are in

general, and the argument for the falsity of 1.1 is a prima facie example. Perhaps

what is demanded is an explanation of why the theorems of classical logic are true.

But explanation has to end somewhere, and logic seems as good a place as any.

Say that a condition ϕ determines a set x if ∀y(y ∈ x ↔ ϕ). Assuming there

are at least some sets, a more general moral to draw from the falsity of 1.1 is that

the question:

(1) When does a condition ϕ determine a set?

requires a more sophisticated answer than “never” and “always”. As Russell puts

it:
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the complete solution of [Russell’s paradox] would consist in the dis-

covery of the precise conditions which [some ϕ] must fulfil in order to

define [a set]. (p. 31, 1906)

What would count as an adequate answer to (1)? The preceding discussion sug-

gests at least two constraints. First, it should imply for various particular ϕ

whether or not they determine sets. For example, any answer couched in classical

logic will imply that “x 6∈ x” does not determine a set. Second, it should explain

why various particular ϕ do or do not determine sets. For example, any answer

couched in classical logic prima facie explains why “x 6∈ x” does not determine a

set. In general, an answer to (1) should be informative and explanatory.

Digression. It would be too much to expect an answer to be informative in every

case. For any sentence ψ, the reasoning of Russell’s paradox shows that the condi-

tion “x 6∈ x∧¬ψ” will determine a set just in case ψ (assuming that the empty set

exists). Any theory which implied for all conditions whether or not they determine

sets would thus be complete.

Requiring an answer to (1) to be informative and explanatory is an instance of

the more general abductive methodology. According to this methodology, theories

are judged relative to criteria such as generality, informativeness, explanatoriness,

unification, simplicity, and strength.1 We are most justified in believing the theory

which best meets these criteria. I will adopt this methodology in what follows.

The most well-known answers to (1) are the Iterative (ic) and Limitation of

Size (los) conceptions of set. Roughly, ic says that the universe of sets is divided

into an unbounded well-ordered series of stages. A condition ϕ determines a set at

1See Lipton (2004) for discussion and Williamson (2015) for a nice application of the method-
ology to the semantic paradoxes.
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a stage s just in case the ϕ’s all exist at some stage prior to s, and it determines

a set simpliciter if there is some stage or other at which the ϕ’s all exist.2 As an

answer to (1) ic is quite informative. Suitably formalised it implies the axioms

of pairing, union, powerset, separation, and foundation.3 It also seems to be

explanatory in many cases too. Consider, for example, its explanation for why

the axiom of separation is true – that is, why the condition “y ∈ x ∧ ϕ” always

determines a set. First, we note that if x exists at a stage s, its elements will exist

at some stage, s′, prior to s. Trivially, the ϕ’s in x will also exist at s′ and it then

follows that they must determine a set at s.

Roughly, los says that a condition ϕ determines a set just in case there are

fewer ϕ’s than sets.4 As an answer to (1) los is also quite informative. Suitably

formalised it implies the axioms of union, separation, replacement, and choice.

In the presence of the axiom of infinity, it also implies the axiom of pairing.5

Furthermore, it seems to be explanatory in many cases too. For example, its

explanation for why the axiom of separation is true is that since x is a set, it will

have fewer elements than the sets; the ϕ’s in x will then be fewer than the sets

and thus determine a set.

2See Boolos (1971, 1989) for details. In standard set theory, the stages of the ic can be
represented by the Vα’s (which are, as usual, defined by recursion on the von Neumann ordinals:
V0 = ∅, Vα+1 = P(Vα), and Vλ =

⋃
α<λ). For present purposes, little will be lost if ic is thought

of in these terms.
3Again, see Boolos (1971, 1989) for details and see Tait (1998) for the observation that the

axiom of infinity, pace Boolos, is no more part of ic than the axiom of replacement.
4For now, I will leave the locution “fewer than” primitive.
5See Levy (1968) and the references therein for details.
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Plural Russell’s paradox

Now consider the following version of Russell’s paradox which arises in context of

plural logic. It rests on two principles. First, there is a principle of plural compre-

hension. This says that every condition ϕ determines a plurality.6 Formally:

(p-comp) ∃X∀x(x ∈ X ↔ ϕ)

where X is not free in ϕ. Second, there is a principle of plural collapse. This says

that every plurality determines a set. Formally:

(collapse) ∀X∃x(X ≡ x)

where X ≡ x abbreviates ∀y(y ∈ X ↔ y ∈ x). Since p-comp and collapse

jointly entail 1.1, they are jointly inconsistent in classical logic.

As with the falsity of 1.1, and assuming some pluralities determine sets, the

falsity of either p-comp or collapse shows that either the question:

(2) When does a condition ϕ determine a plurality?

or the question:

(3) When does a plurality determine a set?

requires a more sophisticated answer than “never” and “always”.

It is easy to see that question (3) is subsumed by question (1). An answer to

the latter is, a fortiori, an answer to the former since “x ∈ X” is a condition.

6For simplicity I will frequently use the singular “plurality”, though nothing I say will depend
on misspeaking in this way.
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Thus ic and los already provide answers to question (3). According to ic, some

things determine a set just in case there is a stage at which they all exist; and

according to los, some things determine a set just in case they are fewer than

the sets. Moreover, in the presence of p-comp, these answers to (3) seem to

inherit the informativeness and explanatoriness of the corresponding answers to

(1). Whenever ic or los implies that ϕ determines a set, it will imply that the

plurality of ϕ’s determines a set. Similarly, whenever ic or los explains why ϕ

determines a set, it will explain why the plurality of ϕ’s determines a set. A

proponent of ic or los can thus afford to answer “always” to (2) and adopt p-

comp. This is particularly satisfying because p-comp follows from the compelling

thought that a plurality is nothing over and above the things which comprise it.7

Since each individual ϕ exists trivially,8 nothing more is needed for the plurality

of ϕ’s to exist. In so far as ic and los provide attractive answers to question (1),

then, ic + p-comp and los + p-comp seem to provide attractive answers to

questions (2) and (3).

Are there plausible alternatives to ic + p-comp and los + p-comp? In

particular, could we instead have answered “always” to question (3) and adopted

collapse? Assume every set determines a plurality. Formally: ∀x∃X(X ≡ x).

Then collapse will imply that a condition determines a plurality just in case it

determines a set, and questions (1) and (2) will be equivalent. But neither question

is answered by collapse alone, since it does not tell us in general when conditions

determine pluralities nor when they determine sets. It needs to be supplemented.

The most obvious way to do this is by adopting ic or los.

7See (Boolos, 1984, p. 448) for discussion.
8The claim that each ϕ exists has the form: ∀x(ϕ→ ∃y(y = x)).
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How do ic + collapse and los + collapse compare to ic + p-comp and

los + p-comp? In their answers to question (1) ic + collapse and ic + p-

comp are essentially identical. But whereas ic + collapse extends that answer

to question (2) and gives a maximally liberal answer to question (3), ic + p-comp

extends it to question (3) and gives a maximally liberal answer to question (2).

Similarly for los + collapse and los + p-comp. The primary difference comes

in explaining these maximally liberal stances. If collapse is true, it is a striking

fact and prima facie it is unclear how it might be explained. But as I noted above,

the truth of p-comp can be explained by the thought that a plurality is nothing

over and above the things which comprise it.9

Absent other ways to supplement collapse, ic + p-comp and los + p-comp

appear to be preferable. Unfortunately, matters are not so simple. As we will see

in the next section, there seem to be powerful arguments in favour of collapse.

1.1.2 Arguments for collapse

Since the clearest arguments for collapse are given in Linnebo (2010), I will

focus on those.

The argument from specification

Sets are completely characterised by their membership conditions. First, a set is

distinguished from all other sets by the elements it has. This is partly expressed

by the axiom of extensionality which says that two sets are identical if they have

the same elements. Second, there seems to be nothing more to a set than its

9This does not merely push the explanation back one step, since that thought implies a
number of other important principles concerning the behaviour of pluralities, for example in
modal contexts. See sections 1.1.3 and 2.3.2 for discussion.
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having the elements it has.10 To completely specify a set it thus suffices to specify

which elements it has. But that is exactly what a plurality does. A plurality X

specifies some elements, namely the X’s, and thus provides us with a complete

characterisation of the set x such that:

X ≡ x

As Linnebo puts it:

The semantics of plural quantification ensures that it is determinate

which things are among [X], and a set is completely characterized

by specifying its elements. We can thus give a complete and precise

characterization of the set that [X] would form if they did form a set.

What more could be needed for such a set to exist? (Linnebo, p. 146,

2010)

Given a plurality, nothing more seems to be needed for the existence of the corre-

sponding set.11 Therefore, we should accept collapse.

The argument from arbitrariness

As Linnebo (p. 152, 2010) essentially notes, relative to some natural set-theoretic

assumptions, any view on which there is a plurality of all sets (call it V ) will imply

that a condition ϕ determines a set just in case the ϕ’s are fewer than the V ’s. Call

10As Linnebo puts it: “Once you specify the elements of a set, you have specified everything
that is essential to it.” (p. 146, 2010). It is worth pointing out that being a set is also essential to
a set and does not in general depend on which elements it has. For example, the empty set has
the same elements as any non-set. The claim is thus that once you have specified the elements
of a set, you have specified everything that is essential to it over and above its being a set.

11See (Glanzberg, 2004, p. 553-554) for a somewhat similar argument.
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this claim losV . It tells us that the plurality V marks the cut off point between

conditions which do and do not determine sets. Since V is the plurality of all sets,

this cut off point appears to be non-arbitrary. The problem, as Linnebo sees it, is

that:

...it is not clear that the plurality [V ] is special and non-arbitrary. No

doubt there is something special and non-arbitrary about the concept

of [a set]. But why should this non-arbitrariness be inherited by the

plurality [V ] of objects falling under the concept? (p. 153, 2010)

For example, suppose there had been more sets than there are. In particular,

suppose there had been a set v of the V ’s. In that case, there would have been a

set – vis. v – with as many elements as the V ’s and losV would have been false.

At best losV is only contingently true and is thus an arbitrary answer to question

(1). Since any plausible alternative to collapse will adopt p-comp, it will be

committed to this arbitrary answer. Therefore, we should accept collapse.

The argument from circularity

Whereas the argument from arbitrariness targeted p-comp, the final argument

targets ic and los. Since it is clearest in the case of los, I will focus on that.

It is based on the claim that los is unexplanatory in certain crucial cases. For

example, it seems that los’s explanation for why “x is a set” fails to determine a

set is that the sets are not fewer than the sets. But, clearly, this is circular and

thus unexplanatory.12 Similarly, it seems that its explanation for why “x is an

ordinal” fails to determine a set is that the ordinals are not fewer than the sets.

12See Linnebo (p. 153-4, 2010).
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But in the context of los the usual way of establishing that the ordinals are not

fewer than the sets is by noting that “x is an ordinal” fails to determine a set and

concluding via los that they are not fewer than the sets. Again, this is circular

and thus unexplanatory.

Digression. This is not yet an argument in favour of collapse, since as we saw

in the previous section, collapse is not an alternative to ic or los. Indeed, it

seemed clear that in order to answer questions (1) and (2) collapse needed to

be supplemented with something like ic or los. In so far as the argument from

circularity is successful, then, it targets all the views we have considered so far.

1.1.3 Going modal

Until now I have implicitly assumed that ordinary first-order quantifiers range over

absolutely all sets. For example, I implicitly took:

∀y(y ∈ x↔ ϕ)

to formalise the claim that x is the set of absolutely all ϕ’s. The potentialist

rejects this assumption.13 According to them, there could have been sets other

than there are. In order to quantify over absolutely all sets, then, we need also

to quantify over the sets there could have been. Formally, we can do this using a

modal operator ♦.

Definition 1. Let themodalisation (or ϕ♦) of a formula ϕ be the result of prefixing

all of its universal quantifiers with � and all of its existential quantifiers with ♦.

13Potentialism in one form or another has been endorsed by Zermelo (1930), Parsons (1977),
Putnam (1967), Hellman (1989), and recently Fine (2006), Linnebo (2010, 2013), and Studd
(2013, forthcoming). My presentation closely follows that in Linnebo (2010, 2013).
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When ϕ is a non-modal formula, ϕ♦ essentially says about what there could have

been what ϕ says about what there is.14

The distinction between a formula and its modalisation affords the potentialist

a robust response to the arguments from the previous section. Consider first the

argument from specification. It concluded that given a plurality, nothing more is

needed for the existence of the corresponding set. This in turn seemed to imply

collapse. But the potentialist can now block this implication. In particular, they

can claim that the argument only shows that there could have been a corresponding

set and not that there is. In other words, they can claim that the argument implies

collapse♦ rather than collapse.

Moreover, unlike collapse, collapse♦ is consistent with p-comp.15 It is

inconsistent with the modalisation of p-comp. Formally:

(p-comp♦) ♦∃X�∀x(x ∈ X ↔ ϕ♦)

In particular, it follows from collapse♦ that there could not have been a plurality

of all possible non-self-membered sets.16,17 However, in contrast to p-comp, the

14As long as the background logic for ♦ extends the modal logic T, ϕ♦ will also quantify over
what there is. Similarly, as long as the background logic for ♦ extends the modal logic S4, ϕ♦

will quantify over what there could have could have been and so on. See below for discussion of
the correct modal logic for ♦.

15Proof sketch: Let K = 〈Vω,⊆ ∩Vω × Vω〉 be a Kripke model where first-order quantifiers at
x range over x, plural quantifiers range over P(x), and the interpretation of ∈ is ∈ ∩Vω × Vω. It
is then easy to see that collapse♦ and every instance of p-comp hold at every x ∈ Vω.

16Proof: I will assume that the background modal logic governing ♦ extends the modal logic
T (see below for discussion). For contradiction, suppose ♦∃X�∀x(x ∈ X ↔ x 6∈ x). From
collapse♦ it follows that ♦∃X♦∃x[�(X ≡ x) ∧ ∀x(x ∈ X ↔ x 6∈ x)] and thus ♦∃X♦∃x[(X ≡
x) ∧ ∀x(x ∈ X ↔ x 6∈ x)] by T, which is impossible.

17To simplify discussion I will often use locutions like “possible plurality”, “possible set”, “pos-
sible world” etc. Nothing hangs on misspeaking in this way, and they can always be eliminated
with the use of the primitive modal operator.
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conception of pluralities as nothing over and above the things which comprise them

provides no support for p-comp♦. It tells us that a plurality of all possible ϕ’s

will exist at a world w just in case the possible ϕ’s all co-exist at w, but it gives

us no reason to think that in general there is some world at which the possible ϕ’s

all co-exist. Of course, since the things which exist at w and are ϕ at w trivially

co-exist at w, it does tell us that a plurality of the ϕ’s at w will exist at w. But

that is just what p-comp says. In general, collapse♦ seems to be consistent with

that conception.

Now consider the argument from arbitrariness. It rested on two claims. First,

given natural set-theoretic assumptions, any view on which there is a plurality of

all sets will imply losV . Second, losV is an arbitrary answer to question (1).

Clearly, question (1) was intended to be about absolutely all sets. So we should

now replace it with its modalisation:

(1∗) When could there have been a set of all possible ϕ’s?

[In other words: Given any condition ϕ, when could there have been a

set x such that �∀y(y ∈ x↔ ϕ)?]18

Similarly, losV should be replaced by its modalisation los
♦
V . The problem is then

that los♦V is an arbitrary answer to question (1∗). But the potentialist avoids this

re-formulated problem since their view does not imply los
♦
V . Indeed, it follows

from collapse♦ that los♦V is false; the V ’s could have formed a set even though

they are trivially not fewer than the V ’s.

Finally, consider the argument from circularity. It rested on the claim that los

is unexplanatory in some of its answers to question (1). In particular, it seems

18Technically, the modalisation of question (1) would have ϕ = ψ♦ for some formula ψ. But
the more general (1∗) is clearly the question of interest.
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that its explanation for why there is no set of all sets is that the sets are not

fewer than the sets. Replacing (1) with (1∗), the claim now becomes that los♦ is

unexplanatory in some of its answers to question (1∗). The potentialist appears

to avoid this problem. From collapse♦ and p-comp it follows that there could

have been set of all possible ϕ’s just in case there could have been a plurality

of all possible ϕ’s.19 The potentialist can thus explain why conditions could or

could not have determined sets in terms of whether they could or could not have

determined pluralities. For example, the explanation for why there could not have

been a set of all possible sets is that there could not have been a plurality of all

possible sets.20 Similarly for why there could not have been a set of absolutely all

ordinals.

How informative is the potentialist’s answer to question (1∗)? This will depend

on the interpretation of the modal operator ♦. Since it is standard to assume that

there could not metaphysically have been sets other than there are, potentialists

tend to deny that it expresses metaphysical possibility and a number of alternative

interpretations have been proposed. For example, Linnebo (2009, 2013) takes it

to concern a well-founded process of extending the mathematical ontology, Studd

(forthcoming) takes it to concern permissible reinterpretations of an underlying

language, and Fine (2006) takes it to concern mathematical postulation. For

concreteness, I will follow Linnebo; but most of what I say will apply equally well

to these other ways of thinking about the modality.

This interpretation immediately motivates a modal logic for ♦. The idea is that

one world w′ is possible from the perspective of another w just in case the math-

19See theorem 2 for a proof.
20See footnote 16 for a proof.
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ematical ontology of w′ extends that of w. Restricting attention to mathematical

ontology, then, this just comes to the requirement that the domain of w′ extends

that of w. Formally, w′ is accessible from w just in case dom(w) ⊆ dom(w′). So

the converse Barcan formula – which corresponds to the frame condition on Kripke

models that domains be increasing along the accessibility relation – should hold.

Formally:

(CBF) ∃x♦ϕ→ ♦∃xϕ

where x is either a first-order or plural variable. Since dom(w) ⊆ dom(w), the

T axiom – which corresponds to the frame condition on Kripke models that the

accessibility relation be reflexive – should hold; that is, ϕ → ♦ϕ. Similarly, since

dom(w) ⊆ dom(w′) ⊆ dom(w′′) only if dom(w) ⊆ dom(w′′), the 4 axiom – which

corresponds to the frame condition on Kripke models that the accessibility relation

be transitive – should hold; that is, ♦♦ϕ → ♦ϕ. Furthermore, it is natural to

think that mathematical ontologies can always be combined. So the directedness

axiom G – which corresponds to the frame condition on Kripke models that the

accessibility relation be directed – should also hold; that is, ♦�ϕ → �♦ϕ. The

modal logic K + T + 4 + G is referred to as S4.2.

The interpretation also suggests axioms governing the modal behaviour of sets

and pluralities. It is natural to think that a set’s elements are prior to the set in

the sense that it mathematically could not have existed unless its elements had.

Similarly, if a plurality is nothing over and above the things which comprise it,

then it could not have existed unless those things had. So the following principle

of inextensibility should hold.
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(InExt) ♦∃x ∈ yϕ→ ∃x ∈ y♦ϕ

Moreover, it is natural to think that sets mathematically cannot change their ele-

ments. If x is an element of y, then x mathematically could not have failed to be

an element of y; and if x is not an element of y, then it mathematically could not

have been an element of y. Similarly for pluralities. So the following principle of

stability should hold for ∈.

(Stab∈) �(x ∈ y) ∨�(x 6∈ y)

In general, we say that ϕ is stable (in ~x) if ∀~x(�ϕ(~x)∨�¬ϕ(~x)). Finally, the neces-

sity of distinctness – i.e. (�- 6=) x 6= y → �(x 6= y) – the axiom of extensionality

– i.e. (Ext) ∀z(z ∈ x ↔ z ∈ y) → x = y – and standard classical quantificationl

logic should hold. For definiteness, we can take the latter to be axiomatised by

the following axioms.

(A1) ∀xϕ→ ϕ[y/ x], where y is free for x in ϕ

(A2) ∀x(ϕ→ ψ) → (∀xϕ→ ∀xψ)

(A3) ϕ→ ∀xϕ, where x is not free in ϕ

(A4) x = x

(A5) x = y → (ϕ[x/z] ↔ ϕ[y/z]), where x and y are free for z in ϕ

The rules of inference are GEN, from ϕ infer ∀xϕ; MP, from ϕ and ϕ → ψ infer
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ψ; and NEC, if ϕ is provable, then so is �ϕ.

As the next theorem shows, these principles jointly imply the modalisations of

many axioms of standard set theory.

Definition 2. Let L∈ be the language of first-order set theory with variables

x0, ..., xn, ...; LP
∈ the language of plural set theory, extending L∈ with variables

X0, ..., Xn, ...; and L♦ the language extending LP
∈ with the modal operator ♦.

x ∈ X is considered well-formed and read “itx is one of themX”.

Definition 3. Let ZF be the L∈ theory consisting of Extensionality, Infinity,

Pairing, Union, Powerset, Foundation, Separation, and Replacement; let Z be ZF

minus Replacement and Foundation; and let Z− be Z minus Powerset.

Definition 4. Let PMST (for Potentialist Modal Set Theory) be the L♦ theory

consisting of A1-5, S4.2, InExt, Stab∈, �- 6=, Ext, collapse♦, and p-comp.

Theorem 1. PMST interprets Z− - Infinity via modalisation

Proof. The proof is by induction on the length of proofs, and is given in Linnebo

(2013). As it will be useful later on, I repeat here the cases for the logical axioms

A1-5 and the rules of inference. That PMST proves A1♦ is trivial given T and

A1; similarly for A2♦ and K and A2. A4-5♦ are just instances of A4-5, since

ϕ♦[x/y] = ϕ[x/y]♦ (as can be shown by a simple induction on the complexity of

ϕ). Given A1 and A3, it is easy to see that A3♦ is equivalent to:

ϕ♦ → �ϕ♦

and thus equivalent to the claim that each ϕ♦ is stable:
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�ϕ♦ ∨�¬ϕ♦

We prove this by induction on the complexity of ϕ. The base cases are just the

stability axioms for ∈, �- 6=, and x = y → �(x = y) (which follows from A4, NEC,

and A5). The conjunction case follow from K, and the negation case from double

negation elimination. Now suppose ♦♦∃xϕ♦. It follows from 4 that ♦∃xϕ♦ and

thus ♦∃x�ϕ♦ by the induction hypothesis and T. By CFB we then have ♦�∃xϕ♦

and thus �♦∃xϕ♦ by G.

Finally, if PMST proves ϕ♦ and (ϕ → ψ)♦, then it proves ψ♦ by MP since

(ϕ → ψ)♦ = ϕ♦ → ψ♦; and if it proves ϕ♦, then it proves �∀xϕ♦ by GEN and

NEC.

Above, I stated the potentialist’s answer to question (1∗). We are now in a position

to prove it. But first we need a lemma.

Definition 5. Say that ϕ ∈ LP
∈ is bounded if its quantifiers are all of the form

∃x ∈ y.

Lemma 1 (PMST). If ϕ ∈ LP
∈ is bounded, then:

ϕ↔ ϕ♦

Proof. The proof is by induction on the complexity of ϕ, and is essentially given

in Linnebo (2013). I will repeat it here for clarity. The base, conjunction, and

negation cases are trivial. From the induction hypothesis it follows that ∃x ∈ yϕ
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is equivalent to ∃x ∈ yϕ♦. Since ϕ♦ ↔ ♦ϕ♦ by the proof of theorem 1 and the

T axiom, that is equivalent to ∃x ∈ y♦ϕ♦. Finally, by CBF and InExt that is

equivalent to ♦∃x ∈ yϕ♦.

Theorem 2 (PMST).

♦∃x�∀y(y ∈ x↔ ϕ) ↔ ♦∃X�∀y(y ∈ X ↔ ϕ)

Proof. Suppose x is such that �∀y(y ∈ x↔ ϕ). By p-comp, let X be co-extensive

with x; i.e. X ≡ x. Then by lemma 1 we have �(X ≡ x) and thus �∀y(y ∈ X ↔

ϕ). Conversely, suppose X is such that �∀y(y ∈ X ↔ ϕ). Then by collapse♦

♦∃x�(X ≡ x). By axiom 4, it follows that ♦∃x�[X ≡ x ∧ ∀y(y ∈ X ↔ ϕ)] and

thus ♦∃x�∀y(y ∈ x↔ ϕ) as required.

Potentialism is thus similar in many respects to the non-modal view ic + col-

lapse. By theorem 1, it is similarly informative.21 It also offers structurally similar

explanations, with possible existence of the plurality of all possible ϕ’s taking the

place of existence at a stage of all ϕ’s. But it seems to be significantly better than

ic + collapse in at least two ways. First, it is consistent with the conception of

pluralities as nothing over and above the things which comprise them. Second, it

has responses to all of the arguments outlined in section 1.1.2.

Potentialism contrasts with actualism, which is the view that there could not have

been anything other than there is. Formally, it can be expressed by the theory

AMST (for Actualist Modal Set Theory) which consists of PMST minus collapse♦

21PMST can also be naturally extended with other principles so as to imply Powerset and
Foundation, bringing it closer to ic. See Studd (2013).
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plus the Barcan formula:

(BF) ♦∃xϕ→ ∃x♦ϕ

The Barcan formula corresponds to the frame condition on Kripke models that

domains be decreasing along the accessibility relation. Together, CBF and BF

effectively require that all possible worlds have the same domain. In particular,

they imply that modalisation for formulas in LP
∈ is inert.

Lemma 2 (AMST). If ϕ ∈ LP
∈ , then:

ϕ↔ ϕ♦

Proof. The proof is essentially the same as for lemma 1 except that we use BF

instead of InExt.

Without collapse♦, PMST loses almost all of its strength. To see this, note

that any one world Kripke model for L♦ in which plural quantifiers range over the

powerset of the domain and Ext is true will model AMST. In what follows, I will

thus take actualism to have been supplemented with one of the non-modal views

ic or los. Since actualism effectively gives up the distinction between a formula

and its modalisation, it gives up on the potentialist’s responses to the arguments

of section 1.1.2. If those arguments are sound, potentialism seems to be preferable.

As I will now argue, however, it unclear whether they are.
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1.1.4 Assessing the arguments for collapse

In this section I will assess the arguments for collapse outlined in section 1.1.2.

I will argue that they are inconclusive as they stand.

The argument from arbitrariness

The argument from arbitrariness is based on two premises. First, that in the

presence of some natural set-theoretic assumptions, p-comp implies losV . Second,

that losV is an arbitrary answer to question (1). This in turn depended on the

claim that there could have been more sets than there are. For in that case,

losV would have been false. The argument then concludes that we should reject

p-comp.

Let me consider two replies. The first accepts its premises, but denies that the

conclusion follows. Suppose we add to potentialism the empirical premise that Tim

likes all possible pluralities. Since every possibly plurality could have determined

a set by collapse♦, it will follow that a possible plurality could have determined

a set just in case it is liked by Tim. Clearly, this would be an arbitrary answer to

the modalisation of question (3):

(3∗) When could there have been a set of all possible X’s?

[In other words: Given any possible plurality X, when could there have

been a set x such that �(X ≡ x)?]

But that is no reason to reject potentialism or the empirical premise. What matters

is that potentialism has some non-arbitrary answer to question (3∗). In particular,

that it includes collapse♦. In general, what matters is whether a theory implies
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a good answer to a particular question not whether it implies a bad one. But

both ic + p-comp and los + p-comp do seem to imply non-arbitrary answers

to question (1). For example, los says that a condition ϕ determines a set just in

case the ϕ’s are fewer than the sets. Although this could be formulated as losV , it

need not be. To see this, let fun1−1(X) abbreviate the claim that X is a plurality

of set-theoretic ordered pairs coding a one-one function, domX(x) that x is in X’s

domain, and rngX(x) that x is in its range. Then we can formulate los as:

∃x∀y(y ∈ x↔ ϕ) iff ¬∃X(fun1−1(X) ∧ ∀y(domX(y) ↔ ϕ) ∧ ∀x(rngX(x)))

In contrast to losV , this way of formulating los does not seem to be arbitrary.

Even if there could have been a set v at a world w of all the sets there are, it need

not follow that there is one-one function at w from v to the sets which exist at

w. In general, it does not follow that this way of formulating los could have been

false. Similar remarks apply to ic.

Digression. As I have characterised the position, actualism will include ic or los

and thus inherit one of their answers to question (1). As lemma 2 shows, for

ϕ ∈ LP
∈ , there could have been a set of all possible ϕ’s just in case there is a set

of all ϕ’s. So in that limited range of cases, either answer to question (1) extends

to question (1∗). What about arbitrary ϕ? Although the actualist thinks there

could not have been anything other than there is, they may think that things could

have been otherwise. For example, suppose we have in our language a predicate P

which applies to nothing but could have applied to all possible non-self-membered

sets. Formally: ∀x¬Px and ♦�∀x(Px ↔ x 6∈ x). Then there is a set of all P ’s
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according to the actualist, but there could not have been a set of all possible P ’s.22

Nonetheless, the actualist’s answer to question (1) does extend to (1∗) in a less

direct way. In particular, the next lemma shows that AMST proves there could

have been a set of all possible ϕ’s just in case ϕ could have been stable and there

is a set of all ♦�ϕ’s.

Lemma 3 (AMST).

♦∃x�∀y(y ∈ x↔ ϕ) ↔ [♦∀y(�ϕ ∨�¬ϕ) ∧ ∃x∀y(y ∈ x↔ ♦�ϕ)]

Proof. Left-to-right. Suppose ♦∃x�∀y(y ∈ x↔ ϕ). From BF and CBF it follows

that ∃x♦∀y�(y ∈ x ↔ ϕ). Since ∈ is stable, we have �∀y(�y ∈ x ∨ �y 6∈ x)

and thus ♦∀y[�(y ∈ x ↔ ϕ) ∧ (�y ∈ x ∨ �y 6∈ x)]. Thus, ♦∀y(�ϕ ∨ �¬ϕ). If

y ∈ x, then ��(Ey∧y ∈ x) by CBF and stability of ∈ and so ♦�ϕ. Conversely, if

♦�ϕ, then ♦�(Ey∧ϕ) by CBF and so �♦(Ey∧ϕ) by G. It follows that ♦♦x ∈ y

and thus x ∈ y by stability of ∈. Right-to-left. Suppose ♦∀y(�ϕ ∨�¬ϕ) and let

x be such that ∀y(y ∈ x ↔ ♦�ϕ). If ♦�ϕ, then ♦��ϕ by 4 and thus �♦�ϕ

by G; and if ¬♦�ϕ, then �¬♦�ϕ by 4. So ∀y(�♦�ϕ ∨ �¬♦�ϕ). A simple

induction then shows that ∀y(y ∈ x ↔ ♦�ϕ) implies �∀y(y ∈ x ↔ ♦�ϕ) and

thus ��∀y(y ∈ x ↔ ♦�ϕ) by 4. If ∀y(�ϕ ∨�¬ϕ), then it similarly follows that

�∀y(ϕ ↔ ♦�ϕ). So it follows from ♦∀y(�ϕ ∨ �¬ϕ) that ♦�∀y(ϕ ↔ ♦�ϕ) and

thus ♦�∀y(y ∈ x↔ ϕ) as required.

The converse is not true for the potentialist. That is, their answer to (1∗) does not

extend to (1). Indeed, PMST says nothing about which conditions determine sets.

22Proof: Suppose there could have been. That is, suppose ♦∃y�∀x(x ∈ y ↔ Px). From G
and ♦�∀x(Px ↔ x 6∈ x) it follows that �♦∀x(Px ↔ x 6∈ x) and thus that ♦∃y♦[∀x(Px ↔ x 6∈
x) ∧ ∀x(x ∈ y ↔ Px)]. From CBF we then have ♦♦[∀x(Px ↔ x 6∈ x) ∧ ∃y∀x(x ∈ y ↔ Px)]
which is impossible.
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It is easy to see, for example, that PMST is satisfied in pointed Kripke models

of the form 〈Vλ,⊆ ∩{y ∈ Vλ : x ⊆ y} × {y ∈ Vλ : x ⊆ y}, x〉. Nonetheless, (1)

is a perfectly legitimate question. A natural way to supplement potentialism to

answer it is with a principle of priority – which says if x ∈ dom(w), then there is

some w′ < w such that x ⊆ dom(w′) – and a principle of maximality – which says

that if x ⊆ dom(w) and w < w′, then x ∈ dom(w′). Together, these principles

imply that a condition ϕ determines a set at a world w just in case the ϕ’s at w

all exist at some w′ < w. Expressing these principles, though, requires resources

which go beyond PMST. For example, Studd (2013) adopts two modal operators;

one which ‘looks back’ to prior worlds and one like ♦ which ‘looks forward’ to

subsequent worlds.

A somewhat similar point applies to question (2). For the actualist, there could

have been a plurality of all possible ϕ’s just in case ϕ could have been stable and

there is a plurality of all ♦�ϕ’s. That is:

Lemma 4 (AMST).

♦∃X�∀y(y ∈ X ↔ ϕ) ↔ [♦∀y(�ϕ ∨�¬ϕ) ∧ ∃X∀y(y ∈ X ↔ ♦�ϕ)]

Proof. Exactly analogous to the proof of lemma 3.

So the actualist’s answer to (2), namely “always”, extends to its modalisation:

(2∗) When could there have been a plurality of all possible X’s?

[In other words: Given any condition ϕ, when could there have been a

plurality X such that �∀y(y ∈ X ↔ ϕ)?]

In particular, they will think that there could have been a plurality of all possible
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ϕ’s just in case ϕ could have been stable. The same is not true for the potentialist.

That is, their answer to (2) does not extend to (2∗). In PMST, it is hard to see

what their answer could be. From the conception of pluralities as nothing over

and above the things which comprise them it follows that there could have been

a plurality of all possible ϕ’s just in case the ϕ’s could have all co-existed. But

expressing this again requires new resources. In particular, it requires the ability

to cross-reference worlds. In effect, we need to be able to say that there is a world

w such that given any x ∈ dom(w′) for w′ ≥ w which is ϕ, x ∈ dom(w). This

can be done using backtracking operators as discussed in Hodes (1984), but not

in PMST.

The second reply denies the second premise. By lemma 2 the actualist will

think that V necessarily contains everything; that is, �∀x(x ∈ V ). The V ’s could

not have determined a set according to them, and losV could not have been false.

In other words, the argument from arbitrariness begs the question against the

actualist.

The argument from circularity

The argument from circularity rested on the claim that ic and los are unexplana-

tory in certain crucial cases. In particular, that los does not explain why there is

no set of all sets.

Let me consider two responses. First, it is no accident that the argument was

directed at los rather than ic. It is hard to see in what cases ic is unexplanatory

in a similar way. In general, given the structural similarity between potentialism’s

answer to (1∗) and ic’s answer to (1), it is hard to see in which cases the former

but not the latter is explanatory.
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The second response highlights a hidden premise of the argument. In particular,

the argument assumed that the explanation for why the sets do not determine a

set must track the bi-conditional used in the statement of los. In other words, the

argument assumed that the explanation for why ϕ does or does not determine a set

must rely on the fact that the ϕ’s are or are not fewer than the sets. But there is

no reason to accept this premise. For example, the proponent of los could first use

a purely logical argument to explain why there is no of all non-self-membered sets

and then explain why each instance of the axiom of separation is true as outlined

in section 1.1.1. In general, explanations may draw on a number of interconnected

considerations and be no less explanatory for that.

The argument from specification

There are two ways to read the argument from specification. The first is as an

explanatory demand. If we deny collapse, we need to explain why pluralities fail

to determine sets. As Linnebo (p. 146, 2010) puts it: “what more could be needed

[over and above the existence of some things] for [a set of them] to exist?”.23 Read

this way, it is hard to see its force. Both ic and los tell us exactly what more

is needed for them to determine a set. On ic, they have to all co-exist at some

stage; and on los, they have to be fewer than the sets. Perhaps the real question

is: what more could be needed for some things to possibly determine a set? That

is, question (3∗). Here, of course, the non-modal views ic and los are on their

own silent. But as components of actualism, they are not. Since their answers to

question (1) extend to question (1∗) in AMST, they also extend a fortiori to (3∗)

in AMST.

23See also (Studd, 2013, p. 699-700) and (Fine, 2006, p. 23).
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The second way of reading the argument is as a positive argument for col-

lapse; or rather, for collapse♦. The problem with this reading is that it is

unclear what the premises of the argument are supposed to be. They will at least

include the claim that a plurality suffices to completely specify a corresponding

set. But that hardly entails such a set exists or could have existed. Whatever

premise we add, it will have to be sensitive to the distinction between collapse

and collapse♦. After all, collapse is just as inconsistent with potentialism as

with actualism. For example, some conceivability-implies-mathematical-possibility

premise would have the required sensitivity. Since a plurality gives us the resources

to conceive what the world would be like if it determined a set, it would then follow

that it could have determined a set. There would then be no pressure to think it

did determine a set. Of course, such a premise would be highly contentious.24 But

it is unclear what could be used instead.

Summing up. Neither the argument from arbitrariness nor the argument from cir-

cularity has force, and the argument from specification needs to be supplemented.

Moreover, potentialism is both similarly informative and explanatory to actualism

on questions 1-3 and 1∗-3∗ (at least, when the latter is supplemented with ic). Of

course, there may be other positive arguments for potentialism. Or it may be that

on closer analysis, potentialism gives better answers to 1-3 and 1∗-3∗.25,26 But until

such arguments or analysis is given, I hope to have shown that the most prominent

considerations in favour of potentialism are inconclusive and thus that we should

24See the papers in Gendler and Hawthorne (2002) for discussion.
25(Linnebo, 2013, p.207), for example, claims that the difference between conditions which

could have determined pluralities and those which could not is ‘intrinsic’, presumably in a way
that the difference between conditions which determine pluralities at some stage and those which
do not is not.

26Similarly, there may be other questions which bear on the debate. See, for example, Uzquiano
(2006) for questions concerning the interaction of mereology and set theory.
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look for new ones. In the next section, I do just that.

1.2 Potentialism and second-order logic

In the last section I showed that some prominent arguments for potentialism are

inconclusive. In this section and the next I develop a new consideration in favour of

actualism. Roughly, the idea is that certain resources are desirable but unavailable

to the potentialist. In particular, in this section I will argue that the modalised

comprehension schema of second-order logic is incompatible with potentialism.

Then in the next section I will show that this schema follows from certain attractive

set-theoretic reflection principles.

1.2.1 Modalised plural logic

Potentialism and actualism differ centrally on the modalised plural logics they

entail. For the potentialist, there could have been a plurality of all possible ϕ♦’s

just in case there could have been a set of all possible ϕ♦’s (lemma 1). They

will thus think that many instances of p-comp♦ are false. For the actualist, on

the other hand, there could have been a plurality of all possible ϕ♦’s just in case

there is a plurality of all ϕ’s (lemma 2). They will thus think that all instances of

p-comp♦ are true since each is equivalent to an instance of p-comp.

In other words, potentialism, but not actualism, is incompatible with the

modalised comprehension schema for second-order logic on its plural interpreta-

tion. It turns out that this fact is fairly robust. As I will now argue, relative

to some natural assumptions, potentialism is incompatible with the modalised

comprehension schema for second-order logic on any interpretation.
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1.2.2 Modalised second-order logic

Suppose the potentialist expands their language with second-order variables F0,...,

Fn,... and takes x ∈ F to be well-formed. To help readability we can refer to F ’s

as concepts and say that F applies to x whenever x ∈ F . A natural initial question

about concepts is whether they determine sets. That is, whether:

�∀F♦∃x�(F ≡ x)

where F ≡ x abbreviates ∀y(y ∈ F ↔ y ∈ x). Clearly, this depends on what

concepts there could have been. If there could have been a concept which neces-

sarily applied to all and only the non-self-membered sets – a concept F for which

�∀x(x ∈ F ↔ x 6∈ x) – for example, then they could not have determined sets in

general.

But whatever concepts there could have been, it is plausible that they de-

termine another kind of object; namely, what I will call properties. The notion

of property can be understood in terms of the notions of concept and set. Like

concepts, properties bear a relation of application to objects; and just as sets

are completely characterised by their membership conditions, properties are com-

pletely characterised by their application conditions. First, a property is distin-

guished from all other properties by the objects it could have applied to. This is

expressed by the following principle of intensionality:

p = q ↔ �∀x(xηp↔ xηq)

where p, q are properties and xηp formalises the claim that p applies to x. Second,
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there is nothing more to a property than its having the application conditions it

has. To completely specify a property, it thus suffices to specify which objects it

could have applied to. If the argument from specification outlined in section 1.1.2

can be made good, it would seem to generalise to show that every possible concept

could have determined a property. Formally:

(c-collapse♦) �∀F♦∃p�(F ≡ p)

where F ≡ p abbreviates ∀x(x ∈ F ↔ xηp).

Independently of the argument from specification, a potentialist who denied

c-collapse♦ would in any case incur an explanatory burden. They would have

to explain why collapse♦ holds even though c-collapse♦ does not. I can see

only two ways they might try to do this. First, they might try to exploit the

fact that concepts can ‘reach out’ beyond the world where they exist and apply to

new objects whereas pluralities cannot. In the terminology of section 1.1.1, they

might try to exploit the fact that concepts can be extensible whereas pluralities are

inextensible. For example, suppose there is a universal concept; that is, a concept

F for which �∀x(x ∈ F ). Let U be the plurality of everything; that is, ∀x(x ∈ U).

By collapse♦, U could have determined a set which assuming Foundation♦ will

not be in U . So:

♦∃x ∈ F (x 6∈ U)

But, since pluralities are stable, nothing could have failed to be in U . That is:
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¬∃x ∈ F♦(x 6∈ U)

Thus F is extensible. If concepts are extensible, then this may well explain why

they fail to determine sets in general. But it is unclear how it could be used to

explain why concepts fail to determine properties. Since the application relation

for properties is modelled on the application relation for concepts, properties are

just as capable of being extensible as concepts. So if the extensibility of F is a

reason to think there could not have been a corresponding property, then it is

prima facie a reason to think that F could not have existed in the first place.

Second, they might try to exploit the fact that properties can be self-applicable

whereas concepts cannot (assuming concepts are not objects). For example, a prop-

erty corresponding to a universal concept would apply to itself. More worryingly,

a property corresponding to a concept which necessarily applied to all and only

the non-self-applicable properties – a concept F for which �∀p(p ∈ F ↔ ¬[pηp])

– would apply to itself just in case it did not. However, there is a broad class

of concepts for which the corresponding properties need not be self-applicable.

In particular, this is the case for concepts which only apply to pure sets; that

is, sets whose elements are sets, whose elements’ elements are sets and so on.

Call these ps-concepts. Assuming properties are not sets, properties correspond-

ing to ps-concepts will not apply to properties, to sets containing properties, to

sets containing sets containing properties and so on. In a sense, such properties

will be strongly non-self-applicable. This suggests the following restriction of c-

collapse♦:
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(psc-collapse♦) �∀F (�∀x(x ∈ F → Ps♦(x)) → ♦∃p�(F ≡ p))

where Ps(x) formalises the claim that x is a pure set.27

I will now show that just as collapse♦ is inconsistent with p-comp♦, given

plausible assumptions psc-collapse♦ is inconsistent with the modalised compre-

hension schema for concepts:

(c-comp♦) ♦∃F�∀x(x ∈ F ↔ ϕ♦)

where F is not free in ϕ.

1.2.3 psc-collapse♦ is inconsistent with c-comp♦

First, we need to extend definitions 2, 3, and 4 to account for concepts and prop-

erties.

Definition 6. Let L2
∈ be the language of second-order set theory, extending L∈

with variables F0, ..., Fn, ...; Lp
∈ the language extending L2

∈ with the predicates

Set(x) and η; and Lp
♦ the language extending Lp

∈ with the modal operator ♦.

x ∈ F and F = G are taken to be well-formed in L2
∈. For ϕ ∈ L∈, let ϕ

ps be the

result of restricting all its quantifiers to Ps.

Definition 7. Let ZFU be ZF in the language of L2
∈ modified in the usual way to

allow for urelements. The result of adorning a name of an axiom with “U” denotes

27For instance, we could let Ps(x) =df ∀f, n([f is a function ∧ dom(f) = n + 1 ∧ f(0) =
x ∧ ∀m < n(f(m+ 1) ∈ f(m))] → Set(f(n))).
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the modified axiom and unadorned names denote the unmodified axioms restricted

to pure sets. For example, UPairing denotes ∀x, y∃z(Set(z) ∧ z = {x, y}) and

Pairing denotes ∀x, y(Ps(x) ∧ Ps(y) → ∃z[Ps(z) ∧ z = {x, y}ps]). I do not assume

that c-comp is included in ZFU’s logic and thus UReplacement and USeparation

are taken to be schemas rather than single, universally quantified, sentences. ZU

is ZFU minus UReplacement and UFoundation and ZU− is ZU minus Powerset.

Definition 8. Let PMSTU (for Potentialist Modal Set Theory with Urelements)

be the Lp
♦ ∪ L♦ theory extending PMST with stability axioms for x ∈ F , Set(x),

and xηy; collapse♦ replaced by its explicit restriction to sets: �∀X♦∃x(Set(x)∧

�(X ≡ x)); and psc-collapse♦.

It is easy to see that the proof of theorem 1 generalises to show:

Theorem 3. PMSTU interprets ZU− - UInfinity via modalisation.

Given the deduction theorem, it is a trivial corollary of theorem 3 that ϕ0, ..., ϕn

imply ϕ in ZU− - Infinity only if ϕ♦
0 , ..., ϕ

♦
n imply ϕ♦ in PMSTU (whenever the ϕi

are sentences). To show that psc-collapse♦ is inconsistent with c-comp♦ given

ϕ♦
0 , ..., ϕ

♦
n it thus suffices to show that psc-collapse is inconsistent with c-comp

given ϕ0, ..., ϕn. For suitable ϕ0, ..., ϕn, I will now do that.

psc-collapse is inconsistent with c-comp

The argument that psc-collapse is inconsistent with c-comp relies on three

assumptions. First, there is a principle of global choice. Let Lin(F ) abbreviate:

∀x, y(〈x, y〉 ∈ F ∨ x = y ∨ 〈y, x〉 ∈ F )
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and Wf(F ) abbreviate:

∀x(Set(x) ∧ ∃y(y ∈ x) → ∃y ∈ x∀z ∈ x(〈z, y〉 6∈ F ))

Then the principle can be formulated as:

(gc) ∃F (Lin(F ) ∧Wf(F ))

Second, there is a principle asserting the existence of a concept applying to sets

well-ordered by ⊂ such that every object is in some set to which the concept ap-

plies. In the case of pure set theory, for example, a concept applying to all and

only the Vα’s would be paradigm example. Formally:

(wo) ∃F (Lin(⊂ ∩F × F ) ∧Wf(⊂ ∩F × F ) ∧ ∀x∃y ∈ F (x ∈ y))

where Lin(⊂ ∩F × F ) and Wf(⊂ ∩F × F ) have the obvious meanings. Finally,

there are the UReplacement and UPowerset axioms. Then we have:

Theorem 4 (ZFU - Infinity). If gc, wo, and psc-collapse, then some instance

of c-comp is false.

Proof. The strategy will be to construct a one-one function from the objects into

the pure sets. By psc-collapse we will then effectively have a one-one function

from the ps-concepts into the pure sets. Given c-comp, a simple diagonalisation

argument will show that this is impossible.

Let F and G witness gc and wo respectively, and let Gx denote the least
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element of F containing x.28 By c-comp there is a H such that:

〈x, y〉 ∈ H ↔ Gx ⊂ Gy ∨ (Gx = Gy ∧ 〈x, y〉 ∈ F )

Clearly,H is a set-like well-order of the objects. Using UReplacement, the Mostowski

collapse lemma will thus give us a one-one function ϕ(x, y) from the objects into

the (pure set) ordinals. Now, consider the following instance of c-comp:

∃F∀y(y ∈ F ↔ ∃x(ϕ(x, y) ∧ ¬[yηx]))

It is easy to see that F only applies to pure sets (since it only applies to ordi-

nals). But by the usual Russell-style reasoning, F cannot determine a property,

contradicting psc-collapse.

It follows that in PMSTU, gc♦, wo♦, UReplacement♦, and UPowerset♦ imply

that some instance of c-comp♦ is false. Could the potentialist resist this con-

clusion? That is, could they accept c-comp♦ while denying one of gc♦, wo♦,

UReplacement♦, and UPowerset♦? I will now argue that given c-comp♦ there is

pressure on the potentialist to accept each of these principles.

UReplacement♦

If the potentialist wants to provide an interpretation of ZFC via modalisation,

then Replacement♦ will have to be true. In the presence of collapse♦ and InExt,

Replacement♦ effectively tells us that given any co-existent pure sets, the pure sets

28Gx is well-defined because the ⊂-predecessors of any y ∈ G are all contained in P(y), which
exists by UPowerset.
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to which they are ϕps-related can co-exist (when ϕ ∈ L∈ and ϕps is functional♦).

Underlying this, and similarly underlying UReplacement♦, is the general principle

that given any co-existent objects, the objects to which they are ϕ-related can

co-exist (when ϕ is functional♦). A potentialist who accepted Replacement♦ but

denied that general principle would thus posit a substantial modal difference be-

tween the functionally related co-existences of pure sets in a specific range of cases

and the functionally related co-existences of objects in general. But it is unclear

how they might explain this difference. For example, the rationale (Linnebo, 2013,

p. 17) gives for Replacement♦ is that co-existence is a matter of size. If the ϕ’s

co-exist and the ψ’s are as many or fewer than the ϕ’s, then the ψ’s can co-exist.

But this rationale is entirely general. Any functional relation χ from the ϕ’s to

the ψ’s witnesses the ψ’s being as many or fewer than the ϕ’s irrespective of what

formulas ϕ, ψ, and χ happen to be and, indeed, what they happen to apply to.

gc♦

As (Bernays, 1935, p. 260) argued, Choice seems to follow from the quasi-combinatorial

conception of set. Heuristically, the idea is that there is a set corresponding to

every arbitrary combination of elements of any given set. For example, since some

arbitrary combination of elements of x × x is a well-ordering of x, there is a set

which well-orders x. Extrapolated to concepts, the idea would be that there is

a concept corresponding to every arbitrary combination of objects. For example,

since some arbitrary combination of set-theoretic ordered pairs is a well-ordering

of the objects, there is a concept which well-orders them. Another way to put

the point is that if the sets are plenitudinous, then Choice♦ is true; and if the

concepts are plenitudinous, then gc♦ is true. But c-comp♦ requires the concepts
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to be plenitudinous. At least, it requires them to be plenitudinous enough to make

all of its instances true. A potentialist who accepted c-comp♦ but rejected gc♦

would thus have to explain why the concepts are plenitudinous enough to make all

instances of c-comp♦ true but not plenitudinous enough to make gc♦ true. But

it is unclear how they might do this.

wo♦ and UPowerset♦

A similar point would apply to wo♦ if the potentialist had reason to think some

arbitrary combination of sets witnessed it. I will now argue that they do. Since

I only want to establish that some arbitrary combination of sets witnesses wo♦, I

will argue relatively informally and allow myself resources which go beyond those

of PMSTU. In particular, I will make use of quantification over possible worlds

equipped with a well-founded accessibility relation < along which domains are

increasing and third-order quantification over collections of objects and concepts

(for which I will use calligraphic variables X , Y , Z etc). Boldface variables x, y,

z etc will be used for concepts and objects, and dom(w) will denote the collection

of concepts and objects which exist at w. For simplicity, I will restrict attention

to ps-concepts. Thus, by psc-collapse♦, every concept determines a property.

We can define a notion of immediate possibility. In particular, we can say

that x is immediately possible for a world w if there is a world w′ ≥ w with

x ∈ dom(w′) such that there are no worlds strictly prior to w′ but strictly after

w. In other words, x is immediately possible for w if nothing more is needed for

the possible existence of x over and above w’s having been the case. The notion

naturally generalises to arbitrary collections of concepts and objects. Just as x

may be immediately possible for w, it may be immediately possible for a collection
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of concepts and objects X . In that case, nothing more is needed for the possible

existence of x over and above the existence of the X ’s. I claim that the potentialist

can make sense of this generalised notion. Indeed, recall that something very much

like it appeared in the argument from specification. It was because a set of some

things is immediately possible for them that we were led to believe they could have

determined a set.

Let Ip(X ,x) formalise the claim that x is immediately possible for X . What

principles does Ip(X ,x) obey? On the intended reading, Ip(X ,x) is not sensitive

to the world of evaluation. That nothing is needed for the possible existence of

x over and above the existence of the X ’s is an entirely intrinsic property of x

and X . Thus, Ip(X ,x) is a stable relation. For simplicity, we can thus assume

Ip(X ,x) has the same extension at all worlds and we can unambiguously introduce

an operator Γ taking collections of concepts and objects to collections of concepts

and objects such that Γ(X ) = {x : Ip(X ,x)}. Clearly, Γ is sound and monotonic.

Formally:

(Soundness) X ⊆ Γ(X ).

and:

(Monotonicity) If X ⊆ Y , then Γ(X ) ⊆ Γ(Y).

Trivially, nothing is needed for the possible existence of x over and above the

existence of x; and if nothing is needed for the possible existence of x over and

above the existence of the X ’s, then nothing is needed for the possible existence
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of x over and above the existence of the Y ’s whenever X ⊆ Y .

The next principle is slightly less obvious. It says that any x ∈ dom(w) is

immediately possible for the union of the domains of worlds prior to w. Formally:

(Dependence) If x ∈ dom(w), then x ∈ Γ(
⋃

w′<w dom(w′)).

If x ∈ dom(w), then trivially nothing is needed for the possible existence of x over

and above the worlds prior to w having been the case. Dependence claims that

when it comes to immediately possibility, a world is just as good as its domain.

For example, one feature worlds have which might be relevant to the immediate

possibility of x is the extensions of various predicates over their domains. But those

extensions will be subcollections of their domains, and thus available whenever the

domains are. In general, it is hard to see what else could be needed for the possible

existence of x ∈ dom(w) over and above the existence of the concepts and objects

which exist at worlds prior to w.

The final principle says that the Γ(X )’s can co-exist if the X ’s can; if nothing

is needed for the possible existence of each Γ(X ) over and above the existence of

the X ’s, then nothing more is needed for the possible co-existence of the Γ(X )’s.

Formally:

(Compossibility) If X ⊆ dom(w), then Γ(X ) ⊆ dom(w′) for some w′ ≥ w.

Compossibility is plausible, but much less obvious than Soundness, Monotonicity,

and Dependence. So why should the potentialist believe it? If they want to provide

an interpretation of ZFC via modalisation, then Powerset♦ will have to be true.
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In the presence of collapse♦ and InExt, it effectively tells us that the subsets of

any co-existent pure sets can co-exist. Formally:

(*) If X ⊆ dom(w) ∩ Ps, then P(X) ⊆ dom(w′) for some w′ ≥ w

where P(X) = {x : ∃Y ⊆ X�(Y ≡ x)}. Generalising this, UPowereset♦ tells us

that the subsets of any co-existent objects can co-exist. Formally:

(**) If X ⊆ dom(w), then P(X) ⊆ dom(w′) for some w′ ≥ w

Compossibility can be taken to underlie both of these claims. It is natural to

think the set of the X’s is immediately possible for the X’s. Suppose it is. Then

Monotonicity implies:

(X-x) P(X) ⊆ Γ(X)

and (*) and (**) are trivial consequences of Compossibility. A potentialist who ac-

cepted Powerset♦ but denied Compossibility would thus posit a substantial modal

difference between the possible co-existence of certain immediately possible pure

sets and the possible co-existence of immediately possible concepts and objects in

general. But it is unclear how they might explain this difference.

A similar point applies to properties. That is, it is natural to think the prop-

erty determined by a concept F is immediately possible for F . Then Monotonicity

implies:
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(F -p) C(X ) ⊆ Γ(X )

where C(X ) = {p : ∃F ∈ X�(F ≡ p)}. Indeed, it is natural to think the converse

holds; that a concept F is immediately possible for p whenever �(F ≡ p). Since

every concept determines a property, that implies:

(p-F ) If F ∈ X , then F ∈ Γ(C(X ))

These principles allow us to represent collections of concepts and objects as col-

lections of objects. In particular, we can define X1 = C(X )∪ [X ∩O] where X ∩O

is the collection of objects in X . From F -p and Soundness it follows that:

X1 ⊆ Γ(X )

and from p-F it follows that X ⊆ Γ(C(X )) ∪ [X ∩O] and thus that:

X ⊆ Γ(X1)

by Monotonicity and Soundness. Compossibility then implies that we can move

between X and X1. Whenever the X ’s exist, the X1’s could have co-existed and

vice versa. Indeed, by collapse♦ and InExt, the X1’s could have co-existed just

in case they could have determined a set. In that case I will identify the X1’s with

their set.

I will now use Soundness, Monotonicity, Dependence, Compossibility, X-x,

F -p, and p-F to construct a witness for wo♦. By transfinite recursion over the
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ordinals define:

Γ0 = ∅

Γα+1 = Γ(Γα)

Γλ =
⋃

α<λ

Γα

A simple induction establishes that the Γα’s could have co-existed for each α. The

successor case is immediate given Compossibility. For the limit case, we first map

each α < λ to Γα,1. Then by UReplacement♦ and InExt, there will be a world w

with Γα,1 ⊆ dom(w) for α < λ. Since Γα ⊆ Γ(Γα,1), it follows by Monotonicity that

Γλ ⊆ Γ(dom(w)) and thus that the Γλ’s could have co-existed by Compossibility.

So every Γα,1 determines a set. Now, another induction establishes that every

concept and object is in some Γα. For suppose not, and let w be a least world with

x ∈ dom(w) but x 6∈ Γα for every α. Then for each w′ < w, dom(w′) ⊆ Γα for some

α and since dom(w′)1 ⊆ Γ(dom(w′)) we have dom(w′)1 ⊆ Γα+1 by Monotonicity.

Since domains are increasing along the accessibility relation, dom(w′) ⊆ dom(w)

and so dom(w′)1 ⊆ dom(w)1 for all w
′ < w. By Compossibility, X-x, collapse♦,

and the fact that dom(w)1 ⊆ Γ(dom(w)), P(dom(w)1) will determine a set in

some w′′ ≥ w. Thus, if we map each dom(w′)1 for w′ < w to the least α with

dom(w′)1 ⊆ Γα, UReplacement♦ will entail that such α have a least upper bound λ.

Since dom(w′) ⊆ Γ(dom(w′)1) and Γα+1 ⊆ Γλ+1 by Soundness and Monotonicity,
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it follows that
⋃

w′<w dom(w′) ⊆ Γλ+1 and thus that x ∈ Γλ+2 after all. So every

object is in some Γα,1. Finally, it is clear from Soundness and Monotonicity that

⊂ is a well-order on the Γα’s and thus on the Γα,1’s. The latter therefore provide

a suitable witness for wo♦.

Summing up. By theorem 4, c-comp♦ is inconsistent in PMSTU with UReplacement♦,

gc♦, wo♦, and UPowerset♦. But given c-comp♦, it is hard for the potentialist to

deny those principles. In this sense, potentialism is incompatible with c-comp♦.

Any reason to accept it is thus a reason to reject potentialism. In the next section

I will look at one such reason.

1.3 Potentialism and reflection

Set-theoretic reflection principles say, roughly, that the universe of sets V is mir-

rored by or reflected in its initial segments Vα. They come in two flavours. First,

there are indescribability principles. These say that whatever is true in V is true

in some Vα. Formally:

(PR) ϕ→ ∃αϕVα

where ϕVα is the result of restricting ϕ to Vα. Specific principles can be obtained

from PR by specifying (i) a class of formulas for which it is to hold and (ii)

how formulas of that class are to be restricted to Vα. For formulas in L2
∈, ϕ

Vα

is usually taken to be the result of replacing all occurrences of ∃x and ∃F in ϕ

with ∃x ∈ Vα and ∃F ⊆ Vα respectively, and replacing all occurrences of free

second-order variables F in ϕ with F ∩ Vα. Let PR1 denote the restriction of PR
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to formulas in L∈ and PR2 the restriction of PR to formulas in L2
∈.

29

Second, there are indistinguishability principles. These say that the universe

is indistinguishable from its initial segments relative to particular formulas. For

first-order formulas, the idea can be expressed formally as:

(CR1) ∃α[∅ ∈ Vα ∧ ∀~x ∈ Vα(ϕ↔ ϕVα)]

where ϕ ∈ L∈ with free variables among ~x. For second-order formulas, though,

things are not so straightforward. A natural first attempt to express the idea

would be:

∃α[∅ ∈ Vα ∧ ∀~F ⊆ Vα∀~x ∈ Vα(ϕ↔ ϕVα)]

where ϕ ∈ L2
∈ with free variables among ~x, ~F . But this principle is inconsistent.

For consider the claim ∀x(x ∈ X). Trivially, ∀x ∈ Vα(x ∈ X) when X = Vα. But

it cannot be the case that ∀x(x ∈ X) when X = Vα.

One way to avoid inconsistency is by moving the second-order quantifiers out-

side the scope of the initial existential quantifier. Formally:

(CR2) ∀~F∃α[∅ ∈ Vα ∧ ∀~x ∈ Vα(ϕ↔ ϕVα)]

where ϕ ∈ L2
∈ with free variables among ~x, ~F . Another way is by allowing subcon-

cepts of Vα to be systematically reinterpreted to concepts over V . The idea is then

that there are (non-empty) Vα which are indistinguishable from V with respect to

29PR1 was first introduced by Lévy (1960b) and PR2 by Bernays (1961).
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ϕ up to a reinterpretation of its parameters over Vα. Formally, we say that there

is concept j which codes a one-one function from subconcepts of Vα to concepts

and is such that:

(SCR) ∃α[∅ ∈ Vα ∧ ∀~F ⊆ Vα∀~x ∈ Vα(ϕ(~x, j(~F )) ↔ ϕVα(~x, ~F ))]30

where ϕ ∈ L2
∈ with free variables among ~x, ~F .

Why should we be interested in reflection principles? Perhaps the most promi-

nent reason is that they might be used to effect reductions in incompleteness –

that is, to answer various interesting questions left open by the standard axioms

of ZFC.31 Since Montague (1961) it has been known that CR1 and PR1 are prov-

able in ZFC and thus that they cannot do this. Indeed, Lévy (1960a) showed that

CR1 is equivalent to Replacement and Infinity over the remaining axioms.32 Fur-

thermore, Silver and Reinhardt showed that although PR2 implies the existence

of many so-called small large cardinals, it is also relatively weak.33 In particular,

it fails to imply that there are measurable cardinals. Since CR2 is equivalent to

PR2,
34 it is similarly weak. SCR, however, is much stronger. In particular, it

implies the existence of measurable cardinals and thus that V 6= L and the exis-

30This principle is essentially present in Reinhardt (1974a, 1980) (see chapter 3), but the cur-
rent formulation is based on the principle GRP in Welch (ms). The “S” stands for “structural”.
See ? (ms) for discussion.

31See, for instance, Gödel’s reported remarks in (Wang, 1997, p. 285). See Gödel (1964) for a
classic statement of the project of supplementing the axioms of ZFC to answer these questions,
and Koellner (2006) for an illuminating discussion in light of recent developments in set theory.

32Lévy and Vaught (1961) further showed that PR1 is strictly weaker than CR1 over Z. See
lemma 14 in chapter 2 for a related result.

33See (Kanamori, 2003, p. 109). See also Koellner (2009) for an extension of this result to
similar principles suggested by Tait (2005).

34Proof sketch: Clearly CR2 implies PR2. For the converse direction, let F be such that
∀x(x ∈ F ↔ ϕ). Applying PR2 we get a Vα for which ∀x ∈ Vα(x ∈ F ↔ ϕVα). Putting these
two facts together gives us ∀x ∈ Vα(ϕ↔ ϕVα) as required.
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tence of a proper class of measurable Woodin cardinals and thus that the axiom

of determinacy holds in L(R).35

Reflection principles face a number of problems. The most difficult is a form of

bad company. Certain formulas uniquely describe V and thus distinguish it from

its initial segments. For example, absolutely infinitary formulas like:

∃x0, ..., xα, ...(x0 6= x1∧, ...,∧x0 6= xα, ..., xα 6= xα+1, ...)

are true in V but not in any Vα.
36 It is thus incumbent on a proponent of a

reflection principle to say for which class of formulas it holds and why. I think

these problems can be overcome and that reflection principles like SCR are the

best way we have of effecting the above mentioned reductions in incompleteness,

but I will not argue that here. Rather, I will assume that they are and see what

consequences this has for the debate between potentialism and actualism.

In the last section I argued that c-comp♦ is incompatible with potentialism.

But, assuming that every set is co-extensive with a concept, it is easy to see

that PR2 and SCR imply c-comp.37 It then follows from theorem 3 that SCR♦

and PR♦
2 imply c-comp♦. Potentialism thus appears to be incompatible with

strong reflection principles. The actualist, on the other hand, can interpret these

principles plurally since p-comp♦ is already a consequence of their view. We thus

have a prima facie reason to prefer actualism over potentialism.

35See Welch (ms) for discussion.
36See Koellner (2009) and chapter 3 for discussion.
37Proof sketch: For any Vα, Separation implies that there is a set x ⊆ Vα such that (∀y(y ∈

x ↔ ϕ))Vα and thus a concept G ⊆ Vα such that (∀y(y ∈ G ↔ ϕ))Vα . Thus, (∀~F , ~x∃G∀y(y ∈

F ↔ ϕ))Vα . By the contrapositive of PR2 or by SCR it then follows that ∀ ~G, ~x∃F∀y(y ∈ G↔ ϕ)
as required.
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Can the potentialist resist this conclusion? In particular, can they formulate a

principle similar in motivation and strength to PR2 or SCR which avoids commit-

ment to c-comp♦? In the next two chapters, I will look at two ways they might do

this. In chapter 2 I look at a proposal by Geoffrey Hellman for implementing the

indescribability idea, and in chapter 3 I look at a proposal by William Reinhardt

for implementing the indistinguishability idea.



Chapter 2

Modal structural reflection

In this chapter I investigate a suggestion by Geoffrey Hellman that promises to

yield a restricted plural R2-like principle which is both consistent with collapse♦

and strong. Many of the issues which arise for Hellman’s suggestion are unique

to the modal structural setting. For this reason, I have made the chapter self-

contained.

2.1 Modal structuralism

By employing a modal operator, plural quantification, and mereology, the modal

structuralist attempts to give an interpretation of set theory which eschews quan-

tification over abstracta. A claim about the sets is translated as a claim about

what would be the case in various (appropriately related) structures satisfying the

axioms of second-order ZFC (ZFC2). For example:

∀α∃β(α < β) (2.1)

55
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is translated as:

�∀M∀α ∈M♦∃M ′ ⊒M∃β ∈M ′(M ′ � α < β) (2.2)

where M,M ′ range over pluralities coding ZFC2 structures, and where M ′ ⊒ M

means thatM ′ is an end-extension ofM (see section 3 for more details). Informally,

(2) says that for any possible ZFC2 structure and any ordinal in that structure,

there is a possible end-extension also satisfying ZFC2 which contains a larger

ordinal.1,2

In addition to extending the modal structural (ms-)translation of the language

of arithmetic to the language of set theory,3 this framework allows the modal struc-

turalist to give a Zermelo (1930) inspired solution to the set-theoretic paradoxes.

It would take us too far afield to consider this solution in detail, but the following

brief sketch should help to fix ideas.

The set-theoretic paradoxes can be seen to arise from a tension between two

plausible claims – namely, that any plurality forms a set (Collapse) and that for

any condition ϕ there is a plurality of all and only the ϕ’s (Plural Comprehension).

As usual, once we consider the plurality of all and only the non-self-membered sets,

we are quickly led into inconsistency. The modal structuralist proposes to resolve

1For ease of exposition, I will frequently talk of possible objects, pluralities, structures, and
worlds. Nothing I say will depend on misspeaking in this way, and can always be reformulated
using the modal operator, plural quantification, and mereology.

2The locus classicus for modal structuralism is Hellman (1989), with Hellman (1996) adding
plural quantification and mereology.

3Since there are non-isomorphic models of ZFC2, the simple translation used in the arith-
metical case would give the wrong results. For example, the modal structural translation of
the language of arithmetic is ϕtr = �∀M(M � PA2 → M � ϕ) and its analogue for set
theory ϕtr = �∀M(M � ZFC2 → M � ϕ). If κ < κ′ are the first two inaccessibles,
Vκ � ZFC2 +“there are no inaccessibles” and Vκ′ � ZFC2 + “there are inaccessibles”. So nei-
ther (there are no inaccessibles)tr nor (there are inaccessibles)tr would come out true.
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this tension by making two moves. First, they point out that there is a version

of Collapse which is consistent with Plural Comprehension. In particular, it is

consistent with Plural Comprehension that, necessarily, every plurality possibly

forms a set in some ZFC2 structure (the Extendibility Principle).4 Second, they

claim that the reasons we have to accept Collapse are at most reasons to accept

the Extendibility Principle.5

2.2 Reflection and modal structuralism

Set-theoretic reflection is usually motivated by the thought that since the universe

of sets V is absolutely infinite, it is indescribable – whatever is true in V is also

true in some initial segment Vα.
6 Formally:

(R) ϕ→ ∃αϕVα

For second-order ϕ with parameters, R is quite strong. Over second-order Zermelo

set theory (Z2), it implies Foundation, second-order Replacement, inaccessible,

Mahlo, weakly compact, and the various Π1
n-indescribable cardinals.7 Let “R2”

denote this restriction of R.

R2 can be pushed into the service of two central projects in the foundations

and philosophy of set theory. The first is the project of effecting a reduction

4See section 3.2.3 for a precise statement and discussion of the Extendability Principle.
5The formulation of the paradoxes used here is indebted to Linnebo (2010), but the resolution

is at least implicit in Hellman (1989, 2002). See the former for an extended argument in favour
of Collapse and a similar resolution in the modal non-structural setting.

6See, for instance, Koellner (2009) and the references therein.
7Indeed, over Extensionality, second-order Separation, and Choice, R2 also implies the other

axioms of Z2. See Bernays (1976) and Kanamori (2003) §6 for details.
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in incompleteness – that is, of finding and justifying new axioms which settle

interesting questions left open by the axioms of ZFC.8 The second is the project

of developing an account of sets which (i) provides a solution to the set-theoretic

paradoxes, and (ii) explains why the various axioms, and theorems, of ZFC are

nonetheless true. Adding a suitable version of R2 to a standard formalisation of

the iterative conception would arguably yield a unified account which fully meets

the second project9 and goes some non-trivial way toward meeting the first.

There is reason to think that R2-like principles are unavailable to the modal

structuralist, however. First, the ms-translation of R2 is outright inconsistent with

the Extendability Principle (see section 4). So it is unclear whether the modal

structuralist can even state an R2-like principle consistently. Second, supposing

they could, it is unclear whether they would be able to motivate such a principle

in terms of indescribability. After all, there is no absolutely infinite universe of

sets according to them. Rather, there are various ZFC2 structures, each of which

(by the Extendability Principle) forms a set in some larger ZFC2 structure.

These prima facie problems suggest an argument against the modal structural-

ist. Suppose they can’t adopt a consistent principle similar in motivation and

strength to R2 (over Z2). Further, suppose they can’t pursue the above projects

in some other equally attractive way; at least, that they can’t pursue them to the

same extent. Then all other things being equal, we should reject modal struc-

turalism. Of course, this is only a sketch of the argument, and I don’t intend

to give a full defence of it here.10 Instead, I will focus on its first premise. The

8See Gödel (1964) for a classic statement of the project, and Koellner (2006) for an illumi-
nating discussion in light of recent developments in set theory.

9See Paseau (2007) for discussion.
10Though see section 6 for objections to the second premise (objection 2) and the conclusion

(objection 1).
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central question of this chapter is thus whether the modal structuralist can adopt

a consistent principle similar in motivation and strength to R2.

Here’s the plan. In section 3 I do some ground clearing. In particular, I provide

an axiomatisation of modal structuralism (MSST), define the ms-translation in

full generality, and show that ms-translation is a faithful interpretation of Z∗ in

MSST (theorem 7). In section 4 I consider a novel suggestion due to Geoffrey

Hellman which appears to yield a strong and consistent R2-like principle motivated

in terms of indescribability. Unfortunately, the principle is inconsistent (theorem

8). Nonetheless, I argue in section 5 that Hellman’s suggestion contains the most

promising way to implement the indescribability motivation for R2 in the modal

structural setting. This motivation is formalised as a principle I call R♦ and I

show that ms-translation is a faithful interpretation of Z∗ + R1
11 in MSST + R♦

(theorem 11). Since Z∗ + R1 is significantly weaker than Z2 + R2, I claim that

this is good evidence for a negative answer to the central question.

2.3 Modal structural set theory

Above, the notion of strength relevant to the central question was left implicit. It

will be helpful to make it explicit before we more on. Our interest in the central

question, recall, stems from an interest in the extent to which the modal struc-

turalist can pursue the two projects outlined in section 2. Each project suggests a

measure of strength. The first suggests measuring strength in terms of large cardi-

11R1 is just R restricted to first-order ϕ with parameters.
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nal hypotheses.12 Roughly, the more ms-translations of large cardinal hypotheses

a theory implies, the stronger it is. The second suggests measuring strength in

terms of theorems of ZFC. Roughly, the more ms-translations of theorems of ZFC

a theory implies, the stronger it is. The notion relevant to the central question

combines these measures. In particular, given a suitable modal structural base

theory B, I will say that a principle P is weaker than R2 if B + P proves fewer

(ms-translations of) large cardinal hypotheses and theorems of ZFC than Z2 +

R2. In the rest of this section I develop the technical machinery necessary to show

that various principles are weaker than R2 in this sense.

2.3.1 Formal preliminaries

Let L∈ be the language of first-order set theory with variables x0, ..., xn, ...; L
2
∈ the

language of second-order set theory, extending L∈ with variables Y0, ..., Yn, ...; and

L♦ the language of pure second-order logic extended with the modal operator ♦

and first-order terms 〈x, y〉. x ∈ y is thus well-formed in L∈ and L2
∈ but not in L♦,

and x ∈ X is well-formed in L2
∈ and L♦ but not in L∈.

13 Ex abbreviates ∃y(y = x);

similarly for E〈x, y〉. EX abbreviates ∃Y ⊆ X(Y = X). This formulation of EX

– which is equivalent to ∃Y (Y = X) – is used so that EX is bounded in the sense

of definition 3 (section 3.3).

I will use the Levy hierarchy to measure the complexity of formulas in L∈. In

particular, if ϕ’s quantifiers are all of the form ∃x ∈ y or ∀x ∈ y, then it is Π0,

Σ0, and ∆0. In general, if ϕ is Πn, then ∃~xϕ is Σn+1, and if ϕ is Σn, then ∀~xϕ is

12On using the large cardinal hierarchy to measure reduction in incompleteness see, for in-
stance, (Koellner, 2009, p.208).

13Since the second-order variables in L♦ are taken to range over pluralities (see sections 1 and
3.2), x ∈ X should be be read “itx is one of themX”.
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Πn+1. A formula is ΠT
n , Σ

T
n , or ∆

T
n if it is equivalent in the theory T to a Πn, Σn,

or to both a Πn and a Σn, formula respectively.

Let ZFC be the L∈ theory consisting of Extensionality, Infinity, Pairing, Union,

Powerset, Foundation, Separation, Choice, and:

(Collection) ∀x∃yϕ(x, y, ~z) → ∀u∃v(∀x ∈ u)(∃y ∈ v)ϕ(x, y, ~z)

where ϕ’s free variables are among x, y, ~z and where x, y, ~z, u, v are all distinct.

Πn-Col and Σn-Col denote the restriction of Collection to Πn and Σn formulas

respectively. Zermelo set theory (Z) is ZFC minus Collection and Foundation.

Let Z∗ be Z plus ∃y(trans(y) ∧ ZFC2y ∧ x ∈ y) (where trans(y) abbreviates

∀x ∈ y∀z ∈ x(z ∈ y)). Over Z, this axiom is equivalent to the claim that every set

is in some inaccessible rank (i.e. ∃α(In(α)∧ x ∈ Vα), where In(α) abbreviates “α

is inaccessible”). The first formulation is used because it is logically equivalent to a

Σ2 formula (since “trans(x)” is ∆0 and “ZFC2y” is a conjunction of Π1 formulas).

In what follows, I will assume that “∃y(trans(y) ∧ ZFC2y ∧ x ∈ y)” has been

formulated so as to be explicitly Σ2 and that Infinity and Choice (with its initial

universal quantifier omitted) have been formulated so as to be explicitly Σ1. Let

κ0 denote the least inaccessible, κα+1 the least inaccessible greater than κα, and

κλ =
⋃

α<λ κα for λ a limit.

2.3.2 MSST

In this section I formulate a modal structural base theory (which I call MSST

for Modal Structural Set Theory) following the outline in Hellman’s (1989) and
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(1996). It consists of three packages of principles. There is the underlying logic,

axioms governing the behaviour of ordered pairs, and axioms (like the Extendabil-

ity Principle) that tell us which structures there are and how they relate to one

another.

Logic

The underlying logic has two groups of axioms. First, there are the instances in

L♦ of the truth-functional tautologies, the S5 axioms, and the following quan-

tificational and identity axioms (where x,y are either both first-order or both

second-order variables):

(A1) ∀y(∀xϕ→ ϕ[y/x]), where y is free for x in ϕ

(A2) ∀x(ϕ→ ψ) → (∀xϕ→ ∀xψ)

(A3) ϕ↔ ∀xϕ, where x is not free in ϕ

(A4) x = x

(A5) x = y → (ϕ[x/z] ↔ ϕ[y/z]), where x and y are free for z in ϕ

Second, there are the following axioms governing pluralities.

(A6) ∃X∀x(x ∈ X ↔ ϕ)

(A7) x ∈ X → �(EX → Ex ∧ x ∈ X)

(A8) EX, Y ∧X ⊆ Y → �(EY → EX ∧X ⊆ Y )

(A9) �∀x[♦(x ∈ X) ↔ ♦(x ∈ Y )] → X = Y
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The rules of inference are GEN, from ϕ infer ∀xϕ; MP, from ϕ and ϕ → ψ infer

ψ; and NEC, if ϕ is a theorem of MSST, then so is �ϕ.

Remarks. Let A1∗ be the result of dropping the initial quantifier ∀y in A1. Then

– over the truth-functional tautologies – A1∗-A5 constitutes an axiomatisation of

classical quantificational logic,14 and A1-A5 an axiomatisation of free quantifica-

tional logic. The choice of a free logic is essentially forced by the Extendability

Principle, which implies that any plurality possibly exists but fails to contain

something (i.e. ∀X♦(EX ∧ ∃x(x 6∈ X))).15 Given A6, A7, and the S5 axioms

this contradicts the claim, provable using A1∗, that necessarily everything exists

necessarily.16

The difference between A1∗-A5 and A1-A5 essentially only shows up in argu-

ments involving NEC. More precisely, a simple induction on the length of proofs

shows that if ϕ is provable from some premises Γ using the truth-functional tau-

tologies, A1∗-A5, S5, MP, and GEN, then E~x → ϕ is provable from Γ using the

truth-functional tautologies, A1-A5, S5, MP, and GEN (where ϕ’s free variables

are among ~x). So in many cases we can reason classically in MSST.

A6-A9 axiomatise the compelling thought that a plurality is nothing over and

above the things which comprise it. To see this, note that this thought can be

glossed as a conjunction of the following four claims: an object continues to be in

a plurality whenever that plurality exists (A7); when a plurality exists, so do the

things which comprise it (A7); when the things which comprise a plurality exist,

14See, for instance, Mendelson (1997).
15That the Extendibility Principle implies this depends on how we formulate it. In the termi-

nology of section 3.2.3, it depends on formulating it as EP∗.
16Proof: Using A6, let U be the plurality of everything. By the above claim, there is a possible

world w where U exists and x 6∈ U , for some x. If necessarily everything exists necessarily, then,
by the modal axioms 5 and T, x exists simpliciter. So x ∈ U . But since U exists at w, A7 implies
that x ∈ U at w, after all.
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so does the plurality (A6 and A8); and pluralities comprising the same things

are identical (A9). (A8) follows from the other axioms, but is added for ease of

exposition.17

Ordered pairs

In order to formulate the Extendibility Principle or define the ms-translation, we

first need to define the notion of a structure for the language L2
∈. This raises a

problem. The usual way to interpret ∈ is by some set-theoretic ordered pairs. On

the modal structural view, however, set-theoretic pairing is only available within

structures, and thus can’t be used for the definition of structure itself. Hellman’s

(1996) response to this problem is to add enough mereology to code pairs as in

Burgess, Hazen, and Lewis (1991).

For the sake of generality and simplicity, I will deviate from this response. In

particular, I will take ordered pairing as a primitive governed by axioms A10-

A15 below. Given a suitable mereology, it will then be straightforward to modify

the proofs in the chapter by replacing each use of A10-A15 with a mereological

analogue. Thus, up to a change in the definition of structure, the main results of

the chapter will hold for various mereological approaches to pairing.

(A10) ∀x, y, x′, y′(〈x, y〉 = 〈x′, y′〉 → x = x′ ∧ y = y′)

(A11) ∀x, y(E〈x, y〉)

(A12) E〈x, y〉 → Ex ∧ Ey

17See (Linnebo, 2013, section 4) and Uzquiano (2011) for further discussion of the interaction
between plural and modal logic.
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(A13) τ = τ ′ → (ϕ[τ/z] ↔ ϕ[τ ′/z]), where τ, τ ′ are first-order terms free for z in ϕ

and where ϕ contains no modal operators

(A14) τ = τ ′ → �(τ = τ ′)

(A15) 〈x, y〉 ∈ X → �(EX → E〈x, y〉 ∧ 〈x, y〉 ∈ X)

The Extendability Principle, Existence, and Stability

Let a structure be pair of pluralities X, Y such that ∀x ∈ Y ∃y, z ∈ X(x = 〈y, z〉).

For ease of exposition and where it won’t cause confusion, I will identify X, Y with

Y and write dom(Y ) for X. For ϕ ∈ L2
∈, let Y � ϕ be the result of replacing each

occurrence of x ∈ y in ϕ with 〈x, y〉 ∈ Y , each occurrence of ∃x with ∃x ∈ dom(Y ),

and each occurrence of ∃X with ∃X ⊆ dom(Y ) (re-lettering to avoid clashes of

variables). I will say that Y ′ is an end-extension of Y , in symbols Y ⊑ Y ′, if (i)

EY, Y ′; (ii) dom(Y ) ⊆ dom(Y ′); and (iii) for any x ∈ dom(Y ) and y ∈ dom(Y ′),

〈y, x〉 ∈ Y iff 〈y, x〉 ∈ Y ′. Y ′ is a proper end-extension of Y , in symbols Y ⊏ Y ′,

if Y ⊑ Y ′ and Y 6= Y ′. Metavariables M,M ′,M ′′ etc will be used for structures

satisfying ZFC2, and where it won’t cause confusion I will write x ∈ M for x ∈

dom(M), X ⊆M for X ⊆ dom(M), and x ∈M for both.

Using these notions, we can now give a precise definition of the ms-translation.

Definition 9. Let pt
Y be the following translation from L2

∈ to L♦.
18

• (x = y)ptY = x = y

• (x ∈ X)ptY = x ∈ X

18This translation closely follows semantics given in Hellman (1989, p.76). The “pt” stands for
“Putnam translation”, since it was first outlined in Putnam (1967) (with structures satisfying
Z2 replacing those satisfying ZFC2).
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• (x ∈ y)ptY = Y � x ∈ y

• pt
Y commutes with the connectives.

• If ϕ contains free variables other than x, then:

(∃xϕ)ptY = ♦∃M ⊒ Y ∃x ∈Mϕpt
M

• If ϕ contains at most x free, then:

(∃xϕ)ptY = ♦∃M∃x ∈Mϕpt
M

making sure to avoid clashes of variables.

If ϕ is a sentence, ϕpt
Y = ϕpt

Y ′ , and I will denote it by ϕpt.

The final three axioms can now be stated.

The Extendability Principle (EP)

�∀M♦∃M ′(M ⊏M ′)

Existence (E)

♦∃M(M =M)

Stability (S)
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[∀~x(∃yϕ→ ∀z∃y(z = z ∧ ϕ))]pt

where ∃yϕ ∈ L2
∈’s free variables are among ~x and z does not occur in ∃yϕ.

Remarks. Axioms EP and E are taken from Hellman (1989, p.71-2). EP is equiv-

alent to the claim that necessarily any subplurality of a ZFC2 structure forms a

set in some possible end-extension also satisfying ZFC2, i.e.:

�∀M∀X ⊆M♦∃M ′ ⊒M∃x ∈M ′(X =M ′

X) (2.3)

where X =M ′

x means that X is the plurality of elements of x according to M ′.19

This differs from the gloss I gave of the Extendability Principle in section 2, which

was that any plurality whatsoever possibly forms a set in some ZFC2 structure, i.e.:

(EP∗) �∀X♦∃M∃x ∈M(X =M x)

EP∗ implies EP, but not conversely.20 Given that the Extendibility Principle is

supposed to provide a response to the set-theoretic paradoxes, it seems clear that

the modal structuralist is committed to the stronger EP∗ (and thus to a free logic,

as noted in section 3.2.1). After all, our reasons for thinking that a plurality X

19Proof sketch: EP ⇒ (3). Suppose X ⊆ M . From EP it follows that ♦∃M ′(M ′ ⊐ M). By
corollary 1, M = VM ′

κ , and so by second-order Separation in M ′, there is some x ∈M ′ such that
X =M ′

x. (3) ⇒ EP. Take X = dom(M).
20Proof sketch: EP∗ ⇒ EP. Taking X = dom(M), it follows from EP∗ that ♦∃M ′∃x ∈

M ′(dom(M) =M ′

x). By the quasi-categoricity theorem (see (Hellman, 1989, pp. 68-9) for
details), it follows that M will be isomorphic to a proper initial segment of M ′. Using the
isomorphism, we can then build a proper end-extension of M . EP 6⇒ EP∗. Let K be a Kripke
model with exactly one world w = dom(w) = Vκω

(where w sees itself). Letting plural quantifiers
range over P(w) and 〈x, y〉 denote the ordered pair of x and y, it is easy to check that w �

MSST − S. The proofs of lemmas 10-12 and theorem 6 can then be adapted to show that
w � S. But, taking X = Vκω

, it is clear that w 6� EP ∗.
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should form a set don’t appear to be sensitive to whether X happens to be a

subplurality of some ZFC2 structure. Since it won’t affect the main results of this

chapter,21 however, I will work with the simpler EP.

Axiom S really encodes two claims, depending on the free variables in ϕ. If ϕ

contains free variables other than y, it says that ∃yϕ holds from the perspective

of some M only if it holds from the perspective of any end-extension of M (i.e.

(∃yϕ)ptM → �∀M ′ ⊒ M(∃yϕ)ptM ′ , where ~x ∈ M). This essentially just the exis-

tential case of Hellman’s Stability Theorem (1989, p.76). If ϕ contains at most y

free, on the other hand, it says that some M contains a ϕpt only if every M can

be end-extended to contain a ϕpt (i.e. (∃yϕ)pt → �∀M♦∃M ′ ⊒ M∃y ∈ M ′ϕpt
M ′).

Hellman does not consider this latter claim and thus not axiom S, but axiom S is

key to proving the ms-translations of the logical truths in the following sense. It

suffices with the rest of MSST to prove them (theorem 5); and since it is the ms-

translation of a logical truth but not provable from the other axioms of MSST,22

21In particular, theorems 6 and 10 are easily seen to extend to MSST + EP∗ and MSST +
EP∗ + R♦ respectively.

22Proof sketch: Let K be the Kripke model with set of worlds W = {〈α, n〉 : (α < ω ∧ n =
0) ∨ (α < ω + ω ∧ n = 1)}, where dom(〈α, n〉) = {〈x, n〉 : x ∈ Vκα

}, plural quantifiers at w
range over P(dom(w)), and 〈〈x,m〉, 〈y, n〉〉 denotes 〈〈x, y〉,m〉 if m = n and otherwise 0 (where
0 is in the ‘outer domain’). Every world sees every world. It is easy to verify that MSST-S
holds at all worlds. Now, note that there is λ ∈ Vκω+1

such that Vκω+1
� (κω exists)Vλ . Let

M ⊆ dom(〈ω + 1, 1〉) be an isomorphic copy of Vκω+1
. So M � (κω exists)Vλ , for some λ ∈ M .

Since “(κω exists)Vλ” is ΠZF
1 , it follows from the proof of lemma 7 (see footnote 28) that [(κω

exists)Vλ ]ptM is true at 〈ω + 1, 1〉 and thus that [∃λ(κω exists)Vλ ]pt is true at all worlds. So the
antecedent, [∃λ(κω exists)Vλ ]pt, of an instance of S is true at all worlds in W . Now we want to
show that its consequent is false in all worlds in W . For contradiction, suppose it is not; that is,
suppose [∀x∃λ(x = x∧κω exists)Vλ ]pt holds at some world in W . Let M be any structure in any
0-world (that is, M ⊆ dom(〈α, 0〉) for some α). It follows that there is world w containing an
M ′ ⊒ M such that [(κω exists)Vλ ]ptM ′ , for some λ ∈ M ′. By lemma 7 again, M ′ � (κω exists)Vλ

and so M ′ � κω exists. But since M is only end-extended by structures in 0-worlds, w must be
of the form 〈β, 0〉 and thus M ′ must be isomorphic to some Vκn

(for n ≤ β), which is impossible.
It is worth noting that by adapting the proof of lemma 12, we can also show that K satisfies

the first claim encoded by S (i.e. (∃yϕ)ptM → �∀M ′ ⊒M(∃yϕ)ptM ′ , where ~x ∈M). Furthermore,
it is easy to see that it satisfies EP∗ and Hellman’s Accumulation Principle for ZFC2 structures
(i.e. ♦∃M(M � ϕ) ∧ ♦∃M(M � ψ) → ♦∃M,M ′(M � ϕ ∧M ′ � ψ), for sentences ϕ,ψ ∈ L2

∈
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it is necessary to prove them.

2.3.3 MSST and Z∗

In this section I determine the strength of MSST. The main result is that ms-

translation is a faithful interpretation of Z∗ in MSST (theorem 7).23 In other

words, MSST and Z∗ have exactly the same (first-order) set-theoretic content. It

follows that MSST proves the ms-translation of the claim that there is an un-

bounded class of inaccessibles but not the ms-translation of the claim that κω

exists. It also follows that MSST proves the ms-translations of the theorems of Z∗

+ Π0-Col but not the ms-translations of all instances of Π1-Col (lemmas 14 and

15). Without supplementation, then, MSST is significantly weaker than Z2 + R2.

A wide variety of questions in MSST turn on whether notions like Y � ϕ, “Y is a

structure”, Y ⊑ Y ′, and ϕpt
Y , are invariant between possible worlds. For example,

we might want to know whether ZFC2 structures continue to be ZFC2 structures

in any world where they exist. As the following lemma shows, a broad class of

notions are indeed invariant between possible worlds.

Definition 10. Say that ϕ ∈ L♦ with parameters among ~x is stable if:

E~x ∧ ϕ→ �(E~x → ϕ)

Definition 11. Say that ϕ ∈ L♦ is bounded if its quantifiers are of the form ∃x ∈ X

or ∃X ⊆ Y .

(1989, p. 43)). Axiom S thus goes significantly beyond these claims.
23A translation π from the language of a theory T to the language of another theory T ′ is a

faithful interpretation of T in T ′ just in case T ⊢ ϕ iff T ′ ⊢ π(ϕ).
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Lemma 5 (MSST). All bounded formulas in L♦ are stable.

Proof. By induction on the complexity of ϕ. For ∈, we use A7 and A15; for =,

A5 and A14; the case for ∧ is trivial; for ♦ and ¬, we use the modal axioms 5 and

T; and for ∃x and ∃X, we use A7 and A8 respectively.

Since Y � ϕ, “Y is a structure”, and Y ⊑ Y ′ are bounded, it follows from lemma

5 that they are stable. And although “ϕpt
Y ” is not bounded, a similar induction

shows that it is stable too.

The next lemma brings out a simple but useful consequence of the definition

of end-extension; namely, that whenever M ⊏M ′, the domain of M is just Vκ, for

some κ inaccessible in M ′.

Definition 12. Let X =M x abbreviate EX ∧X ⊆ M ∧ ∀y ∈ M(〈y, x〉 ∈ M ↔

y ∈ X) and V M
α denote the unique x ∈M such that M � x = Vα.

Note that “X =M x” and “X =M V M
α ” are bounded.

Lemma 6 (MSST). If M ⊑M ′, then for all α ∈M :

V M
α = V M ′

α

Proof. ⊆: if M � x ∈ Vα, then since M ′ is an end-extension of M and “rank(x) =

y” is ∆ZF
1 , it follows that M ′ � x ∈ Vα. ⊇: for contradiction, suppose that

M ′ � x ∈ Vα but M � x 6∈ Vα, for some α ∈M . If α is the least ordinal where this

happens, α is a successor (say β +1). By the induction hypothesis, it follows that

∀y ∈ M ′(M ′ � y ∈ x → M � y ∈ Vβ). But then, since M satisfies second-order

Separation, we have x ∈M and thus M � x ∈ Vα after all.

Corollary 1 (MSST). If M ⊏M ′, then:
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dom(M) =M ′

V M ′

κ

for some κ inaccessible in M ′.

Proof. Suppose M ⊏ M ′. Since “x is an ordinal” is ∆0, it follows from lemma

6 that there must be some α ∈ M ′ \M . Let κ be the least such ordinal. Then

Ord(M) =M ′

κ, and so dom(M) =M ′

V M ′

κ by lemma 6. Since M � ZFC2,

M ′ � ZFC2Vκ , and so κ is inaccessible in M ′.

The proofs of the last two lemmas implicitly appealed to the fact that whenever

M ′ is an end-extension of M and ϕ is ∆0 with parameters in M , M � ϕ if and

only if M ′ � ϕ. This is just a slight modification of a standard result in ZFC;

namely, that ∆0 formulas are absolute for transitive sets.24 It is well-known that

this extends to Σ1 formulas when the transitive set in question is an inaccessible

rank.25 Given corollary 1, it follows that whenever M ′ is an end-extension of M

and ϕ is Σ1 with parameters in M , M � ϕ if and only if M ′ � ϕ. The next lemma

uses this fact to establish an absoluteness result for ms-translation. In particular,

it shows that if ϕ is Σ1 with parameters in M , then M � ϕ if and only if ϕpt
M .

Lemma 7 (MSST). Suppose EM and ~x ∈M . Then:

(M � ϕ) ↔ ϕpt
M

where ϕ ∈ L∈ is Σ1 with free variables among ~x.

Proof. By induction on the complexity of ϕ. The only difficult cases are the right-

to-left directions for ∃x ∈ y and ∃x. For the latter, suppose EM , ~x ∈ M , and

24A formula ϕ with parameters among ~x is absolute for a set y just in case ∀~x ∈ y(ϕy ↔ ϕ).
25See, for instance, (Kanamori, 2003, p. 299).
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(∃xϕ)ptM . By S,26 there is a world w at which:

∃M ′ ⊒M∃x ∈M ′ϕpt
M ′ (2.4)

A7 implies that ~x ∈M at w, and the induction hypothesis yieldsM ′ � ∃xϕ. From

the result mentioned above it follows that M � ∃xϕ at w. We can then apply

lemma 5 to “M � ∃xϕ” to get M � ∃xϕ, as required. The case for ∃x ∈ y is

similar.

The next lemma shows that ms-translation is not sensitive to our choice of “base”

structure. As long as ϕ’s parameters are in M , ϕpt
M is equivalent to ϕpt

M ′ for any

M ′ ⊒M .27

Lemma 8. Suppose M ⊑M ′ and ~x ∈M . Then:

ϕpt
M ↔ ϕpt

M ′

where ϕ ∈ L2
∈ with free variables among ~x.

Proof. By induction on the complexity of ϕ. The only difficult case is that for

∃x. The left-to-right direction is a trivial consequence of S. For the right-to-left

direction, suppose (∃xϕ)ptM ′ . Either there are free variables other than x in ϕ or

not. If not, (∃xϕ)ptM ′ = (∃xϕ)ptM and we are done. If there are, (∃xϕ)ptM ′ = ♦∃M ′′ ⊒

M ′∃x ∈ M ′′ϕpt
M ′′ . So suppose ♦∃M ′′ ⊒ M ′∃x ∈ M ′′ϕpt

M ′′ . By A8 and lemma 5

applied to “M ⊑ M ′”, it follows that ♦∃M ′′ ⊒ M∃x ∈ M ′′ϕpt
M ′′ , which is to say

(∃xϕ)ptM .

26Notice that S is not needed if there are free variables other than x in ϕ. In that case, (4)
follows from (∃xϕ)ptM alone. It is for such ϕ that lemma 7 is used in footnote 24, which is why
the argument there does not require S.

27The lemma is essentially just an object language statement of Hellman’s Stability Theorem
(1989, p.76).
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Theorem 5. MSST interprets Z∗ via ms-translation.

Proof. By induction on the length of proof we show for every theorem ϕ of Z∗

that MSST proves:

EM ∧ ~x ∈M → ϕpt
M

where ϕ ∈ L∈ with free variables among ~x. Since E can be used to discharge EM

when ϕ is a sentence, it will follow that MSST proves the ms-translation of every

sentence provable in Z∗.

For the axioms of Z∗ there are four cases to consider.

Case 1: The logical axioms of Z∗ (i.e. the truth-functional tautologies and A1∗-

A5). The only difficult cases are A2 and A3. For A2, the only tricky case is

where ϕ contains a free variable other than x but ψ does not. Then, from

(∀x(ϕ→ ψ))ptM it will follow that:

(∀xϕ)ptM → �∀M ′ ⊒M∀x ∈M ′ϕpt
M ′ (2.5)

By (the contrapositive of) S, the right-hand side of (5) will entail (∀xψ)pt,

as required. For A3, the only tricky case is the left-to-right direction. So

assume EM , ~x ∈M , and ϕpt
M . Since “ϕpt

M” is stable and x is not free in ϕ, it

follows from A7 that �∀M ′ ⊒ M∀x ∈ M ′(~x ∈ M ∧ ϕpt
M). By lemma 8 that

entails �∀M ′ ⊒M∀x ∈M ′ϕpt
M ′ , which is to say (∀xϕ)ptM .

Case 2: The non-logical axioms of Z∗ - Separation - ∃y(trans(y)∧ZFC2y∧x ∈ y).

Omitting initial universal quantifiers, every such axiom ϕ with free variables

among ~x has complexity at most Σ2. So if EM and ~x ∈M , then sinceM � ϕ

it follows from lemma 7 that ϕpt
M .
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Case 3: Separation. Suppose EM and ~x, z ∈ M . Since M satisfies second-order

Separation, there is some x ∈M such that:

∀y ∈M(〈y, x〉 ∈M ↔ 〈y, z〉 ∈M ∧ ϕpt
M) (2.6)

It is easy to see that (6) is stable. It follows from A7, the definition of

end-extension, and lemma 8 that:

�∀M ′ ⊒M∀y ∈M ′(〈y, x〉 ∈M ′ ↔ 〈y, z〉 ∈M ′ ∧ ϕpt
M ′) (2.7)

Case 4: ∃y(trans(y) ∧ ZFC2y ∧ x ∈ y). Suppose EM and x ∈ M . By EP,

corollary 1, and A7 ♦∃M ′ ⊐ M [M ′ � ∃y(trans(y) ∧ ZFC2y ∧ x ∈ y)].

Since “∃y(trans(y) ∧ ZFC2y ∧ x ∈ y)” is Σ2, it follows from lemma 7 that

♦∃M ′ ⊐M [∃y(trans(y)∧ZFC2y ∧ x ∈ y)]ptM ′ . Lemma 8 and the stability of

“[∃y(trans(y) ∧ ZFC2y ∧ x ∈ y)]ptM” then yield [∃y(trans(y) ∧ ZFC2y ∧ x ∈

y)]ptM , as required.

To finish the proof, we need to show that our translation is preserved by MP and

GEN. The case for MP is trivial. So suppose EM ∧ ~x, y ∈ M → ϕpt
M is provable

in MSST. It follows by GEN and NEC that:

�∀M ′ ⊒M(~x ∈M ′ → ∀y ∈M ′ϕpt
M ′) (2.8)

By A7, we have ~x ∈M → �∀M ′ ⊒M(~x ∈M ′). Together with (8) that yields:

EM ∧ ~x ∈M → (∀yϕ)ptM (2.9)
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To establish a converse of theorem 5, we need to find an interpretation of MSST in

Z∗. As the next theorem shows, the most obvious translation from L♦ to L∈, which

takes possible worlds to be ranks Vλ, plural quantification over Vλ to be first-order

quantification over Vλ+1, and pairs 〈x, y〉 to be set-theoretic ordered pairs, is just

such an interpretation.

Definition 13. Let Z∗ be definitionally expanded with the standard axioms for

〈, 〉 and a new stock of first-order variables α, y0, ..., yn, .... Then, let tr be the

following translation from L♦ to the expanded language.28

• τ tr = τ

• Y tr
n = yn

• tr commutes with the atomic predicates and the connectives.

• (∃xϕ)tr = ∃x ∈ Vαϕ
tr

• (∃Ynϕ)
tr = ∃yn ⊆ Vαϕ

tr

• (♦ϕ)tr = ∃α(lim(α) ∧ ϕtr)

It is straightforward but tedious to verify that Z∗ proves lim(α) → ϕtr whenever ϕ

is an instance of a truth-functional tautology, an S5 axiom, or one of A1-15.29 It is

also easy to see using GEN that Z∗ proves lim(α) → (∀xϕ)tr and lim(α) → (�ϕ)tr

whenever it proves lim(α) → ϕtr. To show that Z∗ interprets MSST, therefore, it

suffices to show that Z∗ proves lim(α) → ϕtr when ϕ is EP, E, or an instance of S.

28This translation closely follows Linnebo (2013, p. 20).
29The assumption that α is a limit is used for the pairing axioms.
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To prove the translations of these axioms we need to know how the crucial

notions on which they rely – namely, (Y is a structure)tr, (Y � ϕ)tr, (Y ⊑ Y ′)tr,

and (ϕpt
Y )

tr – behave in Z∗. Luckily, it turns out that the first three are equivalent

to the usual notions of structure, satisfaction, and end-extension in L∈. To see

this, first note that a simple induction establishes:

Lemma 9 (Z∗). Suppose lim(α), ~y ⊆ Vα, and ~x ∈ Vα. Then:

ϕtr ↔ ϕ∗

where ϕ ∈ L♦ with variables among ~Y , ~x is bounded and does not contain ♦, and

where ϕ∗ is the result of replacing all second-order variables X in ϕ with X tr.

Now, it is easy to see that (Y is a structure)∗, (Y � ϕ)∗, and (Y ⊑ Y ′)∗ are, more

or less, the usual notions of structure, satisfaction, and end-extension in L∈.
30 So

since “Y is a structure”, Y � ϕ, and Y ⊑ Y ′ are bounded and do not contain ♦,

it follows from lemma 9 that if lim(α) and y, y′ ⊆ Vα, then:

(Y is a structure)tr ↔ y is a structure (2.10)

(Y � ϕ)tr ↔ y � ϕ (2.11)

(Y ⊑ Y ′)tr ↔ y ⊑ y′31 (2.12)

30For simplicity, I will use the same notation introduced in section 3.2.3 for these notions,
including metavariables M,M ′,M ′′ etc. for structures satisfying ZFC2.

31In accordance with the convention established in section 3.2.3, y and y′ stand in for pairs of
sets x, y and x′, y′ where x, x′ act as domains and y, y′ are subsets of x×x and x′×x′ respectively.
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Given (10), (11), and (12) it becomes clear that Z∗ proves EPtr and Etr. Proving

the translations of instances of S is trickier. But we can start by showing that

(ϕpt
Y )

tr is also equivalent to a simpler notion in L∈.

Definition 14. For any ϕ ∈ L2
∈, let ϕ

p
y be the result of deleting the modal opera-

tors in ϕpt
Y and replacing each variable x with xtr.

ϕp
y is just a non-modal structural version of ms-translation. It is what becomes of

ms-translation when we consider sets coding ZFC2 structures instead of possible

pluralities coding ZFC2 structures. For example, (∀z∃w(z ∈ w))p says that for

any sets x and y ⊆ x × x which satisfy ZFC2 and any z ∈ x, there are sets x′

and y′ ⊆ x′ × x′ end-extending x, y which satisfy ZFC2 and are such that there is

w ∈ x′ with 〈z, w〉 ∈ y′. In the notation we have adopted for these L∈ notions,

(∀z∃w(z ∈ w))p is just:

∀M∀z ∈M∃M ′ ⊒M∃w ∈M ′(M ′ � z ∈ w)

The next lemma shows that this simple non-modal structural version of ms-

translation is equivalent to the tr-translation of the modal structural version.

Lemma 10 (Z∗). (ϕpt
Y )

tr ↔ ϕp
y

Proof. By induction on the complexity of ϕ. The only difficult case is that for ∃x,

which follows easily from lemma 9.

We now use this simplification of (ϕpt
Y )

tr to prove (lemma 12) the tr-translation of

lemma 8.

Lemma 11 (Z∗). Let j be an isomorphism between M and M ′, with ~y ⊆ M and

~x ∈M . Then:
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ϕp
M(~y, ~x) ↔ ϕp

M ′(j[~y], j(~x))

where ϕ ∈ L2
∈ with free variables among ~Y , ~x.

Proof. By induction on the complexity of ϕ. The only difficult case is that for

∃x. For the left-to-right direction, suppose there is some M ′′ ⊒ M and z ∈ M ′′

such that ϕp
M ′′(z, ~y, ~x). We can use M ′′ to build an end-extension M ′′′ of M ′

and an isomorphism i ⊇ j between M ′′ and M ′′′. It follows from the induction

hypothesis that ϕp
M ′′′(i(z), j[~y], j(~x)) and thus that (∃zϕ)pM ′(j[~y], j(~x)). The right-

to-left direction is similar.

Lemma 12 (Z∗). Suppose M ⊑M ′, ~y ⊆M , and ~x ∈M . Then:

ϕp
M ↔ ϕp

M ′

where ϕ ∈ L2
∈ with free variables among ~Y , ~x.

Proof. By induction on the complexity of ϕ. The only difficult case is the left-

to-right direction for ∃x. So, suppose there is some M ′′ ⊒ M and z ∈ M ′′

such that ϕp
M ′′(z, ~y, ~x). By quasi-categoricity, M ′′ is isomorphic to some M ′′′

such that either M ′′′ ⊑ M ′ or M ′′′ ⊒ M ′. Let j be such an isomorphism.

By lemma 11, ϕp
M ′′′(j(z), j[~y], j(~x)). If M ′′′ ⊑ M ′, then by the induction hy-

pothesis ϕp
M ′(j(z), j[~y], j(~x)) and thus (∃zϕ)pM ′(j[~y], j(~x)). If M ′′′ ⊒ M ′, then

(∃zϕ)pM ′(j[~y], j(~x)) by definition of p
M ′ . Now, M ⊑ M ′′ and it is also easy to see

that since M ⊑ M ′, M ⊑ M ′′′. A simple induction on ∈ in M then establishes

that j ↿M = id ↿M . Thus since ~y ⊆M and ~x ∈M , (∃zϕ)pM ′(~y, ~x).

Theorem 6. Z∗ interprets MSST via tr.
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Proof. Given the preceding remarks, it suffices to show that Z∗ proves [∀~x(∃zϕ→

∀w∃z(w = w ∧ ϕ))]p for each ϕ ∈ L2
∈. So, working in Z∗, suppose ~y ⊆M , ~x ∈M ,

and (∃zϕ)pM (where ∃zϕ’s free variables are among ~Y , ~x). Either there are free

variables in ϕ other than z or not. If there are, it follows immediately from lemma

12 that [∀w∃z(w = w ∧ ϕ)]pM . If not, (∃zϕ)pM = (∃zϕ)p = ∃M∃z ∈ Mϕp
M . So

suppose there is some M and z ∈ M such that ϕp
M . Let M ′ be arbitrary. By

quasi-categoricity, M ′ is isomorphic to some M ′′ such that either M ′′ ⊑ M or

M ′′ ⊒M . IfM ′′ ⊑M , then we can build an end-extension, M ′′′, ofM ′ isomorphic

to M . It will follow from lemma 11 that ∃z ∈M ′′′ϕp
M ′′′ . If M ′′ ⊒M , then lemmas

12 and 11 imply ∃z ∈ M ′ϕp
M ′ . In either case we have ∃M ′′′ ⊒ M ′∃z ∈ M ′′′ϕp

M ′′′

and since M ′ was arbitrary, [∀w∃z(w = w ∧ ϕ)]p.

Theorems 1 and 2 already tell us a good deal about MSST’s strength. For example,

theorem 1 tells us that MSST is at least as strong as Z∗. Indeed, with some effort

we can use them to provide a complete characterisation of MSST’s strength. It

will be easier, however, to do this using the next theorem. By establishing that

ms-translation is a faithful interpretation of Z∗ in MSST, it will allow us to read

off MSST’s strength directly from the more familiar Z∗. For example, it is easy to

see that Z∗ proves that there is an unbounded class of inaccessibles (since it thinks

that every set is contained in some inaccessible rank) but not that κω exists (since

Vκω
models Z∗). So it will follow trivially from the theorem that MSST proves the

ms-translation of the former but not the ms-translation of the latter. Similarly,

lemmas 14 and 15 below show that Z∗ proves all instances of Π0-Col but not all

instances of Π1-Col. So it will follow trivially from the theorem that MSST proves

the ms-translations of all instances of the former but not the ms-translations of
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all instances of the latter.32 The theorem will therefore allow us to conclude easily

that MSST is significantly weaker than Z2 + R2.

It is important to note that the interest of a faithful interpretation of Z∗ in

MSST is not limited to its providing a characterisation of MSST’s strength. It

also allows us to read off MSST’s set-theoretic content from Z∗ in general. For

example, suppose we were wondering whether MSST proves the ms-translation

of the continuum hypothesis (CH) or its negation. Perhaps, by moving to the

modal structural setting, we could settle CH one way or the other. Since CH is

independent of all known large cardinal hypotheses, however, MSST’s strength

tells us very little about whether it does. Nonetheless, a faithful interpretation of

Z∗ in MSST will allow us to use bog-standard inner and outer model theory on Z∗

to show that, as we might have expected, the ms-translation of CH is independent

of MSST.

Lemma 13 (Z∗). If ~x ∈ Vα, then:

ϕ↔ ϕp
Vα

where ϕ ∈ L∈ with free variables among ~x.

Proof. By induction on the complexity of ϕ. The only difficult case is that for

∃x. For the left-to-right direction, suppose there is some y such that ϕ(y, ~x) where

~x ∈ Vα. Then y ∈ Vκ, for some inaccessible κ ≥ α. By the induction hypothesis,

ϕp
Vκ
(y, ~x) and thus (∃yϕ)pVα

(~x). For the right-to-left direction, suppose there is some

M ⊒ Vα and y ∈M such that ϕp
M(y, ~x). By quasi-categoricity, M is isomorphic to

an inaccessible rank Vκ, with κ ≥ α. Let j be such an isomorphism. By lemma 11

32Since Σn+1-Col is equivalent to Πn-Col in Z∗ (see Devlin (1984), lemma 11.3), this result is
optimal.
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and the induction hypothesis, ∃yϕ(y, j(~x)). Since Vα ⊑ M and Vα ⊑ Vκ, a simple

induction establishes that j ↿ Vα = id ↿ Vα. Thus ∃yϕ(y, ~x).

Theorem 7. MSST faithfully interprets Z∗ via ms-translation.33

Proof. Trivial from theorems 5 and 6 and lemmas 10 and 13.

Lemma 14. Z∗ ⊢ Π0-Col.

Proof. First, note that since ZFC proves that Σ1 formulas are absolute for inac-

cessible ranks, and Z∗ thinks there are unbounded ranks satisfying ZFC, Z∗ will

also prove that Σ1 formulas are absolute for inaccessible ranks. Now, working in

Z∗ suppose that ∀x∃yϕ(x, y, ~z), where ϕ is Π0. Let κ be an inaccessible such that

u, ~z ∈ Vκ. Then, ∀x ∈ u∃yϕ(x, y, ~z) and thus since “∃yϕ(x, y, ~z)” is absolute for

Vκ, ∀x ∈ u∃y ∈ Vκϕ(x, y, ~z).

33It is worth noting that tr is not a faithful interpretation of MSST in Z∗. To see this, consider
the claim that any two objects can co-exist – that is, �∀x�∀y♦(Ex∧Ey). Call this Compossible.
It is easy to see that Compossibletr is (trivially) provable in Z∗. But it is also straightforward to
construct models of MSST where Compossible is false. For instance, we could modify the Kripke
model in footnote 24 so that its set of worlds is {〈α, n〉 : α < ω ∧ (n = 0 ∨ n = 1)} and then use
analogues of lemmas 10-12 and theorem 6 to establish S.
This example also helps to explain where a natural strategy for proving S from the other

axioms of MSST breaks down. In particular, by inspecting the proofs of lemmas 10-12 and
theorem 6, we can see that S could be proved from the other axioms if they proved a version of
the quasi-categoricity theorem for arbitrary ZFC2 structures. But in the presence of EP∗ such
a theorem will imply Compossible. To see this, let x and y be two possible objects. By EP∗,
♦∃M(x ∈ M) and ♦∃M ′(y ∈ M ′), and by rearranging M and M ′, we can assume without loss
of generality that x is the empty set in M (i.e. x = 0M ) and y is the empty set in M ′ (i.e.
y = 0M

′

). Now, if the quasi-categoricity theorem held for M and M ′, there would be a possible
function j which mapped x to y. Since functions are just pluralities of pairs, that means there
would be a possible plurality X such that 〈x, y〉 ∈ X. But, clearly, if EX and 〈x, y〉 ∈ X, then
Ex ∧ Ey (by A12 and A15).
Conversely, the claim that any two possible ZFC2 structures can co-exist – that is,

�∀M�∀M ′♦(EM ∧ EM ′) (S-Compossible) – will imply a version of the quasi-categoricity the-
orem for arbitrary ZFC2 structures. For if M and M ′ co-exist in a world w, the non-modal
quasi-categoricity theorem can be used in w to get the required isomorphism. Whether Compos-
sible or S-Compossible are compatible with modal structuralism will depend on the interpretation
of ♦. For example, on a metaphysical interpretation it is plausible to think that there could have
been objects x and y such that ¬♦(Ex ∧ Ey) contradicting Compossible and thus, by EP∗,
structures M and M ′ such that ¬♦(EM ∧ EM ′) contradicting S-Compossible. See Williamson
(2010) for discussion.
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Lemma 15. Z∗ 6⊢ Π1-Col

Proof. Working in Z∗ + Π1-Col, we show that κω exists. First, note that for any

n there are at least n inaccessibles. In particular, for any x there is an f such that

if x ∈ ω, then (i) f is a function; (ii) dom(f) = x + 1; (iii) ∀i ≤ xIn(f(i)); and

(iv) ∀i < x(f(i) < f(i + 1)). Since (i-iv) are all at most Π1
34 and “x ∈ ω” is ∆0,

we can apply Π1-Col to get a Vα which contains such a function for each n. Thus

α ≥ κω.

2.4 Modal structural reflection

In section 2 I raised two prima facie problems for motivating R2-like principles in

the modal structural setting. The first was that since the ms-translation of R2 is

inconsistent with EP, it is unclear whether the modal structuralist can state an

R2-like principle consistently. The second was that since they do not recognise an

absolutely infinite universe of sets, it is unclear whether they can motivate an R2-

like principle in terms of indescribability. In this section I consider a suggestion by

Geoffrey Hellman (forthcoming) which seems to overcome these problems whilst

yielding a principle similar in strength to R2. Unfortunately, Hellman’s principle

is inconsistent (theorem 8). In the next section I argue that Hellman’s suggestion

nonetheless contains the most promising way to implement the indescribability

motivation for R2 in the modal structural setting. The central question is then

taken to turn on whether this new motivation implies a principle as strong as R2.

34In particular, “In(x)” can be written as “x is an ordinal ∧∀f∀y < x[(f is a function ∧∀z ∈
dom(f)(z ⊆ y) ∧ rng(f) ⊆ x) → ∃w < x(rng(f) ⊆ w)]” and the bounded quantifier ∀i ≤ x

can then be absorbed given Π1-Col. That bounded quantifiers can be absorbed into Πn and Σn

formulas given Πn-Col follows from the proof of lemma 11.6 in Devlin (1984).
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I show that it does not (theorem 11).

Hellman’s suggestion has two parts, each providing a response to one of the above

problems. The first part is summed up in the following quote.

The mathematical possibilities of ever larger structures are so vast as

to be “indescribable”: whatever condition we attempt to lay down to

characterize that vastness fails in the following sense: if indeed it is

accurate regarding the possibilities of mathematical structures, it is

also accurate regarding a mere segment of them, where such a segment

can be taken as the domain of a single structure. (p. 10, forthcoming)

There are two ideas here. First, there is an analogue of the indescribability mo-

tivation for R2. Heuristically, we can think of the analogue of V as the collection

S of all possible ZFC2 structures. Then the thought is that since S is absolutely

infinite, it is indescribable – whatever is true in S is also true in some mere seg-

ment of ZFC2 structures X . If we gloss “ϕ is true in S” as ϕpt and “ϕ is true in

X ” as (ϕpt)X – where (ϕpt)X is the result of replacing all occurrences of ∃M in ϕpt

with ∃M ∈ X – then we can formulate the claim that S is indescribable (in L♦) as:

(IR♦) ϕpt → ∃X (ϕpt)X

for sentences ϕ ∈ L2
∈. The “I” here stands for “informal”, since the principle

contains the heuristic variable X ranging over mere segments of ZFC2 structures.

Eventually we will want to eliminate X in favour of a notion expressible in L♦,

but it is clear enough for present purposes.
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The second idea in the quote is that a mere segment of ZFC2 structures X “can

be taken as the domain of a single [ZFC2] structure”. The thought is that as far as

the truth of ϕ is concerned, a mere segment of ZFC2 structures is indistinguishable

from some single ZFC2 structure. More precisely:

(Identification) (ϕpt)X → ♦∃M(M � ϕ)

Although these two ideas seem to provide an attractive response to the second

problem, they run straight into the first. In particular, IR♦ and Identification

jointly entail the inconsistent:

(MSR) ϕpt → ♦∃M(M � ϕ)

To see that MSR is inconsistent, it suffices to consider the claim that every plu-

rality fails to contain something, i.e.:

(F) ∀X∃x(x 6∈ X)

Trivially, F can’t be true in any single ZFC2 structure M , since X = dom(M)

would provide a counterexample. But as the next lemma shows, the ms-translation

of F is equivalent to EP. So F is true in S, but not in any single ZFC2 structure,

contradicting MSR. Similarly, since F can’t be true in any Vα in any ZFC2 struc-

ture, the lemma also shows that Rpt
2 is inconsistent.

Lemma 16 (MSST - EP). EP is equivalent to Fpt.
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Proof. For the left-to-right direction, suppose X ⊆ M . From EP it follows that

♦∃M ′(M ′ ⊐ M) and so ♦∃M ′ ⊒ M∃x ∈ M ′(x 6∈ X). For the right-to-left

direction, simply take X = dom(M).35

The second part of Hellman’s suggestion tries to avoid inconsistency by restricting

MSR “explicitly to sentences [ϕ] that are consistent with the accepted set theory,

[ZFC2]” (forthcoming, p.10). Since ϕ can be second order, this restriction bifur-

cates. For second-order languages we have a notion of semantic consistency and

a notion of syntactic consistency.36 Each notion yields a corresponding restriction

of MSR. In particular, we have:

(MSR-sem) If ϕ is semantically consistent with ZFC2, i.e. ♦∃M(M � ϕ), then:

ϕpt → ♦∃M(M � ϕ)

and:

(MSR-syn) If ϕ is syntactically consistent with ZFC2, i.e. (ZFC2 6⊢ ¬ϕ)pt, then:

ϕpt → ♦∃M(M � ϕ)

MSR-sem is trivially true and therefore cannot be what Hellman has in mind. But

as the next theorem shows, MSR-syn is inconsistent. The second part of Hellman’s

suggestion thus fails to solve the first problem.

35Since ¬F is provable in ZFC2, the lemma also shows that ms-translation cannot be an
interpretation of ZFC2.

36For any set of sentences Γ, we say that Γ is semantically consistent if it has a (possible)
full second-order model, and we say that Γ is syntactically consistent if no contradiction can be
derived from it in second-order logic.
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Theorem 8. MSST + MSR-syn is inconsistent.

Proof. Let R be a Rosser sentence for ZFC2 (formulated so as to be Σ1). Since Z
∗

proves that ZFC2 is consistent, it will prove ZFC2 6⊢ ¬(R → F ).37 From theorem

3 it follows that MSST proves (ZFC2 6⊢ ¬(R → F ))pt. Now, working in MSST,

MSR-syn implies:

(R → F )pt → ♦∃M(M � R → F ) (2.13)

Since Fpt is true and pt commutes with →, the antecedent of (13) is true by lemma

16. It follows that ♦∃M(M � ¬R). Since R is Σ1, lemma 7 implies that ¬Rpt.

We can then run the preceding argument with ¬R replacing R to get Rpt. Thus,

Rpt ∧ ¬Rpt.

2.5 Saving MSR from inconsistency?

It might be tempting at this point to look for other restrictions on MSR; restric-

tions which restore consistency while retaining as much of its strength as possible.

But merely doing this would be a mistake. Any such restriction should be well-

motivated. In particular, it should come equipped with an explanation of why

MSR holds for the restricted class of cases and not for others. The real prob-

lem with MSR-syn, for example, is not inconsistency but rather that there seems

to be no such explanation. It appears completely ad hoc. In general, it is un-

clear whether there are any restrictions of MSR which are consistent, strong, and

well-motivated. That leaves us with Identification and IR♦.

37Indeed, it won’t prove ¬(R→ ϕ) for any ϕ.
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The arguments of section 4 can be modified to show that Identification is incon-

sistent with MSST and that it remains inconsistent under Hellman’s restriction.38

As with MSR, it is unclear whether there are any restrictions on Identification

which are consistent, strong, and well-motivated. That leaves us with IR♦. As

I mentioned in the previous section, IR♦ is a formulation of the claim that S is

indescribable. The thought that since S is absolutely infinite, it is indescribable

in this sense strikes me as an attractive way to transpose the indescribability mo-

tivation for R2 into the modal structural setting. There is also reason to think it

is the strongest, consistent, way to do this.

I will assume that the indescribability motivation has the general form: since C

is absolutely infinite, it is indescribable – whatever is true in C is also true in some

initial segment of C (where C is a collection of pluralities – like S – or of objects). I

will also assume that initial segments of C are subcollections of C which are suitably

small. As a measure of smallness, I will use possible co-existence. This is natural

because whenever some pluralities or objects can co-exist, we can ‘union’ them

into a plurality X which, by EP∗, will be strictly smaller than some other possible

plurality.39 Now, in the modal structural setting there are two salient absolutely

infinite collections. Heuristically, we can think of the first as the collection P of

all possible objects. A sentence is true in P if it is (i) true simplicitier, and (ii) its

quantifiers are all of the form ♦∃x. More precisely, let L = L♦ − {♦}. A sentence

38Proof sketch: Let X be any segment of ZFC2 structures without a maximal element by
end-extension. Then F will be true in X by a modification of the argument for lemma 16,
and we can run the argument for theorem 8 with Identification replacing MSR-syn, noting that
((R→ F )pt)X holds.

39This is a relatively strict measure of smallness, since it deems not small pairs of objects
which can’t co-exist. We could liberalise it by allowing a collection to count as small if it is
equinumerous with a small collection in my sense. A pair of objects which can’t co-exist would
then count as small because it could be put in one-one correspondence with a pair of objects
which can. Nothing I say will depend on using the stricter notion.
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ϕ ∈ L is true in P if the result, ϕP , of replacing all occurrences of ∃x in ϕ with

♦∃x is true. The claim that P is indescribable (in L♦) then becomes:

(Ind-P) ϕP → ♦∃XϕX

for sentences ϕ ∈ L. Unfortunately, for reasons similar to those in case of MSR,

Ind-P is inconsistent. In particular, by EP∗, any possible plurality possibly fails

to contain something; that is, FP . But FY can’t be true for any possible plurality

Y , since X = Y would provide a counterexample.40

The second salient absolutely infinite collection is S. In the previous section

I glossed “ϕ is true in S” as ϕpt for ϕ ∈ L2
∈. But we might want to be more

liberal. In particular, we might want to take a sentence to be true in S if (i) it is

true simpliciter, (ii) its plural quantifiers range over possible ZFC2 structures and

subpluralities thereof, and (iii) its first-order quantifiers range over the elements

of those structures. More precisely, suppose ϕ ∈ L is a sentence such that its

quantifiers are all of the form ∃M or ∃x ∈ M . Then ϕ is true in S if the result,

ϕS , of replacing all occurrences of ∃M in ϕ with ♦∃M is true. The claim that S

is indescribable (in L♦) then becomes:

(Ind-S) ϕS → ∃XϕX

for all such ϕ. It is easy to check that ϕpt is of the form ψS and thus that Ind-S is a

generalisation of IR♦. Nonetheless, Ind-S is not stronger than IR♦. In particular,

40It is worth noting that Ind-P is not inconsistent with EP (or even MSST), since it holds in
the Kripke model in footnote 22. But, as I mentioned in section 3.2.3, the modal structuralist is
committed to the stronger EP∗ and thus to the inconsistency of Ind-P.
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if we formalise Ind-S along the lines of R♦ below, theorems 9, 10, and 11 can be

modified to show that ms-translation is a faithful interpretation of Z∗ + R1 in

MSST + Ind-P .

Of the two salient ways of implementing indescribability in the modal structural

setting, then, one is inconsistent and the other is as strong as IR♦. So it is natural

to take the central question to turn on IR♦. If IR♦ is weaker than R2, that is good

evidence that the modal structuralist can’t adopt a consistent principle similar in

motivation and strength to R2. In the remainder of the chapter, I will show that

IR♦ is indeed weaker than R2. In particular, once IR♦ is formalised in L♦ as a

principle I call R♦, I will show that ms-translation is a faithful interpretation of

Z∗ + R1 in MSST + R♦ (theorem 11). In other words, MSST + R♦ and Z∗ +

R1 have exactly the same (first-order) set-theoretic content. It follows that MSST

+ R♦ proves the ms-translation of the claim that κα exists for all α (since the

existence of κλ follows from the existence of κα for α < λ by R1) but not the ms-

translation of the claim that there is an inaccessible limit of inaccessibles (since Vκ

will model Z∗ + R1 when κ is such a cardinal). It also follows that it proves the

ms-translations of the theorems of Z∗ + Π1-Col but not the ms-translations of all

instances of Π2-Col (lemmas 17 and 18). So R♦ affords only a minor increase in

strength over MSST and is thus significantly weaker than R2.

2.5.1 IR♦ to R♦

Formalising IR♦ in L♦ is just a matter of formalising X in L♦. What constraints

should we impose on such a formalisation? Above, I assumed that initial segments

of S are collections of ZFC2 structures whose elements can all co-exist. And on
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analogy with the transitivity of initial segments of V , we might also want to assume

that initial segments of S are downward closed under end-extension (i.e. whenever

M ∈ X and M ′ ⊑ M , M ′ ∈ X ). It is hard to see what else we should assume

about initial segments of S. So I will take a suitable formalisation of X in L♦ to

be any notion expressible in L♦ that collects together ZFC2 structures which can

co-exist and which are downward closed.

Clearly, there will be many suitable formalisations of X in L♦ and thus many

suitable formalsiations of IR♦. Since none of them are privileged, each places an

upper bound of the strength of IR♦.41 In what follows, I will focus on one. The idea

is simple. We take X to be interpreted as a set of ZFC2 structures. Specifically,

X will be interpreted as a set of ZFC2 structures in some Vα. Relative to this

interpretation, IR♦ will say that whatever is true in S it is also true in the set

of ZFC2 structures of some Vα. Recalling definition 14, we can state that more

precisely as:

ϕpt → ♦∃M∃α ∈M(M � (ϕp)Vα) (2.14)

for sentences ϕ ∈ L2
∈.

42

The principles we have considered so far – like IR♦, Ind-P , Ind-S, and (14)

– have only been stated for sentences. It is well-known, however, that sentential

versions of reflection can be weaker than those with parameters.43 Since indescrib-

ability seems to imply the parameterised versions of these principles, we should

41If we like, we could think of the formalisation of IR♦ in L♦ as an infinite disjunction of
schemas, one for each suitable formalisation of IR♦.

42Since ϕp will contain variables of the form yi (which, strictly speaking, are not in L♦), we
assume it has been suitably re-lettered.

43See, for instance, Lévy (1960).
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liberalise (14) to allow for them. We can do this by relativising (14) to a structure

M , requiring that M exists and that the parameters in ϕ be contained in M . For

simplicity, I will assume that the reflecting structure M ′ is a proper end-extension

ofM and thus thatM and ϕ’s parameters form sets inM ′. More precisely, if EM ,

~Y ⊆M , and ~x ∈M , then:

(R♦) ϕpt
M → ♦∃M ′ ⊐M∃α ∈M ′(M ′ � (ϕp

Vκ
)(~z, ~x)Vα)

where dom(M) = V M ′

κ and ~z =M ′ ~Y and where ϕ ∈ L2
∈ with free variables among

~Y , ~x.

Theorem 9. MSST + R♦ interprets Z∗ + R1 via ms-translation.

Proof. Given the proof of theorem 5, it suffices to show that MSST + R♦ proves:

EM ∧ ~x ∈M ∧ ϕpt
M → (∃αϕVα)ptM (2.15)

where ϕ ∈ L∈ with free variables among ~x. So suppose EM , ~x ∈M , and ϕpt
M . By

R♦ applied to (ϕ ∧ F )ptM we have:

♦∃M ′ ⊐M∃α ∈M ′(M ′ � (ϕp
Vκ

∧ F p)Vα) (2.16)

Since Vα � (F p), α is a limit of inaccessibles, and thus Vα � Z∗. So we can use

lemma 13 on ϕp
Vκ

inside Vα to get that ϕVα . Since “x = Vy ∧ ϕ
x” is ΠZ∗

1 , lemma 7

and theorem 5 then imply that (∃αϕVα)ptM .

Theorem 10. Z∗ + R1 interprets MSST + R♦ via tr.
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Proof. Given the proof of theorem 6, it suffices to show that Z∗ + R1 proves

lim(α) → ψ♦tr where ψ is an instance of R♦. So suppose that ~y ⊆ M , ~x ∈ M ,

and ϕp
M(~y, ~x) (where ϕ ∈ L2

∈ with free variables among ~Y and ~x). By quasi-

categoricity, there is an isomorphism j : M → Vκ, for some κ inaccessible. It

follows from lemma 11 that ϕp
Vκ
(j[~y], j(~x)) and thus by R1 ∃α(ϕp

Vκ
(j[~y], j(~x)))Vα .

Picking an inaccessible κ′ > κ, α, it follows that:

Vκ′ � ∃α(ϕp
Vκ
(j[~y], j(~x)))Vα (2.17)

Now, let i : Vκ′ →M ′ ⊐M be an isomorphism. Then:

M ′ � ∃α(ϕp
Vi(κ)

(i(j[~y]), i(j(~x))))Vα (2.18)

A simple induction on ∈ in M establishes that i ↿ Vκ = j−1. It follows that

dom(M) = V M ′

i(κ), i(j[~y]) =M ′

~y, and i(j(~x)) = ~x. Our result then follows from

lemmas 9 and 10.

Theorem 11. MSST + R♦ faithfully interprets Z∗ + R1 via ms-translation.

Proof. Trivial from theorems 9 and 10 and lemmas 10 and 13.

Lemma 17. Z∗ + R1 ⊢ Π1-Col.

Proof. Recall from lemma 14 that Z∗ proves that Σ1 formulas are absolute for

inaccessible ranks. It follows that Σ1 formulas are also absolute for ranks Vα

where α is a limit of inaccessibles. Now suppose ∀x∃yϕ(x, y, ~z), where ϕ is Π1.

By R1 on ∀x∃yϕ(x, y, ~z) ∧E~z ∧Eu ∧ Z∗, we get a Vα for which ϕ is absolute and

thus for which ∀x ∈ u∃y ∈ Vαϕ(x, y, ~z).



CHAPTER 2. MODAL STRUCTURAL REFLECTION 93

Lemma 18. Z∗ + R1 6⊢ Π2-Col.

Proof. Working in Z∗ + Π2-Col, we build a model of Z∗ + R1. Let “x � y” be

a ∆Z∗

1 satisfaction relation (where x is a model and y a formula/finite variable

assignment pair).44 If we could find a limit of inaccessibles α such that:

∀x ∈ Vα(∃β(Vβ � x) → ∃β < α(Vβ � x)) (2.19)

then it would follow that Vα � Z∗ + R1 (since any formula and finite variable

assignment over Vα will be in Vα).
45 We now show that the existence of such an α

is provable in Z∗ + Π2-Col.

Let “∃β(Vβ � x) → (Vα � x)” = Φ(x, α). Since “x = Vy” is ΠZ∗

1 and “x � y” is

∆Z∗

1 , Φ(x, α) is ΠZ∗

2 . Clearly, ∀x∃αΦ(x, α) and so by Π2-Col:

∀δ∃γ[In(γ) ∧ ∀x ∈ Vδ∃α < γΦ(x, α)] (2.20)

Let “[In(γ) ∧ ∀x ∈ Vδ∃α < γΦ(x, α)]” = Ψ(δ, γ). Since “In(x)” is ΠZ∗

1 and

bounded quantifiers can be absorbed into Π2 formulas (see footnote 36), Ψ(δ, γ) is

ΠZ∗

2 . From (20) it follows that for every x there is an f such that if x ∈ ω, then

(i) f is a function; (ii) dom(f) = x + 1; (iii) ∀i < x(Ψ(f(i), f(i + 1))); and (iv)

∀i < x(f(i) < f(i + 1)). Since (i-iv) are all at most ΠZ∗

2 , we can apply Π2-Col to

get a strictly increasing ω sequence f such that Ψ(f(i), f(i+1)) and ∪rng(f) will

be our required α.

44See, for instance, Kunen (2011) Definition I.15.5.
45The idea of using such an α to get a model of Z∗ + R1 is due to Lévy and Vaught (1961).
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2.6 Objections

In this section I consider some objections to my argument. The first two accept

its conclusion – i.e. that the modal structuralist can’t adopt a consistent principle

similar in motivation and strength to R2 – but question its import. The third re-

jects its conclusion, arguing that by stating R♦ in more expressive language than

L♦ we can obtain a principle as strong as R2.

Objection 1: As Reinhardt and Silver have shown, Z2 + R2 is consistent relative

to the existence of the first Erdős cardinal κ(ω) and thus consistent with V = L.46

So R2 effects an ‘insignificant’ reduction in incompleteness in Koellner’s (2009,

p. 208) sense. The cost to the modal structuralist of failing to motivate principles

approaching the strength of R2 is therefore negligible.

Reply: It is of course true that there are many interesting questions which are not

settled by R2. But it would be wrong to conclude that the reduction in incomplete-

ness afforded by R2 is negligible, since there are also many interesting questions

which are settled by R2.
47 If we are primarily concerned with settling open ques-

tions in descriptive set theory, for example, then our standard of significance may

well coincide with Koellner’s. But if we are concerned with settling open questions

in set theory more generally, that standard will look overly strict.

Objection 2: Instead of appealing to indescribability, we can motivate reflection

46See Proposition 7.16 in Kanamori (2003).
47For a recent sample, see Krueger and Schimmerling (2011) and Hamkins and Woodin (2005)

who make use of greatly Mahlo and weakly compact cardinals respectively.
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principles by the thought that since the universe of sets is absolutely infinite, it is

indistinguishable from its initial segments.48 This arguably implies the schema of

complete reflection:

(CR1) ∃α > β∀~x ∈ Vα(ϕ↔ ϕVα)

where ϕ ∈ L∈ with free variables among ~x. It is well-known that in contrast to

R1, CR1 does suffice over Z∗ to derive all instances of Collection.49 By applying

this motivation to S, the modal structuralist could obtain a version of R♦ which

faithfully interprets Z∗ + CR1. So even though they might not be able to moti-

vate a principle as strong as R2 using indescribability, they can do better using

indistinguishability.

Reply: There are two things to note here. The first is that although this strategy

will result in a stronger principle with respect to theorems of ZFC, it will not add

any large cardinal strength to MSST + R♦. To see this, note that whenever κ

is an inaccessible limit of inaccessibles, Vκ satisfies Z∗ + CR1. The second thing

to note is that the proposed motivation can arguably be used by the non-modal

structuralist to obtain second-order reflection principles which are significantly

stronger than R2. For example, the principle GRP investigated by Welch (ms) is

a natural generalisation of CR1 to the second-order and it implies that the Axiom

of Determinacy holds in L(R). But the arguments of section 4 can be adapted to

show that GRPpt is inconsistent with the Extendability Principle.50 By invoking

48See, for instance, Lévy (1960b).
49See, for instance, Lévy and Vaught (1961). They call R1 PR (for partial reflection).
50This observation also allows for an alternative reply to objection 1. In particular, if we
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this new motivation, the modal structuralist might gain some strength in terms

of theorems of ZFC but they will make significant losses in terms of reduction in

incompleteness.

Objection 3: Instead of interpreting the second-order quantifiers in L2
∈ using plu-

ralities, we can interpret them using some other suitable entity. For example, we

could interpret them using Fregean concepts. As long as these entities do not obey

an analogue of the Extendability Principle, there will be no pressure to think that

the resulting ms-translation of F holds. Such entities could therefore be used to

state consistent versions of Rpt
2 and MSR.

Reply: There are two constraints on any such entities which jointly suggest that

this and similar strategies will not work for the modal structuralist. The first

constraint, as mentioned in section 1, is that they should not be abstracta. The

second constraint follows from Rpt
2 and MSR. In particular, since all instances

of second-order comprehension are true in every possible ZFC2 structure, it will

follow from MSR that their ms-translations are true. So, on the one hand, there

has to be enough such entities to make the ms-translations of arbitrary instances

of second-order comprehension come out true; and, on the other hand, they can’t

be abstracta. It is unclear whether there is any kind of entity which obeys these

two constraints.51

rerun the arguments of this chapter with indistinguishability replacing indescribability and GRP
replacing R2, we will obtain arguments to the effect that the modal structuralist can only motivate
reflection principles weaker than CR1 and thus significantly weaker in Koellner’s sense than GRP.

51Though see Rayo and Yablo (2001) for a dissenting voice.



Chapter 3

Reinhardt and reflection

In this chapter I investigate some influential reflection principles due to William

Reinhardt. I have two main aims. First, I want to provide clear and accessible

versions of those principles.1 Second, I want to see whether the potentialist should

adopt them.

Here’s the plan. In section 1 I outline a simplified version of the theory devel-

oped in Reinhardt (1980). I then use this to shed light on the two central theories

of Reinhardt (1974a). In section 2 I provide a precise axiomatisation (RMST) of

the simplified theory and determine its strength. I show that it proves exactly

the same sentences in the language of second-order set theory as second-order ZF

plus the principle of Structural Complete Reflection (SCR) introduced in chapter

1. Finally, in section 3 I look at a number of criticisms of Reinhardt’s theories and

argue that the potentialist should not adopt them.

1Reinhardt’s papers on reflection are notoriously dense and hard to decipher. For example,
what Kanamori (2003, p. 314) calls “the most mature and sophisticated formalization of [his]
ideas” – namely, the theory in his (1980) – employs a formidable 45 axioms.
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3.1 Reinhardt and reflection

Starting with his dissertation (1967), William Reinhardt made a number of pro-

posals for new axioms in set theory. This culminated in his (1974a) and (1980)

which focus in particular on reflection principles. In this section I will outline sim-

ple versions of the theories developed in these papers. More precisely, in section

1.1 I outline a simplified version of the modal set theory in Reinhardt (1980); in

section 1.2 I outline the modal realist theory most authors take Reinhardt (1974a)

to be advocating; and in section 1.3 I outline the theory Reinhardt (1974a) actually

advocates.

3.1.1 The modal account

The modal account takes potentialism as a background assumption. Accordingly,

any sets mathematically could have determined a set. In particular, there could

have been a set of the actually existing ϕ’s. Formally:2

(@-collapse♦) ♦∃x∀y(y ∈ x↔ @Ey ∧ ϕ)

As in chapter 1, I will follow Linnebo (2009, 2013) in taking the modality to concern

a well-founded process of extending the mathematical ontology. The appropriate

modal logic for ♦ is then S4.2 supplemented with the Converse Barcan Formula.3

Against this background, the most distinctive claim of the modal account is a

modal reflection principle. It says that the sets contain every possible kind of set:

2@-collapse♦ is a version of Reinhardt’s axiom I1. See (Reinhardt, 1980, p.298).
3See chapter 1 section 3 for discussion and section 2.1 of this chapter for details of the logic

of @ and of quantification for the modal account.
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if there could have been ϕ, then there is a ϕ. Formally:4

(R) ∀~x[♦∃yϕ→ ∃yϕ]

where ϕ’s free variables are among ~x. In other words, R says that what there

could have been is reflected in what there is.

Already, @-collapse♦ and R have significant set-theoretic consequences. For

example, they imply that Pairing is actually true. To see this, suppose that x and

y actually exist. By @-collapse♦, there could have been a set of them. So R

then implies that there is, actually, a set of them. Similarly, @-collapse♦ and R

imply that Union is actually true. To see this, suppose that x actually exists. By

@-collapse♦, there could have been a set y of sets which actually exist and are

elements of elements of x; in other worlds, a set of the actually existing sets in the

union of x. Now, recall from chapter 1 that sets are inextensible; they could not

have existed without their elements. Formally:5

(InExt) Ex ∧ ♦(y ∈ x) → Ey

So, since x actually exists, its elements actually exist and the elements of its

elements also actually exist. Thus, y is just a union of x. R then implies that

there is, actually, a union of x. It is a simple exercise to adapt these arguments to

show that Infinity is also actually true.6

4R is a consequence of Reinhardt’s axiom I2, since on his theory there is a proposition corre-
sponding to each ϕ for which I will take R to hold (see below). See (Reinhardt, 1980, p.298).

5InExt is just Reinhardt’s axiom S4. See (Reinhardt, 1980, p.275).
6See theorem 12 Case 1 for details.



CHAPTER 3. REINHARDT AND REFLECTION 100

However, R faces an immediate problem. It appears to be inconsistent. To see

this, first note that @-collapse♦ implies that there could have been a set of the

actually existing non-self-membered sets. Formally:

♦∃x∀y(y ∈ x↔ @Ey ∧ y 6∈ y)

By the reasoning of Russell’s paradox, it follows that there could have been a set

which does not actually exist; that is, ♦∃x¬@Ex. But R implies that if there

could have been a set which does not actually exist, then there is, actually, a set

which does not actually exist. Contradiction.

Given potentialism, then, R does not hold for arbitrary formulas. A proponent

of the modal account thus owes us a story about which formulas it does hold for

and why. I will return to this challenge in section 3.2, but for now I will just

assume that R holds for formulas in the language of second-order set theory, L2
∈.

Recall that L2
∈ supplements the language of first-order set theory L∈ with variables

F0, ..., Fi, ... and takes x ∈ F but not F = G to be well-formed. Following the

convention of chapter 1, I will refer to the F ’s as concepts and say that F applies

to x whenever x ∈ F .

Although neither @-collapse♦ nor R imply the existence of any possible

concepts,7 R does place substantial constraints on them. For example, it follows

from R that the application relation for concepts is stable in the following sense.

7Proof sketch: Consider a two world Kripke model with w0 = dom(w0) = Vα as the actual
world and w1 = dom(w1) = Vβ where α < β, w0 accesses w1, w0, w1 access themselves, and Vα
is a first-order elementary substructure of Vβ (that is, ∀~x ∈ Vα(Vα � ϕ ↔ Vβ � ϕ) whenever
ϕ ∈ L∈ with free variables among ~x). Since there are no concepts in the model, every second-
order formula is equivalent to a first-order formula and it is then easy to see that R will hold
at both worlds. Since α < β, @-collapse♦ and the other principles of modal account so far
discussed will also hold at both worlds.
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Given any concept F and any set x, F will necessarily apply to x or necessarily

fail to apply to x. Formally:

∀F∀x(�(x ∈ F ) ∨�(x 6∈ F ))

To see this, suppose that F could have applied to x and could have failed to apply

to x. It would then follow from R that F applies to x and fails to apply to x,

which is impossible.

In this respect, concepts are like sets. Recall from chapter 1 that the member-

ship relation for sets is stable in the following sense. Either x necessarily contains

y or necessarily fails to contain y. Formally:8

(stab∈) �(y ∈ x) ∨�(y 6∈ x)

Nonetheless, concepts differ from sets in an important way. In particular, concepts

can be extensible; they could have existed without the things they apply to. For

example, suppose there is a concept F which actually exists and actually applies

to all sets; that is, @EF and @∀x(x ∈ F ). It follows from R that F necessarily

applies to all sets. Then, since @-collapse♦ implies that there could have been

a set which does not actually exist, F could have applied to something which does

not actually exist.

But what concepts are there? I will return to this question in section 3.4, but

for now I will just assume that there is always at least one concept co-extensive

with any condition on the sets. Formally:9

8stab∈ is essentially just Reinhardt’s axiom S3. See (Reinhardt, 1980, p. 275).
9c-comp is essentially just Reinhardt’s axiom I3. See (Reinhardt, 1980, p.300).
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(c-comp) ∃F∀x(x ∈ F ↔ ϕ)

So there will always be a concept applying to all sets. As it turns out, c-comp

increases the strength of the modal account considerably. Over stab∈, stab= –

i.e. x 6= y → �(x 6= y) – InExt, Foundation, and Extensionality, any two of @-

collapse♦, R, and c-comp are consistent relative to ZFC.10 But together they

prove the same sentences of L2
∈ as second-order ZF plus the principle of Structural

Complete Reflection (SCR) (see theorem 13 in section 2). Thus, they imply that

there are inaccessible cardinals, measurable cardinals, Woodin cardinals, and that

the axiom of determinacy holds in L(R).11

And that’s it. Over the background potentialism, the modal account comprises

just three distinctive claims. First, there is the claim that there could have been a

set of the the actually existing ϕ’s. Second, there is a comprehension schema for

concepts which says that there is always a concept co-extensive with ϕ. Finally,

there is a modal reflection principle which says that if there could have been a

ϕ ∈ L2
∈, then there is a ϕ.

10Proof sketch: Any single world Kripke model will model R and c-comp where the second-
order quantifiers range over the powerset of the domain. @-collapse♦ and c-comp will hold
in any two world Kripke model where w0 = dom(w0) = Vα is the actual world and w1 =
dom(w1) = Vβ with α < β, the second-order quantifiers ranging over the powersets of the
domains, w0 accessing w1, and w0, w1 accessing themselves. Finally, any finite set of instances
of R and @-collapse♦ can be interpreted in a two world Kripke model like that in footnote
7 where Vα is an elementary substructure of Vβ for the corresponding finite set of first-order
formulas. And for any finite set of first-order formulas, ZFC proves that such a model exists by
the reflection theorem. It is easy to see that these models also satisfy stab∈, stab=, InExt,
Foundation, and Extensionality.

11See Welch (ms) for details.
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3.1.2 The modal realist account

The modal realist account is just an extensional version of the modal account.

Much like the Lewisian metaphysical modal realist rejects a primitive metaphys-

ical modal operator in favour of quantification over worlds, the modal realist ac-

count rejects the primitive mathematical modal operators of the modal account

in favour of a distinction between actual and non-actual (or merely possible) sets

and concepts. Thus, rather than supplementing L2
∈ with actuality and possibility

operators, the modal realist account supplements it with an actuality predicate V ,

where x ∈ V and F ∈ V mean that x and F actually exist.

The central claims of modal realist account are just the obvious analogues of@-

collapse♦, R, and c-comp in this language. So, corresponding to@-collapse♦,

it includes the claim that there is a set of the actually existing ϕ’s. Formally:

(V-collapse) ∃x∀y(y ∈ x↔ y ∈ V ∧ ϕ)

Corresponding to R, it includes a reflection principle which says that if there is a

ϕ, then actually there is a ϕ. Formally:

(V-R) ∀~x ∈ V [∃yϕ→ (∃yϕ)V ]

where ϕV is the result of restricting all quantifiers in ϕ to V and ϕ’s free variables

are among ~x. Analogous to the arguments that @-collapse♦ and R imply that

Pairing and Union are actually true are arguments that V-collapse and V-R

imply that Pairing and Union are true when their quantifiers are restricted to the
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actually existing sets. For example, suppose x, y ∈ V . By V-collapse, there is a

set of them. So V-R implies that there is, in V a set of them. A similar argument

can be given for Union if we assume the analogue of the claim that sets are inex-

tensible; namely, that sets do not actually exist without their elements. Formally:

(V-InExt) x ∈ V ∧ y ∈ x→ y ∈ V

As with R, V-R does not hold for arbitrary formulas. To see this, note that

V-collapse implies that there is a set which does not actually exist; that is,

∃x(x 6∈ V). If V-R held for that claim it would follow that ∃x ∈ V(x 6∈ V), which

is impossible. A proponent of the modal realist account thus owes us a story about

which formulas V-R does hold for and why. Following the restriction of R to L2
∈,

I will for now just assume that V-R holds for formulas in L2
∈.

Finally, corresponding to c-comp, the modal realist account includes the claim

that there is an actually existing concept which actually applies to all and only

the ϕ’s. Formally:

(V-c-comp) ∃F ∈ V∀x ∈ V(x ∈ F ↔ ϕ)

By following the proof of theorem 12 and making suitable changes where necessary,

it can be shown that over Foundation and Extensionality, the modal realist account

also proves the same sentences of L2
∈ as ZF2 + SCR. In that sense, the modal and

modal realist accounts effect the same reduction in incompleteness.

Digression. Although Reinhardt more or less formulates V-collapse, V-InExt,
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and V-c-comp,12 he does not formulate V-R. Instead, he considers a principle he

calls S4.13 Since it may well be unclear how that principle relates V-R, let me now

briefly discuss it.

The best way to understand S4 is by approaching it from V-R in a few steps.

First, note that since the first-order quantifiers in ϕV only range over sets in V , the

second-order quantifiers in ϕV are equivalent to first-order quantifiers over subsets

of V . More precisely:

Lemma 19. Suppose ~x ∈ V and ∀z ∈ V(z ∈ ~y ↔ z ∈ ~F ). Then:

ϕ∗V(~x, ~y) ↔ ϕV(~x, ~F )

where ϕ∗V is the result of replacing the first-order quantifiers ∃x in ϕ with ∃x ∈ V

and second-order quantifiers ∃F with ∃y ⊆ V (making sure to avoid clashes of

variables), and ϕ ∈ L2
∈ with free variables among ~x, ~F .

Proof. By induction on the complexity of ϕ. The base, conjunction, negation,

and ∃x cases are trivial. The case for ∃F is immediate given V-c-comp and

V-collapse.

Second, note that for any set there is, up to co-extensiveness, one actually existing

concept co-extensive with it on the actually existing sets. More precisely:

Lemma 20. Suppose F,G ∈ V, ∀x ∈ V(x ∈ y ↔ x ∈ F ), and ∀x ∈ V(x ∈ y ↔ x ∈

G). Then:

12See, for example, (Reinhardt, 1974b, p.15). Extensionality is just his principle S0, V-InExt
is the first conjunct of S1, V-c-comp is equivalent to S3.3 in the presence of S2 (which is just
Separation), and since he takes the sets in V to determine a set, V-collapse follows from S2.
Note that Reinhardt’s “properties” are essentially just the actually existing concepts of the modal
realist account.

13See, for example, (Reinhardt, 1974a, p.196).
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∀x(x ∈ F ↔ x ∈ G)

Proof. Clearly, ∀x ∈ V(x ∈ F ↔ x ∈ G). Since F,G ∈ V , it follows from V-R that

∀x(x ∈ F ↔ x ∈ G).

So we can definitionally expand our language with an operator j(y) for that con-

cept, governed by the following axioms:

j(y) ∈ V

∀x ∈ V(x ∈ y ↔ x ∈ j(y))

∃F ∈ V∀x(x ∈ F ↔ x ∈ j(y))

We allow j(y) in all the logical axioms, V-collapse, and V-c-comp, but not in

V-R.14 Finally, note that the relation:

F ≡ G =df (F ∈ V ↔ G ∈ V) ∧ ∀x(x ∈ F ↔ x ∈ G)

14To see that this is a legitimate definitional expansion, consider a translation tr from the
new language to the old which commutes with connectives and quantifiers and is such that
(x ∈ j(y))tr = ∃F ∈ V[∀z(z ∈ F ↔ z ∈ y) ∧ x ∈ F ] and (j(y) ∈ V)tr = ∃F ∈ V[∀z(z ∈ F ↔
z ∈ y) ∧ F ∈ V]. It is easy to see that tr takes new instances of old axioms to old instances of
old axioms, that the translations of the new axioms governing j(y) are provable from V-c-comp
and lemma 20, and that tr is the identity on the old language.
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obeys the identity axioms for the new language; that is, F ≡ F and F ≡ G →

(ϕ[F/H] ↔ ϕ[G/H]) where F and G are free for H. Since the third axiom govern-

ing j(y) entails that there is an F with F ≡ j(y), it will then follow immediately

from lemma 19 and V-R that:

(S4) ∀~x ∈ V∀~y ⊆ V [ϕ∗V(~x, ~y) ↔ ϕ(~x, ~j(y))]

3.1.3 The model account

Most commentators take Reinhardt (1974a) to be advocating the modal realist

account, though formulated with S4 rather than V-R.15 However, what he actually

advocates is what I will call the model account.16

The model account differs from the modal and modal realist accounts in two im-

portant ways. First, it liberalises the notion of concept. The modal account, recall,

assumes that concepts apply to sets but remains agnostic on the question whether

concepts could apply to other concepts. Indeed, in the language of second-order

set theory it is strictly ungrammatical to say that there are such concepts. The

model account allows for these claims. More precisely, rather than supplementing

L∈ with second-order variables, it supplements it with a predicate S, where x ∈ S

means that x is a set and x 6∈ S means that x is a concept. We can then say that

there are concepts which apply to other concepts using the first-order statement:

∃x, y 6∈ S(x ∈ y). Unrestricted first-order quantifiers then range over the sets and

concepts taken together.

15See, for example, Parsons (1977) and Maddy (1988).
16See the discussion in Reinhardt (1974a) section 6.
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The axioms governing sets and concepts are very similar to those governing the

actual and non-actual (or merely possible) sets of the modal realist account. In

particular, corresponding to V-collapse, there is an axiom which says that there

is a set or concept of all of the sets which satisfy ϕ. Formally:17

(S-collapse) ∃x∀y(y ∈ x↔ y ∈ S ∧ ϕ)

Corresponding to V-R, there is an axiom which says that if there is a set or con-

cept which satisfies ϕ, then according to the sets there is a set which satisfies ϕ.

Formally:

(S-R) ∀~x ∈ S[∃yϕ→ (∃yϕ)S ]

where ϕS is the result of restricting the quantifiers in ϕ to S and ϕ ∈ L∈ with

free variables among ~x. Finally, there is an axiom which says that the sets are

strongly inextensible in the concepts; that the elements of a set are again sets and

that subcollections of sets are sets. Formally:

(S-InExt) x ∈ S ∧ (y ∈ x ∨ y ⊆ x) → y ∈ S

Similar arguments to those given in the proof of theorem 12 show that over Ex-

tensionality and Foundation, these axioms imply that ZF holds restricted to the

sets and that it holds unrestrictedly. On the model account, then, concepts are

17S-collapse, S-R, and S-InExt are simple consequences of Reinhardt’s axiom 6.1. See
(Reinhardt, 1974a, p.199).
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extremely similar to sets and one might wonder how exactly they differ. I will

return to this question in section 3.1.

It would be natural at this point to extend the main claims of the modal or

modal realist accounts to the new language with S. For example, since concepts

obey Extensionality on the model account, we could use R to argue that concepts

could not have failed to obey Extensionality. Or more interestingly, we could

adapt the proof of theorem 12 to show that there are inaccessible, measurable,

and various other cardinals. However, the model account demurs from such an

extension. Indeed, it rejects the modal operators of the modal account and the

distinction between actual and non-actual sets of the modal realist account which

are used to formulate these claims.18 In their place, the model account adopts an

axiom asserting the existence of a standard model of the modal and modal realist

accounts. More precisely, let Ω be the concept applying to all the set ordinals.

Then the model account adopts the claim that there is an elementary embedding

from VΩ+1 to Vλ+1 with critical point Ω; that is, Ω is 1-extendible. Formally:

(Ω-1ex) ∃j : VΩ+1 ≺ Vλ+1, such that crit(j) = Ω

It is straightforward to verify that the corresponding two world Kripke model –

with w0, w1 the only worlds, w0 representing the actual world, first-order quanti-

18Reinhardt’s motivation for doing this seems to be ideological parsimony. He says, for exam-
ple:

...we could now introduce [merely possible] sets and [merely possible concepts].
However, we wish to avoid as much as possible an unending series of extensions of
the types of objects allowed in our theories (especially [merely possible] objects).
(1974a, p. 199)
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fiers at w0 ranging over VΩ and second-order quantifiers over j[VΩ+1], first-order

quantifiers at w1 ranging over Vλ and second-order quantifiers over Vλ+1, w0 ac-

cessing w1, and w0, w1 accessing themselves – satisfies the modal account.19 It is

similarly straightforward to verify that the model M = 〈Vλ, Vλ+1, VΩ, j[VΩ+1]〉 –

where Vλ interprets the possible sets, Vλ+1 the possible concepts, VΩ the actually

existing sets, and j[VΩ+1] the actually existing concepts – satisfies the modal realist

account.

3.2 The modal account formalised

In this section I provide a precise formulation of the modal account outlined in

section 1 (which I call RMST for Reinhardt’s Modal Set Theory) and determine

its strength. The main result is that RMST proves exactly the same sentences in

the language of second-order set theory as ZF2 + SCR.

3.2.1 RMST

RMST consists of three packages of principles. There is the underlying logic, basic

principles governing the behaviour of sets, and the axioms@-collapse♦, c-comp,

and R we have already encountered.

Preliminaries

Let L∈ be the language of first-order set theory with variables x0, ..., xi, ...; L2
∈

the language of second-order set theory, extending L∈ with variables F0, ..., Fi, ...;

and L♦ the language of modal second-order set theory with an actuality operator,

19See section 3.3 for further discussion of this kind of model.
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extending L2
∈ with ♦ and @. I will take x ∈ y, x = y, and x ∈ F to be well-formed

but not F = G. Ex abbreviates ∃y(y = x), but since F = G is not well-formed,

∃G(G = F ) cannot serve as an existence predicate for concepts. Below, I will

define an alternative.

Let ZF2 be the L2
∈ theory consisting of Extensionality, Infinity, Pairing, Union,

Powerset, Foundation, the second-order versions of Separation and Replacement,

and the universal closures of instances of c-comp.

Logic

The underlying logic has two groups of axioms. First, there are the instances in

L♦ of the truth-functional tautologies, the S4.2 axioms, and the following quan-

tificational and identity axioms (where x,y are either both first-order or both

second-order variables):

(A1) ∀y(∀xϕ→ ϕ[y/x]), where y is free for x in ϕ

(A2) ∀x(ϕ→ ψ) → (∀xϕ→ ∀xψ)

(A3) ϕ↔ ∀xϕ, where x is not free in ϕ

(A4) x = x

(A5) x = y → (ϕ[x/z] ↔ ϕ[y/z]), where x and y are free for z in ϕ

(CBF) ∃x♦ϕ→ ♦∃xϕ

Second, there are axioms governing the actuality operator.

(A6) @(ϕ→ ψ) ↔ (@ϕ→ @ψ)
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(A7) @�ϕ→ ϕ

(A8) �@ϕ↔ @ϕ

(A9) @∃xϕ↔ @∃x@ϕ

(A10) @♦Ex

The rules of inference are GEN, from ϕ infer ∀xϕ; MP, from ϕ → ψ and ϕ infer

ψ; NEC, if ϕ is a theorem, then so are �ϕ and @ϕ; and ∀NEC, if:

ϕ0 → �(ϕ1 → ...→ �(ϕn1 → �ϕn)...)

then so is:

ϕ0 → �(ϕ1 → ...→ �(ϕn1 → �∀xϕn)...)

where x is not free in ϕ0, ..., ϕn−1. The rule which results from ∀NEC by replacing

the �’s for @’s is then derivable using A7, A8, and A9.20

Remarks. Before I discuss the features of this logic, let me first use it to define an

existence predicate for concepts. Let F ≡ G abbreviate @�∀x@�(x ∈ F ↔ x ∈

G) and EF abbreviate ∃G(G ≡ F ). Then, in the presence of A10, F ≡ G will

satisfy the identity axioms for L♦ and thus EF will behave as required.21

20Proof: Suppose ϕ0 → @ψ is provable with x not free in ϕ0. It follows that ♦ϕ0 → ∀x♦@ψ
is provable and thus that ♦ϕ0 → ∀x@ψ is provable by A8. So @♦ϕ0 → @∀x@ψ is provable and
thus @♦ϕ0 → @∀xψ is provable by A9. Finally, ϕ0 → @∀xψ is provable by A7. When ψ is of
the form (ϕ1 → @(ϕ2 → ... → @ϕn)...), ∀x can be pushed inwards by repeated application of
A9.

21Proof: It suffices to show that F ≡ G → (x ∈ F ↔ x ∈ G), F ≡ G → �(F ≡ G),
F ≡ G → @(F ≡ G), and F ≡ F . For the first, note that since @♦Ex it follows from F ≡ G

that @♦@�(x ∈ F ↔ x ∈ G) and thus x ∈ F ↔ x ∈ G by A8, A9, and A7. The second and
third follow from A8 and A9, and the last is trivial.
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Axioms A1-A5 constitute an axiomatisation of positive free quantificational

logic. Classical logic can be obtained by adding as a further axiom: Ex. The

choice of a free logic is forced by @-collapse♦. As I pointed out in section 1.1,

it implies that there could have been a set which does not actually exist; that is,

♦∃x¬@Ex. But if Ex were provable, it would follow from NEC and GEN that

necessarily every set actually exists; that is, �∀x@Ex. Nonetheless, the difference

between classical and positive free quantification logic only shows up in arguments

using NEC on @ or ∀NEC. More precisely, a simple induction on the length of

proofs establishes that ϕ ∈ L♦ is provable from S4.2 + A1-5 + CBF + Ex + Γ

using MP, GEN, and NEC on � just in case E~x → ϕ is provable from S4.2 + A1-5

+ CBF + Γ using MP, GEN, and NEC on �.

A6, A8, and A9 express the fact that the actual world is the same from the

perspective of any world. A7 corresponds to the frame condition on Kripke mod-

els that the actual world access all other worlds. On the interpretation of ♦ as

concerned with a well-founded process of extending the mathematical ontology, it

essentially indicates that we are only considering extensions of the actual math-

ematical ontology. Given that assumption, A10 corresponds to the condition on

Kripke models that we only consider variables assignments which take values in

the domains of worlds.

The rule ∀NEC corresponds to the condition on Kripke models that we consider

variable assignments which take values in arbitrary worlds. For example, for Fx

to be valid in such models is for any x in the domain of any world to satisfy F at

any other world. ∀NEC was not added to the potentialist theory PMST in chapter

1, because it would have lead to inconsistency. To see this, note that the following

is provable in the modal logic K over positive free quantificational logic:
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∀x(x ∈ X ↔ x 6∈ x) ∧ ∀x(♦(x ≡ X) → x ≡ X) → ∀x�¬(x ≡ X)

where x ≡ X abbreviates ∀y(y ∈ x↔ y ∈ X). If Ex were provable, it would then

also be provable that:

∀x(x ∈ X ↔ x 6∈ x) ∧ ∀x(♦(x ≡ X) → x ≡ X) → �¬(x ≡ X)

and an application of ∀NEC would yield:

∀x(x ∈ X ↔ x 6∈ x) ∧ ∀x(♦(x ≡ X) → x ≡ X) → �∀x¬(x ≡ X)

But PMST proves both that there are pluralities satisfying the antecedent (by p-

comp and lemma 1) but that no plurality satisfies the consequent (by collapse♦).

Furthermore, I did not add it to the modal structuralist theory MSST in chapter

2 because it is provable from the B axiom; that is, from ϕ→ �♦ϕ.22

It is particularly useful because it allows for existential instantiation within the

scope of modal operators. For example, suppose we have derived ♦∃xϕ from some

premises Γ and suppose we can further derive ψ from Γ,♦(Ex∧ϕ). Then, as long

as we did not apply GEN to any variables free in Γ,♦(Ex∧ϕ), we can conclude by

the deduction theorem that
∧
Γ ∧ ¬ψ → �(Ex → ¬ϕ) is provable. So, assuming

x is not free in Γ,
∧
Γ ∧ ¬ψ → �∀x¬ϕ will be provable by ∀NEC and thus ψ

will be derivable from Γ alone. The same move can be used for arguments from

@Ex ∧@ϕ using ∀NEC for @.

22See (Hughes and Cresswell, 1996, p.293-6) for details and discussion.
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Basic set-theoretic axioms

The basic set-theoretic axioms are Extensionality, Foundation, stab=, stab∈, and

InExt which were discussed in section 1.1. For convenience, I will repeat the last

three here.

(stab=) �(x = y) ∨�(x 6= y)

(stab∈) �(x ∈ y) ∨�(x 6∈ y)

(InExt) Ex ∧ ♦(y ∈ x) → Ey

Given A7, stab= implies @(x = y) ↔ x = y and stab∈ implies @(x ∈ y) ↔ x ∈ y.

I will appeal to these facts in what follows by citing stab= and stab∈ respectively.

@-collapse♦, R, and c-comp

Finally, we have @-collapse♦, R, and c-comp which were introduced in section

1.1. For convenience, I will repeat them here.

(@-collapse♦) ♦∃x∀y(y ∈ x↔ @Ey ∧ ϕ)

(R) ∀~x[♦∃xϕ→ ∃xϕ]

where ϕ ∈ L2
∈ with free variables among ~x.
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(c-comp) ∃F∀x(x ∈ F ↔ ϕ)

3.2.2 RMST and ZF2 + SCR

In this section I determine the strength of RMST. The main result is that it proves

exactly the same sentences of second-order set theory as ZF2 + SCR.

As a first step towards the main result, the next lemma highlights a simple conse-

quence of R; namely, that the actual world is a second-order elementary substruc-

ture of any other world for formulas in L2
∈.

Lemma 21 (RMST). Suppose @E~x. Then:

@ϕ↔ ϕ

where ϕ ∈ L2
∈ with free variables among ~x.

Proof. First, note that R is trivially equivalent to the schema: E~x → (ϕ → �ϕ).

Then it follows from A7 that @E~x → (@ϕ → ϕ). Since we can substitute ¬ϕ for

ϕ, we are done.

An immediate corollary of lemma 21 given A8 is that @ϕ ↔ ♦ϕ whenever @Ex.

I will appeal to this fact in what follows by citing lemma 21.

Theorem 12. RMST proves every sentence ZF2 proves.

Proof. Above I observed that classical logic proves a sentence in L2
∈ only if positive

free logic does. It follows that RMST proves every sentence in L2
∈ provable in

classical logic. To establish our result, it thus suffices by lemma 21 to show that



CHAPTER 3. REINHARDT AND REFLECTION 117

RMST proves that every non-logical axiom of ZF2 is actually true. There are two

cases to consider.

Case 1: Pairing, Union, Powerset, and the consequent of second-order Replace-

ment all have the form:

∃x∀y(y ∈ x↔ ϕ)

For Pairing, ϕ = “y = z ∨ y = z′”; for Union, ϕ = “∃z ∈ w(y ∈ z)”; for

Powerset, ϕ = “y ⊆ z”; and for Replacement, ϕ = “∃z ∈ w(〈z, y〉 ∈ F )”. I

will now outline a general strategy for proving claims of this form and then

apply it to these particular ϕ. The idea is to show that RMST proves:

@E~x → ∀y(ϕ→ @Ey) (3.1)

where ϕ’s free variables are among ~x, y. For if it does, it will also prove:

@E~x → ♦∃x∀y(y ∈ x↔ ϕ)

by A8 and @-collapse♦ and thus:

@E~x → @∃x∀y(y ∈ x↔ ϕ)

by A8 and lemma 21.

It is easy to see that 3.1 holds for Pairing. For Union, we use InExt. For
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Powerset, assume @Ex, Ey, and y ⊆ x. By c-comp, let @EF be such that

@∀z(z ∈ F ↔ z ∈ y). Now, if z ∈ y, then @Ez by InExt and @(z ∈ y)

by stab∈. Thus, @(z ∈ F ) and so z ∈ F ∧ z ∈ x by lemma 21. Conversely,

if z ∈ F ∧ z ∈ x, then @Ez by InExt and @(z ∈ F ) by lemma 21. Thus,

@(z ∈ y) and so z ∈ y by stab∈. So:

∀z(z ∈ y ↔ z ∈ F ∧ z ∈ x)

and:

∃y∀z(z ∈ y ↔ z ∈ F ∧ z ∈ x)

since Ey. Thus:

@∃y∀z(z ∈ y ↔ z ∈ F ∧ z ∈ x)

by lemma 21. So let @Ey′ be a witness; that is, @∀z(z ∈ y′ ↔ z ∈ F∧z ∈ x).

Then by lemma 21 again we have ∀z(z ∈ y′ ↔ z ∈ F ∧ z ∈ x) and thus

∀z(z ∈ y′ ↔ z ∈ y). Finally, by Extensionality, y = y′ and so @Ey as

required.

For Replacement, assume @EF , @Ew, F is actually functional, and that y

is in the range of F on w; that is, ∃z ∈ w(〈z, y〉 ∈ F ). Then @Ez by InExt

and @(z ∈ w) by lemma 21. Since F is actually functional, there will be

some @Ey′ such that @(〈z, y′〉 ∈ F ) and so Ey′ and 〈z, y′〉 ∈ F by lemma
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21. Since F is actually functional, lemma 21 implies that it is functional. It

follows that y = y′ and so @Ey as required.

Case 2: Extensionality, Foundation, and c-comp are already axioms of RMST.

For Infinity, note that by @-collapse♦ there could have been an empty set

and so @∃y(y = ∅) by lemma 21. Let @Ey be a witness. By lemma 21

again, Ey and y = ∅ and so ∃y(@Ey ∧ y = ∅). So the actually existing sets

contain an empty set. Then, since Pairing and Union are actually true by

Case 1, the actually existing sets are closed under successor. To see this,

suppose @Ex. Then @∃y(y = x ∪ {x}). Let @Ey be a witness. By lemma

21, Ey and y = x ∪ {x} and so ∃y(@Ey ∧ y = x ∪ {x}). Finally, since @-

collapse♦ implies that there could have been a set of the actually existing

sets, it implies that there could have been an infinite set and our conclusion

follows immediately from lemma 21.

I will now extend theorem 12 by showing that RSMT proves all instances of the

principle of Structural Complete Reflection introduced in chapter 1.

Definition 15. For any ϕ ∈ L2
∈, let ϕ

∗z be the result of replacing all first-order

quantifiers ∃x in ϕ with ∃x ∈ z and all second-order quantifiers ∃F with ∃y ⊆ z

(making sure to avoid clashes of variables).

Definition 16. The principle of Structural Complete Reflection (SCR) is the fol-

lowing schema in L2
∈: There is a non-empty Vκ and concept F such that for all

~x ∈ Vκ, ~y ⊆ Vκ, and ~G, if:
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∀z(〈~y, z〉 ∈ F ↔ z ∈ ~G)

then:

ϕ∗Vκ(~x, ~y) ↔ ϕ(~x, ~G)

where ϕ’s free variables are among ~x, ~G.

The next lemma shows, in effect, that truth in the set of actually existing sets is

equivalent to actual truth for formulas in L2
∈.

Lemma 22 (RMST). Suppose z = {w : @Ew}, @E~x, and @∀w(w ∈ ~y ↔ w ∈ ~F ).

Then:

ϕ∗z(~x, ~y) ↔ @ϕ(~x, ~F )

where ϕ ∈ L2
∈ with free variables among ~x, ~F .

Proof. By induction in the complexity of ϕ. The base cases are immediate given

stab= and stab∈. Conjunction and negation are trivial. For ∃w, the induction

hypothesis implies:

(∃wϕ)∗z(~x, ~y) ↔ ∃w(@Ew ∧@ϕ(~x, ~F ))

Then note that by ∀NEC and lemma 21, ∃w(@Ew ∧@ϕ) is equivalent to @∃wϕ.

The case for ∃F is similar, but uses c-comp and Separation.
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It is a simple corollary of lemma 22 that the set of actually existing sets is an

inaccessible rank.23

Corollary 2 (RMST). If x = {y : @Ey}, then x = Vκ for κ inaccessible.

Proof. By theorem 12 and lemma 21, @ZF2 and so ZF2∗x by lemma 22. From

InExt it follows that x is transitive. Thus, x = Vκ.

Theorem 13. RMST proves every sentence ZF2 + SCR proves.

Proof. Given theorem 12, it suffices to show that RSMT proves each instance of

SCR. Now, working in RMST, suppose that Vκ = {x : @Ex}. By c-comp, let F

be such that:

∀y ⊆ Vκ∀z(〈y, z〉 ∈ F ↔ ∃H(@EH ∧@∀w(w ∈ y ↔ w ∈ H) ∧ z ∈ H))

Then I claim that Vκ and F are witnesses to SCR. To see this, first note that any

two @EH,H ′ such that @∀w(w ∈ y ↔ w ∈ H) and @∀w(w ∈ y ↔ w ∈ H ′) will

be co-extensive by lemma 21. Thus, for any such H:

∀z(〈y, z〉 ∈ F ↔ z ∈ H)

Now, suppose ~x ∈ Vκ, ~y ⊆ Vκ, ∀z(〈~y, z〉 ∈ F ↔ z ∈ ~G). Then there are @E ~H such

that @∀w(w ∈ ~y ↔ w ∈ ~H) by c-comp. It follows from lemmas 22 and 21 that:

ϕ∗Vκ(~x, ~y) ↔ ϕ(~x, ~H)

23Here I use a slightly non-standard definition of inaccessibility; namely, that κ is inaccessible
just in case ZF2∗Vκ . In ZFC, this is equivalent to the usual definition. But in the absence of
Choice, 2α is not always well-defined and the two definitions can come apart. See Blass et al.
(2007).
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Finally, by the observation above, ~H will be co-extensive with ~G and so:

ϕ(~x, ~H) ↔ ϕ(~x, ~G)

I will now prove a converse of theorem 13; namely, that any sentence in L2
∈ provable

in RMST is provable in ZF2 + SCR.

Definition 17. Let tr
i,F,z be the following translation from L♦ to L2

∈.

• tr
i,F,z is the identity on atomic formulas and commutes with the connectives.

• (∃xϕ)tri,F,z = ∃xϕtr
i,F,z if i = 1 and:

• (∃xϕ)tri,F,z = ∃x ∈ zϕtr
i,F if i = 0.

• (∃Gϕ)tri,F,z = ∃Gϕtr
i,F,z if i = 1 and:

• (∃Gϕ)tri,F,z = ∃G(∃y ⊆ z∀w[〈y, w〉 ∈ F ↔ w ∈ G] ∧ ϕtr
i,F,z) if i = 0.

• (@ϕ)tri,F,z = ϕtr
0,F,z

• (♦ϕ)tri,F,z = ϕtr
1,F,z if i = 1 and:

• (♦ϕ)tri,F,z = ϕtr
0,F,z ∨ ϕ

tr
1,F,z if i = 0.

Lemma 23 (ZF2). Let Vκ and F witness SCR for ϕ, and suppose ~x ∈ Vκ, ~y ⊆ Vκ,

and ∀w(〈~y, w〉 ∈ F ↔ w ∈ ~G). Then:

ϕ∗Vκ(~x, ~y) ↔ ϕtr
0,F,Vκ

(~x, ~G)

where ϕ ∈ L2
∈ with free variables among ~x, ~G.
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Proof. By induction on the complexity of ϕ. The cases for x = y and x ∈ y

are trivial. The case for x ∈ G is just the fact that x ∈ y ↔ x ∈ G by SCR.

Conjunction, negation, and the case for ∃x are trivial. For ∃Gϕ, note that for any

y ⊆ Vκ there is some G such that ∀w(〈y, w〉 ∈ F ↔ w ∈ G) by c-comp.

Theorem 14. ZF2 + SCR proves every sentence in L2
∈ that RMST proves.

Proof. My strategy will be to provide, for any finite set of RMST’s axioms, an

interpretation in ZF2 + SCR which is preserved under RMST’s rules of inference

and which is the identity on L2
∈. Our result will then be immediate.

Working in ZF2 + SCR, let Vκ and F witness SCR for ϕ0, ..., ϕn and let tr
i be

the translation tr
i,F,Vκ

from definition 17. It is straightforward but tedious to verify

that ψtr
0 and ψtr

1 hold whenever ψ is an axiom of RMST other than an instance of

R. I will now show that ψtr
0 and ψtr

1 hold when ψ is the instance of R for ϕi.

Since ψtr
1 = ∀~x[ϕi → ϕi], it trivially holds. ψtr

0 is:

[~x ∈ Vκ ∧ ~y ⊆ Vκ ∧ ∀w(〈~y, w〉 ∈ F ↔ w ∈ ~G)] → [(ϕi)
tr
0 ∨ ϕi → (ϕi)

tr
0 ]

So suppose the antecedent and ϕi(~x, ~G). Then, by SCR, it follows that ϕ∗Vκ

i (~x, ~y).

Thus, (ϕi)
tr
0 by lemma 23. Finally, the rules of inference for RMST are easily seen

to be preserved by ϕtr
0 ∧ ϕtr

1 .

3.3 Criticisms

In this section I will look at criticisms of the modal, modal realist, and model

accounts outlined in section 1.
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3.3.1 Distinctions without a difference

Sets and concepts

As discussed in section 1.3, sets and concepts are very similar on the model account.

For example, they both satisfy Extensionality. This presses the question: how do

concepts differ from sets? As Reinhardt notes, without a satisfactory answer to

this question, the distinction between sets and concepts looks like a “distinction

without a difference” (p. 196, 1974a).24

In contrast, there is a significant difference between sets and concepts on the

modal account. Sets are inextensible – they could not have existed without their

elements – whereas concepts can be extensible. In particular, since there could

have been a set which does not actually exist by @-collapse♦, any actually

existing concept which applies to all actual sets could have applied to something

which does not actually exist. An analogous difference arises on the modal realist

account. But the model account rejects the modal operators and the distinction

between actual and non-actual sets and concepts on which those differences are

based. So how do sets and concepts differ on the model account?

Reinhardt proposes that the distinction can be drawn in terms of the standard

models of RMST which are taken to exist on the model account.25 For example,

sets are inextensible in such models whereas concepts can be extensible in them.

The problem with this response is that the proposed difference is not particularly

interesting. There are simple Kripke models in which concepts are inextensible

and sets are extensible, and in which some sets are inextensible and others are

extensible. In general, the existence of a model of an interesting difference does

24See Maddy (1983) for discussion.
25See, for example, (Reinhardt, 1974a, p.198-99).
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not imply that there is an interesting difference. It is therefore unclear how a

proponent of the model account might spell out the difference.

Actual and non-actual sets

Although the modal realist account avoids the previous problem, it does face an

analogous problem. In particular, it raises the question: how do actual sets differ

from non-actual sets? It is tempting to think that this is another ‘distinction

without a difference’.

It is instructive to compare the distinction between actual and non-actual sets

with the distinction that the metaphysical modal realist draws between the inhab-

itants of the metaphysically actual world and the inhabitants of metaphysically

merely possible worlds. Lewis (1986), for example, draws the distinction in terms

of spatiotemporal and causal connections. For him, an object actually exists just

in case it is spatiotemporally or causally connected to us. Such resources are, of

course, unavailable to a proponent of the modal realist account, since sets are not

spatiotemporally located and do not enter into causal relations. The problem is

that it is unclear what might be used by a proponent of the modal realist account

instead.

3.3.2 The universality of set theory

Recall from section 1 that the central principles of the modal realist and model

accounts were very similar. For example, V-R is just:

∀~x ∈ V [ϕV ↔ ϕ]
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and S-R is just:

∀~x ∈ S[ϕS ↔ ϕ]

for ϕ ∈ L∈. In essence, V-R says that the actual sets are an elementary substruc-

ture of the actual and non-actual sets taken together, and S-R says that the sets

are an elementary substructure of the sets and concepts taken together.

As it turns out, Reinhardt sees both principles as following from a more general

claim he calls the universality of set theory. Applying it to get S-R he says, for

example:

Since we regard set theory (the theory of [V ]) as the theory of ex-

tensional objects such as sets, collections, etc., we assume this theory

applies to [the sets and concepts taken together]. (1974, p.198-199)

The sets and concepts taken together are one example of extensional objects,

according to Reinhardt. Actual and non-actual sets are another. Thus, the uni-

versality of set theory is supposed to imply both S-R and V-R.

The universality of set theory has been criticised in the literature, most notably

by Maddy (1988). In particular, she challenges its use in obtaining S-R (p. 754).26

She claims that we have little reason to think that concepts are extensional in the

relevant sense and so little reason to think that the universality of set theory applies

to them. After all, given the problem raised in section 3.1, sets and concepts need

to be importantly different.

26She also challenges its use to obtain S4 (see section 1). She points out that even granting
that the actual sets have the same theory as the possible sets, it is unclear how that fact would
give rise to the j operation (p. 753-4). However, once we formulate the modal realist account
with V-R instead of S4, this worry disappears.
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As long as we do not follow Reinhardt in adopting the model account, though,

we can agree with Maddy. Since we need not accept S-R, we need not try to

justify it on the basis of the universality of set theory and so we need not claim

that concepts are relevantly like sets. But regardless of whether it is applicable

to concepts, there is a deeper problem with the claim. To see this, consider its

application to get V-R. In order for it to do so, the non-actual sets have to be

extensional objects in the relevant sense. So it looks like the universality of set

theory should also imply:

∀~x ∈ V [ϕV ↔ ϕV∗]

where ϕV∗ is the result of restricting all quantifiers in ϕ to 6∈ V ; that is, to the

non-actual sets. But this is plainly false. Every actual set is equal to some actual

set, but no actual set is equal to a non-actual set. Or, consider the sets taken

together with the (possibly non-actual) subsets of the actual sets. Since they seem

to be extensional objects in the relevant sense, it looks like the universality of set

theory should apply. But they do not satisfy Pairing.

To see the problem more clearly, consider the following formulation of the uni-

versality of set theory.

(UoS) ∀X ⊆ Ext∀~x ∈ V [ϕV ↔ ϕX ]

for ϕ ∈ L∈ and where X is a totality and where Ext is the totality of all extensional

objects. Then there are many counterexamples to UoS. For example, X = ∅,

X = V∗, and X = {x : x ⊆ V}. So even assuming we can make good sense of
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the general notion of an extensional object, UoS will have to be restricted. The

problem is that it is unclear whether there is an interesting range of X for which

it holds.

3.3.3 Extendability to inconsistency

In section 1.1 I noted that R does not hold for arbitrary formulas. In particular,

I noted that since @-collapse♦ implies that there could have been a set which

does not actually exist, it does not hold for ∃x¬@Ex. Similarly, since the principle

of plural collapse (collapse♦) from chapter 1 implies that there could have been

a set not among the X’s, R does not hold for ∃x(x 6∈ X). Furthermore, since

∃x¬@Ex is equivalent to:

∃x(x 6= x0∧, ...,∧x 6= xα∧, ...)

when x0, ..., xα, ... are all the actually existing sets, it does not hold for that infini-

tary formula either.

Since the modal account takes R to hold for formulas in L2
∈, these observations

press the question: for which formulas does R hold and why? The problem is that

it is unclear whether a satisfactory answer to this question can be given.

The same problem arises for reflection principles quite generally, and for similar

reasons. For example, SCR does not hold for arbitrary formulas involving a pred-

icate C which is intended to apply to a concept just in case that concept applies

to all sets. Formally:

∀F (F ∈ C ↔ ∀x(x ∈ F ))
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To see this, note that there is a concept satisfying C by c-comp but there is no

subset of any Vα satisfying it.27 Similarly, since:

∀x(x = x0∨, ...,∨x = xα∨, ...)

is true when x0, ..., xα, ... are all sets but not true in any Vβ, SCR does not hold

for arbitrary infinitary formulas.

On the face of it, the problem as it applies to R is no worse than the problem

as it applies to SCR. In so far as we are interested in whether the potentialist can

formulate principles as attractive as SCR, it therefore does not appear to be a

particularly pressing problem. Nonetheless, there is a different example which has

consistently been raised against R and which does not seem to have an analogue

for SCR. Roughly, the idea is that R generalises to imply the existence of a non-

trivial elementary embedding from the universe of sets into itself, which was shown

to be inconsistent with Choice by Kunen (1971).28 Exactly how the generalisation

is supposed to go is unclear.29 I will now propose a natural way of spelling it out

and argue that it does have an analogue for SCR after all.

27This is somewhat similar to the problem Linnebo (2007) raises for the predicate x ≡ X used
in Burgess (2004).

28See, for instance, (Koellner, 2009, p.117), (Reinhardt, 1980, p.200), and (Wang, 1977, p.333,
fn. 14).

29Koellner (2009) and (Reinhardt, 1980, p.200) are clear on the intended generalisation, but
they are explicitly considering principles other than R. Koellner, for example, focuses on a
principle suggested at the end of Reinhardt’s dissertation (1967); and Reinhardt focuses on
generalisations of the model account where we assert that Ω is not only 1-extendible but also
α-extendible for any α.
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Higher-order set theory and R

I will spell out the generalisation as the claim that R does not hold for arbitrary

formulas in the language of higher-order set theory. For simplicity, I will work

in ZF2 plus Choice and show that there are no standard models of RMST in

such languages. It should then be straightforward to convert this into a proof of

inconsistency in a suitable higher-order extension of RMST.30

First, let me define the language of higher-order set theory. Let LΩ
∈ extend L∈

with variables xα0 , ..., x
α
i , ... for each ordinal α ≤ Ω. I will call α the type of the

variable xαi and use α-concept for the entities over which they range. The x0i ’s play

the same role in LΩ
∈ as the xi’s play in L2

∈ and so the 0-concepts are just the sets.

The x1i ’s play the same role in LΩ
∈ as the Fi’s did in L2

∈ and so the 1-concepts are

just what I have been calling ‘concepts’. For simplicity, xα ∈ yβ and xα = xβ are

taken to be well-formed. I will say that an α-concept xα applies to a β-concept yβ

whenever yβ ∈ xα and I will say that it contains yβ when α = 0. Let Lα
∈ be the

restriction of LΩ
∈ to formulas with variables of type less than or equal to α. I will

use concept for Ω-concepts.

One of the main principles governing concepts in L2
∈ is c-comp, the claim that

there is a concept co-extensive with any condition on the sets. Generalising this,

one of the main principles governing concepts in LΩ
∈ is the claim that there is an

α + 1-concept co-extensive with any condition on the α-concepts. Formally:

(comp) ∃xα+1∀yα(yα ∈ xα+1 ↔ ϕ)

30See Degen and Johannsen (2000) and Linnebo and Rayo (2012) for discussion.
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In addition to there being an α+ 1-concept which at least applies to all and only

the α-concepts satisfying ϕ, it is natural to also take α+1-concepts to only apply

to α-concepts. Formally:

(reg) ∀xβ ∈ yα+1∃zα(xβ = zα)

For limits λ, it is natural to take the λ-concepts to be an accumulation of the

α-concepts for α < λ. That is, (i) every α-concept for α < λ is a λ-concept and

(ii) every λ-concept is an α-concept for some α < λ. The first claim can formalised

as:

(acc1) ∀xα∃yλ(xα = yλ)

for α < λ. Since we cannot quantify into the types of the language, the second

claim is usually taken to be formalised by the following infinitary rule of inference:

(acc2) From ∀x0ϕ(x0), ..., ∀xαϕ(xα), ... infer ∀xλϕ(xλ)

where 0, ..., α, ... are all the ordinals less than λ.31

For simplicity, I will also add a principle of extensionality for concepts. For-

mally:

(ext) ∀xλ(xλ ∈ yα ↔ xλ ∈ zβ) → yα = zβ

31See, for example, Degen and Johannsen (2000) and Linnebo and Rayo (2012).
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As I will show in the appendix to this section (theorem 16), nothing hangs on

assuming ext.

These principles strongly suggest simple intended models for LΩ
∈ . In particular,

let M = 〈〈Xα : α ≤ Ω〉, E〉 where X0 = Vκ for some κ and E is a relation

on
⋃
Xα such that E ∩ X0 × X0 = ∈ ∩X0 × X0. Corresponding to comp, we

impose the constraint that for any x ⊆ Xα there is some y ∈ Xα+1 such that

∀z(〈z, y〉 ∈ E ↔ z ∈ x); corresponding to reg, we impose the constraint that

if 〈x, y〉 ∈ E and y ∈ Xα+1, then x ∈ Xα; corresponding to acc1 and acc2 we

impose the constraint that Xλ =
⋃

α<λXα; and corresponding to ext, we impose

the constraint that E be an extensional relation.32 Intended models for Lβ
∈ are

defined in the same way with β replacing Ω. Satisfaction in M is defined in the

obvious way, with variables of type α ranging over Xα.

Now we are in a position to define the notion of a standard two world Kripke

model for RMST in LΩ
∈ . In particular, let 〈M,N〉 be a pair of intended models

for LΩ
∈ such that κM < κN , XM

α ⊆ XN
α , and for which:

∀~x ∈
⋃

Xα(M � ϕ[~x/~y] ↔ N � ϕ[~x/~y])

where ϕ ∈ LΩ
∈ with free variables among ~y. With M as the actual world, M

accessing N , and M,N accessing themselves, this guarantees that R holds for

formulas in LΩ
∈ and it is routine to verify that the model validates all the other

axioms of RMST in LΩ
∈ . Two world models for RMST in Lβ

∈ are defined in the

same way with β replacing Ω.

With these notions in place, we can then prove:

32That is, if ∀z(〈z, x〉 ∈ E ↔ 〈z, y〉 ∈ E), then x = y.
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Theorem 15 (ZFC2). There is a standard two world model for RMST in LΩ
∈ just

in case:

∃j : V ≺ V,with crit(j) = κM

and there is a standard two world Kripke model for RMST in Lλ
∈ just in case:

∃j : VκM+λ ≺ VκN+λ,with crit(j) = κM

Proof. See the appendix to this section.

But Kunen (1971) showed that there cannot be a j : V ≺ V given Choice. So

there are no standard models of RMST in LΩ
∈ .

Put like this, the problem appears to have a straightforward response. A proponent

of RMST can just deny that LΩ
∈ exists. Someone living in the actual world of a

standard two world Kripke model will of course accept that Lα
∈ exists for α < κM.

They may even accept that Lα
∈ exists whenever it is definable in some Lβ

∈ which

they have already adopted. But there is little reason for them to accept that LΩ
∈

exists. In any case, the problem does not in fact rely on LΩ
∈ . As I will now show,

it arises already for LκM+κM

∈ .

By theorem 15, any standard two world Kripke model for RMST in LκM+κM

∈

yields an elementary embedding j from VκM+κM to VκN+κM . Now, consider the

following true claim in VκN+κM :

∃α∃β < j(κM)∀γ∃δ < β(γ = α + δ)
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To see that this is true in VκN+κM , note that α = κN and β = κM are witnesses.

But:

∃α∃β < κM∀γ∃δ < β(γ = α + δ)

is clearly false in VκM+κM since κM is a cardinal. Since LκM+κM

∈ will be definable

over VκM , this instance of the problem cannot be avoided by denying its existence.

Let me now briefly indicate how an analogous problem arises for SCR. Just as

LκM+κM

∈ is definable over VκM , LΩ
∈ is definable over V in ZF. In that language it

will be true over V that:

∃αΩ∃βΩ∀γΩ∃δΩ < βΩ(γΩ = αΩ + δΩ)

To see that this would be true, note that since its quantifiers would range over

Ω + Ω, α = Ω and β = Ω are witnesses. But it is false over any Vκ, since in that

case its quantifiers will range over κ+ Ω = Ω and it will just be equivalent to:

∃α∃β∀γ∃δ < β(γ = α + δ)

Appendix

Proof of theorem 15. Let 〈M,N〉 be a standard two world Kripke model for RMST

in LΩ
∈ . Since Xλ is a union of the Xα’s for α < λ and since elements of Xα+1 only

apply to elements of Xα, E will be well-founded. So, given that it is also exten-

sional, we can apply Mostowski’s collapse lemma to get an isomorphism j from a
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transitive class Y to 〈XM
Ω , EM〉. Since every subset of Xα determines a concept at

Xα+1, a simple induction establishes that Y = V . Let i be a similar isomorphism

between 〈XN
Ω , E

N 〉 and V .

Now, a simple induction on the complexity of ϕ shows that:

〈XM
Ω , EM〉 � ϕ↔ M � ϕ∗Ω

where ϕ ∈ L∈ and ϕ∗Ω is the result of replacing each variable x in ϕ with xΩ.

Similarly for N . By R, we have:

M � ϕ∗Ω ↔ N � ϕ∗Ω

It follows that i◦j is an elementary embedding from V to V and it is easy to check

that crit(i ◦ j) = κM as required.

Given j : V → V , it is easy to see that the pair 〈M,N〉 withXM
α = j[Vcrit(j)+α

]

and XN
α = V

j(crit(j))+α
will be a two world Kripke model for RMST in LΩ

∈ .

An analogous argument with λ replacing Ω will establish the second conjunct

of theorem 15.

I mentioned above that nothing hangs on the assumption of extensionality. Let

me now prove that.

Definition 18. Let M be an intended model for Lα
∈. Say that Y ⊆

⋃
β≤αXβ

is an extensional core of M if (i) X0 ⊆ Y , (ii) E ∩ Y × Y is an extensional

relation, and (iii) for any x ⊆ Xβ ∩ Y there is some y ∈ Xβ+1 ∩ Y such that

∀z(〈z, y〉 ∈ E ↔ z ∈ x).
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Lemma 24. Every intended model of Lα
∈ has an extensional core.

Proof. Straightforward transfinite recursion.

Lemma 25. Suppose Y is an extensional core of an intended model M for Lα
∈.

Then there is an isomorphism j from 〈Y,E∩Y ×Y 〉 to VκM+α which is the identity

on VκM.

Proof. Since E∩Y×Y is well-founded and extensional, Mostowski’s collapse lemma

implies that there is an isomorphism j from 〈Y,E ∩ Y × Y 〉 to some transitive set

x. By induction we can show that j[Y ∩ Xα] = VκM+α. The base case is trivial

since Y ∩X0 = X0 = VκM and since VM
κ is transitive in Y , j will be the identity

on it. The successor case follows by condition (ii), and the limit case is trivial.

Lemma 26. Suppose M is an intended model for Lλ+1
∈ , Y ∈ XM

λ+1 is an ex-

tensional core of M restricted to λ, j is an isomorphism from VκM+λ to Y , and

~x ∈ VκM+λ. Then:

VκM+λ � ϕ(~x) ↔ M � (ϕλ)Y (j(~x))

where ϕ ∈ L∈, ϕ
λ is the result of replacing each variable x in ϕ with xλ, and ϕY

is the result of binding all quantifiers in ϕ to Y .

Proof. A simple induction on the complexity of ϕ.

Theorem 16 (ZFC2). If there is a two world Kripke model for RMST in Lλ+1
∈ ,

then:

∃j : VκM+λ ≺ VκN+λ,with crit(j) = κM
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Proof. Suppose 〈M,N〉 is a two world Kripke model for RMST in Lλ+1
∈ . By

lemmas 24 and 25, let j be an isomorphism from VκM+λ to an extensional core

Y ∈ XM
λ+1. By lemma 26:

VκM+λ � ϕ(~x) ↔ M � (ϕλ)Y (j(~x))

and by R:

M � (ϕλ)Y (j(~x)) ↔ N � (ϕλ)Y (j(~x))

Finally, note that the fact Y is an extensional core can be expressed using sentences

in Lλ
∈. For example, condition (iii) can expressed by ∀xβ+1∃yβ+1 ∈ Y ∀zβ(zβ ∈

yβ ↔ zβ ∈ xβ+1) for all β < λ. It follows from R that Y is an extensional core

of N restricted to λ. So by lemma 24 let i be an isomorphism from Y in N to

VκN+λ. Then, by lemma 25:

N � (ϕλ)Y (j(~x)) ↔ VκN+λ � ϕ(i(j(~x)))

Thus i◦j is an elementary embedding from VκM+λ to VκN+λ and it is easy to check

that crit(i ◦ j) = κM.

Just as LκM+κM

∈ is definable over VκM , LκM+κM+1
∈ is definable over VκM . So theo-

rem 16 shows that the problem persists in the absence of extensionality.
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3.3.4 When does a condition determine a set/concept?

As I pointed out in chapter 1, there are a number of general and pressing questions

which arise in the language of first-order set theory. For example, one upshot of

the set-theoretic paradoxes is that the question:

(1) When does a condition ϕ determine a set?

[In other words: Given any condition ϕ, when is there a set x such that

∀y(y ∈ x↔ ϕ)?]

requires a more sophisticated answer than “never” and “always”. Once we add

the modal operator ♦ to that language, such questions bifurcate. In addition to

(1), for example, we have:

(1∗) When could there have been a set of all possible ϕ’s?

[In other words: Given any condition ϕ, when could there have been a

set x such that �∀y(y ∈ x↔ ϕ)?]

Analogous questions arise in the language of second-order set theory and its ex-

tension with ♦ and @. For example, we have:

(2) When is there a concept which applies to all and only the ϕ’s?

[In other words: Given any condition ϕ, when is there a concept F

such that ∀x(x ∈ F ↔ ϕ)?]

(2∗) When could there have been a concept which necessarily applies

to all and only the ϕ’s?

[In other words: Given any condition ϕ, when could there have been a

concept F such that �∀x(x ∈ F ↔ ϕ)?]
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(2∗∗) When is there a concept which necessarily applies to all and only

the ϕ’s?

[In other words: Given any condition ϕ, when is there a concept F

such that �∀x(x ∈ F ↔ ϕ)?]

Since RMST includes c-comp, it will answer question (2) “always”. In the rest of

the chapter, I want to look at how RMST fairs with respect to the other questions.

When does a condition determine a set?

In chapter 1 I noted that the potentialist theory PMST can answer question (1∗)

using plural resources. In particular, it implies that there could have been set of

all possible ϕ’s just in case there could have been a plurality of all possible ϕ’s

(theorem 2). As I noted, this begs the question: when could there have been a

plurality of all possible ϕ’s. A natural answer can be given on the basis of a general

conception of pluralities as nothing over and above the things they comprise. In

particular, it will follow from such a conception that there could have been a

plurality of all possible ϕ’s if the possible ϕ’s could have all co-existed. But even

expressing this requires resources which go beyond PMST. In effect, it requires the

ability to cross-reference worlds; to say that there is a world w such that anything

which is ϕ in any world accessible from w already exists at w. For example, the

backtracking operators in Hodes (1984) would suffice (see the next section for

discussion).

I also noted that PMST does not provide an answer to (1). Although it implies

that there could have been all the finite ordinals, it is consistent with there only

being the empty set or only 7. But once we have the ability to cross-reference
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worlds, a neat answer to (1) becomes available. We can say that there is a set of

the ϕ’s just in case all the ϕ’s had previously co-existed. Formally: w � ∃x∀y(y ∈

x ↔ ϕ) just in case there is some w′ < w such that every y which exists and is ϕ

at w already exists at w′.33

The problem for RMST is that this answer to (1) is not available. To see

this, note that since no world strictly accesses the actual world, the answer would

imply that actually there are no sets. But as theorem 12 shows, there are many

sets which actually exist according to RMST. Indeed, the actually existing sets

satisfy ZF2. Given this, it is unclear how a proponent of RMST might give a

satisfactory answer to (1).34

When could there have been a concept which necessarily applies to all

and only the ϕ’s?

Recall from chapter 1 that the modalisation of ϕ is the result of prefixing all of

its universal quantifiers with � and all of its existential quantifiers with ♦. One

of the central results concerning PMST was that it proves the modalisations of

many of the axioms of Zermelo set theory (theorem 1). It turns out that RMST

proves something much stronger. In particular, it proves that every formula in

L2
∈ is equivalent to its modalisation and it thus proves the modalisations of the

33As I pointed out, this in turn can be seen to follow from collapse♦ together with a principle
of priority – which says if x ∈ dom(w), then there is some other world w′ which accesses such
that x ⊆dom(w′) – and a principle of maximality – which says that if x ⊆dom(w) and w accesses
w′, then x ∈dom(w′).

34In laying down axioms for the actuality operator, I assumed that the actual world accesses
every world and is thus not strictly accessed by any other world. This was expresses by A8; i.e.
@�ϕ→ ϕ. But we might want to deny that assumption and just modify the axioms accordingly.
However, this would not help with the closely related question: which sets actually exist and
why? RMST’s commitment to a plethora of actually existing sets makes it hard to see how a
proponent could answer this question.
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axioms of ZF2 + SCR by theorem 12. More precisely, we have:

Theorem 17 (RMST). Suppose E~x. Then:

ϕ↔ ϕ♦

where ϕ ∈ L2
∈ with free variables among ~x.

Proof. By induction on the complexity of ϕ. The base, conjunction, and negation

cases are trivial. So suppose E~x and ∃yϕ. Then ∃yϕ♦ by the induction hypothesis

and thus ♦∃yϕ♦ = (∃yϕ)♦. Conversely, suppose E~x and ♦∃yϕ♦. Then �E~x by

CBF and thus ♦(E~x ∧ ∃yϕ♦). It follows that ♦∃yϕ by the induction hypothesis

and then ∃yϕ by R.

Given c-comp, it is an immediate corollary that:

(c-comp♦) �∀~x♦∃F�∀x(x ∈ F ↔ ϕ)

where ϕ is either in L2
∈ or the modalisation of a formula in L2

∈. In other words,

RMST places a significant constraint on any answer to the question “when could

there have been a concept which necessarily applies to all and only the ϕ’s?” It tells

us that there could have been such a concept for any ϕ in L2
∈ and any modalisation

of any ϕ in L2
∈.

I will now argue that although a proponent of RMST is committed to all of

those instances of c-comp♦, there are formulas in natural extensions of L♦ for

which c-comp♦ fails. To do this, I will make limited use of the backtacking oper-

ators of Hodes (1984) which, as mentioned above, may be needed anyway in order
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to give a satisfactory answer to question (1∗).35 For my purposes, the following

remarks should suffice. A backtracking operator is a downward arrow ↓ which

attaches to formulas as ♦ does. It is intended to ‘refer back’ from within the

scope of modal operators to what had been the case. For example, the formula

�∀x(ϕ→↓ Ex) will be true just in case anything which could have been ϕ already

exists. Similarly, we can use ↓ to formulate a generalisation of @-collapse♦:

(collapse♦↓) ∀~x♦[↓ E~x ∧ ∃x∀y(y ∈ x↔↓ Ey ∧ ϕ)]

collapse♦↓ says that given any sets and concepts it could have been the case

that they had existed and there is a set of all the ϕ’s which had existed. Since the

potentialist is committed to this generalisation of @-collapse♦, I will assume it

in what follows. I will also assume the following axioms and rules governing ↓,

which are clearly true and truth preserving on the intended interpretation.

(A6∗) ↓ (ϕ→ ψ) ↔ (↓ ϕ→↓ ψ)

(A7∗) ↓ �ϕ→ ϕ

The rules are ↓NEC, if ϕ is a theorem, then so is ↓ ϕ; and ↓ ∀NEC, if ϕ →↓ ψ is

a theorem, then so is ϕ→↓ ∀xψ when x does not occur free in ϕ.

My strategy will be to use ↓ to define a relation R which obeys the following

existence and uniqueness claims.

(E) ∀F♦∃xR(F, x)

(U) ∀F,G(∃x[R(F, x) ∧R(G, x)] → ∀x(x ∈ F ↔ x ∈ G))

35See Payne (2015) for discussion and a nice proof theory for ↓.
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In essence, E and U say that R is an injection from the concepts into the sets.

By a Russell style argument, E and U can be shown to be inconsistent with

the following instance of c-comp♦:

♦∃F�∀x(x ∈ F ↔ ∃G(R(G, x) ∧ x 6∈ G))

To see this, suppose that EF is a witness; that is:

�∀x(x ∈ F ↔ ∃G(R(G, x) ∧ x 6∈ G))

By E and CBF:

♦(EF ∧ ∃xR(F, x) ∧ ∀x(x ∈ F ↔ ∃G(R(G, x) ∧ x 6∈ G)))

Then ♦(x ∈ F ↔ x 6∈ F ). Contradiction.

I will now define my relation R. Roughly, it will map a concept to the set it

had been co-extensive with. Formally:

R(F, x) =df↓ EF∧ ↓ ∀y(y ∈ F ↔ y ∈ x)

To see that E holds for R, let EF . By collapse♦↓, it follows that:

♦[↓ EF ∧ ∃x∀y(y ∈ x↔↓ Ey ∧ y ∈ F )]

Let ↓ EF , Ex, and ∀y(y ∈ x ↔↓ Ey ∧ y ∈ F ). Then we want to show that

↓ ∀y(y ∈ F ↔ y ∈ x). So suppose that ↓ Ey. Then Ey by CBF and A7∗. So
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y ∈ F ↔ y ∈ x. By R and A7∗, y ∈ F ↔↓ y ∈ F and by stab∈ and A7∗,

y ∈ x↔↓ y ∈ x. Thus, ↓ ∀y(y ∈ F ↔ y ∈ x) as required.

To see that U holds for R, let EF,G, x and suppose that ↓ EF,G, ↓ ∀y(y ∈

F ↔ y ∈ x), and ↓ ∀y(y ∈ G ↔ y ∈ x). Then, ↓ ∀y(y ∈ F ↔ y ∈ G) and so

∀y(y ∈ F ↔ y ∈ G) by R and A7∗.

It is unclear how a proponent of RMST might answer the question of this section in

a way which explains why c-comp♦ holds for all formulas in L2
∈ and modalisations

thereof but not for ∃G(R(G, x) ∧ x 6∈ G).

When is there a concept which necessarily applies to all and only the

ϕ’s?

As with the previous question, RMST puts two severe constraints on any answer

to the question: when is there a concept which necessarily applies to all and

only the ϕ’s? The first constraint is given by c-comp. It tells us that for any

condition whatsoever, there is always a concept which applies to all and only the

things satisfying that condition. In particular, for any possible set of actually

existing sets, there is actually a concept which applies to all and only its elements.

Formally:

�∀x@∃F∀y(y ∈ F ↔ y ∈ x)

Such instances of c-comp were integral to the proofs of Powerset in theorem 12

and SCR in theorem 13, and appear to be necessary for RMST’s strength.36

36For example, let κ be an inaccessible cardinal and let 〈Vα, X〉 with α < κ and |X| ≤ |Vα| be
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The second constraint is given by R and @-collapse♦. By @-collapse♦,

there could have been a set of all actually existing sets. But there is no actually

existing concept which necessarily applies to all and only the actually existing sets.

For if there were, it would necessarily apply to every set by R. But @-collapse♦

implies that there could have been a set which does not actually exist. So it would

both apply and not apply to such a set. In general, there could have been many

sets for which there is no actually existing concept which necessarily applies to all

and only their members.

There has to be enough actually existing concepts for there to be one for every

set of actually existing sets, but there cannot be so many actually existing concepts

that there is one necessarily co-extensive with each such set. The problem is that

it is unclear how a proponent of RMST might answer the question of this section

in a way which explains why there are the former concepts but not the latter.37

Conclusion

Some of the criticisms I have considered in this section are easily avoided. A

proponent of the modal, modal realist, or model accounts can simply forgo com-

mitment to the universality of set theory and thus avoid its problems. Similarly, a

proponent of the modal account can avoid the problems arising from distinctions

without a difference. Furthermore, the problem of extendability to inconsistency

a second-order elementary substructure of 〈Vκ, Vκ+1〉. A simple Lowenheim-Skolem construction
will yield such a pair. Then the associated two world Kripke model will validate all of the
axioms of RMST minus c-comp. But notice that:

(c-comp∗) ∀~x∃F∀y(y ∈ F ↔ ϕ)

will be validated, where ϕ ∈ L♦ with free variables among ~x.
37(Koellner, 2009, p.217) raises a similar problem, which he calls the problem of tracking.
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does not appear to be uniquely problematic for the modal account, but rather

targets all reflection principles equally. The problems of comprehension, however,

do not have analogues for the actualist. For them, as I argued in chapter 1, each

of the concept comprehension questions are equivalent and all have a particularly

neat answer when concepts are taken to be pluralities; namely, that every con-

dition determines a plurality because pluralities are nothing over and above the

things which they comprise.

Although potentialism may do better than actualism on questions like (1∗) and

“when could some things have determined a set?”,38 the problems discussed in this

section outweigh those benefits. For this reason, the potentialist should not adopt

RMST.

38See chapter 1 for discussion.
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