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Abstract

This thesis offers some theoretical contributions to the literature on large hetero-

geneous panel data models. It also demonstrates their practical use in empirical

research, in the field of housing in macroeconomics, and for the analysis of the

determinants of sovereign credit spreads.

The first chapter provides the motivation for the research presented in this

thesis.

In the second chapter, we investigate the causes and the finite-sample con-

sequences of negative definite covariance matrices in Swamy type random coef-

ficient models. Monte Carlo experiments reveal that the negative definiteness

problem is less severe when the degree of coefficient dispersion is substantial,

and the precision of the regression disturbances is high. The sample size also

plays a crucial role. We then evaluate the direct consequences of relying on the

asymptotic properties of the estimator of the random coefficient covariance for

hypothesis tests.

A solution to the aforementioned problem is proposed in the third chapter.

In particular, we propose to implement the EM algorithm to compute restricted

maximum likelihood estimates of both the average effects and the unit-specific

coefficients as well as of the variance components in a wide class of heterogen-

eous panel data models. Compared to existing methods, our approach leads to

unbiased and more efficient estimation of the variance components of the model

without running into the problem of negative definite covariance matrices typic-

ally encountered in random coefficient models. This in turn leads to more accurate

3



4

estimated standard errors and hypothesis tests. Monte Carlo simulations reveal

that the proposed estimator has relatively good finite sample properties. In eval-

uating the merits of our estimator, we also provide an overview of the sampling

and Bayesian methods commonly used to estimate heterogeneous panel data. A

novel approach to investigate heterogeneity of the sensitivity of sovereign spreads

to government debt is presented.

In a final chapter, we use a structural Bayesian (stochastic search variable

selection) vector autoregressive model to investigate the heterogeneous impact of

housing demand shocks on the macro-economy and the role of house prices in the

monetary policy transmission, across euro area countries. A novel set of identi-

fication restrictions, which combines zero and sign restrictions, is proposed. By

exploiting the cross-sectional dimension of our data, we explore the differences

in the propagation channels of house prices and monetary policy and the chal-

lenges they pose in the process of real and nominal convergence in the Eurozone.

Among the main results, we find a comparatively stronger housing wealth effect

on consumption in Ireland and Spain. We provide new evidence in support of

the financial accelerator hypothesis, showing that house prices play an important

role in the availability of loans. A significant and highly heterogeneous effect of

monetary policy on house price dynamics is also documented.
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Chapter 1

Introduction

1.1 Motivation and Contributions

Panel data models have become increasingly popular in empirical studies. In fact,

by combining a number of observations on a cross-section of units (individuals,

countries, or firms, to name a few) over repeated time periods, they provide a

number of advantages over a single cross-section, or a single time series. Hsiao

(2003) and Baltagi (2005) offer a comprehensive list of benefits from using panel

data. Among them, the availability of larger data sets which increases the degrees

of freedom, may alleviate multicollinearity and hence improve efficiency, and the

ability to study dynamics of adjustment. Another important advantage, to which

we pay particular attention in this thesis, is the ability to control for individual

heterogeneity. A notable example is Baltagi and Levin (1992). They study cigar-

ette demand across 46 American states by modelling consumption as a function

of its own lag, price and income. They note that panel data are able to control

for state-invariant (e.g. advertising on TV) and time-invariant variables (such as

religion), even though some of them may not be available or measurable. This in

turn avoids the omission bias in the resulting estimates.

Traditionally, in panel data with large number of cross-section units (N) and

few time periods (T ), the effects of unobserved time-invariant heterogeneity and

14



1.1. Motivation and Contributions 15

omitted variables have been controlled by allowing for individual-specific inter-

cepts and/or time-specific effects. However, in many economic applications, it is

unlikely that the response of a dependent variable to a change in an explanatory

variable is the same for all units and/or over time. As T increases, it is possible to

test for equality of parameters, and the homogeneity hypothesis is often rejected

in practice.1 Accounting for heterogeneity may help to shed new lights and to bet-

ter understanding some real economic phenomena. For instance, Eberhardt and

Teal (2010) emphasize the importance of parameter heterogeneity in the growth

empiric literature. Haque, Pesaran and Sharma (2000) investigate the implica-

tions of neglected slope heterogeneity for the fixed effects estimator. Focusing

on cross-country savings regressions, the authors find that ignoring differences

across countries can lead to overestimating the influence of certain factors on the

private savings rates. At the same time, one can obtain highly significant, but

spurious, nonlinear effects for some of the potential determinants, although the

country-specific regressions are linear.

The treatment of heterogeneity is particularly important in the context of

dynamic models. Pesaran and Smith (1995) show that when the regression coef-

ficients vary across individuals, pooling and aggregating in a dynamic model give

inconsistent and misleading estimates of the coefficients. The inconsistency of

both fixed and random effects does not disappear even when both T and N go to

infinity. Therefore, they argue in favour of heterogeneous estimators and propose

the so called Mean Group estimation which yields a consistent estimator of the

average effects as both T and N gets large.

Another popular approach which allows for coefficient heterogeneity is the

Swamy (1970) random coefficient model. It can be seen as a generalization of

the random effects model, since it considers both the intercept and the slope

parameters as realizations from a certain probability distribution with common

1Different tests for slope homogeneity have been proposed. See for instance, Pesaran and
Yamagata (2008).
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mean and constant variance-covariance matrix. In view of this assumption, it

is quite natural to put the random coefficient model in a Bayesian framework.

Bayesian estimation is discussed in Maddala, Trost, Li and Joutz (1997), and

Hsiao, Pesaran and Tahmiscioglu (1999), among others.

The above mentioned techniques can be labelled as large heterogeneous panel

data models. Excellent surveys are provided by Hsiao and Pesaran (2008),

Pesaran (2016), and Smith and Fuertes (2016). This thesis offers some theor-

etical contributions to this literature. It also contains two novel applications in

the context of heterogeneous panels.

First, we study the problem of negative definite covariance matrices in Swamy-

type random coefficient models. As in the error-component model, the unbiased

estimator of the random coefficient covariance matrix proposed by Swamy (1970)

is not necessarily nonnegative definite. This is often the case in empirical applic-

ations. Despite being a well acknowledged problem, its causes are not yet fully

understood. We perform a Monte Carlo study to address this issue. We show that

the problem is particularly severe when the precision of the regression disturb-

ances and the degree of coefficient heterogeneity are low, and/or when the sample

size is small. To overcome the negative definiteness problem, Swamy (1971) sug-

gests an alternative estimator of the random coefficient covariance matrix which,

although biased, is nonnegative definite and is consistent when the time dimen-

sion tends to infinity. We demonstrate that relying on the asymptotic properties

of this estimator may lead to poor inference. Unless the time and cross-section

dimensions, and/or the degree of coefficient dispersion are high, the estimated

standard errors are largely upwards biased. The resulting hypothesis tests may

suffer from considerable size distortions. The empirical sizes of the tests are

substantially lower than the nominal levels.

A solution to the aforementioned problems is provided in a separate chapter.

We show that applying the EM algorithm to obtain restricted maximum likelihood

estimates yields an unbiased and more efficient estimator of the random coefficient
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covariance matrix without running into the problem of negative definiteness. This

in turn leads to more accurate standard errors and hypothesis tests. It is also

demonstrated that direct maximization of the likelihood which incorporates the

prior likelihood of the random coefficients yields an estimator of the coefficients’

covariance matrix which does not satisfy the law of total variance. This is not

the case when employing the EM algorithm.

Since the seminal work of Dempster, Laird, and Rubin (1977), the EM al-

gorithm has been successfully applied in different contexts, such as linear mixed

models (Laird andWare, 1982), finite mixture models (McLachlanand Peel, 2000),

and factor analysis (Engle and Watson, (1983), Quah and Sargent (1993), Doz,

Giannone, and Reichlin (2012), Harvey and Liu (2016)), to mention a few. A full-

fledged book on the subject is McLachlan and Krishnan (2008). We highlight the

relative merits of the EM approach in estimating both average and unit-specific

coefficients in heterogeneous panels. In doing so, we also review the existing

sampling and Bayesian methods. To extend the applicability of our method, we

consider a general framework which incorporates various panel data models as

special case, including the random coefficient and the correlated random effects

models. Monte Carlo simulations reveal that the obtained (restricted) maximum

likelihood estimators have relatively good finite sample properties, in terms of

bias, root mean square errors, and power of tests.

An important issue in large panels, which has received particular attention in

recent years, is cross-section dependence, i.e. the correlation between errors in

different units. The literature is quite vast (see for instance, Holly, Pesaran, and

Yamagata (2010), Chudik and Pesaran (2013), Bailey, Kapetanios and Pesaran

(2015)) and its analysis is beyond the scope of this thesis. We simply note that

our estimation procedure can be adapted to allow for cross-section dependence,

following Pesaran (2006), and Chudik and Pesaran (2015).

The methods described above can be quite effective in modelling complex eco-

nomic relationships. Therefore, part of this thesis is devoted to their application
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to the analysis of sovereign credit risk and to the role of house price dynamics in

the macroeconomy.

In the first application, we show that modelling the random coefficients as a

function of selected explanatory variables can be beneficial to the study of the

determinants of the sensitivity of sovereign spreads with respect to government

debt. It is widely known that macroeconomic fundamentals and volatility are

significant drivers of sovereign credit spreads (Akitoby and Stratmann (2008),

Hilscher and Nosbusch (2010), among others). On the contrary, there is no study,

to the best of our knowledge, which investigates why the response of sovereign

spreads to changes in government debt differs significantly across countries. We

show that country-specific macroeconomic indicators do not have any significant

impact on the sensitivity of spreads to debt. On the other hand, history of

repayment plays an important role. A 1% increase in the percentage of years in

default or restructuring domestic debt is associated with around 0.35% increase

in the additional risk premium in response to an increase in debt.

Another important aspect in applied research in economics is the aggregation

problem. The implications of aggregation are well known in the econometrics lit-

erature (e.g. Granger (1987), Pesaran (2003), and Pesaran and Chudik (2014)).

Nevertheless, some of the issues which arise when aggregating time series are

sometimes ignored in the applied literature. For example, most of the recent

studies which derive insights on the role of the housing market in the Eurozone

from multivariate structural models focus on the euro area as a whole. A prom-

inent example is Musso, Neri, and Stracca (2011). However, it is important from

a policy perspective to quantify and compare the heterogeneous impacts of house

prices across countries as they can amplify the existing economic divergences

across Eurozone member. Moreover, as a common monetary policy only reacts

to area wide aggregates such as inflation and economic activity, it is crucial to

understand what are the consequences in terms of house price dynamics in each

country in order to properly address real and financial imbalances at the coun-
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try level by means of macroprudential policies. This motivates the last part of

our research. We use a structural Bayesian stochastic search variable selection

vector autoregression for seven euro-area countries (Belgium, France, Germany,

Ireland, Italy, the Netherlands, and Spain) for the period 1980:Q1- 2014:Q4 to

provide a systematic structural analysis of the effects of housing demand shocks

on economic activity and the role of house prices in the monetary policy trans-

mission. A novel set of identification restrictions, which combines zero and sign

restrictions, is proposed. We focus on a country by country analysis, given the

idiosyncratic characteristics of the housing market in the euro area, which suggest

that pooling or aggregating may lead to biased inference and misleading policy

recommendations. At the same time, we exploit the cross-sectional dimension of

our data, to compare and quantify the degree of heterogeneity of the effects of

housing demand and monetary policy shocks across euro area members. In doing

so we fill a gap in the literature, largely focused on the US, the UK and the euro

area as a whole. Among the main results, we find a comparatively stronger hous-

ing wealth effect on consumption in Ireland and Spain, countries having recently

experienced a boom-bust pattern in house prices. We provide new evidence in

support of the financial accelerator hypothesis, showing that house prices play an

important role in the availability of loans. A significant and highly heterogeneous

effect of monetary policy on house price dynamics is also documented.

1.2 Outline of the Thesis

This thesis is organised as follows. In Chapter 2, we study the causes of negat-

ive definite covariance matrices in Swamy type random coefficient models. We

perform Monte Carlo simulations to disentangle the drivers of the problem, and

to investigate the finite-sample consequences for hypothesis tests.. A solution is

proposed in Chapter 3. We show how to implement the EM algorithm to compute

iteratively restricted maximum likelihood (REML) estimates of both fixed and
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random coefficients, as well as the variance components, in a wide class of het-

erogeneous panels. We then review some of the existing sampling and Bayesian

methods commonly used to estimate heterogeneous panel data, to highlight sim-

ilarities and differences with the EM-REML approach. Monte-Carlo experiments

are employed to examine and compare the finite sample properties of our method,

the Swamy random coefficient model, and the Mean Group estimation. Finally,

the proposed econometric methodology is used to study the determinants of the

sensitivity of sovereign spreads with respect to government debt. In Chapter 4 we

use a structural Bayesian stochastic search variable selection VAR model to study

the differences in the propagation channels of house prices and monetary policy

in the Eurozone. We compare and document significant and highly heterogeneous

effects of housing demand shocks on the macro-economy and of monetary policy

on house price dynamics across euro area countries. Chapter 5 summarizes and

concludes.



Chapter 2

Causes and Effects of Negative

Definite Covariance Matrices in

Swamy Type Random Coefficient

Models

2.1 Introduction

For panel data studies with large N , the number of units, and small T , the

time dimension, it is common to assume homogeneity of the slope coefficients.

Individual-specific intercepts are the only source of heterogeneity. However, in

many economic applications, it is more realistic to allow the response parameters

to differ across cross-sectional units. As T increases, it is possible to test for equal-

ity of parameters, and the homogeneity hypothesis is very often rejected. Two

popular methods which deal with coefficient heterogeneity are the Mean Group

estimation, proposed by Pesaran and Smith (1995), and the Swamy (1970) ran-

dom coefficient model. Both methods require estimating N time series separately.

The latter models the regression coefficients as random variables with a certain

21
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probability distribution. To reduce the number of parameters to be estimated, it

is assumed that the coefficients have constant means and variance-covariances.

Unfortunately, as in the error-component model, the estimator of the random

coefficient covariance matrix is not necessarily nonnegative definite. This is often

the case in empirical applications. Despite being a well acknowledged problem, its

causes are not yet fully understood. In this chapter, we disentangle the drivers of

the problem by means of Monte Carlo simulations. Another contribution of this

chapter is to examine the finite-sample properties of Swamy’s generalized least

squares (GLS) estimator in terms of accuracy of inference, when a consistent but

biased estimator of the random coefficient covariance is used to overcome the

negative definiteness problem.

The Monte Carlo analysis confirms that the negative definiteness problem

of this estimator increases with the variance of the regression time-varying dis-

turbances, and it is negatively (and statistically significantly) correlated to the

degree of coefficient heterogeneity. The probability of the estimator being negat-

ive definite goes much faster to zero following an increase in the level of coefficient

dispersion rather than a raise in the precision of the regression disturbances. The

problem is also more severe when T and/or N are small, partly due to the fact

that the performances of individual OLS and the Mean Group estimators worsen

in small samples. As expected, when T goes to infinity, the second term of the

estimator goes to zero, and the problem of negative definiteness vanishes.

Whenever the unbiased estimator of the random coefficient covariance is neg-

ative definite, Swamy suggests eliminating a term to obtain an estimator which

is nonnegative definite and is consistent when T tends to infinity. However, we

show that the latter can be severely biased in small samples. We then investigate

the finite-sample consequences for hypothesis tests. We find that the resulting

estimated standard errors are very often upwards biased. In many cases, this

bias can be substantial. This in turn leads to size distorted hypothesis tests, with

exact sizes well below the nominal levels.
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The remainder of the Chapter is organized as follows. Section 2.2 reviews

the random coefficient model. Section 2.3 discusses the derivation of the Swamy

estimator of the random coefficient covariance matrix. Monte Carlo experiments

are implemented in Section 2.4, where we present the results from regressing the

probability of the estimator being negative definite on a number of explanatory

variables, and comment on the finite-sample performances of the estimator of

interest for inference. The last section concludes.

2.2 The Random Coefficient Model

Consider the following linear regression model

yi = Xiβi + ui, i = 1, .., N, (2.1)

where yi = (yi1, yi2, ..., yiT )′ is a T × 1 vector of observations for the dependent

variable, and Xi is a T ×K matrix of strictly exogenous explanatory variables,

including a vector of ones to allow for an intercept. The Swamy (1970) random

coefficient model treats both intercept and slope coefficients

βi = β + δi (2.2)

as random with common mean β. It is assumed that

E (δi) = 0, E
(
δiδ
′
j

)
=

 4 if i = j,

0 if i 6= j,
(2.3)

E (ui) = 0, E
(
uiu
′
j

)
=

 σ2
i IT if i = j,

0 if i 6= j,
(2.4)

Finally, βi and uj are independent for all i and j.
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2.2.1 Estimation

Under the above assumptions, the best linear unbiased estimator of β is the

generalized least squares (GLS) estimator

β̂GLS =
(∑N

i=1 X
′
iV
−1
i Xi

)−1 (∑N
i=1X

′
iV
−1
i yi

)

=
∑N

i=1Wiβ̂i,

(2.5)

where

Wi =
{∑N

i=1 [4+ σ2
i (X

′
iX i)

−1] −1
}−1

[4+ σ2
i (X

′
iX i)

−1] −1,

β̂i = (X ′iX i)
−1X ′iyi,

and Vi = Xi4X ′i+σ2
i IT . The GLS estimator is equivalent to the weighted average

of the OLS estimates, with weights inversely proportional to their covariance

matrices. The variance-covariance matrix of (2.5) is

var
(
β̂GLS

)
=

(
N∑
i=1

X ′iV
−1
i Xi

)−1

. (2.6)

As noted by Swamy, if we assume normality of both ui and βi, it can be easily

shown that the variance of the GLS estimator is equal to the Cramer-Rao lower

bound. Therefore, (2.5) is a minimum variance estimator within the class of all

unbiased estimators.

However, the GLS estimator for β is infeasible since it depends on the unknown

variances σ2
i and 4. Swamy uses the OLS estimators, β̂i, and their residuals

ûi = yi −Xiβ̂i, to obtain unbiased estimators of σ2
i and 4,

σ̂2
i =

û′iûi
T −K

, (2.7)
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4̂ = 4̂1 − 4̂2, (2.8)

where

4̂1 = 1
N−1

∑N
i=1

(
β̂i −N−1

∑N
i=1 β̂i

)(
β̂i −N−1

∑N
i=1 β̂i

)′
,

4̂2 = N−1
∑N

i=1 σ̂
2
i (X

′
iX i)

−1.

(2.9)

The second term
(
−4̂2

)
is necessary for 4̂ to be an unbiased estimator of

4. Unfortunately, as in the error-component model, the estimator (2.8) is not

necessarily nonnegative definite. As a solution, Swamy suggested using 4̂1 as

an estimator of 4. Although biased, this estimator is positive semi-definite and

consistent when T tends to infinity. Note that as T gets large, the second term,

4̂2, converges in probability to zero.

2.3 The Estimator of the Random Coefficient Co-

variance Matrix

In this section, we describe the derivation of (2.8) in some detail. We start by

noting that the OLS estimator of βi can be rewritten as

β̂i = βi + (X ′iX i)
−1X ′iui

= β + δi + (X ′iX i)
−1X ′iui.

(2.10)

Its unconditional and conditional expectations are given by

E
(
β̂i

)
= β,

E
(
β̂i | δi

)
= βi,
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respectively. Using equation (2.10), we can compute the variance of the OLS

estimator:

var
(
β̂i

)
= E

(
β̂i − β

)(
β̂i − β

)′
= E

[
(βi − β) +

(
β̂i − βi

)] [
(βi − β) +

(
β̂i − βi

)]′
,

(2.11)

where (βi − β) = δi, and
(
β̂i − βi

)
= (X ′iX i)

−1X ′iui. Using equations (2.3) and

(2.4), and assuming that E (ui | Xi, δi) = 0, we get

var
(
β̂i

)
= E

(
β̂i − β

)(
β̂i − β

)′
= E (βi − β) (βi − β)′ + E

(
β̂i − βi

)(
β̂i − βi

)′
= 4+ σ2

i (X
′
iX i)

−1.

(2.12)

Equation (2.12) states that, for an unbiased estimator where E
(
β̂i | βi

)
= βi

and E
(
β̂i

)
= β, the variance of β̂i around β is equal to the variance of βi around

β plus the variance of β̂i around βi.

The estimator of4 given by (2.8), can be obtained by replacing var
(
β̂i

)
with

its sample analogue, and σ2
i (X

′
iX i)

−1 with its estimator averaged across units.

From equation (2.12), it follows that

4 = E (βi − β) (βi − β)′ = 41 −42, (2.13)

where
41 = E

(
β̂i − β

)(
β̂i − β

)′
,

42 = Eβ̂i|βi

[
β̂i − E

(
β̂i | βi

)] [
β̂i − E

(
β̂i | βi

)]′
.

(2.14)
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It can be noted that 4 is positive semi-definite by definition. Indeed,
β̂i − β = δi + (X ′iX i)

−1X ′iui

β̂i − βi = (X ′iX i)
−1X ′iui

=⇒ E
(
β̂i − β

)(
β̂i − β

)′
≥ E

(
β̂i − βi

)(
β̂i − βi

)′
,

(2.15)

where βi = E
(
β̂i | βi

)
, and the inequality sign denotes matrix inequalities. The

equality would hold only if δi = 0, ∀i, which means that the coefficients do not

vary across units, i.e. E (δiδ
′
i) = 0, for all i.

It can also be noted that (2.12) satisfies the law of total variance since

var
(
β̂i

)
= var

[
E
(
β̂i | βi

)]
+ E

[
var

(
β̂i | βi

)]

= var (βi) + E
[
var

(
β̂i | βi

)]
,

where var (βi) = 4, and var
(
β̂i | βi

)
= σ2

i (X
′
iX i)

−1. This implies that var
(
β̂i

)
≥

4, and var
(
β̂i

)
≥ σ2

i (X
′
iX i)

−1, which corroborates (2.15).1

2.3.1 Nonspherical Errors

Equation (2.12) has been derived under the assumption that var (ui) = σ2
i IT . If

var (ui) = Ωi, where Ωi is a symmetric and positive definite T × T matrix, then

Vi = Xi4X ′i + Ωi,

and
E
(
β̂i − βi

)(
β̂i − βi

)′
= E ((X ′iX i)

−1X ′iuiu
′
iX i(X

′
iX i)

−1)

= (X ′iX i)
−1 (X ′iΩiX i) (X ′iXi)

−1 .

1Henceforth, we use inequality signs to denote matrix inequalities.
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Equation (2.11) becomes

var
(
β̂i

)
= 4+ (X ′iXi)

−1 (X ′iΩiX i) (X ′iXi)
−1
. (2.16)

Therefore, an unbiased estimator of 4 is

4̂ = 4̂1 − 4̂3, (2.17)

where 4̂1 is defined in (2.9), and

4̂3 =
1

N

N∑
i=1

(X ′iX i)
−1
(
X ′iΩ̂iX i

)
(X ′iXi)

−1
. (2.18)

In many cases, 4̂3 ≥ 4̂2, which may exacerbate the negative definiteness problem

of 4̂. When the elements of ui are negatively autoccorelated, and theK regressors

in xit are positively autocorrelated, Goldeberger (1964, pp. 238-42) showed that

the diagonal elements of 4̂3 can be smaller than the corresponding diagonal

elements of 4̂2.

Alternatively, as shown in Appendix 2.6.1, one can estimate each time series

by applying Aitken’s GLS, yielding

β̃i = (X ′iΩ̂
−1
i X i)

−1X ′iΩ̂
−1
i yi,

σ̃2
i =

ũ′iũi
T −K

,

where ũi are the GLS residuals. In such case, the estimator of 4 becomes

4̂ = 4̂4 − 4̂5, (2.19)
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where

4̂4 = 1
N−1

∑N
i=1

(
β̃i −N−1

∑N
i=1 β̃i

)(
β̃i −N−1

∑N
i=1 β̃i

)′
,

4̂5 = 1
N

∑N
i=1 σ̃

2
i

(
X ′iΩ̂iX i

)−1

,

(2.20)

It is reasonable to expect 4̂5 to be smaller than 4̂3.

One may suspect that taking serial correlation into account, and using (2.19)

as an estimator of 4̂ reduces the probability of 4̂ being negative definite.2 For

instance, Swamy (1971) indicates mispecification of either the model or the un-

derlying assumptions as possible reasons of the negative definiteness problem.

Nevertheless, as shown in the Monte Carlo analysis, 4̂ can be often negative def-

inite even though the true disturbances are not correlated over time and the model

is correctly specified, suggesting that the causes of the problem lie elsewhere.

2.4 Monte Carlo Analysis

Given that4 is positive semi-definite by construction, why is (2.8) often negative

semi-definite? What goes wrong when replacing the true components with their

analogue estimates? In other words, why is 4̂1, the estimator of E
(
β̂i − β

)(
β̂i − β

)′
,

often less than 4̂2, the estimator of E
(
β̂i − βi

)(
β̂i − βi

)′
? We address this ques-

tion by performing a Monte Carlo analysis.

2It should be noted that although 4̂5 might be smaller than 4̂3 , 4̂1 has to be replaced by
4̂4 in estimating 4̂. As for (2.8), there is no guarantee that (2.19) is nonnegative definite.
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2.4.1 The Data Generating Process

The data generating process used to simulate the data is given by

yit = ci + xitβi + εit,

xit = cx,i(1− ρ) + ρxit−1 + uit,

(2.21)

where
εit ∼ i.i.d.N(0, σ2

i ),

uit ∼ i.i.d.N(0, 1),

cx,i ∼ i.i.d.N (1, 1) .

We set ρ = 0.6, and xi0 = 0, ∀i. Once generated, the xit’s are taken as fixed

across different replications.3 The variances of the time-varying disturbances are

generated according to:

(i) σ2
i ∼ unif [0.1, 0.9] ,

(ii) σ2
i ∼ unif [0.5, 1.5] ,

(iii) σ2
i ∼ unif [1, 3] ,

(iv) σ2
i ∼ unif [3, 5] ,

such that E (σ2
i ) ∈ {0.5, 1, 2, 4}. To allow for the presence of outliers, we also

consider the following case

(v) σ2
i ∼ ϕ · unif [0.5, 1.5] + (1− ϕ) · unif [4, 6] ,

where ϕ is binary variable whose distribution is Bernoulli:

ϕ =


1 p = 0.75

0 (1− p).

3To minimize the effect of initial observations we discard the first 100 observations.
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In the latter case, E (σ2
i ) = 2 as in case (iii) although the variance of most

of the units varies between 0.5 and 1.5. In all cases, the σ2
i ’s are sorted so that

σ2
i > σ2

j if x̄i > x̄j, where x̄i = T−1
∑T

t=1 xit. The coefficients differ randomly

across units according to
ci = c+ σcγ1i,

βi = β + σβγ2i,

where γji ∼ i.i.d.N (0, 1), for j = 1, 2. We consider the following options:

Option 1 2 3 4 5 6 7

c 0 0 0 0.5 0.5 0.5 1

β 0.1 0.5 1 0.1 0.5 1 1

For each option, we draw the random effects, γji, from a Normal distribution

with different degrees of coefficient heterogeneity (from low (1) to high (6)):4

Degree of Heterogeneity 1 2 3 4 5

σc 0.05 0.1 0.3 0.5 1

σβ 0.05 0.1 0.3 0.5 1

We generate G = (nO · nH) · nV = (7 · 5) · 5 = 175 clusters, where nO, nH ,

and nV denote the number of options, the number of coefficient heterogeneity

cases, and the different specifications for σ2
i , respectively. Each cluster is of size

S = (nT · nN) = (6 · 4) = 24, where each unit in the cluster consists of the pair

(Tj, Nl), with Tj ∈ {10, 20, 30, 50, 70, 140}, and Nl ∈ {10, 30, 50, 140}. In total,

we run M = (nT · nN)(nO · nH · nV ) = 24 · 175 = 4200 different data generating

processes (DGP). Within each DGP we run H = 1500 iterations.5

4It should be noted that when generating 1000 observations from βi ∼ N (0.5, 1), the range
of values that βi assumed was −3 to 3.4. This is a very high level of dispersion, which we
consider for theoretical reasons. If the degree of heterogeneity were so high in real applications,
it might be difficult to reconcile the estimates with economic theory.

5The time required to run the 1500 iterations is approximately 5 to 30 seconds depending
on the sample size. The time necessary to estimate each option is approximately 2 hours, which
makes the results replicable.
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Degree of Coefficient Heterogeneity. The choice of σc and σβ is in line

with Trapani and Urga (2009), and Boyd and Smith (2002). The former review

some empirical works which use heterogenous estimators and derive a measure

to determine the level of coefficient heterogeneity (the standard deviation of the

random coefficients). They find that the levels of heterogeneity obtained using

the datasets of Baltagi, Griffin and Xiong (2000) and Baltagi, Bresson, Griffin

and Pirotte (2003) are equal to 0.176 and 0.183 respectively. Higher levels are

found in Baltagi and Griffin (1997) and Brucker and Silivertovs (2006), where the

degree of heterogeneity is equal to 0.323 and 0.428 respectively.

Boyd and Smith (2002) review some econometric issues in estimating models

of the transmission mechanism of monetary policy, for 57 developing countries,

where T = 31. They find a high degree of dispersion of the estimates across coun-

tries.6 For instance, in an inflation persistence equation, the average coefficient

on the first lag of inflation is 0.57 with a standard deviation of 0.30. In a static

Purchasing Power Parity equation of log spot on log price differential, the mean

is 1.13 and the standard deviation of the estimates is 0.52.

2.4.2 Descriptive Statistics

Table 2.1 reports the Monte Carlo estimates of % = Pr
(
4̂ < 0

)
, the probability

that the estimator of 4 (defined in (2.8), and averaged across the 7 different op-

tions) is negative definite, across different sample sizes and different combinations

of coefficient and data dispersions, σβ and E (σi) respectively. A few important

facts emerge from this simple descriptive analysis:

1. The probability % is a decreasing function of both T and N . However, when

T and σβ are moderate, the probability of 4̂ being negative definite can

still be high even when N is as large as 140.
6After estimating the regression coefficients, βi, for each unit, Boyd and Smith compute

the number of standard deviations from the mean as Z (β) =
(
β̂i − β̄

)
/s
(
β̂i

)
, where β̄ =

N−1
∑N
i=1 β̂i, and s

2
(
β̂i

)
= (N − 1)

−1∑N
i=1

(
β̂i − β̄

)2
.
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Table 2.1: The probability of 4̂ being negative definite

E (σ2
i ) = 2 (iii) E (σ2

i ) = 2 (v) E (σ2
i ) = 1

T N \ σβ 0.05 0.1 0.3 0.5 1 0.05 0.1 0.3 0.5 1 0.05 0.1 0.3 0.5 1

10

10 88 86 73 57 33 88 86 75 57 41 87 84 66 44 11

30 84 83 63 43 8 85 83 63 54 19 84 80 51 27 1

50 84 80 61 36 5 84 80 58 45 17 82 77 43 15 0

140 81 77 46 24 0 81 76 49 37 3 79 71 32 4 0

20

10 88 85 64 37 7 89 85 61 41 9 87 80 45 18 1

30 84 79 46 13 0 84 75 51 25 2 80 68 20 2 0

50 82 72 33 7 0 83 74 44 21 0 79 64 11 0 0

140 78 64 15 1 0 79 63 33 5 0 73 52 2 0 0

30

10 88 82 49 20 2 89 81 52 33 4 86 77 33 11 0

30 84 71 24 2 0 85 70 39 11 0 79 61 6 0 0

50 81 66 18 1 0 79 67 32 5 0 74 54 2 0 0

140 75 54 3 0 0 75 56 14 0 0 66 39 0 0 0

50

10 87 78 34 9 1 88 78 40 7 1 83 68 17 3 0

30 80 62 10 0 0 80 65 20 1 0 74 49 1 0 0

50 75 56 3 0 0 76 57 9 0 0 66 42 0 0 0

140 67 41 0 0 0 66 49 2 0 0 56 25 0 0 0

140

10 80 62 6 0 0 80 66 12 1 0 73 49 2 0 0

30 66 39 0 0 0 67 48 1 0 0 54 18 0 0 0

50 60 28 0 0 0 61 39 0 0 0 46 10 0 0 0

140 46 11 0 0 0 52 27 0 0 0 31 1 0 0 0

The probability (in percentage) of the estimator of 4 being negative definite (averaged across

the 7 options) across the time dimension (T ), the cross-section dimension (N), different degrees

of coefficient heterogeneity (σβ), and the mean of the variance of the time-varying regression

disturbances (E(σ2
i )), for i = 1, .., N . The results shown in columns (iii) and (v) differ as in

the former σ2
i ∼ unif [1, 3]. In the latter, σ2

i ∼ ϕ · unif [0.5, 1.5] + (1− ϕ) · unif [4, 6].

2. % can be quite high when σβ is small or moderate. If σβ = 0.05, the value

of % can be substantial even when T = 140 and N is also large. On the

contrary, if σβ = 1, % is almost always equal to zero as soon as T is larger

than 20.
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3. The variance of the time-varying disturbances also plays an important role.

Indeed, for a given degree of coefficient heterogeneity, as σ2
i increases, the

second term of (2.8) raises. Consequently, the probability that the estimator

of the random coefficient covariance matrix is negative definite increases.

4. Whether % is large or small depends on the value of σβ relative to the σi’s,

the standard deviations of the time-varying regression disturbances. This

means that even though σβ is high, % can be still far from zero if E (σ2
i ) is

very large.

2.4.3 Regression Analysis

To corroborates the findings of the theoretical analysis and the insights emerged

in the descriptive analysis, we run the following cross-section regression:

ym = α + z′mθ + um, m = 1, ..,M,

where M = 4200. The depedent variable ym measures the probability of 4̂ being

negative definite within each DGP, and it is computed as

ym = Pr
(
4̂ < 0

)
=

∑H
h=1W

(
4̂(h) < 0

)
H

,

where W is a binary indicator that takes the value 1 if 4̂(h) < 0 (in a matrix sense)

and 0 otherwise. The vector zm may include the following explanatory variables:

• the time dimension, T , and the number of units, N ,

• the values of the intercept (c) and slope parameter (β) in (2.21),

• the degree of coefficient heterogeneity, σc = σβ,

• the average standard deviation of the regression disturbances, σ̄ = N−1
∑N

i=1 σi,

• a measure of the signal-to-noise ratio, σβ/σ̄,



2.4. Monte Carlo Analysis 35

• the bias of the Mean Group estimator of ψ = (c, β)′,

• the cross-section averages of the absolute value of the biases of the OLS

estimators:
1

N

N∑
i=1

∣∣∣∣∣
(

1

H

H∑
h=1

ψ̂
(h)
i

)
− ψ

∣∣∣∣∣ ,
• the trace of the root mean square errors (RMSE) of the Mean Group es-

timator,

• the trace of the RMSE of the OLS estimators, averaged across units:

AvRMSE
(
ψ̂i

)
=

1

N

N∑
i=1


√√√√ 1

H

H∑
h=1

(
ψ̂

(h)
i − ψ

(h)
i

)(
ψ̂

(h)
i − ψ

(h)
i

)′ .

We estimate the model by OLS. Results are shown in Table 2.2. In par-

enthesis, we report the t-tests computed using White (1980) heteroskedasticity-

robust standard errors.7

Main Findings. In the simplest specification (1), we regress our dependent

variables on a constant, the time dimension (T ), the number of units (N), the

degree of coefficient heterogeneity (σβ), and the average of the time-varying re-

gression disturbances’ standard deviations (σ̄). We then include the value of c

and β used in equation (2.21) to simulate the data. As expected, the constant,

which is approximatively equal to 70%, is statistically significant. One standard

deviation increase of σβ statistically significantly reduces the probability of 4̂

being negative definite (%) of around 70%. The conditional variability of the data

is also a significant predictor: one standard deviation increase of σ̄ is associated

with a statistically significant increase in the dependent variable of 5%.

7When calculating the robust standard errors, we make the adjustment for degrees of free-
dom suggested by MacKinnon and White (1985).
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Table 2.2: The drivers of the random coefficient covariance’s negative definiteness
problem

Pr
(
4̂ < 0

)
(1) (2) (3) (4) (5) (6)

constant 0.696 0.695 0.744 0.562 0.521 0.536

(82.77) (71.27) (77.33) (58.52) (46.54) 45.031

T -0.002 -0.002 -0.002 -0.001 -0.001 -0.001

(-32.04) (-32.03) (-28.99) (-12.85) (-9.38) -11.596

N -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

(-21.52) (-21.52) (-19.09) (-23.73) (-8.41) -10.312

σβ -0.697 -0.697 -1.160 -0.802 -1.218

(-91.69) (-91.66) (-58.12) (-71.60) -45.356

σ̄ 0.052 0.052 0.018 0.015 0.020

(21.59) (21.60) (7.31) (5.31) 7.318

σβ/σ̄ -0.639

(-49.98)

c 0.003 0.002 0.004

(0.31) (0.18) 0.477

β 0.001 0.001 -0.002

(0.11) (0.152) -0.333

bias (ĉmg) -0.198 -0.083

(-0.32) -0.132

bias
(
β̂mg

)
0.239 0.347

(0.30) 0.449

Av (|bias (ĉi,ols)|) 13.099 12.346

(17.26) 12.215

Av
(∣∣∣bias(β̂i,ols)∣∣∣) 14.246 13.366

(12.09) 11.058

RMSE
(
ψ̂MG

)
0.373 0.301

(14.78) 10.777

RMSE
(
ψ̂i,ols

)
0.163 -0.044

(16.90) -2.863

R2 0.675 0.675 0.576 0.728 0.713 0.734

Theil Adj. R2 0.675 0.675 0.576 0.728 0.713 0.733

We regress the probability of 4̂ being negative definite on a number of explanatory variables.

The values of the OLS estimators and their corresponding t-ratios (in parentheses) are repor-

ted. We use White (1980) heteroskedasticity-robust standard errors with the adjustment for

degrees of freedom suggested by MacKinnon and White (1985). Bold values denotes statistical

significance at 5% level or lower.
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At the same time, an one unit increase in T and N causes a 0.2% and 0.1%

decrease of %, respectively. On the contrary, the coefficients associated with the

value of the constant and intercept parameters (c and β) are not statistically

significant. These findings are consistent across all other specifications.

In a third regression (3), we replace σβ and σ̄ with a measure of the signal-to-

noise ratio (σβ/σ̄).8 An one standard deviation increase of the latter statistically

significantly decreases the probability of 4̂ being negative definite by 64%. The

R-squared is smaller in the third specification, suggesting that including both σβ

and σ̄ separately improves the goodness of fits.

Given that 4̂, described in equation (2.8), is a plug-in estimator, we also test

whether the finite sample performances (in terms of bias and RMSE) of both the

Mean Group estimator of c and β, and the OLS estimators of the unit-specific

regression coefficients affect the probability of 4̂ being negative definite. The

regression analyses (4) to (6) corroborate this hypothesis. For instance, a 1%

increase in the cross-section averages of the absolute value of the biases of the

OLS estimates raises % of around 12 to 14%.

2.4.4 Finite-Sample Consequences

As shown in Table 2.1, the unbiased estimator of the random coefficient covari-

ance matrix defined in equation (2.8), is likely to be negative definite in many

circumstances. This is often the case in many empirical applications. To overcome

the problem, Swamy (1971) suggests replacing this estimator by 4̂1, defined in

equation (2.9). The latter is nonnegative definite and is consistent when T tends

to infinity. However, as reported in Table 2.3 , it can be severely biased in small

samples.

8We have also considered other measures of signal-to-noise ratio: N−1
∑N
i=1

(
σ2
β/σ

2
εi

)
,

N−1
∑N
i=1 (σβ/σεi), and

(
σ2
β/σ̄

2
)
, where σ̄2 = N−1

∑N
i=1 σ

2
εi . They yield very similar res-

ult. Therefore, we only report results obtained using (σβ/σ̄), with σ̄ = N−1
∑N
i=1 σεi as the

corresponding regression coefficient has larger economic value and it is associated with a larger
t-ratio. Both the R2 and the Theil’s adjusted R2 are also relatively larger in the latter case.
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Table 2.3: Bias and root mean square errors of 4̂1

σβ = 0.05 σβ = 0.1 σβ = 0.3 σβ = 0.5

T\N 10 30 50 140 10 30 50 140 10 30 50 140 10 30 50 140

bias {σ̂c}

10 0.80 0.81 0.72 0.65 0.70 0.84 0.61 0.67 0.40 0.44 0.45 0.53 0.23 0.51 0.37 0.39

20 0.39 0.34 0.41 0.38 0.32 0.35 0.32 0.34 0.17 0.19 0.21 0.19 0.13 0.15 0.13 0.14

30 0.28 0.25 0.30 0.28 0.22 0.27 0.23 0.24 0.14 0.12 0.13 0.15 0.10 0.11 0.08 0.10

50 0.21 0.22 0.20 0.19 0.18 0.18 0.15 0.17 0.06 0.10 0.08 0.09 0.06 0.05 0.05 0.05

70 0.17 0.18 0.15 0.16 0.12 0.12 0.12 0.13 0.05 0.07 0.06 0.06 0.02 0.04 0.03 0.04

140 0.10 0.10 0.11 0.10 0.08 0.07 0.07 0.07 0.01 0.03 0.03 0.03 0.00 0.01 0.01 0.02

bias {σ̂β}

10 0.39 0.33 0.31 0.32 0.35 0.33 0.22 0.27 0.14 0.15 0.18 0.19 0.06 0.13 0.13 0.11

20 0.20 0.15 0.18 0.17 0.14 0.13 0.15 0.14 0.08 0.07 0.07 0.07 0.02 0.04 0.04 0.04

30 0.12 0.13 0.12 0.12 0.08 0.10 0.09 0.09 0.03 0.04 0.04 0.04 0.03 0.03 0.02 0.03

50 0.08 0.08 0.08 0.08 0.05 0.05 0.06 0.06 0.02 0.02 0.02 0.02 0.00 0.01 0.01 0.01

70 0.07 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.01

140 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00

RMSE {σ̂c}

10 0.84 0.83 0.74 0.66 0.74 0.87 0.62 0.67 0.45 0.46 0.46 0.54 0.29 0.54 0.39 0.40

20 0.41 0.35 0.42 0.39 0.35 0.36 0.33 0.35 0.21 0.20 0.22 0.20 0.20 0.19 0.15 0.15

30 0.30 0.26 0.30 0.28 0.24 0.28 0.24 0.24 0.18 0.13 0.14 0.15 0.18 0.14 0.10 0.11

50 0.23 0.23 0.20 0.19 0.20 0.18 0.16 0.17 0.10 0.12 0.09 0.10 0.15 0.09 0.08 0.06

70 0.18 0.19 0.15 0.16 0.13 0.13 0.12 0.13 0.10 0.09 0.07 0.06 0.13 0.08 0.06 0.05

140 0.11 0.11 0.11 0.10 0.09 0.08 0.07 0.07 0.08 0.05 0.05 0.04 0.12 0.07 0.05 0.04

RMSE {σ̂β}

10 0.41 0.34 0.31 0.32 0.37 0.34 0.23 0.28 0.18 0.16 0.19 0.19 0.15 0.16 0.14 0.12

20 0.21 0.15 0.18 0.17 0.15 0.13 0.15 0.14 0.12 0.09 0.08 0.07 0.13 0.08 0.07 0.05

30 0.12 0.13 0.12 0.12 0.09 0.11 0.09 0.09 0.09 0.06 0.05 0.05 0.13 0.07 0.06 0.04

50 0.08 0.08 0.08 0.08 0.06 0.06 0.06 0.06 0.08 0.05 0.04 0.03 0.12 0.07 0.05 0.03

70 0.07 0.06 0.06 0.06 0.05 0.05 0.04 0.04 0.07 0.04 0.03 0.02 0.12 0.07 0.05 0.03

140 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.07 0.04 0.03 0.02 0.12 0.07 0.05 0.03

The bias and root mean square errors (RMSE) of the square root of the diagonal elements

of 4̂1, when E
(
σ2
i

)
= 1 and (c, β) = (0, 0.5) (Option 2), for various degree of coefficient

heterogeneity (σβ = σc), across different time (T ) and cross-section dimensions (N).

Therefore, it is important to assess the finite-sample consequences of using 4̂1

as an estimator of 4. The aim of this subsection is to provide some evidence on

whether it is appropriate to rely on the asymptotic properties of this estimator as

the basis for inference in finite samples. Without loss of generality, we focus on

the results obtained from Option 2, where (c, β) = (0, 0.5). We only show results

obtained when E (σ2
i ) = 1, for various degrees of coefficient heterogeneity. The

consequences of using 4̂1 as an estimator of 4 are even more severe when E (σ2
i )
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increases.9 Further analyses are available in an online Appendix.

Notation. Hereafter, we use the following notation to avoid repetition. We let

ψ0 = (c, β)′ = (0, 0.5)′ be the true vector of average effects. The true random

coefficient covariance matrix, 4, is diagonal, where σ2
c and σ2

β are the (1, 1) and

(2, 2) entries, respectively. We let

ψ̂GLS =

(
N∑
i=1

X ′iV
−1
i Xi

)−1( N∑
i=1

X ′iV
−1
i yi

)
, (2.22)

and

Φ = var
(
ψ̂GLS

)
=

(
N∑
i=1

X ′iV
−1
i Xi

)−1

, (2.23)

where Vi = Xi4X ′i+σ2
i IT , be the infeasible GLS estimator of ψ, and the infeasible

covariance matrix of ψ̂GLS, respectively. The feasible GLS estimator, ψ̂FGLS, and

an estimator of Φ, denoted Φ̂, are obtained by replacing σ2
i and 4 by σ̂2

i and 4̂1,

as defined in (2.7) and (2.9), respectively.

Accuracy of Estimated Standard Errors

To examine the consequences of overestimating the true random coefficient vari-

ances when testing hypotheses, we consider the ratio of the estimated standard

errors (of the average effects) to the infeasible standard errors, obtained by tak-

ing the square root of the diagonal elements of Φ̂ and Φ respectively. Another

measure of interest for inference is the accuracy of the estimated standard errors

as approximations to the correct sampling standard deviation of the estimator

of ψ.10 These ratios should ideally be equal to one. Results reported in Table

9Case (v) is particularly interesting. Even though the variance of most of the units varies
between 0.5 and 1.5, as in case (ii), the presence of some outliers, such that E

(
σ2
i

)
= 2,

considerably worsen the accuracy of inference.
10The accuracy of the estimated standard errors is computed as the ratio of

B−1
∑B
b=1

{√
(Φ̂b)kk

}
to the sampling standard deviation of ψ̂k, given by the square root

of (B − 1)−1
∑B
b=1

(
ψ̂k,(b) −

¯̂
ψk

)2
, where ¯̂

ψk = B−1
∑B
b=1 ψ̂k,(b), for k = 1, 2.
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2.4, show that relying exclusively on the asymptotic properties of 4̂1 may lead

to invalid inference in finite samples. The estimated standard errors are upwards

biased for the vast majority of cases. These biases can be substantial unless T

and N or the degree of coefficient heterogeneity (σβ) are large. However, if the

coefficient dispersion is low, the estimated standard errors can be largely over-

estimated even when both T and N are equal to 140. These biases can in turn

significantly affect inference.

Table 2.4: Accuracy of estimated standard errors

σβ = 0.05 σβ = 0.1 σβ = 0.3 σβ = 0.5

T\N 10 30 50 140 10 30 50 140 10 30 50 140 10 30 50 140

Accuracy {se (ĉ)}

10 1.69 1.77 1.84 1.88 1.67 2.17 1.80 1.86 1.47 1.53 1.62 1.69 1.22 1.51 1.46 1.41

20 1.61 1.65 1.87 1.83 1.53 1.72 1.72 1.75 1.31 1.30 1.33 1.40 1.16 1.21 1.20 1.16

30 1.60 1.62 1.78 1.72 1.58 1.78 1.63 1.67 1.32 1.22 1.28 1.33 1.18 1.16 1.11 1.10

50 1.54 1.84 1.71 1.72 1.51 1.57 1.58 1.59 1.16 1.20 1.20 1.21 1.11 1.13 1.10 1.05

70 1.65 1.65 1.61 1.66 1.42 1.46 1.53 1.51 1.12 1.18 1.18 1.17 1.02 1.08 1.07 1.09

140 1.59 1.57 1.71 1.56 1.38 1.35 1.37 1.38 1.04 1.10 1.07 1.11 0.96 1.00 1.00 1.05

Accuracy
{
se
(
β̂
)}

10 1.66 1.71 1.63 1.71 1.67 1.75 1.62 1.60 1.26 1.30 1.33 1.33 1.10 1.23 1.20 1.19

20 1.53 1.53 1.62 1.55 1.41 1.49 1.52 1.54 1.17 1.17 1.16 1.15 1.02 1.06 1.10 1.06

30 1.50 1.53 1.57 1.53 1.36 1.46 1.40 1.45 1.09 1.12 1.13 1.11 1.06 1.06 1.05 1.03

50 1.40 1.54 1.53 1.47 1.23 1.35 1.35 1.30 1.06 1.02 1.09 1.09 1.01 1.02 1.03 1.03

70 1.45 1.48 1.45 1.49 1.24 1.26 1.27 1.27 1.05 1.03 1.00 1.05 0.99 1.00 1.00 1.04

140 1.39 1.38 1.37 1.38 1.19 1.16 1.12 1.16 1.02 1.01 1.01 1.00 0.96 1.01 0.99 1.01

Ratio {se (ĉ)}

10 2.51 2.60 2.48 2.46 2.52 3.01 2.36 2.55 1.60 1.76 1.78 1.90 1.26 1.63 1.47 1.49

20 2.12 2.03 2.29 2.20 1.70 2.03 1.95 2.01 1.34 1.37 1.41 1.40 1.18 1.23 1.19 1.21

30 1.87 1.82 2.05 1.99 1.77 1.99 1.82 1.82 1.29 1.26 1.28 1.33 1.15 1.17 1.13 1.16

50 1.74 2.13 1.96 1.87 1.72 1.74 1.65 1.70 1.15 1.24 1.20 1.23 1.10 1.09 1.09 1.09

70 1.90 1.91 1.87 1.86 1.52 1.57 1.53 1.60 1.13 1.18 1.16 1.15 1.04 1.07 1.05 1.07

140 1.74 1.73 1.78 1.72 1.43 1.40 1.41 1.41 1.04 1.08 1.09 1.09 1.00 1.02 1.03 1.04

Ratio
{
se
(
β̂
)}

10 2.39 2.26 2.09 2.16 2.28 2.31 1.94 2.04 1.30 1.35 1.41 1.45 1.11 1.23 1.21 1.18

20 1.91 1.78 1.99 1.87 1.50 1.63 1.62 1.66 1.20 1.19 1.18 1.18 1.04 1.07 1.07 1.08

30 1.60 1.65 1.75 1.72 1.49 1.57 1.51 1.50 1.10 1.11 1.11 1.13 1.05 1.05 1.05 1.05

50 1.52 1.63 1.65 1.61 1.33 1.37 1.37 1.40 1.07 1.06 1.07 1.07 1.01 1.02 1.02 1.03

70 1.60 1.57 1.58 1.57 1.27 1.31 1.29 1.30 1.04 1.05 1.05 1.05 0.99 1.01 1.01 1.02

140 1.43 1.44 1.43 1.42 1.17 1.15 1.17 1.18 1.00 1.02 1.02 1.02 0.99 1.00 1.00 1.01

Accuracy {se (·)} denotes the ratio of the estimated standard errors (of the average effects) to

the sampling standard deviations. Ratio {se (·)} denotes the ratio of the estimated standard

errors to the infeasible standard errors. Results obtained using Option 2, when E(σ2
i ) = 1.



2.4. Monte Carlo Analysis 41

Hypothesis tests

To test the hypothesis ψ = ψ, for ψ a known K×1 vector, Swamy (1970) suggests

the following criterion:

F
(
ψ̂, ψ, Φ̂

)
=

N −K
K (N − 1)

(
ψ̂ − ψ

)′
Φ̂−1

(
ψ̂ − ψ

)
. (2.24)

The asymptotic distribution of the test is F, with K, N −K degrees of freedom.

Empirical Moments of the F-statistic. We now study the finite-sample

properties of the distribution of (3.50). In particular, we examine the empir-

ical distributions of F
(
ψ̂k,GLS, ψ0,k,Φkk

)
, and F

(
ψ̂k,FGLS, ψ0,k, Φ̂kk

)
, computed

under the null hypothesis that the estimator (of interest) of ψk is equal to the

corresponding true value used to generate the data, ψ0,k, for k = 1, 2.11 We

then compare the mean, standard deviation, skewness, and excess kurtosis of

these two empirical distributions with the corresponding population moments of

a F-distribution with 1, N − 1 degrees of freedom. Results are reported in Table

2.5. In many cases, the means and standard deviations of the distributions of

the F-statistics based on the infeasible GLS estimator are relatively close to the

true means and standard deviations. This is not the case when considering the

distributions of the F-statistics based on the feasible GLS estimator. The means

and standard deviations of the latter can be substantially smaller than the values

associated with a F-distribution with 1, N−1 degrees of freedom. Results worsen

when testing hypothesis about the intercept rather than slope parameters. These

results are in line with the fact that 4̂1 is often upwards biased. The skewness

and excess-kurtosis of the distribution of the F-statistics based on both feasible

and infeasible GLS estimators, can be far from the corresponding population

moments unless N is large.

11Φkk is the kth diagonal element of Φ. Similarly, ψk denotes the kth element of ψ.
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Table 2.5: Empirical moments of F-statistics

β
Mean Standard Deviation Skewness Excess-Kurtosis

T\N 10 30 50 140 10 30 50 140 10 30 50 140 10 30 50 140

F1,N−1 1.29 1.07 1.04 1.01 2.30 1.61 1.52 1.45 6.71 3.37 3.12 2.92 214.50 19.23 15.61 13.11

Infeasible

10 0.96 1.06 0.97 1.04 1.37 1.47 1.47 1.47 2.86 2.40 3.17 2.60 11.67 7.23 14.87 8.78

20 1.01 1.00 0.94 0.99 1.47 1.56 1.35 1.41 2.92 3.65 2.86 2.95 12.66 21.85 11.26 12.12

30 1.02 0.98 1.03 0.97 1.38 1.42 1.40 1.41 2.44 2.65 2.35 2.92 7.69 9.43 7.06 12.41

50 1.08 0.96 0.96 1.06 1.58 1.33 1.33 1.53 3.06 2.65 2.52 2.73 13.51 9.55 8.06 9.99

70 1.00 1.02 0.98 0.98 1.42 1.47 1.46 1.49 3.74 3.41 3.32 3.12 28.41 19.85 17.49 14.11

140 0.96 0.96 1.07 1.02 1.31 1.33 1.43 1.44 2.64 2.61 2.58 2.51 9.77 8.82 9.14 7.56

Feasible

10 0.37 0.34 0.39 0.39 0.56 0.48 0.55 0.54 3.48 2.95 2.77 2.61 18.91 13.18 11.11 10.25

20 0.55 0.46 0.44 0.43 0.86 0.72 0.63 0.64 3.86 3.42 2.90 3.24 23.48 17.91 12.25 15.69

30 0.58 0.48 0.51 0.48 0.85 0.70 0.69 0.69 3.25 3.59 2.49 2.97 15.13 26.34 8.97 12.46

50 0.71 0.56 0.56 0.59 1.14 0.81 0.79 0.85 3.59 3.04 2.74 2.83 18.00 13.08 10.30 11.52

70 0.70 0.64 0.62 0.62 1.09 0.97 0.94 0.96 4.45 4.48 3.34 3.31 37.08 40.21 17.46 16.76

140 0.79 0.76 0.82 0.75 1.27 1.11 1.14 1.06 4.36 3.06 2.74 2.56 34.97 13.97 10.30 8.02

c
Mean Standard Deviation Skewness Excess-Kurtosis

T\N 10 30 50 140 10 30 50 140 10 30 50 140 10 30 50 140

F1,N−1 1.29 1.07 1.04 1.01 2.30 1.61 1.52 1.45 6.71 3.37 3.12 2.92 214.50 19.23 15.61 13.11

Infeasible

10 1.09 1.01 0.96 1.01 1.43 1.37 1.40 1.43 2.34 2.50 2.74 2.67 7.00 8.57 9.76 9.27

20 0.99 1.00 1.02 0.97 1.40 1.43 1.41 1.44 2.87 2.94 2.72 4.32 12.95 11.53 10.39 38.22

30 1.02 0.95 0.99 1.01 1.45 1.37 1.40 1.38 2.56 3.05 2.73 2.73 8.44 15.32 10.26 11.25

50 1.02 1.00 0.98 0.98 1.54 1.36 1.37 1.40 2.87 2.64 2.53 3.03 10.30 11.47 8.26 14.45

70 0.99 1.05 0.95 1.00 1.49 1.50 1.38 1.43 3.17 2.52 3.11 3.07 15.04 7.93 14.63 15.15

140 0.99 1.01 1.00 0.99 1.35 1.50 1.43 1.34 2.43 2.93 2.78 2.33 7.81 11.53 10.54 6.71

Feasible

10 0.38 0.22 0.31 0.29 0.59 0.30 0.43 0.43 4.76 2.47 2.55 2.77 45.68 8.11 8.78 10.07

20 0.46 0.35 0.34 0.33 0.77 0.53 0.49 0.47 5.41 3.53 2.79 3.14 51.13 19.04 10.70 14.86

30 0.43 0.32 0.38 0.36 0.62 0.44 0.55 0.49 2.69 2.93 2.76 2.67 9.45 13.93 11.42 10.02

50 0.47 0.42 0.40 0.40 0.70 0.60 0.57 0.58 3.11 3.05 2.80 3.19 13.65 13.79 11.90 14.99

70 0.53 0.49 0.44 0.44 0.81 0.71 0.65 0.62 3.72 2.95 3.05 2.90 22.65 12.36 13.24 13.28

140 0.57 0.57 0.54 0.53 0.86 0.92 0.78 0.73 3.27 4.21 2.85 2.52 16.53 31.53 11.26 8.51

Empirical moments of F-statistics across different sample sizes (T.N), when the data are gener-

ated from Option 2, with E(σ2
i ) = 1, and σβ = σc = 0.1. In the upper panel, the test statistics

are constructed under the null hypothesis H0: β = 0.5 against the alternative H1: β 6= 0.5. In

the lower panel, the null hypothesis is H0: c = 0 against H1: c 6= 0. Row “F1,N−1” reports

the population moments of a F-distribution with 1, N − 1 degrees of freedom. The empirical

moments reported in “Infeasible” correspond to the F-statistics computed using the infeasible

GLS estimator of ψ and the infeasible covariance matrix, Φ. “Feasible” is used to denote the

empirical moments of the F-statistics, replacing the unknown components in ψ and Φ by their

estimators.

Power Performances. In Table 2.6 we report the empirical sizes of the F-

statistic, described in equation (3.50), of the null hypothesisH0: ψk = ψ0,k against
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the alternative H1: ψk 6= ψ0,k. They are computed as the relative rejection fre-

quencies based on the critical regions of nominal size 0.05 of a F-distribution with

1, N − 1 degrees of freedom. This allows us to evaluate the direct consequences

of the various results described above for hypothesis tests.

Table 2.6: Empirical sizes based on F-statistics

σβ = 0.05 σβ = 0.1 σβ = 0.3 σβ = 0.5

T\N 10 30 50 140 10 30 50 140 10 30 50 140 10 30 50 140

size
(
β̂GLS

)
10 2.47 4.80 4.47 4.00 2.13 5.07 4.60 5.33 2.13 4.00 4.60 5.67 2.27 3.80 4.00 4.13

20 2.67 4.53 4.40 5.67 2.93 4.40 3.73 3.73 2.80 4.40 4.00 5.27 2.47 3.27 3.47 4.80

30 2.20 4.73 4.60 4.60 2.33 4.33 5.13 4.67 1.60 4.47 3.13 4.87 2.00 3.87 4.47 5.33

50 2.27 3.87 3.80 5.40 3.07 3.53 4.00 5.47 2.60 5.00 3.40 4.53 2.20 4.07 4.00 5.07

70 2.33 3.33 3.93 4.27 1.87 3.53 4.13 5.07 2.60 4.33 5.27 4.07 2.33 3.67 5.27 3.80

140 2.53 3.33 4.13 4.53 2.13 3.47 4.80 5.80 1.93 3.60 4.40 4.93 3.33 4.27 4.87 4.73

size
(
β̂FGLS

)
10 0.00 0.07 0.07 0.20 0.13 0.07 0.13 0.07 1.07 0.60 0.73 0.60 2.20 1.00 1.67 2.00

20 0.07 0.20 0.00 0.13 0.40 0.47 0.27 0.33 1.80 2.47 2.13 2.27 3.47 2.93 2.93 3.60

30 0.20 0.27 0.13 0.13 0.67 0.20 0.27 0.53 2.20 3.20 2.13 3.00 2.73 3.47 3.60 4.40

50 0.33 0.07 0.20 0.60 1.20 0.93 0.93 1.07 3.07 4.53 3.07 3.00 3.87 4.47 3.93 4.53

70 0.20 0.27 0.53 0.33 0.87 0.87 1.27 1.40 2.93 4.00 4.87 3.40 4.60 4.67 4.47 3.73

140 0.40 0.47 0.47 0.53 1.33 2.13 2.40 2.47 4.33 4.00 4.60 4.87 5.33 5.60 5.33 4.33

size (ĉGLS)

10 2.33 4.00 4.33 4.27 2.53 3.93 3.80 4.53 1.93 3.87 3.47 4.40 2.33 3.47 3.67 5.33

20 2.47 4.53 3.93 4.27 2.13 3.87 3.93 4.07 3.20 4.33 5.27 4.27 3.00 3.60 4.00 5.53

30 2.60 5.00 3.80 5.13 2.73 3.60 4.13 5.13 1.67 4.27 4.07 3.93 2.27 3.87 4.33 6.60

50 2.60 4.00 4.53 4.13 3.13 3.80 4.40 4.80 2.13 4.80 3.93 5.33 2.33 3.07 3.53 5.13

70 2.00 4.40 5.27 4.53 2.53 4.80 3.80 4.60 3.00 4.20 3.00 3.73 2.27 3.20 4.87 4.07

140 2.07 4.80 3.47 4.00 2.07 4.27 4.13 4.67 1.93 4.13 4.73 4.47 2.87 5.33 5.00 4.73

size (ĉFGLS)

10 0.07 0.07 0.00 0.00 0.07 0.00 0.00 0.00 0.20 0.27 0.47 0.20 1.20 0.40 0.53 0.53

20 0.13 0.07 0.13 0.07 0.40 0.20 0.07 0.07 0.73 0.53 1.27 0.67 1.73 1.47 1.80 2.07

30 0.07 0.13 0.13 0.07 0.07 0.07 0.07 0.13 0.73 1.40 1.20 0.60 1.80 2.33 2.60 3.53

50 0.07 0.07 0.13 0.00 0.20 0.27 0.20 0.27 1.67 1.73 1.80 1.80 2.13 2.27 2.60 3.00

70 0.00 0.07 0.13 0.13 0.33 0.47 0.33 0.27 2.60 1.87 1.93 1.93 3.53 2.40 3.80 3.00

140 0.27 0.13 0.27 0.20 0.33 1.20 0.73 0.47 3.00 3.47 3.00 3.60 5.27 5.47 5.00 3.87

Rejection frequencies (%) at 5% nominal level obtained computing the F-statistic described in

(3.50), under the null hypothesis H0: ψk = ψ0,k against the alternative H1: ψk 6= ψ0,k. β̂GLS

and ĉGLS denote the infeasible GLS estimator of β and c respectively. Similarly, the subscript

“FGLS ” stands for feasible GLS. The data are generated from Option 2, with E(σ2
i ) = 1.

The tests based on the feasible GLS estimation severely suffer from size distor-

tions. Unless the degree of coefficient heterogeneity is quite high (e.g. σβ = 0.5),

the sizes are always substantially lower than the nominal levels. They are often
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close to zero due to the fact that the estimated standard errors are largely biased

upward. Once again, the distortions are even more severe when testing about the

intercept parameters.

To support these findings, we plot the power functions for the slope and

intercept parameters in Figure 2.1 and 2.2 respectively. To save space, we only

report results for the case with E(σ2
i ) = 1 and σβ = 0.1.12

Figure 2.1: Rejection frequency (%) at the 5% nominal level, for the slope parameter (β),
in the y-axis. They are computed using the F-statistic described in (3.50), under the null
hypothesis H0: β = β against the alternative β 6= β. Different values of β are reported in the
x-axis. The true value of β is 0.5. The black lines and the red dotted lines denote the power
performances of feasible and infeasible GLS estimators, respectively. Results obtained using
Option 2, with E(σ2

i ) = 1 and σβ = 0.1.

12Additional results are available in an online Appendix.
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Figure 2.2: Rejection frequency (%) at the 5% nominal level, for the intercept parameter
(c), in the y-axis. They are computed using the F-statistic described in (3.50), under the null
hypothesis H0: c = c against the alternative c 6= c. Different values of c are reported in the
x-axis. The true value of c is 0. The black lines and the red dotted lines denote the power
performances of feasible and infeasible GLS estimators, respectively. Results obtained using
Option 2, with E(σ2

i ) = 1 and σc = 0.1.

2.5 Conclusions

As in the error component model, the estimator of the coefficients’ covariance

matrix in a random coefficient model is often negative definite. The aim of this

study is to investigate the causes and effects of the problem. By running some

Monte Carlo experiments, we show that the degree of coefficient heterogeneity

relative to the (conditional) variability of the dependent variables plays a cru-

cial role. The larger the coefficient dispersion and the precision of the regression

disturbances (the inverse of the average variance of the time-varying errors), the

lower the probability to observe a negative definite estimator of the random coef-

ficient covariance matrix. An increase in the former has a larger effect than an

increase in the latter. Similarly, this probability decreases as the time dimension



2.5. Conclusions 46

and the number of units get large, partly due to the fact that the performances

(in terms of bias and RMSE) of individual OLS estimates and the Mean Group

improves in large samples. It is known that when the time dimension goes to

infinity, the negative definiteness problem vanishes.

We then demonstrate that relying on the asymptotic properties of the biased

but consistent estimator of the random coefficient covariance matrix may lead

to poor inference. Unless the time and cross-section dimensions, and/or the

degree of coefficient dispersion are high, the estimated standard errors are largely

upwards biased. The resulting hypothesis tests may suffer from considerable

size distortions. The empirical sizes of the tests are substantially lower than

the nominal levels. Results may worsen when the precision of the regression

disturbances decreases. An estimation procedure which yields an unbiased and

more efficient estimator of the random coefficient covariance and which performs

relatively well in terms of accuracy of inference is proposed in Chapter 3.
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2.6 Appendix

2.6.1 Estimation of Parameters in the Presence of Serially

Correlated Disturbances

Swamy (1971) considers the estimation problem of Ωi when the the disturbances

follow an AR(1) process:

uit = φiui,t−1 + εit, 0 <| φi |< 1, (2.25)

and E (εit) = 0, E (εitεjs) = σ2
i if t = s and i = j, and 0 otherwise. For i = j,

E
(
uiu
′
j

)
= σ2

i Ωi, where

Ωi =
1

1− φ2
i



1 φi φ2
i · · · φT−1

i

φi 1 φi · · · φT−2
i

φ2
i φ 1 φT−3

i

...
...

... . . . ...

φT−1
i φT−2

i φT−3
i · · · 1


,

and E
(
uiu
′
j

)
= 0, if i 6= j. A consistent estimator of φi is given by

φ̂i =

∑T
t=2 ûitûi,t−1∑T
t=2 û

2
i,t−1

, (2.26)

where ûit is the t-th element of ûi, the vector of OLS residuals. An estimator of

Ωi can be obtained by replacing φi by φ̂i in Ωi. Note also that the inverse of Ω̂i
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can be computed using the fact that Ω̂−1
i = R̂′iR̂i, where

R̂i =



√
1− φ̂2

i 0 0 · · · 0 0

−φ̂i 1 0 0

0 −φ̂i 1
...

... . . . . . . ...

0 0 · · · −φ̂i 1


.

Under assumption (2.25), by regressing yi upon Xi, and applying Aitken’s

GLS to each time series, we have

β̂i,gls = (X ′iΩ
−1
i X i)

−1X ′iΩ
−1
i yi

= β + δi + (X ′iΩ
−1
i X i)

−1X ′iΩ
−1
i ui.

(2.27)

The feasible GLS estimator of βi is given by

β̃i = (X ′iΩ̂
−1
i X i)

−1X ′iΩ̂
−1
i yi. (2.28)

The average effect, β, can be estimated by

β̂FGLS =
N∑
i=1

Ŵiβ̃i, (2.29)

where

Ŵi =

{
N∑
i=1

[
4̂+ σ̃2

i (X
′
iΩ̂
−1
i X i)

−1
]
−1

}−1 [
4̂+ σ̃2

i (X
′
iΩ̂
−1
i X i)

−1
]
−1,

σ̃2
i =

ũ′iũi
T −K

,

and ũi = R̂iyi − R̂iXiβ̃i.



2.6. Appendix 49

Similarly to (2.12), using (2.27), we can compute

var
(
β̂i,gls

)
= E

(
β̂i,gls − β

)(
β̂i,gls − β

)′
= 4+ σ2

i (X
′
iΩ
−1
i X i)

−1.

The estimator of 4 becomes

4̂ = 4̂4 − 4̂5, (2.30)

where

4̂4 = 1
N−1

∑N
i=1

(
β̃i −N−1

∑N
i=1 β̃i

)(
β̃i −N−1

∑N
i=1 β̃i

)′
,

4̂5 = 1
N

∑N
i=1 σ̃

2
i

(
X ′iΩ̂iX i

)−1

.

(2.31)



Chapter 3

Estimation and Inference in Mixed

Fixed and Random Coefficient

Panel Data Models

3.1 Introduction

This chapter considers the problem of statistical inference in random coefficient

panel data models, when both N (the number of units) and T (the number of

time periods) are quite large. In the presence of heterogeneity, the parameters

of interest may be the unit-specific coefficients, their expected values, and their

variances over the units. Two main estimators for the expected value of the ran-

dom coefficients are used in the literature. Pesaran and Smith (1995) suggest

estimating N time series separately to then obtain an estimate of the expected

value of the unit-specific coefficients by averaging the OLS estimates for each

unit. They call this procedure Mean Group estimation. Alternatively, under the

assumption that the coefficients are random draws from a common distribution,

one can apply Swamy (1970) GLS estimation, which yields a weighted average of

50
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the individual OLS estimates.1 However, as in the error-component model, the

Swamy estimator of the random coefficient covariance matrix is not necessarily

nonnegative definite. We have investigated the consequences of this drawback

in finite samples, in particular when testing hypotheses, in Chapter 2. In this

Chapter, we propose a solution to the above mentioned problem by applying

the EM algorithm. In particular, following the seminal papers of Dempster et

al. (1977), and Patterson and Thompson (1971), we propose to estimate het-

erogeneous panels by applying the EM algorithm to obtain tractable closed form

solutions of restricted maximum likelihood (REML) estimates of both fixed and

random components of the regression coefficients as well as the variance para-

meters. The proposed estimation procedure is quite general, as we consider a

broad framework which incorporates various panel data models as special case.

Our approach yields an estimator of the average effects which is asymptotically

related to both the GLS and the Mean Group estimator, and which performs

relatively well in finite sample as shown in our limited Monte Carlo analysis. We

also review some of the existing sampling and Bayesian methods commonly used

to estimate heterogeneous panel data, to highlight similarities and differences

with the EM-REML approach.

Both the EM and the REML are commonly used tools to estimate linear

mixed models but have been neglected by the literature on panel data with ran-

dom coefficients.2 The EM algorithm has also recently gained attention in the

finance literature. Harvey and Liu (2016) suggest a similar approach to ours to

1Swamy focuses on estimating the average effects while the random effects are treated
as nuisance parameters and conditioned out of the problem. However, the estimation of the
random components of the model becomes crucial if the researcher wishes to predict future
values of the dependent variable for a given unit or to describe the past behavior of a particular
individual. Joint estimation of the individual parameters and their mean has been proposed by
Lee and Griffiths (1979). Joint estimation in a Bayesian setting has been suggested by Lindley
and Smith (1972), and has been further studied by Smith (1973), Maddala et al. (1997) and
Hsiao, Pesaran and Tahmiscioglu (1999). A good survey of the literature is provided by Hsiao
and Pesaran (2008) and in Smith and Fuertes (2016).

2For discussions on EM and REML estimation of linear mixed models, see Harivlle (1977),
Searle and Quaas (1978), Laird and Ware (1982), Pawitan (2001), and McLachlan and Krishnan
(2008), among others.
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evaluate investment fund managers. The authors focus on estimating the fund-

specific random effects population (“alphas”) while the other coefficients of the

model (“betas”) are assumed to be fixed. Instead, we consider a different frame-

work where both the intercept and slope parameters are a function of a set of

explanatory variables and are randomly drawn from a common distribution. We

derive an expression for the likelihood of the model accordingly. More import-

antly, differently from Harvey and Liu, our goal is to illustrate the advantages

of the EM-REML approach in estimating a general class of heterogeneous panel

data models, in relation to the existing methods.

First, estimating heterogeneous panels by EM-REML yields unbiased and

more efficient estimation of the variance components. This is important as the

unbiased estimator of the variance-covariance matrix of the random coefficients

proposed by Swamy (1970) is often negative definite. In such cases, the author

suggests eliminating a term to obtain a non-negative definite matrix. This al-

ternative estimator is consistent when T tends to infinity but it is severely biased

in small samples. As shown in the Monte Carlo analysis, this in turn leads to

biased estimated standard errors and may affect the power performances of the

GLS estimator. Compared to Swamy estimator, the EM-REML method leads to

remarkable reduction of the bias and root mean square errors of the estimates

of the random coefficient variances. As a results, the estimated standard errors

have lower bias, leading to more accurate hypothesis tests. A valid estimator of

the random coefficient covariance matrix is also important to correctly detect the

degree of coefficient heterogeneity. As noted by Trapani and Urga (2009), the

latter plays a crucial role on the forecasting performance of various panel estim-

ators, while other features of the data have a very limited impact. Therefore, our

estimator of the covariance matrix may be considered by applied researchers to

choose the appropriate estimator for forecast purposes.

Lee and Griffiths (1979) derive a recursive system of equations as a solution

to the maximization of the likelihood function of the data which incorporates the
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prior likelihood of the random coefficients. However, we demonstrate that their

estimate of the random coefficients’ variance-covariance matrix does not satisfy

the law of total variance. This is not the case when using the EM algorithm.

Differently from Lee and Griffiths, we consider the joint likelihood of the observed

data and the random coefficients as an incomplete data problem (in a sense which

will be more clear later on). We show that maximizing the expected value of the

joint likelihood function with respect to the conditional distribution of the random

effects given the observed data is necessary for the law of total variance to hold.

Another interesting feature of the EM (compared to the papers mentioned in

the above paragraph) is that it allows us to make inference on the random effects’

population. Indeed, in general, it gives a probability distribution over the missing

data.

The random effects are estimated by the mean of their posterior distribution,

under the assumption that the regressors are strictly exogenous,. Substituting the

unknown variance components by their estimates yields the empirical best linear

unbiased predictor. We also note that the EM-REML estimator of the average

effects is related to the empirical Bayesian estimator described in Hsiao, Pesaran

and Tahmiscioglu (1999). The EM-REML estimators of the variance components

are analogous to the Bayes mode of their posterior distribution, derived in Lindley

and Smith (1972). In view of the relatively good finite-sample performances, the

EM approach should be regarded as a valid alternative to Bayesian estimation

in those cases in which the researcher wishes to make inference on the random

effects distribution while having little knowledge on what sensible priors might

be. At the same time, a drawback of the Bayesian approach is that, when sample

sizes is not too large (relative to the number of parameters being estimated), the

prior choice will have a heavy weight on the posterior, which will consequently

be far from being data dominated (Kass and Wasserman, 1996). To illustrate,

Hsiao, Pesaran and Tahmiscioglu (1999), suggest using the Swamy covariance’s

estimator as a prior input for the random coefficient covariance matrix. However,
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they note that the latter affects the empirical and hierarchical Bayes estimates

of the regression coefficients adversely, especially when the degree of coefficient

heterogeneity decreases. Alternatively, when considering a diffuse prior, their

Gibbs sampling algorithm breaks down completely in some experiments. Another

merit of our method is to overcome this problem.

The proposed econometric methodology is used to study the determinants of

the sensitivity of sovereign spreads with respect to government debt. While there

is a large literature on the empirical determinants of sovereign yield spreads there

is no work, to the best of our knowledge, which tries to explain and quantify the

cross-sectional difference in the reaction of sovereign spreads to change in gov-

ernment debt.3 First, we show that financial markets reactions to an increase in

government debt are heterogeneous. We then model such reactions as function

of macroeconomic fundamentals and a set of explanatory variables which reflect

the history of government debt and economic crises of various forms. We find

that country-specific macroeconomic indicators, commonly found to be signific-

ant determinants of sovereign credit risk, do not have any significant impact on

the sensitivity of spreads to debt. On the other hand, history of repayment plays

an important role. A 1% increase in the percentage of years in default or restruc-

turing domestic debt is associated with around 0.35% increase in the additional

risk premium in response to an increase in debt.

This chapter is organized as follows. Section 3.2 describes the regression

model and its main assumptions. In Section 3.3 an expression for the likelihood

of the complete data, which includes both the observed and the missing data, is

obtained. The restricted likelihood is also derived. Section 3.4 illustrates the use

of EM algorithm and shows how to perform the two steps of the EM algorithm,

called the E-step and the M-step. We compare the EM-REML approach with

alternative methods in Section 3.5. The problem of inference in finite sample

3The effects of macroeconomic fundamentals on sovereign credit spreads are examined in
Akitoby and Stratmann (2008), Bellas et al. (2010), Edwards (1984), Eichengreen and Mody
(2000) and Hilscher and Nosbusch (2010), among others.
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is addressed in Section 3.6. Results from Monte Carlo experiments are shown

in Section 3.7. In Section 3.8, we employ the econometric model to study the

determinants of the sensitivity of sovereign spreads. Finally, we conclude.

3.2 A Mixed Fixed and Random Coefficient Panel

Data Model

We assume that the dependent variable, yit, is generated according to the follow-

ing linear panel model with unit-specific coefficients,

yit = ci + x′itβi + εit, (3.1)

for i = 1, .., N and t = 1, .., T , where xit is a K×1 vector of exogenous regressors.

The model can be written in stacked form

yi = Ziψi + εi, (3.2)

where yi is a T × 1 vector of dependent variables for unit i, and Zi is a T ×K∗

matrix of explanatory variables, including a vector of ones.4 Following Hsiao

et al. (1993), in order to provide a more general framework which incorporates

various panel data models as special case, we partition Zi and ψi as

Zi =
[
Z̄i Zi

]
, ψi =

 ψ1i

ψ2i

 ,
where Z̄i is T ×k∗1 and Zi is T ×k∗2, with K∗ = k∗1 +k∗2. The coefficients in ψ1i are

assumed to be constant over time but differ randomly across units. Individual-

specific characteristics are the main source of heterogeneity in the parameters:

4To make notation easier, we assume that T = Ti, for all i, although the results are also
valid for an unbalanced panel.
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ψ1i = Γ1f1i + γi, (3.3)

where γi is a k∗1 × 1 vector of random effects, Γ1 is a (k∗1 × l1) matrix of unknown

fixed parameters, and f1i is a l1× 1 vector of observed explanatory variables that

do not vary over time (for instance, Smith and Fuertes (2016) suggest using the

group means of the xit’s). The first element of f1i is one to allow for an intercept.

The coefficients of Zi are non-stochastic and subject to

ψ2i = Γ2f2i, (3.4)

where Γ2 is a (k∗2× l2) matrix of unknown fixed parameters, and f2i is a l2× 1

vectors of observed unit-specific characteristics. Equations (3.3) and (3.4) can be

rewritten as
ψ1i =

(
f ′1i ⊗ Ik∗1

)
Γ̄1 + γi,

ψ2i =
(
f ′2i ⊗ Ik∗2

)
Γ̄2,

(3.5)

where Γ̄j = vec (Γj), which is a k∗j lj-dimensional vector and Fji =
(
f ′ji ⊗ Ik∗j

)
is

a k∗j × k∗j lj matrix, for j = 1, 2. Substituting (3.5) into (3.2) yields

yi = WiΓ̄ + Z̄iγi + εi, (3.6)

for i = 1, .., N , where

Wi

T × K̄

=
[
Z̄iF1i ZiF2i

]
, Γ̄

K̄ × 1

=

 Γ̄1

Γ̄2

 ,

with K̄ = (k∗1l1 + k∗2l2). We assume that:

(i) The regression disturbances are independently distributed with zero means
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and variances that are constant over time but differ across units:

εit ∼ IIN(0, σ2
εi

). (3.7)

(ii) xit and εis are independently distributed for all t and s (i.e. xit are strictly

exogenous). Both set of variables are independently distributed of γj, for all i

and j.

(iii) f1i and f2i are independent of the εjt’s and γj, for all i and j.

(iv) The vector of unit-specific random effects is independently normally dis-

tributed as

γi ∼ IIN(0,4), ∀i. (3.8)

Special Cases. Many panel data models can be derived as special cases of the

model described in equation (3.6). Among others:

1. Models in which all the coefficients are stochastic and depend on individual-

specific characteristics can be obtained from (3.6) by setting Zi = 0.

2. Swamy (1970) random coefficients model requires Zi = 0, and f1i = 1, for

all i = 1, .., N , while Γ̄ = ψ is a K∗ × 1 vector of fixed coefficients.

3. The correlated random effects (CRE) model proposed by Mundlak (1978b)

and Chamberlain (1982) can be obtained by setting Z̄i = ι (where ι is a

vector of ones), f1i contains x̄i, the average over time of the xit’s; f2i = 1

for all i, which implies that ψ2i = ψ2 is a vector of common coefficients..

4. Error-components models (as described in Baltagi (2005) and in Hsiao

(2003)) which are a special case of the CRE model with f1i = 1 for all

i and Γ1 ≡ c ∈ R.

5. Model with interaction terms (e.g. Friedrich (1982)): Z̄i = 0 and for in-

stance f2i = 1, while Zi contains the interaction terms.
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6. Common Model for all cross-sectional units: Z̄i = 0, and f2i = 1 for all i.5

Dynamic Panels. Many economic applications involve behavioural relation-

ships which are dynamic in nature, requiring a model with lagged dependent

variables appearing as regressors, such as

yit = ci + φiyi,t−1 + x′itβi + εit, (3.9)

for i = 1, .., N , and t = 1, .., T . In such cases, when rewriting the model in

its stacked form (3.2), Zi would include lagged values of yi. However, including

lagged dependent variables among the regressors raises a problem of endogeneity

since they are a function of the individual random effects. Therefore, although we

may maintain the assumptions (i)-(iv), we cannot assume that E (γiyi,t−1) = 0.

Consequently, the estimates of the coefficients will be biased and inconsistent

when T is fixed, even for large N . Only when T is sufficiently large, one can rely

on the consistency properties. It is noteworthy that our estimators are derived

under the assumption that the regressors, xit’s, are strictly exogenous and the

initial observation yi0 are fixed constants. This choice is in line with Maddala et

al. (1997) and Hsiao, Pesaran and Tahmiscioglu (1999), and is also motivated

by the need of directly comparing our approach with the Swamy method which

has been developed for the static case. Anderson and Hsiao (1981, 1982) argue

that regarding the first observation as fixed can be a strong assumption for finite

T . Nevertheless, as it will be shown in the Monte Carlo analysis (where we allow

the initial values of the dependent variables to be random draws from different

populations with different means and variances, and correlated with the random

effects), the proposed method has relatively good properties when estimating

dynamic panels even in moderate samples size (e.g. N = 30 and 20 < T ≤ 50).

The case where the initial observations are treated as random and correlated with

5Models 5 and 6 do not involve any random coefficient and do not require the use of the
EM algorithm.
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the random effects will be investigated in a separate research.

Estimation of Long-Run Effects. In the dynamic case, one can estimate the

vector of long-run effects of a set of regressors on the dependent variables as

θ̂i =
β̂i

1− φ̂i
, (3.10)

where β̂i and φ̂i are the EM-REML estimates obtained as described hereafter.

Cross-Section Dependence. It may occur that the assumption of independ-

ence (across units) of the error terms does not hold. Such cross-section depend-

ence (CSD) may arise from the fact that the errors are driven by a r × 1 vector

of unobserved common factors (f̄t):

εit = τ ′i f̄t + εit, (3.11)

where τ i is a r×1 vector of factor loadings and εit is an unobserved random error

term independently distributed across i and t and which satisfies E(εit) = 0 and

E(ε2it) = σ2
εi
.

One way to allow for such common factors and remove the effect of CSD is

to add cross-section averages of the dependent and independent variables of the

model as shown by Pesaran (2006) in the static case, and Chudik and Pesaran

(2015) in the dynamic case. Equation (3.2) should be replaced by

yi = Ziψi + εi, (3.12)

where Zi would now also include cross-section averages of the dependent and

right-hand side variables.
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3.3 Likelihood of the Complete Data

Define the full set of (fixed) parameters to be estimated as

θ = (Γ̄′, σ2
ε , ω

′)′ = (θ′1, ω
′)′,

where σ2
ε = (σ2

ε1, .., σ
2
εN) and ω is a vector containing the non-zero elements

of the covariance matrix 4. We consider the unobserved random effects, γ =

(γ′1, .., γ
′
N)′, as the vector of missing data, and (y′, γ′)′ as the complete data vec-

tor. Following the rules of probability, the log-likelihood of the complete data is

given by

logL(y, γ; θ) = logf(y | γ; θ1) + logf(γ;ω), (3.13)

which is the sum of the conditional log-likelihood of the observed data and

the log-likelihood of the missing data.6 Using assumption (3.8), the joint log-

likelihood of the vector of missing data can be written as

logf(γ) =
N∑
i=1

logf(γi) = µ1 +
N

2
log | 4−1 | −1

2

N∑
i=1

γ′i4−1γi. (3.14)

We now derive the likelihood of y = (y′1, .., y
′
N)′ given γ.7 From (3.6) we can

easily obtain the conditional expectation and variance of yi, which are given by

E(yi | γi) = WiΓ̄ + Z̄iγi and var(yi | γi) = var (εi) = Ri = σ2
εi
IT , respectively.

Under the assumption that both the regression error terms, εi, and the random

effects, γi, are independent and normally distributed, it follows that yi is normally

distributed and independent of yj, for i 6= j. Therefore, the conditional log-

6To make notation easier, hereafter, we write f(γ;ω) = f(γ) and f(y | γ) instead of
f(y | Z, γ; θ1).

7If the model is dynamic, we derive the joint likelihood of yi given γi, for i = 1, .., N , under
the assumption that the first observations of the dependent variables are deterministic. As
noted in Hamilton (1994), as T gets large, the contribution of the first observations to the total
likelihood is negligible. He also notes that the exact maximum likelihood estimator (MLE)
and conditional MLE have the same large-sample distribution when the absolute value of the
autoregressive coefficient of a Gaussian AR(1) process is less than one, | φ |< 1, while only the
conditional MLE is consistent when | φ |> 1.
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likelihood of the observed data is given by

logf(y | γ) =
N∑
i=1

logf(yi | γi) = µ2 −
1

2

N∑
i=1

log | Ri | −
1

2

N∑
i=1

ε′iR
−1
i εi, (3.15)

where

εi = yi −WiΓ̄− Z̄iγi. (3.16)

Having found an explicit formulation for logf(y | γ; θ1) and logf(γ;ω), we

can derive an expression for the log-likelihood of the complete data by substi-

tuting (3.15) and (3.14) into (3.13). At this point, we can make two important

observations. First, θ1 and ω are not functionally related (in the sense of Hayashi

(2000, Section 7.1)). This implies that logf(γ;ω) does not contain any informa-

tion about θ1 and similarly logf(y | γ; θ1) does not contain any information about

ω. Second, as stated in Harville (1977), the maximum likelihood estimation takes

no account of the loss in degrees of freedom that results from estimating the fixed

coefficients, leading to a biased estimator of σ2
ε . In the next subsection, we elimin-

ate this problem by using the restricted maximum likelihood (REML) approach,

described formally by Patterson and Thompson (1971).

3.3.1 Restricted Likelihood

Following Patterson and Thompson (1971), we can separate logf(yi | γi; θ1) in two

parts: L1i and L2i. By maximizing the former, we can estimate σ2
εi
. An estimate

of Γ̄ is obtained after maximizing L2i. The two parts can be obtained by defining

two matrices Si and Qi such that the likelihood of (yi | γi) (for i = 1, .., N) can

be decomposed as the product of the likelihoods of Siyi and Qiyi, i.e.

logf(yi | γi; θ1) = L1i + L2i. (3.17)

Such matrices must satisfy the following properties: (i) the rank of Si is

not greater than T − K, while Qi is a matrix of rank K, (ii) L1i and L2i are
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statistically independent, i.e. cov (Siyi, Qiyi) = 0, (iii) the matrix Si is chosen so

that E (Siyi) = 0, i.e. SiWi = 0, and (iv) the matrix QiWi has rank K.8

Finding an expression for L1i. Premutiplying both sides of (3.6) by Si, we

have E (Siyi | γi) = SiZ̄iγi, since SiWi = 0 and var (Siyi | γi) = SiRiS
′
i. There-

fore, the conditional log-likelihood of Siyi is given by

L1i = µ3 −
1

2
log | SiRiS

′
i | −

1

2

(
yi − Z̄iγi

)′
S ′i (SiRiS

′
i)
−1
Si
(
yi − Z̄iγi

)
. (3.18)

Searle (1978) showed that “it does not matter what matrix Si of this spe-

cification we use; the differentiable part of the log-likelihood is the same for all

Si’s”. In other words, the log-likelihood L1i can be written without involving Si.9

Indeed, equation (3.18) can be rewritten as

L1i = µ3 −
1

2
log|Ri| −

1

2
log | W ′

iR
−1
i Wi| −

1

2
ε̄′iR

−1
i ε̄i, (3.19)

where ε̄i = yi −Wi
ˆ̄Γ − Z̄iγi, and ˆ̄Γ denotes the generalized least squares (GLS)

estimator of Γ̄, which we describe in Subsection 3.4.4.

Finding an expression for L2i. Following Patterson and Thompson (1971),

we can set Qi = W ′
iR
−1
i since it satisfies cov (Siyi, Qiyi) = 0.10 After premutiply-

ing both sides of (3.6) by Qi, we have E (Qiyi | γi) = W ′
iR
−1
i

(
WiΓ̄ + Ziγi

)
and

var (Qiyi | γi) = W ′
iR
−1
i Wi. The log-likelihood of Qiyi | γi is given by

L2i = µ4 −
1

2
log | W ′

iR
−1
i Wi | −

1

2
ε′iHiεi, (3.20)

where Hi = R−1
i Wi

(
W ′
iR
−1
i Wi

)−1
W ′
iR
−1
i and the εi’s are the regression errors

defined in (3.16).

8K = rank(Wi).
9Detailed derivations of L1i are described in Appendix 3.10.1.

10See Appendix 3.10.1 for a proof.
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3.4 EM-Algorithm

3.4.1 Generalities

Using equations (3.13), (3.14) and (3.15), the log-likelihood of the complete data

can be rewritten as

logL(y, γ; θ) =
∑N

i=1 {logL(yi, γi; θ)}

=
∑N

i=1 {logf(yi | γi; θ1) + logf(γi;ω)} .

Lee and Griffiths (1979) obtain iterative estimates of θ and γ by maximizing

directly the latter. Instead, we argue in favour of using the EM algorithm to com-

pute maximum likelihood estimates as this method has some added advantages.

First, as established in Dempster et al. (1977), the EM algorithm assures that

each iteration increases the likelihood. Second, as it will be shown in the next

sections, contrary to Lee and Griffiths approach which delivers var {E (γi | yi)}

as an estimator of var(γi), the unconditional variance of the γi, the EM algorithm

yields an estimator of the latter satisfying the law of total variance. Finally, the

EM allows us to make inference on the random effects’ population.

Moreover, to obtain unbiased estimates of the variances of the time-varying

disturbances, we consider the complete-data (restricted) log-likelihood:

logL(yi, γi; θ) = L1i + L2i + logf(γi;ωi), (3.21)

for i = 1, .., N , where logf(yi | γi; θ1) has been decomposed as shown in equation

(3.17).

On each iteration of the EM algorithm, there are two steps. The first step,

called E-step, consists in finding the conditional expected value of the complete-

data log-likelihood.

Let θ(0) be some initial value for θ. On the bth iteration, for b = 1, 2, .., the
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E-step requires computing the conditional expectation of the logL(y, γ; θ) given

y, using θ(b−1) for θ, which is given by

Q = Q(θ; θ(b−1)) = Eθ(b−1) {logL(y, γ; θ) | y}

=
∑N

i=1Eθ(b−1) {logL(yi, γi; θ) | yi} =
∑N

i=1 Qi,

(3.22)

where

Qi = Qi(θ; θ
(b−1)) ≡ Eθ(b−1) {logL(yi, γi; θ) | yi} = Q1i +Q2i +Q3i,

and
Q1i = Eθ(b−1) {L1i | yi} ,

Q2i = Eθ(b−1) {L2i | yi} ,

Q3i = Eθ(b−1) {logf(γi;ω) | yi} .

(3.23)

In practice, we replace the missing variables, i.e. the random effects (γi), by

their conditional expectation given the observed data yi and the current fit for θ.

The second step (M-Step) consists of maximizing Q(θ; θ(b−1)) with respect to

the parameters of interest, θ. That is, we choose θ(b) such that Q(θ(b); θ(b−1)) ≥

Q(θ; θ(b−1)). In other words, the M-step chooses θ(b) as

θ(b) = argmax
θ

Q(θ; θ(b−1)).

Starting from suitable initial parameter values, the E- and M-steps are re-

peated until convergence, i.e. until the difference L(y; θ(b))−L(y; θ(b−1)) changes

by an arbitrarily small amount, where L(y; θ) denotes the likelihood of the ob-

served data.
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3.4.2 Best Linear Unbiased Prediction

Within the EM algorithm, the random effects, γi, are estimated by best linear

unbiased prediction (BLUP).11 Indeed, the E-step substitutes the γi’s by their

conditional expectation given the observed data yi and the current fit for θ. The

conditional expectation of γi given the data is

γ̂i = E (γi | yi) = 4Z̄ ′i
(
Z̄i4Z̄ ′i +Ri

)−1
(yi −WiΓ̄)

=
(
Z̄ ′iR

−1
i Z̄i +4−1

)−1
Z̄ ′iR

−1
i

(
yi −WiΓ̄

)
,

(3.24)

which is also the argument that maximizes the complete data likelihood, as

defined in (3.13), with respect to γi. It can be noted from the first equality

of (3.24) that this expression is related to the predictor of the random effects

derived in Lee and Griffiths (1979), Lindley and Smith (1972) and Smith (1973).

The main difference concerns the way the regression coefficients and the variances

components are estimated.

The conditional variance of γi is given by

Vγi = var (γi | yi) =
(
Z̄ ′iR

−1
i Z̄i +4−1

)−1
, (3.25)

which is equivalent to the inverse of I (γi) = Z̄ ′iR
−1
i Z̄i +4−1, the observed Fisher

information matrix obtained by taking the second derivative of the log-likelihood

of the complete data with respect to γi.

These two formulae have an empirical Bayesian interpretation. Given that γ

is random, the likelihood f(γ) can be thought as the “prior” density of γ. The

posterior distribution of the latter is Normal with mean and variance given by

(3.24) and (3.25), respectively.

11Further details are provided in Appendix 3.10.2.
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3.4.3 E-step

At each iteration, the E-step requires the calculation of the conditional expecta-

tion of (3.21) given the observed data and the current fit for the parameters, to

obtain an expression for Qi(θ), for i = 1, .., N .12

To obtain Q1i, we take conditional expectation of both sides of (3.19). Sub-

stituting

Eθ(b−1)

(
ε̄′iR

−1
i ε̄i | yi

)
= Tr

(
Z̄ ′iR

−1
i Z̄iV

(b)
γi

)
+ ˆ̂ε′iR

−1
i

ˆ̂εi,

where ˆ̂εi = yi −WiΓ̄
(b) − Z̄iγ̂(b)

i , into Eθ(b−1) {L1i | yi}, yields

Q1i = Eθ(b−1) (L1i | yi) = µ3 − 1
2
log|Ri| − 1

2
log | W ′

iR
−1
i Wi|

−1
2
Tr
(
Z̄ ′iR

−1
i Z̄iV

(b)
γi

)
− 1

2
ˆ̂ε′iR

−1
i

ˆ̂εi.
(3.26)

where γ̂(b)
i and V (b)

γi are given by (3.24) and (3.25) respectively, after substituting

the current fit for θ at each iteration b = 1, 2, ....

To obtain Q2i, we take the conditional expectation of (3.20). Substituting

Eθ(b−1) (ε′iHiεi | yi) = Tr
(
Z̄ ′iHiZ̄iV

(b)
γi

)
+ ε̂′iHiε̂i,

where ε̂i = yi −WiΓ̄− Z̄iγ̂(b)
i , into Eθ(b−1) {L2i | yi}, yields

Q2i = Eθ(b−1) (L2i | yi) = µ4 − 1
2
log | W ′

iR
−1
i Wi |

−1
2
Tr
(
Z̄ ′iHiZ̄iV

(b)
γi

)
− 1

2
ε̂′iHiε̂i.

(3.27)

Finally, substituting

Eθ(b−1)

(
γ′i4−1γi | y

)
= Tr

(
4−1V (b)

γi

)
+ γ̂

(b)′

i 4−1γ̂
(b)
i ,

12Detailed computations are shown in Appendix 3.10.3.
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into Eθ(b−1) {logf(γi) | yi}, yields

Q3i = Eθ(b−1) (logf(γi) | y) = −K∗

2
log2π + 1

2
log | 4−1 |

−1
2
Tr
(
4−1V

(b)
γi

)
− 1

2
γ̂

(b)′

i 4−1γ̂
(b)
i .

(3.28)

3.4.4 M-step

The M-Step consists in maximizing (3.22) with respect to the parameters of

interest, contained in θ.

Estimation of the Average Effect. An estimate of Γ̄ can be obtained by

maximizing Q(θ; θ(b−1)) with respect to Γ̄. This reduces to solving

∂Q(θ; θ(b−1))

∂Γ̄
=

∂

∂Γ̄

(
−1

2

N∑
i=1

ε̂′iHiε̂i

)
= 0.

The solution is

Γ̄(b) =

(
N∑
i=1

W ′
iR
−1
i(b−1)Wi

)−1 N∑
i=1

W ′
iR
−1
i(b−1)

(
yi − Z̄iγ̂(b)

i

)
. (3.29)

which corresponds to the GLS estimation of Γ̄ when the model is given by y∗i =

WiΓ̄ + εi, where y∗i = yi − Z̄iγi, as if the γi’s where known.

Estimation of the Variances of the Error Terms. An estimate of σ2
εi
can be

derived by maximizing (3.22). Because Q3i is not a function of σ2
εi
and given that

no information is lost by neglecting Q2i (as noted by Patterson and Thompson

(1971), and Harville (1977)), we base inference for σ2
εi
only onQ1i, which is defined

in (3.26).

Substituting Ri = var (εi) = σ2
εi
IT into (3.26) and equating the first derivative
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of the latter with respect to σ2
εi
to zero, yields

σ2(b)
εi

=

ˆ̂ε′i
ˆ̂εi + Tr

(
Z̄ ′iZ̄iV

(b)
γi

)
T − r(Wi)

, (3.30)

where ˆ̂εi = yi −WiΓ̄
(b) − Z̄iγ̂

(b)
i . A necessary condition to be satisfied is: T >

rank(Wi).

Estimation of the Random Coefficient Variance-Covariance Matrix.

Under the law of total variance, the unconditional variance of γi can be writ-

ten as
4 = var (γi) = var [E (γi | yi)] + E [var (γi | yi)]

= var (γ̂i) + E (Vγi) .

(3.31)

Therefore, it can be shown that

4̂ =
1

N

N∑
i=1

{γ̂iγ̂′i + Vγi} (3.32)

is an unbiased estimator of 4. Indeed, taking expectation of both sides of (3.32)

and using (3.31), we get

E
(
4̂
)

=
1

N

N∑
i=1

{E (γ̂iγ̂
′
i) + E (Vγi)} =

1

N

N∑
i=1

{var (γ̂i) + E (Vγi)} = 4.

Notably, the EM estimator of the variance-covariance matrix of the random

effects (which is the argument which maximizes (3.28) with respect to4) is equal

to

4(b) =
1

N

N∑
i=1

{
γ̂

(b)
i γ̂

(b)′

i + V (b)
γi

}
, (3.33)

which is equivalent to (3.32) after substituting the unknown parameters with



3.4. EM-Algorithm 69

their current fit in the EM algorithm.13

3.4.5 EM-REML Algorithm - Complete Iterations

The EM algorithm steps can be summarised as follows. We start with some initial

guess: ψ(0),4(0) andRi(0) = σ
2(0)
εi IT−p. We suggest using Swamy (1970) estimates,

which are reported in the next Section, since they are consistent estimators of

the average effects and the variance components. Then, for b = 1, 2, ..

1. Given the current fit for θ at iteration b, we compute var
(
γi | yi, θ(b−1)

)
and

Eθ(b−1) (γi | yi), which are given by

V
(b)
γi =

(
Z̄ ′iR

−1
i(b−1)Z̄i +4−1

(b−1)

)−1

,

γ̂
(b)
i = V

(b)
γi Z̄

′
iR
−1
i(b−1)

(
yi −WiΓ̄

(b−1)
)
,

respectively.

2. The average coefficients are given by

Γ̄(b) =

(
N∑
i=1

W ′
iR
−1
i(b−1)Wi

)−1 N∑
i=1

W ′
iR
−1
i(b−1)

(
yi − Z̄iγ̂(b)

i

)
.

3. Finally, we can compute, the variance components:

σ2(b)
εi

=

ˆ̂ε′i
ˆ̂εi + Tr

(
Z̄ ′iZ̄iV

(b)
γi

)
T − r(Wi)

,

where ˆ̂εi = yi −WiΓ̄
(b) − Ziγ̂(b)

i and

4(b) =
1

N

N∑
i=1

{
V (b)
γi

+ γ̂
(b)
i γ̂

(b)′

i

}
.

13See Appendix 3.10.4 for computations.
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The iterations continue until the difference L(y; θ(b)) − L(y; θ(b−1)) changes only

by an arbitrary small amount, where L(y; θ) is the likelihood of the observed

data.

3.5 Comparison between EM-REML Estimation

and Alternative Methods

In this section, we review some of the existing sampling and Bayesian methods

commonly used to estimate heterogeneous panel data, to highlight similarities

and differences with the EM-REML approach.

3.5.1 Average Effects

Following Searle (1978, eq. 3.17), representing (3.29) and (3.24) as a system of

two equations, we can rewrite these two formulae as

ˆ̄Γ =

(
N∑
i=1

W ′
iV
−1
i Wi

)−1 N∑
i=1

W ′
iV
−1
i yi, (3.34)

γ̂i = 4Z̄ ′iV −1
i

(
yi −Wi

ˆ̄Γ
)
, (3.35)

respectively. Note that ˆ̄Γ is the estimator which maximizes the log-likelihood

function constructed by referring to the marginal distribution of the dependent

variable. When fi = 1 for all i, and Wi = Z̄i, equation (3.34) is related to the

Swamy GLS estimator. The latter can be rewritten as a weighted average of the

least squares estimates of the individual units:

ˆ̄Γ =
N∑
i=1

Ψiψ̂i,ols, (3.36)
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where

Ψi =
{∑N

i=1[4+ σ2
εi

(Z̄ ′iZ̄i)
−1]−1

}−1

[4+ σ2
εi

(Z̄ ′iZ̄i)
−1]−1,

ψ̂i,ols = (Z̄ ′iZ̄i)
−1Z̄ ′iyi.

(3.37)

Swamy’s estimator is a two-step procedure, which requires first to estimate

N time series separately as if the individual coefficients were fixed (in the sense

that they are not realizations from a common distribution) and all different in

each cross-section. Instead, the EM-REML is an iterative method which shrinks

the unit-specific parameters towards a common mean. Maddala et al. (1997)

argue in favour of iterative procedures when the model includes lagged dependent

variables since, as indicated in Amemiya and Fuller (1967), Maddala (1971) and

Pagan (1986), when estimating dynamic models, the two-step estimators based

on any consistent estimators of σ2
εi
and 4 are consistent but not efficient.

Hsiao, Pesaran and Tahmiscioglu (1999) show that ˆ̄Γ is equivalent to the

posterior mean of Γ̄ in a Bayesian approach which assumes the prior distribution

of Γ̄ is normal with mean µ and variance Ω, with Ω−1 = 0. Another important

contribution of the aforementioned paper is to establish that the Bayes estimator
ˆ̄Γ is asymptotically equivalent to the mean group estimator proposed by Pesaran

and Smith (1995), as T →∞, N →∞, and
√
N/T → 0.

3.5.2 Unit-Specific Parameters

Without loss of generality, for comparison purposes, let us focus on the case where

f1i = 1, ∀i and Zi = 0. Substituting (3.34) and (3.24) into (3.5) yields the best

linear unbiased predictor of ψi which following Lee and Griffiths (1979), can be
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rewritten as

ψ̂i = ˆ̄Γ + γ̂i

=
(
Z̄ ′iR

−1
i Z̄i +4−1

)−1
((
Z̄ ′iR

−1
i Z̄i

)
ψ̂i,ols +4−1 ˆ̄Γ

)
.

(3.38)

The latter expression is also related to the empirical Bayes estimator of ψi,

described in Maddala et al. (1997). The EM-REML predictor of ψi is thus

a weighted average between the OLS estimator of ψi and the estimator of the

overall mean, Γ̄, given by (3.34). Interestingly, as shown in Smith (1973), the

latter can be rewritten as a simple average of the ψ̂i:

ˆ̄Γ =
1

N

N∑
i=1

ψ̂i. (3.39)

Mean Group and Shrinkage Estimators. When the time dimension is large

enough (relative to the number of parameters to be estimated), it is sensible to

estimate a different time-series model for each unit, as proposed by Pesaran and

Smith (1995). Besides its simplicity, one strong advantage of their Mean Group

(MG) estimator is that it does not require to impose any assumption on the distri-

bution of the unit-specific coefficients. However, a drawback of the MG estimation

is that it may perform rather poorly when either N or T are small (Hsiao, Pesaran

and Tahmiscioglu, 1999). Moreover, as noted in Smith and Fuertes (2016), the

MG estimator is very sensitive to outliers. Boyd and Smith (2002) find that

the weighting which the Swamy estimator applies, may not suffice to reduce this

problem. To overcome the latter, one could either consider robust versions which

trim the outliers to minimize their effect, or shrinkage methods. Maddala et al.

(1997), estimating short-run and long-run elasticities of residential demand for

electricity and natural gas, find that individual heterogeneous state estimates are

difficult to interpret and have the wrong signs. They suggest shrinkage estim-

ators (instead of heterogeneous or homogeneous parameter estimates) if one is
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interested in obtaining elasticity estimates for each state since these give more

reliable results. Our estimation method belongs to the class of shrinkage estimat-

ors. In fact, the unobserved idiosyncratic components of the random coefficients,

γi, are estimated by BLUP. This choice arises naturally in the EM algorithm,

and in some applications may be advantageous compared to estimating N time

series separately since BLUP estimates tend to be closer to zero than the estim-

ated effects would be if they were computed by treating a random coefficient as

if it were fixed. Shrinkage approaches can be seen as an intermediate strategy

between heterogeneous models (which avoid bias) and pooled methods (which al-

low for efficiency gains), and therefore might help reducing the trade-off between

bias and efficiency discussed in Baltagi, Bresson and Pirotte (2008). As shown

in the Monte Carlo analysis, as T →∞ (for fixed N) the difference between the

Swamy, the MG, and the EM-REML estimators goes to zero. Finally, our ap-

proach can be advantageous (i) when individual-specific characteristics which do

not vary over time enter the regression equation, and (ii) when the interest lies

in explaining the drivers of coefficients heterogeneity. In the first case, computing

the OLS estimates for each unit is not feasible. In the second case, if N is large

one could first estimate N time series separately and in a second step regress the

OLS estimates on a set of unit-specific characteristics. Instead, our likelihood

approach does not require N to be very large.

3.5.3 Variance Components

We now compare the EM-REML estimator of the random coefficient variance-

covariance matrix, given by (3.33), with the Swamy (1970) and Lee and Griffiths

(1979) estimators. Swamy suggested estimating var (γi) as

4̂S = 4̂S1 −N−1

N∑
i=1

ˆvar
(
ψ̂i,ols

)
, (3.40)
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where

4̂S1 =
1

N − 1

N∑
i=1

(
ψ̂i,ols −N−1

N∑
i=1

ψ̂i,ols

)(
ψ̂i,ols −N−1

N∑
i=1

ψ̂i,ols

)′
, (3.41)

ψ̂i,ols are obtained by estimating N time series separately by OLS, ˆvar
(
ψ̂i,ols

)
=

σ̂2
εi

(Z̄ ′iZ̄i)
−1, and

σ̂2
εi

=
1

T −K∗
(
yi − Z̄iψ̂i,ols

)′ (
yi − Z̄iψ̂i,ols

)
(3.42)

are the OLS estimated variances of the error terms. However, (3.40) is not ne-

cessarily nonnegative definite. Therefore, if that is the case the author suggests

considering only (3.41). The latter estimator is nonnegative definite and con-

sistent when T tends to infinity. This estimator is also used in the empirical

Bayesian approach and in Lee and Griffiths’ “modified mixed estimation” pro-

cedure. Unfortunately, this estimator can be severely biased in finite sample.

Another drawback of (3.40) is that it is subject to large discontinuities.14 As

shown in the Monte Carlo analysis, the root mean square errors of this estimator

can be quite large. To understand, note that the estimator to be used in practical

applications can be rewritten as

ˆ̂4 =W
(
4̂ > 0

)
4̂+W

(
4̂ ≤ 0

)
4̂S1 ,

where W (A) = 1 if event A occurs. Focusing on the kth diagonal element, and

assuming for illustrative purposes that

4̂S1,k = 2, ¯̂var
(
ψ̂ik

)
=
{
N−1

∑N
i=1 ˆvar

(
ψ̂ik

)}
∈ {1, 2, 3, 4} ,

14I am grateful to Ron Smith who pointed out this issue in a meeting.
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we have

ˆ̂4k =

 2 if ¯̂var
(
ψ̂ik

)
∈ {2, 3, 4}

1 if ¯̂var
(
ψ̂ik

)
= 1

When the variances are unknown, Lee and Griffiths (1979) suggest maximizing

the joint likelihood of the random coefficients and the observed data given in

(3.13) with respect to the unknown parameters of the model, to get the following

iterative solutions of the variance components:15

σ̂2
εi

=
1

T

(
yi − Z̄iψ̂i

)′ (
yi − Z̄iψ̂i

)
, (3.43)

where ψ̂i is given by (3.38), and

4̂LG =
1

N

N∑
i=1

γ̂iγ̂
′
i. (3.44)

Within the EM algorithm, the random effects, γi, are considered as missing

data and replaced by their conditional expectation given the data, which yields

the BLUP of γi. At the same time, we have seen that the latter is equivalent

to the argument which maximizes the joint likelihood of the observed data and

random effects, given in (3.13). This is the approach followed by Lee and Griffiths

(1979). We argue in favor of treating the joint likelihood as an incomplete data

problem to then applying the EM algorithm to obtain maximum likelihood estim-

ates because, among the other reasons highlighted in Section 3.4, the estimator

given by (3.44) does not satisfy the law of total variance while the EM algorithm

yields an unbiased estimator of 4. Consequently, our approach has an advantage

over both Swamy (1970) and Lee and Griffiths (1979) when T is not too large,

since

E
(
4̂LG

)
≤ E

(
4̂EM

)
≡ 4 ≤ E

(
4̂S1

)
, (3.45)

15In this Section, we omit the superscript b = 1, 2, ... in ψ̂(b)
i and γ̂(b)i for ease of exposition

even though the solutions are iterative.
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where

4̂EM =
1

N

N∑
i=1

{Vγi + γ̂iγ̂
′
i} (3.46)

is the maximum likelihood estimator obtained by applying the EM algorithm.

Result (3.45) is of relevance because 4 appears not only in both the formula for

the average effect and the predicted random effects but also in their standard

errors. Testing hypothesis crucially depends on correctly estimating the random

coefficient variances.

Finally, we report the Bayes mode of the posterior distribution of 4 and σ2
εi

suggested by Lindley and Smith (1972) and Smith (1973), which are equal to

σ̂2
εi

=
1

T + υi + 2

{
υiλi +

(
yi − Z̄iψ̂i

)′ (
yi − Z̄iψ̂i

)}
, (3.47)

4̄ =
1

N + ρ−K∗ − 2

{
Υ +

N∑
i=1

γ̂iγ̂
′
i

}
, (3.48)

respectively, under the assumption that 4−1 has a Wishart distribution, with ρ

degrees of freedom and matrix Υ and σ2
εi

follows a χ2 with prior parameters υi

and λi, and is independent of 4. Note from (3.38) that γ̂i = ψ̂i − ˆ̄Γ. Smith

(1973) suggests vague priors by setting ρ = 1 and Υ to be a diagonal matrix

with small positive entries (such as .001). We note that, by setting ρ = K∗ + 2,

υi = −r (Wi) − 2 and υiλi = Tr
(
Z̄ ′iZ̄iΥ

)
, we can draw an analogy between the

EM-REML estimates, given by (3.46) and (3.30), and the modes of the posterior

distributions of 4 and σ2
εi
, given by (3.48) and (3.47), respectively.

3.5.4 Comparison between EM and a Full Bayesian Imple-

mentation

We can now compare the EM approach to the Bayesian estimation. The EM

algorithm gives a probability distribution over the random effects, γ, together
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with a point estimate for θ, the vector of average coefficients and variance com-

ponents of the model. The latter is treated as being random in a full Bayesian

version. The advantage of the EM compared to the iterative Bayesian approach

developed by Lindley and Smith (1992) and the Gibbs sampling-based approach

suggested in Hsiao, Pesaran and Tahmiscioglu (1999), would be that there is no

need to specify prior means and variances, the choice of which may not be always

obvious. At the same time, as discussed in Kass and Wasserman (1996), when

sample sizes are small (relative to the number of parameters being estimated) the

prior choice will have a heavy weight on the posterior, which will consequently

be far from being data dominated. While the Bayesian point estimates incorpor-

ate prior information, the EM-REML estimates do not involve the starting values

(chosen to initiate the algorithm). One can start with any initial value. As shown

in Dempster et al. (1977), the incomplete-data likelihood function L(y; θ) does

not decrease after an EM iteration, that is L(y; θ(b)) ≥ L(y; θ(b−1)) for b = 1, 2, ....

Nevertheless, this property does not guarantee convergence of the EM algorithm

since it can get trapped in a local maximum. In complex cases, Pawitan (2001)

suggests to try several starting values or to start with a sensible estimate. How-

ever, in the context of random coefficient models the choice of Swamy (1970)

estimates as starting values is rather natural, as they are consistent parameter

estimates.

Moreover, using a purely “noninformative” prior (in the sense of Koop (2003))

may have the undesirable property that this prior “density” does not integrate

to one, which in turn may raise many of the problems discussed in the Bayesian

literature (e.g. Hobert and Casella (1996)). For instance, assuming that 4−1

has a Wishart distribution with scale matrix (ρΥ) and ρ degrees of freedom,

Hsiao, Pesaran and Tahmiscioglu (1999) note that the bias of both the empirical

and hierarchical Bayes estimators of the regression coefficients is sensitive to the

specification of the prior scale matrix. Being unable to use a diffuse prior for the

covariance matrix, which would cause their Gibbs algorithm to break down, they
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set Υ = 4̂S, the Swamy estimator of the random coefficient covariance matrix.

If the latter is negative definite, the consistent (but biased) version (3.41) must

be used, affecting the Bayes estimates of the regression coefficients adversely.

Finally, it is known that the EM algorithm may converge slowly. However, in

the context of random coefficient models, convergence is usually achieved almost

as quickly as in the Gibbs sampler.16

3.6 Hypothesis Testing

3.6.1 Inference for Fixed Coefficients

Covariance Matrix of the Estimator of the Fixed Coefficients. Unlike

the Newton-Raphson and related methods, the EM algorithm does not automat-

ically provide an estimate of the covariance matrix of the maximum likelihood

estimates. However, in the context of the random coefficient type models here

considered, the Fisher information matrix I
(
Γ̄(B)

)
can be easily derived by eval-

uating analytically the second-order derivatives of the marginal log-likelihood of

the observed data (logf(y; θ)) since computations are not complicated. Therefore,

after convergence, the standard errors of Γ̄(B) can be computed as the square root

of the diagonal elements of the inverse of the Fisher information matrix, given by

Φ̂ =

(
N∑
i=1

W ′
iV
−1
i(B)Wi

)−1

, (3.49)

where Vi = var(yi) = Z̄i4Z̄ ′i + Ri, while B denotes the last iteration of the EM

algorithm.

16For instance, in the panel model used in the application, with N = 38 and 60 ≤ Ti ≤ 87,
and K = 8 regressors, including the constant, the EM algorithm converges after around 17
seconds. The Gibbs sampling algorithm is quicker, requiring around 10 seconds to run 5000
iterations. If we increase the number of regressors to 20, the difference slightly increases, with
the EM algorithm and the Gibbs sampler requiring around 40 and 15 seconds, respectively.
Despite being slower than its Bayesian counterpart, the EM algorithm converges rather quickly.
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Adjusted Estimator of the Covariance Matrix of Fixed Coefficients.

Let ˜̄Γ = Γ̄(B) be the “feasible” estimator of Γ̄ obtained by substituting the un-

known parameters with their estimates into the “infeasible” estimator ˆ̄Γ, given by

equation (3.34). We define Φ = var
(

ˆ̄Γ
)
, which is a function of ϑ =

(
ω′, σ2′

ε

)′,
the r̄ × 1 vector of variance-covariance parameters of the model.

We note that Φ̂ = Φ
(
ϑ̂
)

is a biased estimator of var
(

˜̄Γ
)
. The literature

on linear mixed models offers good insights into the two main sources of this

bias. First, Φ (ϑ) takes no account of the variability of ϑ̂ in ˜̄Γ. This problem

was addressed by Kackar and Harville (1984). Second, Φ̂ underestimates Φ, as

shown by Kenward and Roger (1997). The solution provided by the latter can

be easily applied into our setting to obtain an estimator of var
(

˜̄Γ
)
, Φ̂A, which

incorporates the necessary adjustments to correct both form of bias.17

Hypothesis Testing of Average Effects. To test the hypothesis Γ̄ = Γ̄0, for

Γ̄0 a known K̄ × 1 vector, we use the following criterion suggested by Swamy

(1970):
N − K̄

K̄ (N − 1)

(
˜̄Γ− Γ̄

)′
Φ̂−1
A

(
˜̄Γ− Γ̄

)
, (3.50)

whose asymptotic distribution is F, with K̄, N − K̄ degrees of freedom.

3.6.2 Assessing the Precision for the Unit-Specific Coeffi-

cients

In the general case, the standard errors of the predictor of ψ1i can be computed

as the square root of the diagonal elements of

var
(
ψ̂1i − ψ1i

)
= F1iΦF

′
1i + var (γ̂i − γi)− F1iΛ− Λ′F ′1i, (3.51)

17Details to compute Φ̂A are given in Appendix 3.10.5. A Matlab code to obtain the latter
is also provided.



3.7. Monte Carlo Simulations 80

where

Λ = cov
(

ˆ̄Γ− Γ̄, γi

)
= ΦW ′

iV
−1
i Z̄i4,

var (γ̂i − γi) = 4
[
I − Z̄ ′iV −1

i

(
I +WiΦW

′
iV
−1
i

)
Z̄i4

]
,

and Φ = var(ˆ̄Γ) as defined in (3.49).18

At the same time, one can exploit the fact that the EM algorithm provides a

distribution over the random effects. For instance, we suggest drawing S samples

from

γ
(s)
i | yi ∼ N (γ̂i, Vγi) , (3.52)

where γ̂i and Vγi are given by (3.24) and (3.25) respectively, to then report histo-

grams for each unit for comparison and diagnostic purposes. Moreover, if we go to

extremes, assuming prior ignorance on Γ̄, as in the empirical Bayesian methods,

Γ̄ can be drawn from its posterior distribution given by

Γ̄(s) | y ∼ N
(

ˆ̄Γ, Φ̂
)
, (3.53)

where ˆ̄Γ and Φ are given by (3.34) and (3.49) respectively. It follows that the in-

dividual coefficients, as defined in (3.5) can be drawn from the following Gaussian

distribution:

ψ
(s)
1i | yi ∼ N

(
F1i

ˆ̄Γ + γ̂i, F1iΦF
′
1i + Vγi

)
, (3.54)

for s = 1, .., S.

3.7 Monte Carlo Simulations

In this section, we employ Monte-Carlo experiments to examine and compare

the finite sample properties of the proposed EM-REML method, the Swamy’s

18Expression (3.51) is equivalent to the one proposed by Lee and Griffiths (1979). See
Appendix 3.10.5 for further details. The estimator of ψi derived in equation (3.38) has been
obtained under the assumption that F1i = I, ∀i. Therefore, its standard errors can also be
obtained from (3.51) after substituting F1i = I, ∀i.
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random coefficient model, and the Mean Group (MG) estimation. We report

results on the bias and root mean square error (RMSE) of the average effects and

of the variance components of the model. Particular attention is also paid to the

accuracy of the estimated standard errors and to the power performances of the

estimators.

3.7.1 Data Generating Process

The data generating process (DGP) used in the Monte Carlo analysis is given by

yit = ci + βixit + φiyit−1 + εit,

xit = cx,i(1− ρ) + ρxit−1 + uit,

(3.55)

where
εit ∼ i.i.d.N(0, σ2

εi
),

uit ∼ i.i.d.N(0, 1),

cx,i ∼ i.i.d.N (1, 1) .

(3.56)

The sample sizes considered areN = {30, 50} and T = {10, 20, 30, 40, 50, 60, 80, 100}.

We set ρ = 0.6. Once generated, the xit are taken as fixed across different rep-

lications. The variances of the time-varying disturbances are generated from

σ2
εi

= (ζx̄i)
2, where x̄i = T−1

∑T
t=1 xit, and ζ = 0.5. The coefficients differ ran-

domly across units according to

ci = c+ γ1i,

βi = β + γ2i,

φi = φ+ γ3i,

(3.57)

where ψ = (c, β, φ) = (0, 0.1, 0.5). Moreover, we assume that γji ∼ i.i.d.N(0, σ2
γj

),

for j = 1, 2, 3. We set σγ1 = 0.1, and σγ2 = 0.224. We choose σγ3 = 0.07 in order

to avoid explosive behaviour. Under these settings the median signal-to-noise
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ratio corresponding to the slope parameters (σ2
γ2
/σ2

i ) for N = 30 and averaged

across the different T cases, is equal to 0.1950.19

The initial values for the dependent variables are generated from

yi0 = θ̄i0 + υi0,

for i = 1, .., N , where υi0 ∼ N (0, σ2
υ), and

θ̄i0 = E (yi0 | γi) =
∑∞

s=0 φ
s
ixi,−sβi + ci

1−φi ,

σ2
υ = var (yi0 | γi) = var {

∑∞
s=0 φ

s
iεi,−s}

=
σ2
εi

1−φ2i
.

In practice, we consider only a finite number of xi,−s. For each i, we generate 10

observations (xi0, .., xi,−9) given that when | φi |< 1, the contribution of earlier

observations is quite low. The vector (xi0, .., xi,−9) is not used for estimation and

inference.

3.7.2 Monte Carlo Results

In this subsection, we describe the results based on 500 replications. Table 3.3 re-

ports the bias and the root mean square errors (RMSE) of the EM-REML estimat-

ors of the average effects and of the variances of the random coefficients, as well as

the standard errors of such biases, forN = 30 and T = {10, 20, 30, 40, 50, 60, 80, 100}.20

An overall measure of the bias of the estimated average coefficients (which is

chosen to be the Euclidean norm of the bias of ψ), and two measures of the ac-

curacy of the estimated standard errors are also given. Table 3.4, and 3.5 describe

the results for Swamy (1970), and the MG estimator, respectively.

19The cross-section average, computed as N−1
∑N
i=1 σ

2
γ2/σ

2
i , and averaged across the differ-

ent T cases, is higher and equal to 10.63, partly due to the fact that some of the draws of σ2
εi

are smaller than σ2
γ2 .

20Similar results hold for N = 50, which we do not report here.
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Using the data simulated from the DGP described in the previous subsection,

we find that the EM-REML approach does quite well even when the sample size is

not too large. In many cases, it outperforms both Swamy and the MG estimator

in term of bias of both the average effects and the variance components. For

any time dimension, the REML estimators of the average coefficients and the

variance components obtained applying the EM algorithm have smaller RMSE

than the MG one. The RMSE of the EM-REML estimators are also smaller than

the Swamy one, unless T is quite large, in which case they almost coincide.

The bias of the EM-REML estimator of the common intercept is equal to

0.0015 when T = 10, and to 0.0005 when T = 20. When T = 100, the bias

amounts to −0.0007. In most of the cases, it is smaller than the bias of Swamy

and the MG estimators, and it has lower RMSE.

Regarding the slope coefficient associated to xit, the bias of the EM-REML

estimator is equal to −0.0033 when T = 10, which amounts to −3.3 percent of

the true value. When T = 20, the bias reduces to 1.7 percent of the true value

till becoming equal to 0.1 percent when T = 100. In some cases, the EM-REML

estimator may have a slightly larger bias than the Swamy one but in all cases it

has a smaller or at most equal RMSE.

The advantages in term of bias of the EM-REML approach are even more not-

able when considering the autoregressive coefficient. For instance, when T = 10,

the bias of the EM-REML estimator is equal to 0.0408, which is equivalent to

8.16% of the true value. The biases of Swamy GLS and the MG estimators of

the autoregressive coefficient, when T = 10, are larger and equal to −22.6%

and −41.44% of the true value, respectively. As expected, the bias reduces as

T increases. Monte Carlo experiments corroborate Maddala et al. (1997) argu-

ment in favor of iterative procedures to two-step estimators when the model is

dynamic and confirm Hsiao, Pesaran and Tahmiscioglu (1999) finding that the

MG estimator is unlikely to be an appropriate estimator when either N or T are

small.
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Figure 3.1: Upper panel: The estimators of the intercept (left), slope (middle) and autore-
gressive parameter (right panel), averaged across the 500 replications, are plotted for N = 30
and T = {10, 20, 30, 40, 50, 60, 80, 100}. The dashed blue lines indicate the true values (used to
simulate the data). The red, blue, and black solid lines correspond to the EM-REML, Swamy,
and Mean Group estimator, respectively. The distances between those lines and the one cor-
responding to the true value measure the bias of the estimators. Lower panel: the root mean
square errors (RMSE) of the estimators are reported.

A graphical summary of these results is provided in Figure 3.1. The up-

per panels show the average values (across 500 Monte Carlo replications) of the

EM-REML, Swamy, and MG estimators of the average effects. The differences

between the latter and the corresponding true values measure the bias of the

estimates. The RMSE of the estimators are depicted in the lower panels.
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Figure 3.2: Upper panel: The estimated standard deviation of the intercept (left), slope
(middle) and autoregressive parameter (right panel), averaged across the 500 replications, are
plotted for N = 30 and T = {10, 20, 30, 40, 50, 60, 80, 100}. The dashed blue line indicates
the true value (used to simulate the data). The red, and blue lines correspond to the EM-
REML, and Swamy estimator, respectively. The distances between those lines and the one
corresponding to the true value measure the bias of the estimators. Lower panel: the root
mean square errors (RMSE) of the estimated variances are reported.

Figure 3.2 illustrates the performance of the EM-REML and Swamy estimat-

ors of the random coefficients’ variances. As expected, the latter largely overes-

timates the true variance components of the model. The size of the bias can be

substantial unless the time dimension is quite large. For example, when T = 10,

the probability that the Swamy unbiased estimator of the covariance matrix is

negative definite is equal to 81 percent. This means that in most of the cases

it has to be replaced by its consistent but biased version. At the same time,

given that in some replications we are able to use the unbiased estimator and in

others only the consistent one, the RMSE of the estimated variance components

obtained using Swamy procedure can be quite substantial although it reduces as

T increases.
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Figure 3.3: Rejection frequency at 5% nominal size, for the intercept (upper panels), the slope
(middle panels), and autoregressive parameters (lower panels), when (c, β, φ) = (0, 0.1, 0.5).
The panels on the left show results for (T,N) = (10, 30), the panels on the middle for (T,N) =
(30, 30), and those on the right for (T,N) = (80, 30). The red, blue, and black lines denote the
power performances of the EM-REML, Swamy, and Mean Group estimators respectively.

To examine the consequences of overestimating or underestimating the true

random coefficient variances when testing hypotheses, we consider the ratio between

the “infeasible” standard errors (which are obtained substituting the true values

used to generate the DGP into equation (3.49)) and the estimated standard errors

of the average effects. Another important measure for inference is the accuracy of

the estimated standard errors as approximations to the correct sampling standard

deviation of the estimator of interest.21 These ratios should ideally be equal to

one. Results are reported in Tables 3.3, 3.4, and 3.5. We find that the standard

errors obtained estimating the parameters of the model using Swamy GLS ap-

proach, are in many cases largely overestimated unless T is quite large. In the

21In particular, the accuracy of the estimated standard errors is computed as the ra-

tio of the latter averaged across B = 500 replications, B−1
∑B
b=1

{√
ˆvar
(
ψ̂k,(b)

)}
, and

the sampling standard deviation of the estimator of interest, given by the square root of

(B − 1)−1
∑B
b=1

(
ψ̂k,(b) −

¯̂
ψk

)2
, where ¯̂

ψk = B−1
∑B
b=1 ψ̂k,(b), for k = 1, 2, 3.
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latter case, the percentage of replications in which the Swamy estimator of the

random coefficient covariance matrix is negative definite diminishes, and the ratio

of standard errors approaches one.

Our Monte Carlo experiments reveal that the biases of the Swamy estimator of

the variance components and of the resulting standard errors can be too large to

be neglected. This in turn affects hypothesis tests adversely. To demonstrate the

latter point, we consider the power performances of the various estimators. We

plot the power functions in Figure 3.3. They are computed using the Swamy type

test described in equation (3.50) for N = 30, and various T .22 It is shown that

the EM-REML approach performs comparatively well even when the sample size

is small. When T is small the power functions of the Swamy and MG estimators

of the autoregressive coefficients are not centred at the true value of φ = 0.5.

As the time dimension increases the differences in the power performances of the

various estimators reduce.

The Sensitivity of the Bayesian Estimator to the Choice of the Prior

As discussed in Subsection 3.5.4, the choice of the prior may affect the perform-

ance of the Bayesian estimation. For instance, assuming that 4−1 has a Wishart

distribution with scale matrix (ρΥ) and ρ degrees of freedom, Hsiao Pesaran and

Tahmiscioglu (1999) note that the bias of both the empirical and hierarchical

Bayes estimators of the regression coefficients can be sensitive to the specification

of the prior scale matrix. Therefore, it is interesting to compare the performance

of the hierarchical Bayes estimator with different prior choices. In a first spe-

cification, we use the same prior structure as in Hsiao, Pesaran and Tahmiscioglu

(1999).23 In a second specification, we set Υ equal to the EM-REML estimator

22For the Mean Group estimation, the t-ratios are also appropriate. To facilitate comparison
we only report the power functions computed using the Swamy type test, noting that in both
cases the results are very similar.

23Under the assumption that the vector of average effects, ψ, has a prior distribution which
is Normal with mean µ and variance Ω, the authors set Ω−1 = 0, ρ = 2, and choose Υ equal
to the Swamy estimate of 4.
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of the covariance matrix 4 instead of the Swamy estimator.24 Results are shown

in Figure 3.4 and 3.5. By simply replacing the prior for Υ with a more precise

estimate of 4, obtained employing the EM-REML approach, the performances

of the posterior mean of both the average effects and the variance components

(in terms of bias and RMSE), notably improve, especially in small samples. This

evidence confirms Kass and Wasserman (1996) argument that the prior choice

can have heavy weight on the posterior when sample sizes are small.

Figure 3.4: Upper panel: Posterior means for the intercept (left), slope (middle) and
autoregressive parameter (right panel), averaged across 500 replications, are plotted for N = 30
and T = {10, 20, 30, 40, 50, 60, 80, 100}. The dashed blue lines indicate the true values (used
to simulate the data). Results in blue are obtained using priors as in Hsiao et al. (1999).
Results in red are obtained using the EM-REML estimate of the random coefficient covariance
as prior input. The distances between those lines and the one corresponding to the true value
measure the bias of the estimators. Lower panel: the root mean square errors (RMSE) of the
estimators are reported.

24In both cases, we simulate a Markov chain of 6000 cycles, and discard the initial 1000
burn-in replications. Hsiao, Pesaran and Tahmiscioglu (1999) note that convergence is quickly
achieved, and suggest using 3000 iterations.



3.7. Monte Carlo Simulations 89

Figure 3.5: Upper panel: Posterior means for the variance of the intercept (left), slope
(middle) and autoregressive parameter (right panel), averaged across 500 replications, are plot-
ted for N = 30 and T = {10, 20, 30, 40, 50, 60, 80, 100}. The dashed blue line indicates the true
value (used to generate the data). Results in blue are obtained using priors as in Hsiao et al.
(1999). Results in red are obtained using the EM-REML estimate of the random coefficient
covariance. The distances between those lines and the one corresponding to the true value
measure the bias of the estimators as prior input. Lower panel: the root mean square errors
(RMSE) of the estimators are reported.

3.7.3 Limitations and Future Directions

We shall note that the results described in this Section hold under the specific

DGP used to run the simulations. Possible topics for future investigation are to

evaluate the performances of the various estimators in the following cases: (i) the

random coefficients do not follow a Normal distribution; (ii) the exogenous vari-

ables are correlated with the intercept; (iii) the true DGP is static (i.e. the linear

regression model does not include lagged values of the dependent variables among

the regressors). The scope of the comparative analysis could be also extended.

First, in the static case, when the regressors are exogenous, Pesaran and Smith

(1995) note that the fixed effect estimator of the average effects is unbiased and

consistent even in the presence of coefficient heterogeneity. Therefore, it would be
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interesting to include the fixed effects estimation in the comparison, to evaluate

its efficiency, the accuracy of the standard errors, and the power performance,

relative to other methods. Second, given that the Mean Group estimator may

be sensitive to outliers, we would like to investigate whether trimming them is a

viable solution. Finally, the literature on heterogeneous panels largely centers on

the behaviour of the estimators of the average effects. A Monte Carlo analysis fo-

cusing on the performance of the estimators of the unit-specific coefficients seems

very much needed, given that such parameters can be of particular interest in

many economic applications.

3.8 Application

Reinhart, Rogoff and Savastano (2003), studying sovereigns’ credit histories since

the early nineteenth century, argue that an important portion of middle-income

countries has been “systematically” afflicted by what they call “debt intolerance”.

Even though their debt-to-GDP ratios are considerably lower than those of several

high-income countries, these economies are considered to be riskier and unable

to tolerate as much debt. We corroborate this argument by first showing that

the response of sovereign spreads to changes in government debt (which we also

refer to as the “sensitivity” of financial markets during episodes of debt growth)

is highly heterogeneous. It is only statistically significant for a small subgroup of

countries. We ask why this is so by modelling the sensitivity of spreads as function

of macroeconomic fundamentals and a set of explanatory variables which reflect

the history of government debt and economic crises of various forms. We find

that the more pervasive the phenomenon of serial default is (i.e. the weaker the

reputation), the stronger the reaction of financial markets when debt increases.

We quantify such reactions.

We depart from the literature on the determinants of sovereign spreads in
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several ways.25 First, instead of considering only one group of countries (e.g.

emerging markets), we collect quarterly data for a panel of 17 emerging market

economies and 21 developed countries over 22 years (1994Q1-2015Q4).26 Second,

we consider a dynamic model. Third, given that we are comparing countries

with very different characteristics, even within group, we allow for heterogeneity

rather than pooling. The implications of neglected heterogeneity and dynamics

can be severe. Pesaran and Smith (1995) show that if the DGP includes lagged

values of the dependent variables among the explanatory variables, pooling give

inconsistent and potentially highly misleading estimates of the coefficients when

the latter differ across units. Haque, Pesaran and Sharma (2000) find that ignor-

ing differences across countries can lead to overestimating the influence of certain

factors. They argue that one can obtain highly significant, but spurious, nonlinear

effects for some of the potential determinants, even though the country-specific

regressions are linear.

Finally, the focus of this application is on understanding which factors de-

termine the additional risk premium to charge during episodes of debt growth.

Assume that sovereign spreads are a function of debt-to-GDP ratio, a proxy

for history of default and other macroeconomic fundamentals. Rather than look-

ing at how spreads change with respect to one variable while debt-to-GDP and the

remaining covariates are held constant (i.e. partial effect), we investigate which

country characteristics significantly affect the magnitude of sovereign spreads’

reaction to changes in debt. Studying the sensitivity of financial markets dur-

ing episode of debt growth may help understand why emerging markets cannot

borrow at level comparable to more developed economies without having to pay

relatively high interest rates.

25See for instance, Akitoby and Stratmann (2008), Bellas et al. (2010), Edwards (1984),
Eichengreen and Mody (2000) and Hilscher and Nosbusch (2010), among others.

26The panel is slightly unbalanced. The individual time observations vary between 60 ≤
Ti ≤ 87. The choice of countries is dictated by the availability of data. The list of countries is
reported in Appendix 3.11.
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3.8.1 The Empirical Model

Following Edwards (1984), we assume that the spreads over U.S. (or Germany)

Treasuries can be explained by a set of macroeconomic indicators. We focus

on real GDP growth, inflation, and the growth rates of general gross government

debt as a percentage of GDP. J.P. Morgan’s Emerging Markets Bond Index Global

(EMBI Global) is our measure of government bond yields for emerging markets.27

Because linear interdependencies may exist among these time series, we can

assume they follow a VAR(p) process. Given that the spreads are observed at a

daily frequency, it is reasonable to think that they react near-instantaneously to

shocks and news. Therefore, considering the variables under study, we assume

that the economy possesses a recursive structure where spreads are ordered last.

The last equation of the recursive system can be written as

yit = φiyit−1 + x′itβ0i + x′i,t−1β1i + µi + εit, (3.58)

for i = 1, .., N and t = 1, .., T ; yit includes the first difference of sovereign

spreads. The number of lags has been selected using the BIC criterion (averaged

across units) since it results in more parsimonious model than the AIC. The panel

data model in matrix notation can be written as in equation (3.2) where all the

coefficients are random and follow (3.3). When doing parameter equality tests

we set f1i = 1 for all i = 1, .., N , to then extend the analysis to the case where

f1i is a l × 1 vector of unit-specific explanatory variables.

3.8.2 Parameter Equality Tests

Before estimating the model, we employ some homogeneity tests to show that

both the slope and the intercept parameters are heterogenous across countries.

To test the null hypothesis H0 : ψ1 = .. = ψN = ψ (i.e. to test whether the

coefficient vectors ψi = (µi, β
′
0i, φi, β

′
1i)
′ are constant across units), we can use the

27A description of the data is provided in Appendix 3.11.
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following test proposed by Swamy (1970):

F =
1

(N − 1)

N∑
i=1

Fi ∼ F

(
K∗(N − 1), (

N∑
i=1

Ti −NK∗)

)
, (3.59)

where

Fi =

(
ψ̂i − ψ̂

)′
Z ′iZi

(
ψ̂i − ψ̂

)
K∗σ̂2

εi

,

and

ψ̂ =

(
N∑
i=1

Z ′iZi
σ̂2
i

)−1( N∑
i=1

Z ′iZi
σ̂2
i

ψ̂i

)
=

(
N∑
i=1

Z ′iZi
σ̂2
i

)−1( N∑
i=1

Z ′iyi
σ̂2
i

)
.

K∗ is the dimension of ψ. The ψ̂i’s are obtained by estimating N time series

separately by OLS. This test is appropriate in our case, since it should be used

when T is large relative to N . For 296 and 2708 degrees of freedom, the F-value

that leaves exactly 0.01 of the area under the F curve in the right tail of the

distribution is smaller than 1.32.28 Because our test has a value of 2.58, we are

able to reject the null of homogenous slope and intercept parameters.

3.8.3 The Sensitivity of Spreads to Debt

We now explore why the sensitivity of spreads to debt differs significantly across

countries by modelling the latter as a function of selected explanatory variables.

We ask which factors influence financial markets decision when evaluating the

credit worthiness of the borrower and setting interest rate during episodes of

government debt growth.

Using Reinhart and Rogoff (2011) historical time series on countries credit-

worthiness and financial turmoil, we calculate the percentage of years (between

1980 and 2010) each country has been in default or restructuring on its domestic

and external debt, the percentage of years with annual inflation of 20% or higher,

28The 1% significance level has been arbitraly chosen.
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and the percentage of years with annual depreciation vs US dollar of 15% or more.

We then estimate equation (3.58) while allowing the coefficients to be a function

of a common constant, and the percentage of years in default or restructuring

domestic and external debt. Results are shown in Table 3.1.

Table 3.1: Determinants of sensitivity of spreads: EM-REML Estimates.

const. % y-DomDef % y-ExtDef
ci -0.017 0.596 -0.180

(1.572) (0.647) (0.897)
β

(gdp)
0 -0.016∗ -0.252 -0.082

(3.727) (0.364) (0.597)
β

(cpi)
0 0.008 0.624 -0.226

(0.143) (1.005) (1.502)
β

(debt)
0 -0.006 0.344∗∗ 0.068∗

(1.311) (5.998) (3.264)
φ 0.112∗∗∗ -0.326 -0.175

(8.035) (0.265) (0.501)
β

(gdp)
1 0.010 -0.752∗ 0.314∗∗∗

(1.060) (2.900) (8.096)
β

(cpi)
1 0.037∗ -0.874 0.062

(3.527) (2.201) (0.128)
β

(debt)
1 0.003 -0.101 0.004

(0.751) (0.616) (0.014)
Swamy F-statistic (described in equation (3.50)) between parentheses. The critical values for a
F distribution with 1 degree of freedom for the numerator, and N−1 for the denominator, asso-
ciated with a significance level equal to 0.1, 0.05, and 0.01, are 2.84, 4.08, and 7.31 respectively.
Simbols ∗∗∗, ∗∗, and ∗ denote significance (at least) at 1%, 5% and 10% respectively. Estimated
standard errors are corrected for finite-sample bias, following Kenward and Roger (1997). “% y
DomDef” (“% y ExtDef”) denotes the percentage of years in default or restructuring domestic
(external) debt; φ is the autoregressive coefficient; β(k) is the sensitivity of spread to the kth
variable.

Our results seem to suggest that history of repayment plays an important role:

“bad” reputation leads to higher sensitivity of spreads to debt. A 1% increase in

the percentage of years in default or restructuring domestic debt is associated

with a 0.34% increase in the sensitivity of spread. As a consequence, relatively

small increase in debt-to-GDP may lead to level of interest rates which can be

difficult to tolerate. Although significant, the impact of our proxy for history of
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repayment of external debt is rather low, around 0.07 percent.

The above analysis is robust when augmenting the regression equation for the

coefficients with additional explanatory variables. In particular, we include the

percentage of years in which a country has faced an annual inflation rate of 20

percent or higher and the percentage of years in which an annual depreciation

versus the US dollar (or another relevant anchor currency) of 15 percent or more

occurs.29 We also consider measures of macroeconomic fundamentals such as the

average and standard deviation of real GDP growth, of rate of currency depreci-

ation, of inflation and current account to GDP growth. Standard deviations over

the sample period under considerations are used as measure of volatility. The

standard deviation of the average growth rate of general gross government debt

to GDP can be considered as a proxy for sudden increases in debt’s level.

In Table 3.2, we focus on the coefficients equation corresponding to the sens-

itivity of spreads to debt and report results from using different specifications.

Including averages rather than volatility leads to very similar conclusions. There-

fore, we do not report them. At least three conclusions can be drawn. First, a

“good” reputation in financial markets matters. The percentage of years in de-

faults or restructuring on domestic debt have a statistically and economically

significant effect on the sensitivity of spreads across all the different specifica-

tions. Interestingly, domestic defaults have a larger impact than external ones.

Our finding that domestic defaults play a significant role in explaining changes

in the sensitivity of spreads is in line with Reinhart and Rogoff (2010) argument:

“when ignored domestic debt obligations are taken into account, fiscal duress at

the time of default is often revealed to be quite severe”. Second, country-specific

macroeconomic indicators do not play any significant role in explaining the re-

actions of financial markets to an increase in debt. Contrary to the literature

which emphasizes the role of volatility of macroeconomic aggregates in explain-

ing sovereign credit risks, we do not find strong evidence that such variables affect

29A detailed description of the data is provided by Reinhart and Rogoff (2009).
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markets when calculating the additional risk premium to charge in response to an

increase in debt.30 This seems to suggest that markets decisions during episodes

of debt growth may also be driven by sentiments (as defined by Eichengreen and

Mody, 2000). At the same time, we have seen that a bigger reaction is usually

associated with countries with a weak history of repayment.

To conclude, while it is common in the literature to find that certain mac-

roeconomic fundamentals are significant predictors of sovereign spreads, we show

that they are not significant determinants of the sensitivity of spreads to changes

in sovereign debt. On the contrary, reputation in financial markets is crucial.

The analysis could be extended in the future by including other important

factors, such as measures of political instability and of the composition of debt,

which could shed further light on why the sensitivity of spreads to debt differs

across countries. At the same time, an interesting avenue for future research

would be to allow the coefficients to vary over time, by modelling the latter

as function of observable time-varying characteristics or possibly unobservable

common factors.

30Selected studies on the role of volatility in explaining sovereign defaults are: Eaton and
Gersovitz (1981), Catao and Kapur (2006), and Hilscher and Nosbuch (2010).
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Table 3.2: Determinants of sensitivity of spreads to government debt: EM-REML
Estimates.

(1) (2) (3) (4) (5) (6) (7)

Constant -0.006 -0.008 -0.018 -0.016 0.001 -0.007 -0.019

(1.311) (0.944) (1.719) (1.280) (0.005) (0.181) (1.172)

% y Dom Def 0.344 0.328 0.306 0.308 0.350 0.340

(5.998) (3.637) (4.592) (4.535) (6.085) (5.383)

% y Ext Def 0.068 0.026 0.058 0.066 0.010 0.014

(3.264) (0.290) (2.507) (2.990) (0.074) (0.122)

% y Curr Crisis -0.005

(0.006)

% y Infl Crisis 0.066

(1.035)

Volatility FX 0.003 0.003 0.001 0.003 0.006

(1.116) (1.156) (0.045) (0.486) (1.802)

Volatility Debt/GDP -0.001 0.006 0.004 0.005

(0.313) (2.652) (1.023) (1.889)

Volatility Inflation 0.011 0.005 0.008

(1.525) (0.196) (0.468)

Volatility RGDP -0.030 -0.016 -0.016

(5.798) (0.553) (0.532)

Volatility CA/GDP -0.004 -0.008

(0.392) (1.209)

Swamy F-statistic (described in equation (3.50)) between parentheses. The critical values for a

F distribution with 1 degree of freedom for the numerator, and N−1 for the denominator, asso-

ciated with a significance level equal to 0.1, 0.05, and 0.01, are 2.84, 4.08, and 7.31 respectively.

Estimated standard errors are corrected for finite-sample bias, following Kenward and Roger

(1997). Bold values denotes statistical significance at 10% level or lower. “% y Curr Crisis” and

“% y Infl Crisis” denote the percentage of years with annual inflation of 20% or higher and with

an annual depreciation vs US dollar of 15% or more, respectively. “% y Dom Def” (“% y Ext

Def”) denotes the percentage of years in default or restructuring domestic (external) debt.
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3.9 Conclusion

This chapter shows how to implement the EM algorithm to compute iteratively

restricted maximum likelihood (REML) estimates of both fixed and random coef-

ficients, as well as the variance components, in a wide class of heterogeneous

panels. The proposed method has several benefits. First, the EM-REML ap-

proach yields an unbiased and more efficient estimator of the random coefficient

covariance without running into the problem of negative definite matrices typ-

ically encountered in the Swamy type random coefficient models. This is turn

leads to more accurate estimated standard errors and hypothesis tests. We also

demonstrate that Lee and Griffiths (1979) approach to jointly estimate the ran-

dom components and constant underlying parameters, yield an estimator of the

coefficients’ covariance matrix which does not satisfy the law of total variance.

This is not the case when employing the EM algorithm. Second, the latter allows

us to make inference on the random effects’ population. The EM approach should

be considered as a valid alternative to Bayesian estimation in those cases in which

the researcher wishes to make inference on the random effects’ distribution while

having little knowledge on what sensible priors might be. At the same time, it

helps overcome one drawback of the Bayesian inference: when sample sizes are

small (relative to the number of parameters being estimated), the prior choice

will have a heavy weight on the posterior, which will consequently be far from

being data dominated.

Monte Carlo experiments confirm that our approach performs relatively well

in finite sample, in term of bias, root mean square errors and power of tests.

Another contribution of this chapter is to review in a coherent manner, some of

the existing sampling and Bayesian methods commonly used to estimate random

coefficient panel data models.

An empirical application is also presented. We investigate what causes the

sensitivity of spreads to differ significantly across countries by modelling the latter
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as a function of macroeconomics fundamentals and a set of explanatory variables

which reflect the history of government debt and economic crises of various forms.

We ask which factors influence financial markets decision when evaluating the

credit worthiness of the borrower and setting the risk premium during episodes

of government debt growth. We find that while country-specific macroeconomic

indicators (including underlying volatility) do not play any significant role in

explaining the sensitivity of spreads to an increase in debt, history of repayment

is crucial. “Bad” reputation leads to higher sensitivity of spreads to debt. An 1%

increase in the percentage of years in default or restructuring domestic debt is

associated with around 0.35% increase in the additional risk premium in response

to an increase in debt. Our findings indicate that countries who have defaulted

in the past may find it hard to finance government expenditures by issuing new

debt since relatively small increase in debt-to-GDP may lead to a raise in interest

rates which may be difficult to tolerate. This helps explain why their debt-to-GDP

ratios remain considerably lower than those of several high-income countries. The

unanswered question is how to escape such a “trap”.
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Table 3.3: Properties of EM-REML estimator as T gets large, for fixed N = 30

EM-REML

N = 30/T 10 20 30 40 50 60 80 100

Bias (ĉ) 0.0015 0.0005 0.0001 -0.0002 0.0010 0.0020 0.0016 -0.0007

se {Bias (ĉ)} 0.0017 0.0012 0.0012 0.0013 0.0012 0.0014 0.0012 0.0011

Bias
(
β̂
)

-0.0033 0.0017 -0.0024 0.0021 0.0020 -0.0008 -0.0017 -0.0001

se
{
Bias

(
β̂
)}

0.0022 0.0019 0.0019 0.0020 0.0020 0.0019 0.0019 0.0018

Bias
(
φ̂
)

0.0408 0.0104 0.0022 0.0037 0.0030 0.0022 0.0007 -0.0022

se
{
Bias

(
φ̂
)}

0.0023 0.0013 0.0012 0.0012 0.0011 0.0010 0.0009 0.0009

‖ Bias
(
ψ̂
)
‖ 0.0410 0.0106 0.0032 0.0042 0.0037 0.0030 0.0024 0.0023

RMSE (ĉ) 0.0391 0.0278 0.0269 0.0301 0.0278 0.0313 0.0263 0.0235

RMSE
(
β̂
)

0.0497 0.0427 0.0435 0.0447 0.0450 0.0429 0.0422 0.0410

RMSE
(
φ̂
)

0.0659 0.0313 0.0259 0.0263 0.0252 0.0227 0.0196 0.0193

Bias ( ˆvar (γ1)) -0.0026 -0.0011 -0.0013 -0.0007 -0.0007 -0.0009 -0.0005 0.0003

se {Bias ( ˆvar (γ1))} 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

Bias ( ˆvar (γ2)) -0.0122 -0.0046 -0.0030 -0.0025 -0.0016 -0.0020 -0.0002 -0.0021

se {Bias ( ˆvar (γ2))} 0.0008 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

Bias ( ˆvar (γ3)) -0.0002 -0.0011 -0.0010 -0.0010 -0.0008 -0.0008 -0.0004 0.0001

se {Bias ( ˆvar (γ3))} 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RMSE { ˆvar (γ1)} 0.0118 0.0045 0.0046 0.0053 0.0047 0.0055 0.0040 0.0041

RMSE { ˆvar (γ2)} 0.0213 0.0146 0.0144 0.0143 0.0143 0.0138 0.0140 0.0133

RMSE { ˆvar (γ3)} 0.0062 0.0035 0.0032 0.0033 0.0031 0.0032 0.0026 0.0023

Ratio {se (ĉi)} 1.01 0.98 0.96 1.01 0.98 1.00 0.98 1.01

Ratio
{
se
(
β̂i

)}
0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.97

Ratio
{
se
(
φ̂i

)}
1.56 1.12 1.08 1.15 1.06 1.11 1.01 1.03

Accuracy {se (ĉi)} 0.87 0.94 0.93 0.95 0.93 0.90 0.89 0.97

Accuracy
{
se
(
β̂i

)}
0.89 0.97 0.95 0.93 0.92 0.96 0.98 0.98

Accuracy
{
se
(
φ̂i

)}
1.06 0.95 0.95 1.04 0.88 1.03 0.95 0.94

The data generating process is described in equation (3.55) and (3.56), in Section 3.7. We

assume that ci ∼ N(0, σ2
c ), βi ∼ N(0.1, σ2

β), and φi ∼ N(0.5, σ2
φ), where (σc, σβ , σφ) =

(0.1, 0.224, 0.07). “se” stands for standard errors; RMSE indicates the root mean square errors.

The Euclidean norm (‖ · ‖) is used as an overall measure of the bias. Ratio(se(·)) measures

the ratio between the “infeasible” standard errors (which are obtained substituting the true

values used to generate the DGP into equation (3.49)) and the estimated standard errors of

the average effects. Accuracy(se(·)) denotes the accuracy of the estimated standard errors as

approximations to the correct sampling standard deviation of the EM-REML estimator.
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Table 3.4: Properties of Swamy estimator as T gets large, for fixed N = 30

Swamy

N = 30/T 10 20 30 40 50 60 80 100

Bias (ĉ) 0.0211 0.0030 0.0018 0.0036 0.0018 0.0040 0.0025 -0.0007

se {Bias (ĉ)} 0.0044 0.0018 0.0018 0.0017 0.0015 0.0015 0.0012 0.0011

Bias
(
β̂
)

0.0025 0.0034 -0.0002 0.0032 0.0030 0.0002 -0.0013 -0.0001

se
{
Bias

(
β̂
)}

0.0026 0.0020 0.0020 0.0021 0.0021 0.0019 0.0019 0.0018

Bias
(
φ̂
)

-0.1130 -0.0402 -0.0281 -0.0233 -0.0136 -0.0127 -0.0044 -0.0022

se
{
Bias

(
φ̂
)}

0.0023 0.0014 0.0012 0.0012 0.0011 0.0010 0.0009 0.0009

‖ Bias
(
ψ̂
)
‖ 0.1150 0.0405 0.0281 0.0237 0.0140 0.0133 0.0052 0.0023

RMSE (ĉ) 0.0998 0.0401 0.0403 0.0378 0.0343 0.0345 0.0278 0.0235

RMSE
(
β̂
)

0.0581 0.0444 0.0446 0.0461 0.0459 0.0434 0.0424 0.0410

RMSE
(
φ̂
)

0.1240 0.0509 0.0395 0.0358 0.0282 0.0257 0.0203 0.0194

Bias ( ˆvar (γ1)) 1.7745 0.1419 0.1501 0.0724 0.0530 0.0362 0.0133 0.0037

se {Bias ( ˆvar (γ1))} 0.0695 0.0042 0.0042 0.0020 0.0017 0.0011 0.0007 0.0004

Bias ( ˆvar (γ2)) 0.1420 0.0209 0.0179 0.0126 0.0093 0.0081 0.0050 0.0013

se {Bias ( ˆvar (γ2))} 0.0042 0.0010 0.0010 0.0008 0.0008 0.0007 0.0007 0.0006

Bias ( ˆvar (γ3)) 0.0825 0.0248 0.0152 0.0120 0.0075 0.0061 0.0033 0.0009

se {Bias ( ˆvar (γ3))} 0.0017 0.0006 0.0004 0.0004 0.0003 0.0003 0.0002 0.0001

RMSE { ˆvar (γ1)} 2.3571 0.1701 0.1769 0.0855 0.0648 0.0441 0.0199 0.0090

RMSE { ˆvar (γ2)} 0.1705 0.0307 0.0278 0.0218 0.0196 0.0180 0.0161 0.0143

RMSE { ˆvar (γ3)} 0.0904 0.0284 0.0178 0.0144 0.0099 0.0083 0.0052 0.0031

Ratio {se (ĉi)} 7.34 2.90 3.06 2.13 1.96 1.65 1.33 1.08

Ratio
{
se
(
β̂i

)}
1.85 1.19 1.17 1.12 1.09 1.07 1.04 1.00

Ratio
{
se
(
φ̂i

)}
2.00 1.61 1.46 1.33 1.25 1.20 1.14 1.02

Accuracy {se (ĉi)} 2.53 1.93 1.98 1.60 1.51 1.35 1.13 1.03

Accuracy
{
se
(
β̂i

)}
1.49 1.16 1.11 1.04 1.00 1.05 1.02 1.01

Accuracy
{
se
(
φ̂i

)}
1.35 1.30 1.19 1.15 1.06 1.13 1.06 0.93

% Negative Definite 0.81 0.71 0.72 0.72 0.60 0.59 0.47 0.16

The data generating process is described in equation (3.55) and (3.56), in Section 3.7. We

assume that ci ∼ N(0, σ2
c ), βi ∼ N(0.1, σ2

β), and φi ∼ N(0.5, σ2
φ), where (σc, σβ , σφ) =

(0.1, 0.224, 0.07). “se” stands for standard errors; RMSE indicates the root mean square er-

rors. The Euclidean norm (‖ · ‖) is used as an overall measure of the bias. Ratio(se(·))

measures the ratio between the “infeasible” standard errors (which are obtained substituting

the true values used to generate the DGP into equation (3.49)) and the estimated standard er-

rors of the average effects. “% Negative Definite” measures the number of times (in percentage)

the estimated random coefficients’ covariance matrix is negative definite. Accuracy(se(·)) de-

notes the accuracy of the estimated standard errors as approximations to the correct sampling

standard deviation of the Swamy GLS estimator.
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Table 3.5: Properties of Mean Group estimator as T gets large, for fixed N = 30

Mean Group

N = 30/T 10 20 30 40 50 60 80 100

Bias (ĉ) 0.0626 0.0116 0.0103 0.0146 0.0091 0.0096 0.0064 -0.0001

se {Bias (ĉ)} 0.0112 0.0035 0.0036 0.0027 0.0025 0.0021 0.0017 0.0013

Bias
(
β̂
)

0.0033 0.0063 0.0019 0.0042 0.0041 0.0014 -0.0002 0.0018

se
{
Bias

(
β̂
)}

0.0036 0.0022 0.0023 0.0022 0.0022 0.0020 0.0020 0.0019

Bias
(
φ̂
)

-0.2072 -0.0998 -0.0688 -0.0589 -0.0437 -0.0404 -0.0254 -0.0220

se
{
Bias

(
φ̂
)}

0.0025 0.0015 0.0013 0.0013 0.0011 0.0010 0.0009 0.0008

‖ Bias
(
ψ̂
)
‖ 0.2165 0.1006 0.0696 0.0608 0.0448 0.0415 0.0262 0.0220

RMSE (ĉ) 0.2575 0.0783 0.0820 0.0625 0.0569 0.0486 0.0387 0.0289

RMSE
(
β̂
)

0.0803 0.0498 0.0509 0.0499 0.0494 0.0451 0.0436 0.0424

RMSE
(
φ̂
)

0.2146 0.1053 0.0744 0.0652 0.0501 0.0463 0.0325 0.0287

Accuracy {se (ĉi)} 0.98 0.99 0.98 0.95 0.95 0.97 0.89 0.97

Accuracy
{
se
(
β̂i

)}
1.03 1.01 0.96 0.93 0.92 0.99 0.99 0.99

Accuracy
{
se
(
φ̂i

)}
1.05 1.06 1.02 0.95 0.97 0.99 0.98 1.00

The data generating process is described in equation (3.55) and (3.56), in Section 3.7. We

assume that ci ∼ N(0, σ2
c ), βi ∼ N(0.1, σ2

β), and φi ∼ N(0.5, σ2
φ), where (σc, σβ , σφ) =

(0.1, 0.224, 0.07). “se” stands for standard errors; RMSE indicates the root mean square er-

rors. The Euclidean norm (‖ · ‖) is used as an overall measure of the bias. Accuracy(se(·))

denotes the accuracy of the estimated standard errors as approximations to the correct sampling

standard deviation of the Mean Group estimator.
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3.10 Appendix

3.10.1 Restricted Likelihood

The Choice of Si.

The projection matrix Mi. One plausible choice for Si, is the projection

matrix:

Mi = I −Wi (W
′
iWi)

−
W ′
i , (3.60)

where (W ′
iWi)

− denotes the generalized inverse of W ′
iWi. The matrix Mi is of

rank T − K, with K ≤ K̄ < T , and satisfies MiWi = 0. Mi is symmetric and

idempotent. As noted by Searle and Quaas (1978), its canonical form under

orthogonal similarity is given by

UiMiU
′
i =

 IT−K 0

0 0

 ,
where Ui is an orthogonal matrix. Searle and Quaas (1978) defines Ai to be the

first T − K columns of U ′i . It follows that Mi = AiA
′
i and A′iAi = I. Premul-

tiplying Mi by Ai, we get

MiAi = Ai, A′iMi = A′i . (3.61)

Since U ′i is orthogonal and non-singular, A′i has full rank and A′iWi = 0. Using

(3.61), Searle and Quaas (1978) show that Ai (A′iRiAi)
−1A′i is the Moore-Penrose

inverse of MiRiMi:

(MiRiMi)
+ = Ai (A

′
iRiAi)

−1
A′i. (3.62)

Given that A′i has full row rank and Ri is positive definite, the inverse of A′iRiAi

exists.



3.10. Appendix 104

A generalization of Mi. As shown in Searle and Quaas (1978), any linear

combination of Mi, Si = JMi, satisfies SiWi = 0. A generalization of Mi is

Pi = R−1
i −R−1

i Wi

(
W ′
iR
−1
i Wi

)−
W ′
iR
−1
i , (3.63)

satisfying PiWi = 0. From the definition of Pi, it follows that

RiPi = I −Wi

(
W ′
iR
−1
i Wi

)−
W ′
iR
−1
i ,

PiRi = I −R−1
i Wi

(
W ′
iR
−1
i Wi

)−
W ′
i .

(3.64)

Therefore,

PiRiPi = Pi, (3.65)

and also (PiRi)
2 = PiRi. It follows that tr(PiRi) = rank(PiRi) = rank(Pi) =

T −K. Since Pi also satisfies PiWi = 0, we can choose Si = Pi.

Relationship between Mi and Pi. Using (3.60) and the fact that PiWi = 0,

it can be seen that

PiMi = Pi = MiPi. (3.66)

Furthermore, post-multiplying (3.64) by Mi and using MiWi = 0 and W ′
iMi = 0,

we get PiRiMi = Mi. Post-multiplying (3.66) by RiMi

PiMiRiMi = PiRiMi = MiPiRiMi = M2
i = Mi. (3.67)

From (3.66) and (3.67), Searle and Quaas (1978) establish Pi as the Moore-

Penrose inverse of MiRiMi:

Pi = (MiRiMi)
+. (3.68)
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Since (MiRiMi)
+ is unique, equations (3.62) and (3.68) imply that

Pi = (MiRiMi)
+ = Ai (A

′
iRiAi)

−1
A′i. (3.69)

Some Lemmas from Searle and Quaas (1978).

Lemma 1. Searle and Quaas (1978) show that Si = F ′iA
′
i for some non-singular

F ′i . It follows that

S ′i (SiRiS
′
i)
−1 Si = AiFi (F

′
iA
′
iRiAiFi)

−1 F ′iA
′
i

= Ai (A
′
iRiAi)

−1Ai = Pi.
(3.70)

where the last equality follows from (3.69).

Lemma 2. As shown in Lutkepohl (1996, pag. 50, eq. 6), if A, B, C, and D

are (m×m), (m× n), (n×m), and (n× n) matrices, respectively, then

det

 A B

C D

 = | D | · | A−BD−1C | if D nonsingular

= | A | · | D − CA−1B | if A nonsingular

. (3.71)

Using this property of the determinant, we can show that

| AiRiA
′
i |=
| Ri | · | W ′

iR
−1
i Wi |

| W ′
iWi |

. (3.72)

To prove the latter, let A′i

W ′
i

Ri

[
Ai Wi

]
=

 A′iRiAi A′iRiWi

W ′
iRiAi W ′

iRiWi

 .
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Taking the determinant of both sides, we get

| Ri | ·

∣∣∣∣∣∣ A
′
iAi A′iWi

W ′
iAi W ′

iWi

∣∣∣∣∣∣ =| A′iRiAi | · |W ′
iRiWi −W ′

iRiAi (A
′
iRiAi)

−1
A′iRiWi | .

Using A′iAi = I, and A′iWi = 0 and equation (3.69), we get

| Ri || W ′
iWi |=| A′iRiAi | · | W ′

iRiWi −W ′
iRiPRiWi | .

Substituting (3.64) into the latter equation and then using the following property

of determinants, det(AB) = det(A) · det(B), yields (3.72).

Lemma 3. Given that Si = F ′iAi, it can be shown that

| SiRiS
′
i |=| Fi |2| A′iRiAi | . (3.73)

Finding an expression for L1i

Using (3.72) and (3.73), we have

log | SiRiS
′
i |= µ+ log|Ri|+ log | W ′

iR
−1
i Wi|, (3.74)

where µ includes the terms that do not involve the parameters of interest.

Furthermore, using (3.70), we get

(yi − Ziγi)′ S ′i (SiRiS
′
i)
−1 Si (yi − Ziγi) = (yi − Ziγi)′ Pi (yi − Ziγi)

=
(
yi −Wi

ˆ̄Γ− Ziγi
)′
R−1
i

(
yi −Wi

ˆ̄Γ− Ziγi
)
.

(3.75)

Substituting (3.74) and (3.75) into (3.18) yields (3.19).
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Proof of Equation (3.75). Let ˆ̄Γ be the argument that minimizes ε′iR
−1
i εi,

where εi = yi −WiΓ̄ − Z̄iγi and Ri = var (εi).31 The solution to the problem is

given by
ˆ̄Γ =

(
W ′
iR
−1
i Wi

)−
W ′
iR
−1
i

(
yi − Z̄iγi

)
.

It follows that

yi −Wi
ˆ̄Γ− Z̄iγi = yi −Wi

(
W ′
iR
−1
i Wi

)−
W ′
iR
−1
i

(
yi − Z̄iγi

)
− Z̄iγi

= RiPiyi −RiPiZiγi.

Therefore, using (3.65) and after a few computations, we get

(
yi −Wi

ˆ̄Γ− Z̄iγi
)′
R−1
i

(
yi −Wi

ˆ̄Γ− Z̄iγi
)

=
(
y′iPiRi − γ′iZ̄ ′iPiRi

)
·

·R−1
i

(
RiPiyi −RiPiZ̄iγi

)
= y′iPiyi − y′iPiZ̄iγi − γ′iZ̄ ′iPiyi + γ′iZ̄

′
iPiZ̄iγi

=
(
yi − Z̄iγi

)′
Pi
(
yi − Z̄iγi

)
.

Finding an expression for L2i.

The Choice of Qi. It can be shown thatQi = W ′
iR
−1
i satisfies cov (Siyi, Qiyi) =

0, and therefore is a plausible choice to obtain L2i. We first compute the covari-

ance conditional on γi, to then show that the unconditional covariance is equal

to zero.

cov (Siyi, Qiyi | γi) = E (Siyiy
′
iQ
′
i | γi)− E (Siyi | γi)E (y′iQ

′
i | γi)

= SiE (yiy
′
i | γi)Q′i −

(
SiZ̄iγi

) (
Γ̄′W ′

i + γ′iZ̄
′
i

)
R−1
i Wi,

(3.76)

where E (Siyi | γi) = SiZ̄iγi, since SiWi = 0.

Substituting

SiE (yiy
′
i | γi)Q′i = Sivar (εi)Q

′
i = SiRiR

−1
i Wi = SiWi = 0,

31To make notation easier we focus on ε′iR
−1
i εi instead of

∑N
i=1 ε

′
iR
−1
i εi.
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and (
SiZ̄iγi

) (
Γ̄′W ′

i + γ′iZ̄
′
i

)
R−1
i Wi = SiZ̄iγiΓ̄

′W ′
iR
−1
i Wi

+SiZ̄iγiγ
′
iZ̄
′
iR
−1
i Wi

into (3.76), we get

cov (Siyi, Qiyi | γi) = −SiZ̄iγiΓ̄′W ′
iR
−1
i Wi

−SiZ̄iγiγ′iZ̄ ′iR−1
i Wi.

(3.77)

Using the Law of Total Covariance, the unconditional covariance can be ob-

tained from

cov (Siyi, Qiyi) = E [cov (Siyi, Qiyi | γi)]

+cov (E (Siyi | γi) , E (Qiyi | γi)) .
(3.78)

Taking expectation of both sides of (3.77), we get

E [cov (Siyi, Qiyi | γi)] = −SiZ̄i4Z̄ ′iR−1
i Wi, (3.79)

since γi ∼ N(0,4). Moreover,

cov (E (Siyi | γi) , E (Qiyi | γi)) = E
[
SiZ̄iγi

(
W ′
iR
−1
i WiΓ̄ +W ′

iR
−1
i Z̄iγi

)′]
−E [E (Siyi | γi)]E

[
E (Qiyi | γi)′

]
= SiZ̄i4Z̄ ′iR−1

i Wi.

(3.80)

Therefore, substituting (3.79) and (3.80) into (3.78) we can show that

cov (Siyi, Qiyi) = 0.
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3.10.2 Best Linear Unbiased Prediction

Conditional Mean and Variance. Under the assumption that yi and γi are

jointly normally distributed, the conditional expectation of γi given the data is

γ̂i = E (γi | yi) = E(γi) + cov(γi, yi) [var(yi)]
−1 [yi − E(yi)]

= κ′V −1
i

(
yi −WiΓ̄

)
,

(3.81)

where E(γi) = 0, by assumption, E(yi) = WiΓ̄, Vi = var(yi) = Z̄i4Z̄ ′i + Ri, and

κ′ = cov(γi, yi) = 4Z̄ ′i. The conditional variance of γi is

var (γi | yi) = var(γi)− cov(γi, yi) [var(yi)]
−1 · cov(yi, γi)

= var(γi)− κ′V −1
i κ.

(3.82)

As suggested in Pawitan (2001), using a simple matrix identity we can write

4Z̄ ′i
[
Z̄i4Z̄ ′i +Ri

]−1
=

{(
Z̄ ′iR

−1
i Z̄i +4−1

)−1 (
Z̄ ′iR

−1
i Z̄i +4−1

)}
·

·4Z̄ ′i
[
Z̄i4Z̄ ′i +Ri

]−1

=
(
Z̄ ′iR

−1
i Z̄i +4−1

)−1 · Z̄ ′iR−1
i .

(3.83)

This result is used to derive the second equality in equation (3.24) and to

obtain equation (3.25).

Properties. Following Henderson (1984, Chap. 5), it can be shown that:

(i) γ̂i is an unbiased predictor of γi:

E (γ̂i) = E
[
κ′V −1

y (yi −WiΓ̄)
]

= κ′V −1
y

[
E(yi)−WiΓ̄

]
= E(γi),

(3.84)

since E(yi) = WiΓ̄.

(ii) cov (γ̂i, γi) = var (γ̂i), from which it follows that var (γ̂i − γi) = var (γi)−

var (γ̂i).

(iii) the BLUP maximizes the correlation between γ̂i and γi.
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Finally, note that

var (γ̂i) = var
[
κ′V −1

i (yi −WiΓ̄)
]

= κ′V −1
i κ

= 4iZ̄
′
i

(
Z̄i4Z̄ ′i +Ri

)−1
Z̄i4

=
(
Z̄ ′iR

−1
i Z̄i +4−1

)−1
Z̄ ′iR

−1
i Z̄i4.

(3.85)

3.10.3 Expectation Step

E-step for L2i. As suggested in Pawitan (2001), we can write

Eθ(b−1) (ε′iHiεi | yi) = Tr [HiEθ(b−1) (εiε
′
i | yi)] . (3.86)

To find Eθ(b−1) (εiε
′
i | yi), recall that for a random vector x, with mean µx and

variance Vx, var(x) = E(xx′)− E(x)E(x′), from which it follows E(xx′) = Vx +

µxµ
′
x. Therefore,

Eθ(b−1) (εiε
′
i | yi) = Vεi + ε̂iε̂

′
i, (3.87)

where
ε̂i = Eθ(b−1) (εi | yi) = Eθ(b−1)

(
yi −WiΓ̄− Z̄iγi | yi

)
= yi −WiΓ̄− Z̄iγ̂(b)

i ,

and

Vεi = var
(
εi | yi; θ(b−1)

)
= var

(
yi −WiΓ̄− Z̄iγi | yi, θ(b−1)

)
= Z̄iV

(b)
γi Z̄

′
i,

(3.88)

with γ̂(b)
i = Eθ(b−1) (γi | yi) and V (b)

γi = var
(
γi | yi, θ(b−1)

)
.

Substituting (3.87) into (3.86) yields

Eθ(b−1) (ε′iHiεi | yi) = Tr
(
HiZiV

(b)
γi Z

′
i

)
+ Tr (Hiε̂iε̂

′
i)

= Tr
(
Z ′iHiZiV

(b)
γi

)
+ ε̂′iHiε̂i.
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We can now write

Q2i = Eθ(b−1) (L2i | yi) = c4 − 1
2
log | W ′

iR
−1
i Wi |

−1
2
Tr
(
Z ′iHiZiV

(b)
γi

)
− 1

2
ε̂′iHiε̂i.

Using a similar expedient, we can obtain Q1i and Q3i.

3.10.4 Estimation of the Coefficient Covariance Matrix

An estimator of 4 can be obtained by maximizing
∑N

i=1Q3i, where Q3i is defined

in (3.28), with respect to4. Before proceeding, we report a few results of matrices

differentiation shown in Lutkepohl (1996).

1. X (m×m) nonsingular, a, b (m× 1):

∂a′X−1b

∂X
= −(X−1)′ab′(X−1)′. (3.89)

2. X (m×m) nonsingular, A,B (m×m):

∂tr (AX−1B)

∂X
= −

(
X−1BAX−1

)′
. (3.90)

3. X (m×m), det(X) > 0:

∂ln | X |
∂X

= (X ′)−1. (3.91)

Therefore,

∂Q3i

∂4 = −4−1 + 4−1V
(b)
γi 4−1 + 4−1γ̂

(b)
i γ̂

(b)′

i 4−1 = 0,

(3.91) (3.90) (3.89)
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The solution to
(
∂
∑N

i=1Q3i/∂4
)

= 0 is given by

4̂ =
1

N

N∑
i=1

{Vγi + γ̂iγ̂
′
i} . (3.92)

Unbiased Estimator. It can be shown that

4̂ =
1

N

N∑
i=1

{Vγi + γ̂iγ̂
′
i} (3.93)

is an unbiased estimator of 4 since

E
(
4̂
)

= N−1
∑N

i=1 {E (γ̂iγ̂
′
i) + E (Vγi)}

= N−1
∑N

i=1

{
E
[
κ′V −1

i

(
yi −WiΓ̄

) (
yi −WiΓ̄

)′
V −1
i κ

]
+4− κ′V −1

i κ
}

= N−1
∑N

i=1

{
κ′V −1

i κ− κ′V −1
i κ

}
+4 = 4.

3.10.5 Hypothesis Testing

Covariance of Estimator of Fixed Coefficients.

Noting that V = var (y) has the linear form

V =
r̄∑
s=1

ϑsΠs,

the adjusted estimator of the small sample variance-covariance matrix of ˜̄Γ is

given by

Φ̂A = Φ̂ + 2Λ̂, (3.94)

where
Λ̂ = Φ̂

{∑r
s=1

∑r
j=1 Υsj

(
Ξsj −ΣsΦ̂Σj

)}
Φ̂,

Σs = −
∑N

i=1W
′
iV
−1
i Πs,iV

−1
i Wi,

Ξsj =
∑N

i=1W
′
iV
−1
i Πs,iV

−1
i Πj,iV

−1
i Wi.
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An approximation to Υ, the variance-covariance matrix of ϑ̂, can be obtained

from the inverse of the expected information matrix IE, where

2 {IE}sj = tr

(
N∑
i=1

V −1
i Πs,iV

−1
i Πj,i

)
− 2tr (ΦΞsj) + tr (ΦΣsΦΣj) .

Detailed derivations are provided by Alnosaier (2007).

Assessing the Errors of Estimation for the Unit-Specific Coefficients.

The variance-covariance matrix of the predictor of (3.5), is given by

var
(
ψ̂1i − ψ1i

)
= F1ivar

(
ˆ̄Γ
)
F ′1i + var (γ̂i − γi) + F1icov

(
ˆ̄Γ− Γ̄, γ̂i − γi

)
+
[
F1icov

(
ˆ̄Γ− Γ̄, γ̂i − γi

)]′
,

(3.95)

where

cov
(

ˆ̄Γ− Γ̄, γ̂i − γi
)

= cov
(

ˆ̄Γ− Γ̄, γ̂i

)
− cov

(
ˆ̄Γ− Γ̄, γi

)
= −ΦW ′

iV
−1
i Z̄i4,

since cov
(

ˆ̄Γ, γ̂i

)
= 0, and cov

(
yi,

ˆ̄Γ
)

= var
(

ˆ̄Γ
)
W ′
i .
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3.11 Data

3.11.1 List of Countries

Advanced Economies: Australia (AU), Austria (OE), Belgium (BG), Canada

(CN), Denmark (DK), Finland (FN), France (FR), Greece (GR), Iceland (IC),

Ireland (IR), Italy (IT), Japan (JP), Netherlands (NL), New Zealand (NZ), Nor-

way (NW), Portugal (PT), Singapore (SP), Spain (ES), Sweden (SD), Taiwan

(TW), United Kingdom (UK).

Emerging Market and Developing Economies: Argentina (AG), Brazil

(BR), Chile (CL), China (CH), Croatia (CT), Hungary (HN), India (IN), Malay-

sia (MY), Mexico (MX), Peru (PE), Philippines (PH), Poland (PO), Russia (RS),

South Africa (SA), Thailand (TH), Turkey (TK), Venezuela (VE).

The classification of countries follows from IMF, World Economic Outlook, Oc-

tober 2015 (pag.187-188).

3.11.2 Data Sources

Bond Yields: J.P. Morgan EMBI Global, OECD Main Economic Indicators,

Eurostat (for DK, GR, LX, and PT), and national authorities (OE, IN, IT, SP,

SD, TW).

Bond Spreads: for all European countries but Iceland, the bond spread is

measured against German long-term government bond yields. For the remaining

countries, the bond spread is measured against US long-term government bond

yields.

Current Accounts: OECD Main Economic Indicators, Oxford Economics, and

national Central Banks (LV, PE).

Government Debt: Oxford Economics, Eurostat (LV, LX, SJ), and Bank for

International Settlements (IR, IS, NZ, PE).

CPI inflation: IMF - International Financial Statistics, OECD Main Economic
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Indicators (AG, CL, CH, SX), and Oxford Economics (SP, TW, TH).

Real GDP: Oxford Economics, national authorities (IS, LV, LX, NZ, PE), and

OECD Main Economic Indicators (SJ).

Exchange Rates: IMF - International Financial Statistics, OECD Main Eco-

nomic Indicators, and Oxford Economics (TW).

Financial History: Historical time series on countries creditworthiness and

financial turmoil are obtained from Reinhart and Rogoff (2009, 2011).



Chapter 4

House Prices and Monetary Policy

in the Euro Area: Evidence from

Structural VARs

4.1 Introduction

In the light of the recent global financial crisis, it is crucially important to un-

derstand the role that house prices played in the past and the linkages between

housing, monetary policy and macroeconomic activity in general, in order to de-

tect future housing imbalances and to improve financial stability. As a result, the

literature on housing in macroeconomics has grown very rapidly in recent years.1

Nevertheless, most of the current studies focus on the aggregate euro area, the

UK and the US.2 Yet, little is known about the effects of house prices in each

euro area member states. A notable exception is Giuliodori (2005) although this

work only covers the pre-EMU period.3 The first contribution of this chapter is

1An excellent survey is provided by Piazzesi and Schneider (2016).
2Notably, Iacoviello (2005), Iacoviello and Neri (2010), Jarocinski and Smets (2008), and

Mishkin (2007) for the US. Musso et al. (2011) compare the US with the (aggregated) euro
area.

3Using a recursively identified VAR, the author focuses on the role of house prices in the
monetary transmission and provides some evidence on their effects on household consumption
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to fill this gap. We use a structural Bayesian vector autoregression model for

seven euro-area countries (Belgium, France, Germany, Ireland, Italy, the Neth-

erlands, and Spain) for the period 1980:Q1-2014:Q4. We focus on a country by

country analysis, given the idiosyncratic characteristics of the housing market in

the euro area (ECB, 2003) which suggest that pooling or aggregating may lead to

biased inference (Pesaran and Smith, 1995) and misleading policy recommenda-

tions. Adopting a novel set of identification restrictions which combines zero and

sign restrictions, based on the algorithm developed by Arias et al. (2014), we

provide a systematic structural analysis of the effects of housing demand shocks

on economic activity and the role of house prices in the monetary transmission

mechanism across euro area countries. The combination of zero and sign restric-

tions allows us to distinguish between a housing demand shock and an aggregate

demand shock. Disentangling these two shocks would be less than obvious if we

were to use only sign restrictions. The priors are selected using the Bayesian

stochastic search variable selection (SSVS) approach developed by George, Sun

and Ni (2008). This method allows for shrinkage of the VAR coefficients (to

overcome the over-parameterization problem) while selecting restrictions that are

supported by the data itself. This in turn allows appropriate finite sample infer-

ence and exploits in full the intrinsic cross-country heterogeneity typical of the

housing market.

Second, using to the extent possible a dataset composed of comparable data

sources, sample periods, and mostly by employing the same econometric meth-

odology for each country, we exploit the cross-sectional dimension of our data

to quantify the degree of heterogeneity of the impact of housing demand shocks

on the macro-economy and the role of house prices in the transmission of mon-

etary policy across Eurozone members.4 In fact, the current literature lacks of

such comparative studies, especially with respect to the role of housing wealth

while leaving aside their role in driving other important variables such as GDP, inflation, lending
rates and most importantly the supply of credit.

4A description of the data sources is presented in Appendix 4.8.1.
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on economic activity. The investigation of heterogeneity in the euro area housing

markets is clearly relevant from a policy perspective. Given the ongoing recovery

in house prices, it is fundamental to ask what are the implications for the broader

macro-economy and to investigate how the heterogenous impacts of house prices

across countries can amplify the existing economic divergences across Eurozone

members.5 House prices in the euro area appear to be currently supported by

several factors: favourable financing conditions, the enfolding recovery in growth

and employment and a low yield environment which makes housing investment re-

lative attractive compared to alternative asset classes (ECB, 2015). A protracted

increase in house prices is therefore foreseeable and its macroeconomic implica-

tions need to be carefully assessed by policy makers. Moreover, considering the

numerous interactions - of a real and financial nature - characterizing the housing

market (Wachter, 2015), it is inevitable that the two aforementioned questions -

how housing demand shocks affect the macro-economy and how monetary policy

affects house prices - are intrinsically interrelated. In this context, house prices,

like other asset prices, represent a potentially important component in monet-

ary policy transmission, to the extent that changes in interest rates and other

(non-standard) monetary policy measures affect house prices, thereby influencing

economic activity and private consumption.

With regard to the transmission of monetary policy, Calza et al. (2013) con-

duct an analysis similar to our investigation. Accounting for heterogeneity in the

estimation, the authors classify 19 advanced economies into two groups according

to the degree of development of mortgage markets and the type of interest rate

structure, to examine whether the national mortgage markets’ institutional char-

acteristics influence the effects of monetary shocks. Identification of the latter is

achieved via Cholesky decomposition. Differently from them, we ask whether a

common monetary policy could amplify divergences in house prices fluctuations

5The focus is on the implications in terms of real GDP, real private consumption, inflation
and credit developments.
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among the Eurozone members when reacting to area wide aggregates such as in-

flation and economic activity. As noted in Bini Smaghi (2011), given its primary

objective of maintaining price stability in the euro area, the ECB has ‘no choice

but to take a euro area perspective’. Therefore, since its policy decisions aim at

price stability at the area-wide level and ‘cannot be tailored to the specific needs

of a single Member State’, it is important to quantify and compare the different

effects of monetary shocks on house price dynamics across euro area countries,

regardless of the degree of development of national mortgage markets, which ac-

cording to Cardarelli et al. (2008) is rather low in all countries under study, with

the exception of the Netherlands.6 Being aware of such heterogeneity is essential

when addressing real and financial imbalances at the country level by means of

macroprudential policies.7

Estimation results confirm that the effects of housing demand and monetary

policy shocks differ widely across the countries under investigation. We find evid-

ence of the existence of a housing wealth effect in the euro area, although with

a certain degree of heterogeneity in the response of household consumption to

house price increases. While there is a broad consensus on the housing wealth

effect in the U.S. (e.g. Iacoviello and Neri, 2007), and the U.K. (e.g. Campbell

and Cocco, 2007), it is argued that such an effect is relatively modest in the

euro area (ECB, 2009). Although this is true for many countries under invest-

igation, the same cannot be said for Ireland and Spain, where we show that an

increase in real house prices has a positive and statistically significant impact on

real private consumption. Both countries have recently experienced a boom-bust

pattern in house prices. This finding supports the view (e.g. Shiller, 2005) that

house price booms play an important role in boosting confidence, which in turn

6For instance, if we were to classify the countries examined according to their Loan-to-
Value ratio following Calza et al. (2013), all countries would belong to the “low development”
group but Belgium and the Netherlands. If we were to use mortgage equity withdrawal, only
the Netherlands would belong to the ‘high development’ group. More heterogeneity is found in
terms of the type of interest rate structure, with Italy and Spain being characterized by variable
rates, although this is a recent development.

7On this topic, see for example Schoenmaker (2014) and Hartmann (2015).



4.1. Introduction 120

stimulate consumption. The historical decomposition analysis corroborates the

importance of housing demand shocks in driving consumption, especially in Ire-

land and Spain. In both countries, in the absence of housing demand shocks, the

growth rates of real private consumption would have been lower than the actual

rates between 2002 and 2007, and larger between 2008 and 2013. To illustrate, in

Ireland, the cumulative effect of housing demand shocks on consumption is equal

to 0.79% up to 2006 and to -1.16% at the end of 2011. In Spain, it is equal to

0.5% up to 1995 and 2004, and to -0.66% in 2012. Housing demand shocks also

play an important role in explaining variation in the supply of credit, confirming

the ‘financial accelerator’ hypothesis, according to which changes in the collateral

affect borrowing capacity (Bernanke et al. (1996) and Almeida et al. (2006)).

The impact of housing demand shocks on loans is less heterogeneous than the ef-

fect on consumption. Furthermore, we corroborate the strong role of house prices

in the monetary policy transmission for the euro area while documenting high

heterogeneity in the impact of monetary policy shocks on euro area countries’

house price fluctuations. Historical decompositions highlight a strong contribu-

tion of monetary shocks to real house price growth. A substantial increase in

house prices would have occurred in Ireland and Spain between 2001 and 2006

even if all the other structural shocks but monetary policy had been turned off.

The remainder of the chapter is organised as follows. Section 4.2 presents the

data used and some stylized facts. In Section 4.3 we provide a brief review of the

literature on housing in macroeconomics. Section 4.4 describes the methodology

used. Section 4.5 presents results of the structural VAR analysis. In particular,

we highlight the strategy used to identify the structural shocks and describe

the main findings from impulse response analysis, the forecast error variance

decomposition, and historical decomposition. Finally, we conclude.
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4.2 Data and Stylized Facts

Some Stylized Facts. The house price cycle has turned the corner in the euro

area. The annual rate of change in euro area house prices started to increase in

mid-2013 and turned mildly positive since the second half of 2014, subsequently

reaching a post crisis high at the beginning of 2016. This aggregate trend follows

heterogeneous developments across euro area countries. Large downward adjust-

ments in real house prices took place in Spain and Ireland since the beginning

of 2008, where prices declined around 40% from the peaks reached before the

financial crisis. Sizable declines in excess of 20% were also experienced in the

same period in the Netherlands and Italy, while real house prices were broadly

stable in Belgium and increased notably in Germany by 27%. Indeed, the build-

ing and subsequent correction of house price imbalances – typical of a boom-bust

pattern characterising the housing market - renders the observed aggregate recov-

ery relatively muted and characterised by a differentiated pace across countries.

In this context, exploring how house price dynamics affect the macroeconomy

and how monetary policy influence house prices appear of particular interest. To

further grasp the importance of housing for the macro-economy and put things

into perspective, housing wealth in the euro area represents, on average, 37% of

households’ net worth. In turn, at the end of 2014, real estate-related loans to

households and non-financial firms in the euro area accounted for nearly 57% of

euro area banks’ total loans to the non-financial private sector and more than

half of euro area GDP (ECB, (2015)).

Data. A detailed description of the database used in the descriptive and eco-

nometric analysis is provided in Appendix 4.8.1. In Appendix 4.8.2, we provide

charts which depict the variables of interest for the seven euro area countries

examined (Belgium (BE), France (FR), Germany (DE), Ireland (IE), Italy (IT),

Spain (ES), and the Netherlands (NL)) and, for illustrative purposes, the euro

area. The variables are: real house prices, consumer price inflation, real GDP,
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real loans to households, lending rates and monetary policy rates. All variables

are shown as an index level, except for the interest rates which are in percent-

age terms. From a first graphical inspection of the data some interesting points

emerge. First, the heterogeneity in real house price dynamics across the panel of

euro area countries is broadly matched by qualitatively similar dynamics in real

loans to households, generally suggesting a high degree of co-movement between

the two variables. In particular, countries experiencing boom-bust episodes in

house prices (such as Ireland and Spain) have also undergone sharp increases

in credit to households before the financial crisis followed by reversals after the

crisis. This also holds to some extent for Italy and the Netherlands. At the same

time, sustained house price dynamics in France and Belgium, especially in the

latter part of the sample period, have been accompanied by continued growth

in loans to households. On the contrary, in the case of Germany, declining or

subdued house price dynamics for a large part of the sample period have been

matched by a modest increase in loans to households. Second, a certain de-

gree of co-movement between real house prices and economic activity in terms

of real GDP is also evident, in particular in the case of Ireland, Spain and the

Netherlands. The findings described above are confirmed when looking at cross

correlations. The alignment between real house prices and the business cycle (in

terms of real GDP) is highest in terms of maximum correlation in Spain, Ireland

and the Netherlands and it is found at broadly coincident level. The maximum

correlation between annual real house prices and real loans to households is found

in the case of France, Ireland, Spain (around 70%) and Belgium and the Neth-

erlands (around 50-60%). In the case of the Netherlands, Spain and Belgium

real house price growth tends to slightly lead annual growth in real loans to

households. Third, consumer prices were characterised by a much lower degree of

cross-country heterogeneity compared to house prices, as well by more moderate

increases or less pronounced falls. Finally, the well-known downward trend in

lending rates is evident, notwithstanding some volatility in the initial part of the
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sample – before 1999 – characterised by different monetary policy regimes.

4.3 Literature

In this section, we briefly review the main theories on the role of house prices in

the business cycle and in the transmission of monetary policy. A non exhaustive

list of works which use multivariate structural models to quantify the impact of

housing demand and monetary policy shocks is also reported.

4.3.1 The Interaction between House Prices and the Busi-

ness Cycle

How do house price fluctuations affect households’ consumption de-

cisions? House price changes may have significant effects on aggregate con-

sumption through different channels. First, an increase in house prices leads to

a rise in homeowners’ financial wealth which is the sum of liquid financial assets

and real estate’s value minus outstanding debt. However, as noted in Camp-

bell and Cocco (2007), such an increase does not necessarily correspond to a

raise in real wealth and therefore may have no effect on consumption. In fact,

a house price increase does not affect the consumption behavior of a homeowner

who is not planning to sell his house. It is just a compensation for a higher

implicit rental cost of living in the house as pointed out in Sinai and Souleles

(2005). The age structure of the population may play a role. While Campbell

and Cocco (2007) find that house price increases benefit mostly old owners, rather

than young renters, confirming the so-called ‘wealth hypothesis’, Attanasio et al.

(2009) findings support the so called ‘common factor hypothesis’: the impact of

house prices on consumption is the same across different age groups.

Second, even in the absence of wealth effect, an increase in house prices may

lead to an increase in consumption, since housing can be used as collateral in
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a loan. It therefore allows borrowing constrained homeowners to smooth con-

sumption over the life cycle, as shown in Ortalo-Magne and Rady (2006) and

Lustig and Van Nieuwerburgh (2006). As argued in Almeida et al. (2006), if the

collateral-based accelerator theory were to hold, one should expect a larger in-

crease in consumption (following an increase in house prices) in high loan-to-value

(LTV) ratio countries. In fact, as stated by the authors ‘the procyclical increase

in borrowing capacity may allow households to further increase housing spending,

amplifying the collateral-based spending cycle’. Countries with a high LTV ratio

are characterized by higher marginal opportunity to borrow. This argument is

also made in Muellbauer (2015), where the author argues that in countries with

low first-time buyer FTB-LTV ratio, higher house prices may have a negative im-

pact on aggregate consumption if they are not accompanied by higher income or

income growth expectations. The main reason is that those who want to become

owner-occupiers need to save more while renters anticipate higher rents in the

future which therefore negatively affects their spending decisions.

House prices and economic activity. House price shocks may have a pos-

itive impact on GDP through higher consumption since, as discussed above, an

increase in house prices implies a higher value of colletaral which can be used

by a borrowing-constrained households to obtain more credit. Furthermore, due

to the ‘Tobin’s q’ effect, a rise in house prices encourages companies to invest

more in housing construction (because their market value is higher than their

construction costs) which in turn affects real growth. At the same time, housing

demand shocks may exercise upward pressure on inflation directly trough higher

rents (which are a component of CPI services inflation) and indirectly through

consumption. The impact on inflation through higher rents should be larger in

those countries where home-ownership is lower. According to the ‘financial ac-

celerator’ theory, the (indirect) impact on CPI (through consumption) should be

bigger in countries with higher LTV ratio.
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House prices and the market for loans. As discussed in Basten and Koch

(2016), different mechanisms are at play in the relationship between house prices

and mortgage volumes. First, an increase in house prices which is not accompan-

ied by a contemporaneous increase in households wealth may induce those who are

seeking to buying to resort to more loans when purchasing a new housing. This

increase in demand will result in higher equilibrium mortgage amounts, even in

the absence of an outward shift in the mortgage supply curve. At the same time,

given that the value of the collateral has increased, banks may be more willing

to extend loans, especially if they expect future house prices to grow further. In

such a case, an increase in house prices can also cause a shift of the credit supply

curve. The subsequent consequences on lending rates depend on many factors

among which, the availability of credit and regulatory capital ratio requirements,

the risk perception of potential borrowers or the degree of competition in the

banking sector.

4.3.2 The Role of Monetary Policy Shock for House Price

Fluctuations

Bernanke and Gertler (1995) argue that credit market frictions can have a rel-

evant impact on households’ borrowing and spending decisions on durable items

such as houses which in turn affect residential investment and therefore aggregate

economic activity. Monetary policy can affect residential investment through the

balance sheet channel. In fact, the authors note a direct link between housing

demand and consumer balance sheets, due to features such as ‘down-payment

requirements, up-front transaction costs, like closing costs and “points” and min-

imum income-to-interest-payment ratios’. The lending channel also plays a role.

According to Iacoviello and Minetti (2008), in the occurrence of a liquidity shock,

banks may tend to shift from less to more liquid loans or to securities. Therefore,

the relative illiquidity of mortgages becomes crucial especially in those countries
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where mortgage standardisation and securitisation are not common. At the same

time, a fall in bank mortgages will result in a shortage of funds for house pur-

chases, especially in those countries in which the supply of loans from specialist

mortgage lenders or from the state is not enough to satisfy the demand for housing

purchases.

4.3.3 Selected Empirical Evidence

In this subsection, we present a non-exhaustive overview of the empirical liter-

ature on housing and the monetary policy transmission.The studies presented in

Table 4.1 differ in terms of methodology, country coverage, and sample periods.

Therefore, their comparability is inevitably limited. We focus only on the literat-

ure which derives insights on the quantitative importance of different mechanisms

from multivariate structural models. Most of the works reviewed here use VAR

models estimated using classical inference, with a few exceptions. Jarocinski and

Smets (2008) use two Bayesian VAR specifications: a VAR in levels which uses

standard Minnesota priors and one in differences with priors about the steady

state, as in Villani, (2008). Goodhart and Hofmann (2008) use a Fixed-effects

panel VAR. Iacoviello and Minetti (2008) estimate both VAR and VEC models.

4.4 The Bayesian SSVS-VAR Model

We run a Bayesian VAR model for each country, namely Belgium, France, Ger-

many, Ireland, Italy, the Netherlands, and Spain. VAR models have been widely

used in the study of house prices and monetary policy, given that linear interde-

pendencies may exist among the time series under study, and because of their abil-

ity to forecast and quantify impulse responses to macroeconomic shocks, among

other reasons. The choice of countries is dictated by three reasons. First, we focus

on a country dimension given the intrinsic idiosyncratic nature of housing markets

across the euro area members. Second, the country coverage is influenced by the
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Table 4.1: Selected Empirical Evidence

Study Country Coverage Sample Period Identification Shocks Confidence Bands
Aoki et al. (2002) UK 1975:Q1 - 1999:Q4 (a) MP 2 Standard Errors

Bjornland and Jacobsen (2010) NO, SE, UK 1983:Q1 - 2006:Q4 (b) MP, HP 68%
Calza et al. (2013) 19 advanced countries 1980:Q1 - 2007:Q4 (a) MP 2 Standard Errors
Elbourne (2008) UK 1987:Jan - 2003:May (d) MP, HP 90%
Giuliodori (2005) 9 European countries 1979:Q3 - 1998:Q4 (a) MP, HP 90%

Goodhart and Hofmann (2008) 17 industrialized countries 1973:Q1 - 2006:Q4 (e) - -
Iacoviello and Minetti (2008) FI, UK, DE & NO 1974:Q2 -1999:Q4 (a) & (b) MP, Mix 1 Standard Error
Jarocinski and Smets (2008) US 1987:Q1 - 2007:Q2 (c) HP, MP & TS 68%

Musso et al. (2011) US & (aggregated) EA 1986:Q1 - 2009:Q2 (a) MP, HP & CS 68%

Identification Strategy: (a) stands for recursively identified system (Choleski decomposition);
(b) for mix of short and long-run restrictions; (c) for mix of zero and sign restrictions; (d)
Kim & Roubini (2000) approach; and (e) Reduced-Form analysis only. MP, HP and CS stands
fo monetary policy, housing demand and credit supply shocks, respectively. TS is the term
spread computed as the difference between long-term interest rates and federal funds rates.
Mix denotes the external finance mix, which is the fraction of housing loans by ‘non-banks’.
Iacoviello and Minetti (2008) use (b) to identifying MP shocks, and (a) for Mix. EA, FI,
DE, NO, and SE are an abbreviation of Euro Area, Finland, Germany, Norway and Sweden,
respectively.

need of sufficiently long time series and reliable house price data. Finally, differ-

ently from the current literature, we are interested on a cross-country comparison

for euro area countries rather than focusing on the euro area as a whole.

For each country, the reduced form VAR(p) model van be written as

yt = µ+ A1yt−1 + ...+ Apyt−p + ut, (4.1)

for t = 1, .., T, where ut ∼ N(0,Σu) and yt is a m × 1 vector of endogenous

variables.8

The vector of endogenous variables in our baseline VARmodel includes lending

rates to households (for house purchase), national banks’ official rates (starting

from 1999, we use the ECB rate on the marginal lending facility) and (annualized)

growth rates of real house prices, real consumption (or alternatively real GDP),

the consumer price index (CPI), and real loans to households. The choice of

variables is in line with Giuliodori (2005) and Musso et al. (2011), among others.

8The subscript i, denoting the particular country of interest, is omitted for clarity of expos-
ition
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Equation (4.1) can be rewritten in compact form as

Y = XA+ U, (4.2)

where Y and U are two T × m matrices, X is of dimension T × K and A =

(µ,A1, .., Ap)
′ is aK×mmatrix of coefficients, withK = (mp+1). The estimation

sample is 1980Q1:2014Q4.9 The lag order of the model for each country has been

chosen using the Akaike information criterion.10

4.4.1 The Choice of the Prior

When the number of observations is limited, the number of parameters to be

estimated may be too large relative to the available data. In the absence of

restrictions in the regression coefficients and the covariance matrix, the model is

over-parameterized. Consequently, the precision of inference and the reliability

of prediction are negatively affected.

To overcome this problem, the Bayesian approach has become widely used

for VAR modelling, as it incorporates prior knowledge about parameter values.

Various priors for unrestricted and restricted VARs which allow for shrinkage

of the coefficients have been proposed. Prior elicitation is typically based on

the ground of formal or informal economic theory or using information about

pattern on macroeconomic data. For instance, Doan et al. (1984) suggested a

Minnesota prior that shrinks the VAR parameters towards a random walk model.

However, as noted by George, Sun and Ni (2008), such approaches “are based on

an implicit assumption that the relevant restrictions are known” even though

“at least for some economic problems, current theoretical knowledge does not

warrant such confidence”. Moreover, Koop and Korobilis (2010) note that they

require “substantial prior input from the researcher (although this prior input can

9The sample periods vary across countries depending on data availability.
10We choose to estimate the optimal lag order using Aikake rather than Schwartz criterion,

as the former always yields a larger order.
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be of an automatic form such as in the Minnesota prior)”. In view of the above

reasons, following George, Sun and Ni (2008), we use a Bayesian stochastic search

approach (SSVS) to selecting restrictions for VAR models that are supported by

the data itself. It does so in an automatic fashion by using a hierarchical model,

where the prior for a parameter is a function of a hyperparameter which in turn

has its own prior. Therefore, it allows us to impose plausible restrictions on

both the covariance matrix and the VAR regression coefficients while requiring

“minimal prior input from researcher” (Koop and Korobilis, 2010).

In particular, let α = vec(A) be the Km× 1 vector of regression coefficients.

The SSVS assumes that the prior distribution of αj (the jth element of α) is a

mixture of two Normal distributions:

αj | γj ∼ (1− γj) ·N
(
0, τ 2

0j

)
+ γj ·N

(
0, τ 2

1j

)
, (4.3)

where γj is a dummy variable; τ0j is set to be small and τ1j large (for j = 1, .., Km)

so that αj is restricted to be very close to zero when γj = 0 and unrestricted when

γj = 1. The dummy γj is unknown and it has to be estimated in a data-based

fashion. In particular, it is assumed that the γj’s are independent Bernoulli

random variables so that

P (γj = 1) = pj, P (γj = 0) = 1− pj, j = 1, .., Km.

As noted by George, Sun and Ni (2008), for each j, pj reflects the prior belief

that αj should be unrestricted. In the absence of such prior information, one

could set pj ≡ .5 and let the data decide whether to shrink or not the coefficient

to zero, as we do in this chapter. A similar prior for Σu is assumed, in order to

impose restriction on the covariance matrix. We refer the reader to Appendix

4.7.1 and to George, Sun and Ni (2008) for details.

Bayesian stochastic search approach is advantageous to select restrictions,

shrinking many coefficients to zero, while providing relative probabilities of the
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selected models. Therefore, it helps researchers to focus on the more realistic

submodels and in turn to make adequate finite sample inference. It differs from

previous VAR modeling approaches as “it does not a priori rule out submodels of

the VAR under consideration. Instead, it allows for the comparison of submodels

based on the data”. In fact, as noted in Koop and Korobilis (2010), the result

of the SSVS-MCMC algorithm will be Bayesian model averaging (BMA). At

the same time, using simulated numerical examples, George, Sun and Ni (2008)

find that their model performs well in selecting a satisfactory model and lead to

improvements in forecasting in terms of Mean Squared Errors.

4.5 Structural Analysis

4.5.1 Identification Strategy

To investigate the heterogeneous effects of house prices on the macro-economy,

and their role in the monetary policy transmission across euro area countries, we

identify both hous- ing demand and monetary policy shocks. Intuitively, a hous-

ing demand shock is mainly attributable to households’ preferences. Such a shock

would increase the relative attractiveness of housing vis-a-vis other goods/services,

for example via a more favourable tax treatment or deductibility of mortgage ex-

penditures, or in terms of improved location due to enhanced services and amen-

ities (think of a new underground project connecting the suburb of a city with

its centre). Such a shock could also be interpreted as a preference shock resulting

in changes in the political and social environments that encourage an increase in

home-ownership as in Baldi (2014). In the case of Spain, Aspachs-Bracons and

Rabanal (2011) interpret such a shock as driven by population changes: increased

immigration, the baby boom generation, and social changes that reduce the num-

ber of persons per households and increase the number of household units.

Since the works of Faust (1998), Canova and De Nicolo (2002), and Uhlig
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Table 4.2: Short Run Responses to Housing Demand and Monetary Policy Shocks

Housing Demand Mon Pol Loans Supply Lend Rates A. Supply A. Demand
House Prices + −
Monet. Rate 0 + 0 0
Loans + − + −
Lending Rates + + − +
Consump. (GDP) 0 0 + +
Inflation 0 0 − +

The first column lists the endogenous variables of the VAR, which react to the shocks reported
in the first row: housing demand shocks, monetary policy innovations, shocks to the credit
supply (third and fourth column), aggregate supply and demand shocks. Our interest is in
identifying housing demand and monetary policy shocks.

(2005), identification via sign restrictions has become increasingly popular (see

Fry and Pagan (2011) for a review). We identify housing demand and monetary

policy shocks by using a combination of zero and sign restrictions, using the

algorithm proposed by Arias et al. (2014). The matrix of contemporaneous

impacts of the shocks on the endogenous variables is defined in Table 4.2.11

Identification of housing demand shocks. Among other reasons, combining

zero with sign restrictions allows us to specify enough information to discriminate

between a housing demand shock and an aggregate demand shock. This distinc-

tion would have not been possible by simply using an identification strategy which

only imposes sign restrictions.

The assumption that real consumption (or real GDP) and inflation do not

react on impact to a house price shock, captures the idea of stickiness in the

transmission of the shock due, for example, to the transaction time required to

buy/sell a property and/or to a lagged or muted reaction of rents affecting infla-

tion with some delay. In fact, Muellbauer (2015) note that rents (both private

and commercial) adjust relatively slowly to an increase in house prices. A slug-

11Identification of housing demand shocks does not require imposing any restrictions in rows
3 to 6 of the second column, as well as no restrictions in the (2,3) and (2,4) elements of the
matrix shown in Table 4.2. Similarly, when identifying monetary policy shocks, we do not
impose any restriction in rows 3 to 6 of the first column and in the (4,3) and (3,5) elements of
the matrix. We do so to facilitate replicability of results. In fact, imposing all the restrictions
is computationally costly as identification of each country’s VAR shocks would require around
two days.
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gish response of inflation to house prices is also found in Bjornland and Jacobsen

(2010). This assumption is also used in Jarocinski and Smets (2008) and it is

in line with Giuliodori (2005) and Musso et al. (2011), who imposes a recursive

structure in which house prices are ordered after GDP and inflation. The patterns

used to distinguish aggregate demand and supply shocks are commonly used in

the literature (e.g. Fry and Pagan (2011)). The zero contemporaneous impact

of a house demand shock on monetary policy is consistent with a Taylor Rule.

Furthermore, by imposing sign restriction rather than simply assuming a recurs-

ive causal structure of the system (e.g Sims, 1980), we are able to discriminate

house prices shocks from loans supply and lending rates shocks on the ground

of economic theory. Instead, it would be more difficult to find an appropriate

theoretical justification in what order those variables are recursive. We assume

that a house demand shock causes a contemporaneous increase in both real loans

and lending rates. To understand the latter hypothesis, we look at the market for

loans, and suppose demand and supply are in equilibrium. An exogenous hous-

ing demand shock may shift up the demand curve and down the supply curve

(given that the value of housing collateral increases). We assume that the shift

in the demand curve will be higher than the shift in supply because of regulatory

requirements and balance sheets conditions that banks have to satifsy (e.g. the

availability of mortgage credit is limited to a maximum LTV ratio, Almeida et

al. (2006)) and given that some borrowers may be highly leveraged (e.g. their

debt-to-income ratio is quite high even before applying for a new loan). As a

result, the new equilibrium will be characterized by higher market lending rates

and an increase in the volume of loans.12 This is in line with Jarocinski and Smets

(2008) and Iacoviello and Neri (2010), who assume that an increase in real house

prices is not associated with a fall in nominal short-term interest rate to rule out

an expansionary monetary poliy shock. This assumption allows us to distinguish

12For example, Basten and Koch (2016) studying the causal effect of house prices on the
mortgage market in Switzerland, find that higher house prices lead to an increase in mortgage
demand which is not accompanied by an expansion in mortgage supply.
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between housing demand shocks and a (positive) loans supply shock. The latter

may be associated to various events, such as changes in regulatory capital ratio

requirements which increase the amount of banks capital available for loans.13

Identification of a monetary policy shock. When recoverying the mon-

etary policy (MP) shock, combining zero and sign restrictions allow us to be

consistent with both the literature which studies systematic changes in monetary

policy rules (e.g. Christiano et al., 1999) and the one which focuses on the role of

asset prices in the transmission of MP shocks (e.g. Zettelmeyer (2004), Rigobon

and Sack (2004) and Kuttner (2005)). In line with the former, we assume that

central banks react endogenously to conemporaneous movement in current prices

and output, among other things. In other words, we assume that output and

prices respond only with a lag to a policy instrument shock. The latter branch

of literature argues that house prices, and asset prices in general, react almost

instantaneously to news and therefore are important transmission mechasnism of

monetary policy shocks. Therefore, we assume that both interest rates and house

prices react simultaneously to news. To consider house prices as forward looking

variables which respond immediately to monetary policy news is consistent with

economic theory, see Iacoviello (2005). A similar assumption is made in Bjorn-

land and Jacobsen (2010). Instead, using a recursive structure, Goodhart and

Hofmann (2001) and Giuliodori (2005) impose that house prices do not respond

immediately to monetary policy shocks. Assuming a decrease (increase) in loans

after a contractionary (expansionary) monetary policy shock is in line with Gerali

et al. (2010) and Gertler and Karadi (2011). We also assume that central banks

do not react contemporaneously to a loans supply shock. In fact, as central banks

target inflation, they intervene only if inflationary pressure from supply shocks

realizes.14

13See Gambetti and Musso (2016) and Eickmeier and Ng (2015) for a comprehensive list of
possible events which may trigger a shock in the supply of credit.

14As discussed in Hristov et al. (2012) and Gambetti and Musso (2016), it is not always
clear that an increase in the supply of credit loans causes a contemporaneous rise in inflation.
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Model Identification Problem. Although sign restrictions provide sufficient

information to identify the structural parameters, they do not lead to a unique

set of impulse responses.15 As noted by Fry and Pagan (2011), there is a variety

of models which are consistent with the imposed sign restrictions and which

provide the same fit to the data. In other words, sign restrictions do not overcome

the “model identification problem”. We adopt Fry and Pagan (2007)’s “Median

Target” (MT) strategy which consists in finding a single model whose impulse

responses are closest to the median responses across all the qualifying models.

By devising a criterion to do this, we solve the “multiple models” problem since it

ensures that the impulses come from the same model and that the corresponding

shocks are orthogonal. As noted in Fry and Pagan (2011), the MT criterion

selects the median responses when these are uncorrelated. Finally, we note that

although the choice of the MT criterion, rather than other magnitude of impulses,

may be arbitrary, it is a popular choice as it captures the central tendency of all

the plausible models found (Eickemeier and Ng, 2015). Another advantage of

using the MT strategy is that when employing this criterion, the sum of the

contributions of each error to the forecast error variance of each endogenous

variable is equal to one.

4.5.2 The Impact of Housing Demand Shocks

In this section we report the impulse responses of selected variables to a housing

demand shock - in terms of a 1% increase in real house prices - for each country

under investigation. Comparison across countries is facilitated by the fact that

all the structural shocks have unit variances. In addition, we apply the Mean

Group (MG) estimation procedure proposed by Pesaran and Smith (1995) to

obtain cross-sectional average responses. In particular, let ζ(i)
kl be a h× 1 vector

containing the MT responses of variable l to an impulse in variable k over h

15In our setting, at each Gibbs sampling iteration, we generate at most 100 structural
matrices satisfying the imposed zero and sign restrictions.
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periods, for country i. The MG responses of variable l to an impulse in variable

k (over h periods), can be computed as the cross-sectional average

MGkl =
1

N

N∑
i=1

ζ
(i)
kl . (4.4)

Similarly, the credible intervals for the MG responses can be computed by

taking the cross-sectional average of the impulse responses associated with the

percentile of interest.

For the vast majority of countries, a positive housing demand shock has a

significant positive impact on inflation, economic activity and real loans to house-

holds. Figure 4.1 shows the effects of housing demand shocks on house prices, real

GDP, and inflation. The magnitude of the maximum impact on inflation varies

between 0.02% and 0.2%, averaging around 0.05% across the countries examined.

The impact on real GDP varies between 0.04% and 0.12%, averaging 0.09% and is

significant for France, Ireland, Spain, and partially Italy. The maximum impact

of the shock is achieved after three quarters on average for activity and inflation.

Three country specific observations can be made. First, the impact of a housing

demand shock on real GDP is highest for Ireland and Spain, countries having

experienced a boom-bust pattern in house prices.16 Second, the impact of the

shock on inflation are larger and significant in the case of Germany, France, and

Spain. Muellbauer (2015) argues that in Germany, having a system of comparat-

ively flexible rent controls, an increase in house prices may be followed by a rise

in rents affecting in turn inflation developments.

16When using 95% confidence bands, the impact is significant in Ireland and Spain, as well
as in Italy and France. For Belgium, the Netherlands and Germany significance holds only
when considering 80% credible intervals.
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Figure 4.1: Impulse response functions to a housing demand shock, for real house
prices growth, real GDP growth, and inflation, across countries. The red lines
delimit the 95 per cent credible interval. The grey shaded area delimits the
space between 10th and 90th percentiles. The blue line is the median impulse
response, while the crossed blue line is the median Mean Group (MG) response,
both obtained using the MT approach.

House prices and the market for loans. The impact on real loans to house-

holds, shown in Figure 4.2, varies between 0.10% and 0.5%, averaging 0.35%. The

positive effect of house price shocks on loans is highest on impact for all countries

and reflects the tight links between the credit and the housing markets. The

impulse responses of real loans exhibits a fairly similar pattern across countries

in terms of expected sign, size and statistical significance.
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Figure 4.2: Impulse response of real loans to a housing demand shock. Cross-
country comparisons. The red lines delimit the 95 per cent credible interval. The
grey shaded area delimits the space between 10th and 90th percentiles. The blue
line is the median impulse response while the crossed blue line is the median
Mean Group response, both obtained using the MT approach.

Wealth Effects. Results shown in Figure 4.3 indicate that the magnitude of the

maximum impact on real private consumption varies between 0.02% and 0.16%

across the countries examined, averaging 0.1%, with the maximum impact oc-

curring after three quarters on average. They confirm the intuition that liquidity

constrained households can expand their consumption capabilities using housing

wealth as collateral to obtain higher borrowing (Iacoviello, 2004). Moreover, the

ordering of countries is confirmed. Ireland and Spain exhibit the largest wealth

effects on consumption (around 0.15%) followed by Italy. Results for the first two

countries are highly significant, while those for the others exhibit a lower mag-

nitude of the impact and lower statistical significance. Muellbauer (2015) finds a

negative effect of real house prices on consumption in both France and Germany.

Instead, our analysis reveals that a housing demand shock has a positive impact

on consumption in both countries, even though, as noted above, this effect is
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Figure 4.3: Impulse response of real private consumption to a housing demand
shock. Cross-country comparisons. The red lines delimit the 95 per cent credible
interval. The grey shaded area delimits the space between 10th and 90th per-
centiles. The blue line is the median impulse response while the crossed blue line
is the median Mean Group response, both obtained using the MT approach.

rather muted.

Variance Decomposition

Forecast error variance (FEV) decomposition is crucial to understand how im-

portant a housing shock is for consumption, credit supply and other variables

of interest. In fact, this ‘innovation accounting’ analysis allows us to answer to

what extent the variability in the aforementioned variables can be explained by

a housing demand shock. Figure 4.4 shows the proportion of 1, 3, 5, and 20

quarters ahead forecast error variance of each endogenous variable of the VAR

accounted for by innovations in real house prices.
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Figure 4.4: Variance Decomposition. Proportion of 1, 3, 5, 10, and 20 quarters
ahead FEV of each variable accounted for by innovations in house prices. Cross-
country comparisons. Red line indicates the average contribution across countries.

The contribution of the housing demand shock to fluctuations of aggregate

consumption, inflation, loans and lending rates is highly heterogeneous across

countries. About 40% of the FEV of house prices is accounted for by own in-

novations in Ireland and Spain, followed by Belgium and Italy. The identified

structural shock seems to play a minor role in explaining the variation of con-

sumption across countries, with the exception of Spain and Ireland, where house

prices innovations contribute slightly less than 15% to the forecast error variance

of consumption. For all the other countries, the contribution is less than 5% and

almost zero in Germany. In France, Ireland, and Spain, only 10% of the FEV of

inflation can be explained by a housing shock. On the other hand, housing de-

mand shocks play an important role in explaining loans FEV across all countries

under investigation (the average contribution is approximately 40%), confirming

the ‘financial accelerator’ hypothesis, according to which changes in the collateral

affect borrowing capacity (Bernanke et al. (1996) and Almeida et al. (2006)).
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4.5.3 Monetary Policy Shocks and the Role of House Prices

Regarding the role of house prices in the transmission of monetary policy, we

find that monetary policy shocks have a significant, strong and lasting impact

on house prices, corroborating the existence of a credit channel in the euro area

housing market.

Figure 4.5: Impulse response of house prices to a monetary policy shock. Cross-
country comparisons. The red lines delimit the 95 per cent credible interval. The
grey shaded area delimits the space between 10th and 90th percentiles. The blue
line is the median impulse response while the crossed blue line is the median
Mean Group response, both obtained using the MT approach.

Figure 4.5 depicts the impulse responses of real house price growth to a

monetary policy shock in terms of 25 basis points increase in the policy rate.

The responses are highly heterogeneous across the countries examined. A 25

basis points contractionary monetary policy shock significantly reduces real house

prices between 0.4% (in Germany) and 3% (in Spain), on average by 1.6%, with

the maximum impact generally occurring contemporaneously.17 Being aware of

such heterogeneity is crucial to address possible imbalances across countries and
17Comparisons across countries is further facilitated by the fact that all the structural shocks

have unit variances.
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to design policies to mitigate risks deriving from residential property markets.

The result for Spain seems to suggest that lower interest rates may have played

a role in stimulating the demand for housing by easing financing conditions. In

Ireland, the response of house prices to a monetary shock are in line with the

average responses.

Figure 4.6: Impulse response of real loans to a monetary policy shock, in terms of
a 25 basis points increase in the monetary policy rate. Cross-country comparisons.
The grey area delimits the space between 10th and 90th percentiles. The red lines
delimits the 95 per cent credible interval. The blue line is the median impulse
response while the crossed blue line is the median Mean Group response, both
obtained using the MT approach.

As shown in Figure 4.6, a contractionary monetary policy shock also causes

a significant decline of real loans to households, between 0.2% (Germany) and

0.8% (the Netherlands), on average by 0.6%, with the maximum impact occurring

contemporaneously. The heterogeneity across countries of the impact of the shock

on real loans does not appear to be related to the tenure of the mortgage rate

structure. The magnitude of the impact is also quite dispersed within countries

characterised by prevalence of variable rates – such as Italy, Spain and Ireland –

or fixed rates – such as France, Belgium, Germany and the Netherlands (ESRB
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(2015)).

Variance Decomposition

To quantify the importance of monetary policy shocks we compute the forecast

error variance decomposition. A monetary policy shock accounts on average for

around 25% of the FEV of real house price growth (Figure 4.7). The contribution

is above the average for Spain, followed by Italy and the Netherlands and is the

lowest in Germany.

Figure 4.7: Variance Decomposition. Proportion of 1, 3, 5, 10, and 20 quarters
ahead FEV of each variable accounted for by innovations in monetary rate. Cross-
country comparisons. Red line indicates the average contribution across countries.

In the latter country, only less than 10% of the FEV of house price growth

is accounted for by a monetary policy innovation. These results corroborate the

evidence that the housing market plays an important role in the monetary policy

transmission mechanism, and provide new evidence on the heterogeneous impact

of monetary policy on house prices fluctuations. Monetary policy shocks also

contribute on average around 30% of the variability in real loan growth, which is

less than the average contribution of housing demand shocks.
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4.5.4 Historical Decompositions

So far we have studied how the structural shocks of interest affect average move-

ments in the data, by means of forecast error variance decompositions and impulse

response functions. In this section, we use historical decompositions in order to

assess the cumulative effects of housing demand and monetary policy shocks on

the business cycle and their relative importance in explaining the observed fluc-

tuations in the endogenous variables of the VAR, at each point in time.

To compute the historical decompositions, we rewrite the VAR model de-

scribed in equation (4.1), in its moving average representation:

yt − µ =
∞∑
i=0

Φiut−i =
∞∑
s=0

Θswt−s (4.5)

where Θs = ΦsÃo, and wt−s = Ã−1
o ut−s are the orthogonal shocks. Ão is the con-

temporaneous structural matrix satisfying the imposed zero and sign restrictions.

As we cannot estimate all the ‘infinite’ shocks, wt−s, for s = 0, ..,∞, we truncate

the series. We denote such an approximation as

ŷt ≈
t−1∑
s=0

Θ̂sŵt−s

where ŷt = (ŷt − µ̂). The unknown values in the right-hand side are replaced by

their estimates. Each endogenous variable, ŷkt, for k = 1, ..,m can be written as

ŷkt =
m∑
j=1

ŷ
(j)
kt =

m∑
j=1

t−1∑
s=0

θ̂(k,j)
s ŵj,t−s

where ŷ(j)
kt is the cumulative effect of shock j to the kth variable of the VAR

process and θ̂(k,j)
s is the (k, j) element of Θ̂s.

As suggested in Kilian and Lütkepohl (2017), we demean both ŷt and yt to

remove any discrepancy among them. We discard the initial (transients) ob-
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servations (in particular, we remove the first 20 observations) so that the two

observations coincide with minimal approximation errors (which could arise from

the truncation of the infinite sum).

Following Kilian and Lütkepohl (2017), we construct counterfactuals as an

alternative way of assessing the cumulative effect of a structural shock to the

observed data ykt, for k = 1, ..,m . They are defined as

c
(j)
kt = ykt − ŷ(j)

kt (4.6)

where the counterfactual, c(j)
kt , represents the evolution of ykt in the absence of

the jth structural shock.

Figure 4.8: Historical counterfactuals for real (private) consumption growth. The
counterfactuals (black line) indicate the evolution of real consumption growth in
the absence of housing demand shocks. The difference between actual data (blue
line) and counterfactuals corresponds to the cumulative effects of housing shocks
to real consumption growth over time (dotted red line). If the red line lies above
zero, it means that the shocks positively contributed to the growth rates of real
consumption. The left y-axis measures quarterly changes (from the sample mean)
in real consumption growth with and without the cumulative effects of housing
shocks. The right y-axis reports quarterly changes (from their sample mean) in
the cumulative effects of housing demand shocks.
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Housing Demand Shocks and Business Cycles. Figure 4.8 illustrates the

evolution of (quarterly) real private consumption growth (ykt) in deviations from

the sample mean against its counterfactual (c(j)
kt ). The latter indicates how real

consumption growth would have evolved if all the realizations of housing demand

shocks had been equal to zero, while maintaining the remaining structural shocks

in the model. The difference between the two (ŷ(j)
kt ) represents the cumulative

effects of housing demand shocks on consumption up to a certain point in time.

It measures how growth rates of real consumption would have evolved if the

economy had been hit only by housing demand shocks, in the absence of all other

concurrent shocks. A line above zero reveals that the structural shock exerted

upward pressure on consumption.

The historical decompositions analysis suggests an important role of housing

demand shocks in driving consumption in Ireland and Spain, confirming previous

findings for the impulse response analysis. It is noteworthy that in both coun-

tries, in the absence of housing demand shocks, the growth rates of real private

consumption would have been lower than the actual rates between 2002 and 2007,

and larger between 2008 and 2013. In particular, in Ireland, the cumulative effect

of housing demand shocks on consumption is equal to 0.79% up to 2006 and equal

to -1.16% at the end of 2011. Similarly, in Spain, in the absence of other shocks,

if the growth rates of real consumption (in deviations from the sample mean) had

been driven exclusively by housing demand shocks, they would have been largest

around 1995 and 2004 (0.5%), and lowest in 2012 (-0.66%).18 The cumulative

effect of housing demand shocks is rather muted in the remaining countries.

18Excluding monetary policy from the VAR, these differences would have been even higher.
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Figure 4.9: Historical counterfactuals for real loans growth. The counterfactuals
(black line) indicate the evolution of real loans growth in the absence of housing
demand shocks. The difference between actual data (blue line) and counterfactu-
als corresponds to the cumulative effects of housing shocks to real loans growth
over time (dotted red line). If the red line lies above zero, it means that the
shocks positively contributed to the growth rates of real loans. The left y-axis
measures quarterly changes (from the sample mean) in real loans growth with
and without the cumulative effects of housing demand shocks. The right y-axis
reports quarterly changes (from the sample mean) in the cumulative effects of
housing shocks.

As shown in Figure 4.9, the historical decomposition analysis corroborates the

”financial accelerator” hypothesis according to which increases in the collateral

improve households borrowing capacity. The cumulative effects of housing de-

mand shocks to real loans growth are sizeable across most of the countries under

investigation. As for consumption, the contribution of housing shocks to real

loans growth was larger in Spain and especially in Ireland. In both countries,

exogenous housing price increases significantly contributed to the raise of real

loans growth during the specific housing boom episode observed in the sample.

The subsequent bursting of the housing bubble and the consequent decline in

house prices drastically reduced the availability of loans, which in turn may also
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have had negative consequences on real consumption growth.

Figure 4.10: Historical counterfactuals for real house prices growth. The coun-
terfactuals (black line) indicate the evolution of real house prices growth in the
absence of monetary policy shocks. The difference between actual data (blue
line) and counterfactuals corresponds to the cumulative effects of monetary policy
shocks to real house prices growth over time (dotted red line). If the red line lies
above zero, it means that the shocks positively contributed to the growth rates
of real house prices. The left y-axis measures quarterly changes (from the sample
mean) in real house prices growth with and without the cumulative effects of
monetary shocks. The right y-axis reports quarterly changes (from the sample
mean) in the cumulative effects of monetary policy shocks.

Monetary Policy Shocks and House Price Dynamics. Figure 4.10 plots

the historical evolution of (quarterly) real house prices growth (in terms of devi-

ations from the sample mean), the dynamics of the counterfactual, as well as the

difference between the two (i.e. the hypothetical movements of real house prices

growth if all structural shocks but monetary policy shocks had been turned off).

The cumulative contribution of monetary policy shocks to house price growth

differ widely across countries: from a peak of 0.4% in Germany to a maximum

cumulative effect of above 2% in Ireland, followed by the Netherlands and Spain.

The maximum contribution is also relevant in Italy (slightly above 1%), while
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in Belgium and France it lies in a middle ground. It is worthy of note that a

substantial increase in house prices would have occurred in Ireland and Spain

between 2001 and 2006 even in the absence of all other structural shocks but

monetary policy. Finally, we note that the cumulative contributions of monetary

policy shocks vary not only in size but also they do not appear to be correlated

over time across countries.

4.6 Conclusions

In this chapter, we use a structural Bayesian VAR model to provide a systematic

structural analysis of the effects of housing demand shocks on the macro-economy

across selected euro area countries, and the role of house prices in the monetary

transmission mechanism. A novel identification strategy which combines zero

and sign restrictions is proposed. Among other things, by doing so, we are able

to distinguish between a house price and an aggregate demand shock, which

would be difficult otherwise. To overcome the over-parameterization problem, the

priors are selected using a Stochastic Search Variables Selection method, which

allows for shrinkage of the VAR coefficients while selecting restrictions that are

supported by the data itself. This in turn makes adequate finite sample inference

and exploits in full the intrinsic cross-country heterogeneity typical of the housing

market.

Furthermore, given the lack in the literature of comparative studies that try

to quantify the degree of heterogeneity of the impact of house prices and their

role in the transmission of monetary policy across euro zone members, we exploit

the cross-sectional dimension of our data to quantify and compare the different

dynamics of house prices, their heterogeneous effect on the macro-economy and

the diverse impact of monetary policy in driving house price cycles across euro-

zone member states. Quantifying such diverse effects is important from a policy

perspective, in particular when addressing real and financial imbalances at the
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country level.

The structural analysis confirms that the effects of housing demand and mon-

etary policy shocks differ widely across the countries under investigation. We

document the existence of a housing ‘wealth effect’ in Ireland and Spain, where

a one percent increase in real house prices is associated with a 0.15% rise in real

private consumption. The fact that both countries experienced a housing bubble

corroborates the view that house price booms play an important role in boosting

confidence, which in turn stimulate consumption. The historical decomposition

analysis supports these findings. The cumulative effects of housing demand shocks

on consumption are larger in Ireland and Spain. In both countries, housing de-

mand shocks significantly contributed to the surge of consumption growth during

the specific housing boom episode observed in the sample and to the subsequent

decline during the recession started around 2007.

The impact of housing demand shocks on real loans to household exhibits a

less heterogeneous and a fairly similar pattern across countries in terms of sign,

size and statistical significance. On average, a housing demand shock, in terms

of a 1% increase in house prices, causes a 0.35% increase in real loans. Housing

demand shocks play an important role in explaining loans forecast error variance

across all countries under investigation. This clearly suggests that changes in the

value of collateral affect borrowing capacity. The historical decomposition ana-

lysis provides further evidence in support of the ‘financial accelerator’ theory. We

then show that monetary policy has a strong and lasting impact on house prices,

corroborating the existence of a credit channel in the euro area housing market

and an important role of house prices in the monetary transmission mechanism.

The impact is highly heterogeneous, varying between 0.4% (in Germany) and 3%

(in Spain). A monetary policy shock accounts on average for around 25 to 30% of

the forecast error variance of real house price growth. The historical decompos-

ition analysis documents a highly heterogenous contribution of monetary policy

shocks to house price dynamics.
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4.7 Technical Appendix

4.7.1 The VAR with SSVS Prior

Prior on the VAR coefficients. Let α = vec(A) be the Km × 1 vector of

regression coefficients. The SSVS assumes that the prior distribution of αj (the

jth element of α) is a mixture of two Normal distributions:

αj | γj ∼ (1− γj) ·N
(
0, τ 2

0j

)
+ γj ·N

(
0, τ 2

1j

)
To select τ 2

0i and τ 2
1i , we follow George, Sun and Ni (2008). They propose a

“default semi-automatic approach” which involves setting τ0j = c0σ̂αj
and τ1j =

c1σ̂αj
, where c0 � c1, i.e. c0 = 0.1 and c1 = 10; σ̂αj

is the standard error

associated with the unconstrained least squares estimate of αj. The dummy γj

is unknown and it has to be estimated in a data-based fashion. In particular, it

is assumed that the γj’s are independent Bernoulli random variables so that

P (γj = 1) = pj, P (γj = 0) = 1− pj, j = 1, .., Km.

As noted by George, Sun and Ni (2008), for each j, pj reflects the prior belief

that αj should be unrestricted. In the absence of such prior information, one

could set pj ≡ .5 and let the data decide whether to shrink or not the coefficient

to zero, as we do in this chapter.

Prior on the covariance parameters. The covariance matrix can be decom-

posed as Σ−1
u = ΨΨ ′, where Ψ is upper triangular. Let ψij be the (i, j)th entry of

Ψ . Each off-diagonal element has the prior distribution

ψij | ωij ∼ (1− ωij) ·N
(
0, κ2

0ij

)
+ ωij ·N

(
0, κ2

1ij

)
We arbitrarily set κ0ij = 0.1, and κ1ij = 6. Alternatively, κ0ij and κ1ij can be
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chosen using similar consideration for setting τ0j and τ1j.

We assume that the ωij are independent Bernoulli random variables such that

P (ωij = 1) = qij, P (ωij = 0) = 1− qij

for i = 1, ...,m and j = 2, ...,m− 1 and where qij ∈ (0, 1).

Given the absence of prior information on whether ωij should be unrestricted,

we follow George, Sun and Ni (2008) suggestion, by setting qij = 0.5.

For the diagonal elements, it is assumed prior independence with ω2
ii ∼ gamma (ai, bi).

The hyperparameters (ai, bi) are set equal to (0.01, 0.01) to render this prior non-

influential.

Posterior Distribution. Posterior computation is carried out using the Gibbs

sampling algorithm described in George, Sun and Ni (2008).

Following the latter, we simulate a Markov chain of 20.000 cycles and discard

the initial 10.000 burn-in replications. In their simulated numerical examples,

the authors note that simulation results using a larger number of cycles (50.000)

change little, suggesting that the Markov chains converge rather quickly.

Estimation of the reduced form VAR requires approximately one minute (for

each country).

4.8 Data

4.8.1 Data Sources

All data cover the period 1980Q1-2014Q4, unless otherwise specified. All variables

were transformed in annualised quarter on quarter changes except for interest

rates which are in levels. When seasonally adjusted data are not directly available,

we make the necessary adjustments, using the X-12 Census method. Nominal

house prices and nominal loans were deflated using CPI indices.
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GDP, Private Consumption and Consumer Price Indices. Sources: OECD

– Main Economic indicators. Data on private consumption for Ireland starts

on 1990Q1. Data on private consumption for Germany are obtained from the

European Central Bank’s Multi Country Model Dataset.

House Prices. For Belgium and Italy, we use ‘Residential property prices, New

and existing dwellings; Residential property in good & poor condition; Whole

country’. For France, Ireland, the Netherlands, and Spain, we use ‘Residential

property prices, New dwellings; Residential property in good & poor condition;

Whole country’. For Germany, an annual series covering new dwellings (apart-

ments and houses) in 50 West German cities were used given its long time span

(starting in 1975) and due to the absence of structural breaks related to the

German reunification compared to other available series (the annual series was

linearly interpolated at a quarterly frequency). House price data for Spain starts

in 1987Q1.

Sources: ECB and national sources, and BIS (Germany).

Loans. We use data on “Credit to Households and NPISHs from All sectors”.

Source: BIS http://www.bis.org/statistics/totcredit.htm

Lending Rates. The dataset consists of “Lending to households for house pur-

chase excluding revolving loans and overdrafts, convenience and extended credit

card debt”.

Sources: ECB - MFI Interest Rate Statistics.

Monetary Policy Rates. For the pre-EMU period we use national official

discount rates from BISM Dataset: “BIS Macro-economic series”. From 1999, we

use the ECB Marginal Lending Facility.
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4.8.2 Supplementary Charts

Figure 4.11: Dynamics across the Euro Area



Chapter 5

Conclusion

This thesis combines some theoretical contributions to the literature on large

heterogeneous panel data models with some applications in international mac-

roeconomics.

The first part considers the problem of statistical inference in random coeffi-

cient panel data models when both the number of units and the number of time

periods are quite large.

In Chapter 2, we examine, by Monte Carlo methods, the causes and effects

of negative definite covariance matrices in Swamy (1970) type random coefficient

models. First, we show that the degree of coefficient heterogeneity relative to the

(conditional) variability of the observed data plays a crucial role. The sample

size and the finite sample performances (in terms of bias and root mean square

errors) of the individual ordinary least squares and the Mean Group estimators

may also have an impact on the probability of observing a negative definite estim-

ator of the random coefficient covariance matrix. We then investigate the finite

sample consequences for hypothesis tests. Whenever the unbiased estimator of

the random coefficient covariance is negative definite, Swamy suggests eliminat-

ing a term to obtain an estimator which is nonnegative definite and is consistent

when T tends to infinity. However, we show that the latter can be severely biased

in finite samples. The resulting estimated standard errors are very often upwards
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biased, and in many cases, this bias can be substantial. This in turn leads to size

distorted hypothesis tests, with exact sizes well below the nominal levels.

A solution is proposed in the third Chapter. We show that the maximum

likelihood estimator of the random coefficient covariance matrix, obtained by ap-

plying the EM algorithm, satisfies the law of total variance without running into

the problem of negative definiteness. This in turn leads to more accurate es-

timated standard errors and hypothesis tests. To extend the applicability of our

method, we consider a general framework which incorporates various panel data

models as special case. The use of the EM algorithm has other benefits. It allows

us to estimate both the average effects and the unit-specific components. It also

gives a probability distribution over the random effects. Monte Carlo simulations

reveal that the (restricted) maximum likelihood estimators, obtained by applying

the EM algorithm, have relatively good finite sample properties, in terms of bias

and root mean square errors. In evaluating the merits of our approach, we also

provide an overview of the sampling and Bayesian methods commonly used to

estimate heterogeneous panel data. Our method represents a valid alternative to

Bayesian estimation in those cases in which the researcher wishes to make infer-

ence on the random effects distribution while having little knowledge on what a

sensible prior might be. At the same time, it helps overcome one drawback of

the Bayesian inference: when sample sizes are small (relative to the number of

parameters being estimated), the prior choice will have a heavy weight on the

posterior, which will consequently be far from being data dominated. To demon-

strate the usefulness of the EM approach in empirical research, we apply our

method to the analysis of the determinants of sovereign credit risk. In particular,

we investigate what causes the sensitivity of sovereign spreads to debt to differ

significantly across countries by modelling the latter as a function of macroeco-

nomic fundamentals and a set of explanatory variables which reflect the history

of government debt and economic crises of various forms. We argue that history

of repayment in financial market is an important explanatory factor of the cross-
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country differences in the magnitude of sovereign spreads’ reaction to changes in

government debt.

In Chapter 4, we use a structural Bayesian vector autoregressive model to

provide a systematic structural analysis of the effects of housing demand shocks

on the macro-economy and the role of house prices in the monetary transmission

mechanism, across selected euro area countries. A novel identification strategy

which combines zero and sign restrictions is proposed. We focus on a country by

country analysis, given the idiosyncratic characteristics of the housing market in

the euro area, which suggest that pooling or aggregating may lead to biased infer-

ence and misleading policy recommendations. At the same time, given the lack in

the literature of comparative studies that try to quantify the degree of heterogen-

eity of the impact of house prices and their role in the transmission of monetary

policy across euro area countries, we exploit the cross-sectional dimension of our

data to quantify and compare the different dynamics of house prices, their het-

erogeneous effects on the macro-economy and the diverse impact of monetary

policy in driving house price cycles across Eurozone member states. Quantifying

such diverse effects is important from a policy perspective, in particular when

addressing real and financial imbalances at the country level.
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