
ORBIT - Online Repository of Birkbeck Institutional Theses

Enabling Open Access to Birkbeck’s Research Degree output

A series of case studies to enhance the social utility
of RSS

https://eprints.bbk.ac.uk/id/eprint/40276/

Version: Full Version

Citation: O’Shea, Martin (2016) A series of case studies to enhance the
social utility of RSS. [Thesis] (Unpublished)

© 2020 The Author(s)

All material available through ORBIT is protected by intellectual property law, including copy-
right law.
Any use made of the contents should comply with the relevant law.

Deposit Guide
Contact: email

https://eprints.bbk.ac.uk/id/eprint/40276/
https://eprints.bbk.ac.uk/theses.html
mailto:lib-eprints@bbk.ac.uk

A series of case studies to enhance the social

utility of RSS

Martin O’Shea

December 2016

A Thesis Submitted to

Birkbeck, University of London

in Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Department of Computer Science & Information Systems

Birkbeck

University of London

Declaration

This thesis is the result of my own work, except where explicitly acknowledged in the

text.

Martin O’Shea

December 22, 2016

Abstract

RSS (really simple syndication, rich site summary or RDF site summary) is a dialect of

XML that provides a method of syndicating on-line content, where postings consist of

frequently updated news items, blog entries and multimedia. RSS feeds, produced by

organisations or individuals, are often aggregated, and delivered to users for consumption

via readers. The semi-structured format of RSS also allows the delivery/exchange of

machine-readable content between different platforms and systems.

Articles on web pages frequently include icons that represent social media services

which facilitate social data. Amongst these, RSS feeds deliver data which is typically

presented in the journalistic style of headline, story and snapshot(s). Consequently, ap-

plications and academic research have employed RSS on this basis. Therefore, within the

context of social media, the question arises: can the social function, i.e. utility, of RSS be

enhanced by producing from it data which is actionable and effective?

This thesis is based upon the hypothesis that the fluctuations in the keyword frequen-

cies present in RSS can be mined to produce actionable and effective data, to enhance

the technology’s social utility. To this end, we present a series of laboratory-based case

studies which demonstrate two novel and logically consistent RSS-mining paradigms. Our

first paradigm allows users to define mining rules to mine data from feeds. The second

paradigm employs a semi-automated classification of feeds and correlates this with senti-

ment. We visualise the outputs produced by the case studies for these paradigms, where

they can benefit users in real-world scenarios, varying from statistics and trend analysis

to mining financial and sporting data.

The contributions of this thesis to web engineering and text mining are the demon-

stration of the proof of concept of our paradigms, through the integration of an array of

open-source, third-party products into a coherent and innovative, alpha-version prototype

software implemented in a Java JSP/servlet-based web application architecture.

3

Publications

The following publications by the author are related to this thesis:

• M. O’Shea and M. Levene. Mining and visualising information from RSS feeds: a

case study, International Journal of Web Information Systems, 7(2):105–129, 2011.

• M. O’Shea and M. Levene. visualRSS: a Platform to Mine and Visualise Social

Data from RSS Feeds, In Proceedings of the 12th International Conference on Web

Engineering (ICWE 2012) 4th International Workshop on Lightweight Integration

on the Web (Composable Web), pages 121–133, held in Berlin, Germany, Jul 2012.

4

For Father.

5

Acknowledgements

Supervisors

A special thank you must be extended to Professor M. Levene, the author’s long-suffering

principal supervisor for encouragement, motivation and enduring what must have seemed

like an endless series of emails, delays and doubts.

Thanks are also extended to Professor G. Loizou for all the guidance concerning the

structure, content and proof reading of this thesis, and for tolerating the author’s frequent

changing of meeting arrangements.

For insight, support and playing the role of devil’s advocate, the author is also grateful

to Professor D. Zhang.

Students

To former Masters students M. Danani, D. Harriott, Y. R. Shema and M. Wilce, thank

you for your contributions.

Family and friends

The author also thanks family and friends for support during an arduous and protracted

process.

And finally. . .

“We must use the Box! because the Box! must be used.

The Box! must be used because we must use the Box!.”

The Kōan of Clog?, quoted from the Book of Morgan Entities¡

Let us make sure that history never forgets: Morgan likes potatoes!

6

Contents

Abstract 3

Publications 4

Acknowledgements 6

List of Abbreviations 17

List of Algorithms, Code and Pseudocode 20

List of Figures 22

List of Tables 27

I Introduction and opening comments 31

1 Introduction 32

1.1 The phenomenon of feeds and RSS . 32

1.2 Motivation and application . 33

1.3 Hypothesis, objectives and contributions . 34

1.4 RSS-mining paradigms . 35

1.4.1 Definition . 35

1.4.2 Correspondence . 36

1.5 Case studies . 37

1.6 Software . 37

1.7 Keywords . 38

1.8 The relationship of RSS-mining paradigms, case studies and software 38

1.9 Thesis structure . 38

7

1.10 Vocabulary . 41

1.11 Conventions . 43

2 Background 45

2.1 Foreword . 45

2.2 RSS . 46

2.2.1 A definition . 46

2.2.2 History and versions . 46

2.2.3 Format . 48

2.2.4 RSS use and utility . 51

2.3 Social media . 53

2.3.1 Defining social media . 53

2.3.2 Applications . 54

2.3.3 Utility and use . 56

2.4 Data mining . 57

2.5 Classification . 59

2.6 Text mining . 60

2.7 Sentiment analysis . 61

2.8 The visual representation of data . 64

2.8.1 Principles . 64

2.8.2 Text streams . 66

2.8.3 Time-series plotting . 69

2.8.4 Software . 70

2.9 Actionable and effective data: a definition 71

2.10 Afterword . 72

3 A review of RSS 73

3.1 Foreword . 73

3.2 Applications . 73

3.3 Academic research . 77

3.3.1 The structure of this review . 77

3.3.2 Aggregation and classification . 77

3.3.3 Sentiment analysis . 82

3.4 Other RSS-related work . 87

3.5 Discussion: the format of RSS . 90

3.5.1 Versions . 91

8

3.5.2 Characteristics of data . 91

3.5.3 Extensions . 92

3.5.4 Push or pull? . 93

3.6 Afterword . 93

4 Web engineering and software architecture 94

4.1 Foreword . 94

4.2 Web engineering . 94

4.3 Web applications . 98

4.3.1 What is a web application? . 98

4.3.2 Types of web applications . 98

4.4 Web application architecture . 99

4.5 The architecture of myDataSharer and visualRSS 103

4.5.1 Software overview . 103

4.5.2 Choice of architecture . 103

4.5.3 Operating system . 104

4.5.4 Programming model . 104

4.5.5 Managing requests and responses . 104

4.5.6 Application and data layer correspondence 105

4.5.7 Data model . 106

4.6 Keyword conventions and characteristics . 107

4.7 Paradigm one: software fundamentals . 108

4.7.1 Common software components . 108

4.7.2 Mining rules . 110

4.7.3 Polling . 111

4.7.4 Scheduling . 111

4.7.5 Mining data from RSS . 112

4.7.6 Persisting RSS-mined data to database storage 113

4.7.7 Visualising data . 113

4.8 Paradigm two: software miscellany . 115

4.8.1 Extending visualRSS . 115

4.8.2 Batch processing . 115

4.8.3 Class hierarchy . 117

4.8.4 Interface design . 117

4.9 Development tools . 120

9

4.10 Afterword . 120

II Paradigm 1: Defining mining rules upon RSS to determine and

visualise trends from textual and numeric data 121

5 Case study one: The myDataSharer software 122

5.1 Foreword . 122

5.2 Case study one . 123

5.3 The myDataSharer platform . 123

5.4 Defining mining rules . 124

5.4.1 Mining types . 124

5.4.2 The relationship of mining rules to columns of datasets 125

5.4.3 Filters . 129

5.5 Polling and mining . 133

5.6 Database persistence . 133

5.7 The diary . 135

5.8 Visualising data . 135

5.9 Afterword . 135

6 Case study one: Mining and visualising textual and numeric data from

RSS 136

6.1 Foreword . 136

6.2 The assignment . 136

6.2.1 Synopsis . 136

6.2.2 Research questions . 137

6.2.3 The assignment . 137

6.2.4 Setting-up . 138

6.3 Results . 140

6.3.1 Order of presentation . 140

6.3.2 Categorising our results . 141

6.3.3 Is it possible to define mining rules to RSS to determine and visualise

trends? . 141

6.3.4 Patterns of use . 146

6.3.5 Discussion: explaining the unreported results 148

6.3.6 How efficient was the process to define mining rules upon RSS? . . . 151

10

6.3.7 Timing visualisations . 154

6.3.8 Can the diary be used to model user behaviour? 156

6.4 A posteriori appraisal of case study one . 157

6.4.1 Comparing reported results and research questions 157

6.4.2 Refining mining rules . 158

6.4.3 The question of a pilot study . 158

6.4.4 RSS feeds and student corpus demographics 158

6.4.5 Loss of data . 159

6.4.6 Publication . 159

6.5 Afterword . 159

7 Case study two: The visualRSS application 160

7.1 Foreword . 160

7.2 Case study two . 160

7.3 The concept of visualRSS . 162

7.4 Mining rules . 162

7.4.1 The definition process . 162

7.4.2 The role of the word-cloud . 165

7.4.3 Keywords . 166

7.5 The anatomy of a mining type . 167

7.6 Polling RSS feeds and mining keywords . 168

7.7 Calculating keyword frequencies from RSS-mined data 170

7.8 Persisting RSS to database storage . 172

7.9 Visualising data mined from RSS . 172

7.10 Afterword . 174

8 Case study two: Mining and visualising data trends in RSS feeds 175

8.1 Foreword . 175

8.2 Rationale and objectives . 175

8.3 The assignment . 176

8.3.1 Description . 176

8.3.2 RSS Feeds and categories . 176

8.4 Results . 178

8.4.1 Organisation . 178

8.4.2 Mining rules . 179

8.4.3 Visualisations . 181

11

8.5 Anatomy of a student submission: a demonstration of mining rules in visu-

alRSS . 183

8.6 A posteriori appraisal of case study two . 186

8.6.1 Reception . 186

8.6.2 Students and RSS feeds . 186

8.6.3 Applications . 187

8.6.4 Publication . 187

8.6.5 Extensions to visualRSS . 188

8.7 Afterword . 188

9 Paradigm one and related work 189

9.1 Foreword . 189

9.2 Paradigm one: a brief summary . 189

9.3 Related work . 191

9.3.1 AtomsMasher: Personalised Context-Sensitive Automation for the

Web by Van Kleek et al. 191

9.3.2 RoSeS : A Continuous Query Processor for Large-scale RSS Filter-

ing and Aggregation by Creus et al. 193

9.3.3 RSS query algebra: Towards a better news management by Geta-

hun and Chbeir . 194

9.4 Review . 196

9.4.1 Application context and use of RSS 196

9.4.2 Syntax . 198

9.5 Afterword . 198

III Paradigm 2: Classifying RSS according to the fluctuations in the

frequencies of popular keywords and correlating this with sentiment 199

10 Case study three: Category-based classification of RSS feeds 200

10.1 Foreword . 200

10.2 The rationale for the keyword-based classification of RSS 201

10.3 Setting-up . 201

10.3.1 Software . 201

10.3.2 RSS feeds and categories . 202

10.4 Training and testing data . 203

12

10.4.1 Pre-processing . 203

10.4.2 Tranches and parameter permutations 204

10.4.3 Segmentation . 205

10.4.4 RSS feed elements . 207

10.4.5 Algorithm . 208

10.4.6 Keyword variations . 212

10.4.7 Database persistence . 212

10.5 Product and classifier selection . 214

10.5.1 Product choice . 214

10.5.2 Classifier choice . 214

10.5.3 The decision tree (DT) . 215

10.5.4 Multinomial näıve Bayes (MNB) . 216

10.5.5 The support vector machine (SVM) 217

10.6 Classification . 219

10.6.1 Implementation . 219

10.6.2 Data formats . 221

10.6.3 Results . 223

10.7 A posteriori appraisal of the classification component of case study three . . 226

10.7.1 The format of RSS . 226

10.7.2 Keyword miscellany . 227

10.7.3 Training and testing data segmentation 229

10.8 Afterword . 230

11 Case study three: Correlating keyword frequencies with sentiment in

RSS feeds 231

11.1 Foreword . 231

11.2 Objectives . 232

11.3 Sentiment analysis and sentiment analyser 233

11.4 Apparatus . 234

11.4.1 RSS feed and category corpus . 234

11.4.2 Tranche organisation . 234

11.4.3 RSS feed categories . 235

11.4.4 RSS feed elements . 235

11.4.5 Keywords and named entity recognition (NER) 235

11.5 Algorithm . 236

13

11.5.1 Order of presentation . 236

11.5.2 Generating popular keywords . 236

11.5.3 Calculating keyword frequencies . 236

11.6 Third-party tools . 239

11.6.1 Customising Lucene . 239

11.6.2 Using SentiStrength . 239

11.7 Post-algorithm data processing . 244

11.7.1 Sentiment analysis 71 . 244

11.7.2 Raw keyword frequency/sentiment data 244

11.7.3 Aggregation . 245

11.7.4 Candidate keyword selection . 245

11.8 Results . 247

11.8.1 Perspective . 247

11.8.2 Expectations . 248

11.8.3 Plot criteria . 248

11.8.4 Keyword frequency/sentiment correlation plots 250

11.9 A posteriori appraisal of the sentiment analysis component of case study

three . 254

11.9.1 Patterns of correlation . 254

11.9.2 Keyword temporality . 254

11.9.3 Keyword relatedness . 255

11.9.4 Other issues . 255

11.10Afterword . 256

12 Paradigm two and related work 257

12.1 Foreword . 257

12.2 Paradigm two . 257

12.2.1 Summary . 257

12.2.2 Constraints . 258

12.3 Classification . 258

12.3.1 Paradigm 2 . 258

12.3.2 Review . 258

12.4 Sentiment analysis . 259

12.4.1 Paradigm 2 . 259

12.5 Related work . 260

14

12.5.1 Are Raw RSS Feeds Suitable for Broad Issue Scanning? A Science

Concern Case Study by Thelwall et al. 260

12.5.2 Visual Sentiment Analysis of RSS News Feeds Featuring the US

Presidential Election in 2008 by Wanner et al. 261

12.5.3 Multiple coordinated views for searching and navigating Web content

repositories by Hubmann-Haidvogel et al. 263

12.5.4 Narratives: A Visualization to Track Narrative Events as they De-

velop by Fisher et al. 265

12.6 Summary . 267

12.7 Afterword . 269

IV Conclusion and closing comments 270

13 Conclusion 271

13.1 Foreword . 271

13.2 Summary of research basis . 271

13.3 Definition . 272

13.4 Production . 273

13.5 Demonstration . 274

13.5.1 The relationship of RSS-mining paradigms, case studies and software 274

13.5.2 Paradigm one . 274

13.5.3 Paradigm two . 277

13.5.4 Application . 279

13.6 Reflections . 279

13.6.1 The PhD programme . 279

13.6.2 Advice for a potential PhD student 283

13.7 Directions for future work . 284

13.7.1 Research . 284

13.7.2 Facilities . 285

13.8 A beta-version of visualRSS . 286

V Appendices 287

A Case study reference materials 288

A.1 Case study one . 288

15

A.1.1 RSS feed corpus . 288

A.1.2 Allocation of RSS feeds to students 289

A.2 Case study two . 291

A.2.1 Original RSS feed and category corpus 291

A.3 Case study three . 293

A.3.1 Withdrawals from RSS feed and category corpus 293

A.3.2 Re-organised RSS feed and category corpus 294

A.3.3 Corpus of candidate keywords (extract) 297

A.3.4 Additional keyword frequency/sentiment correlation plots 298

B Glossaries 306

B.1 Glossary of products . 306

B.2 Glossary of terminology . 309

C The Android OS client app for visualRSS 332

C.1 Outline . 332

C.2 Defining mining rules . 333

C.3 Polling and data storage . 333

C.4 Visualising RSS-mined data . 334

D Miscellaneous 335

D.1 Additional resources . 335

D.2 Source code . 337

D.2.1 myDataSharer and visualRSS . 337

D.2.2 Principal open-source, third-party products 337

Bibliography 338

16

List of Abbreviations

1:1 One-to-one.

1:M One-to-many.

ACID Atomicity, consistency, isolation,

durability.

AJAX Asynchronous JavaScript and XML.

ANSI American National Standards Insti-

tute.

AOL America Online.

AOP Aspect–oriented programming.

API Application programming interface.

ARFF Attribute relationship file format.

ARPA Advanced Research Projects Agen-

cy.

BARF Barf Archives RSS Feeds.

BBS Bulletin board system.

BFE Business, finance and economics.

BNF Backus–Naur form.

BoW Bag-of-words.

BST British summer time.

CF–IDF Concept frequency - inverse doc-

ument frequency.

CRESDUP Content Recommendation

System based on Private Dynam-

ic User Profile.

CRUD Create, read, update and delete.

CSS Cascading style sheet.

DAO Database access object.

DBCP Database connection pooling.

DFD Data flow diagram.

DMOZ Directory Mozilla.

DOM Document object model.

DT Decision tree.

EA Entertainment and arts.

EBNF Extended Backus-Naur form.

EL Expression language.

EMM Europe Media Monitor.

ERDM Entity relationship diagram.

ETL Extract, transform and load.

EUA End user automation.

FCL Fashion, celebrity and lifestyle.

FICUS Filtering and clustering non-

redundant RSS news articles.

FK Foreign key.

FN False negative.

FORTRAN Formula translating system.

FOSS Free and open software.

FP False positive.

GMT Greenwich mean time.

GNSS Global navigation satellite system.

GPS Global positioning system.

17

HTML Hypertext markup language.

HTTP Hypertext transfer protocol.

HTTPS Secure HTTP.

IBM International Business Machines.

IDE Integrated development environment.

IETF Internet Engineering Task Force.

IG Information gain.

IM Instant messaging.

IR Information retrieval.

ISO International Organization for Stan-

dardisation.

IT Information technology.

IWT Intelligent Web Teacher.

JDBC Java database connectivity.

JEE Java Enterprise Edition.

JSON JavaScript object notation.

JSP JavaServer page.

JSTL Java standard tag library.

KDD Knowledge discovery in databases.

KDT Knowledge discovery in text.

KNN k -nearest neighbour.

M:N Many-to-many.

MCC Matthew’s correlation coefficient.

MI Mutual information.

MNB Multinomial näıve Bayes.

MOOC Massive open on-line course.

MTT Multiple Topic Tracking.

MVC Model-view-controller.

MWCC Media Watch on Climate Change.

myDS myDataSharer.

NATO North Atlantic Treaty Organisa-

tion.

NB Näıve Bayes.

NCA News and current affairs.

NDS News Directory System.

NER Named entity recognition.

NISO National Information Standards Or-

ganization.

NLP Natural language processing.

NoSQL No SQL, not only SQL or not re-

lational.

OED Oxford English Dictionary.

Ofcom Office of Communications.

OM Occurrence mining.

OMG Object Management Group.

OOP Object–oriented programming.

ORM Object relational modelling.

OS Operating system.

PK Primary key.

POC Proof of concept.

POJO Plain old Java object.

POS Part-of-speech.

PRC Precision recall curve.

QBE Query-by-Example.

RDBMS Relational database management

system.

RDF Resource description framework.

REST Representational state transfer.

RFC Request for comment.

ROC Receiver operating characteristic.

RoSeS Really Open Simple and Efficient

Syndication.

RSS Really simple syndication, rich site

summary or RDF site summary.

RSSAB RSS Advisory Board.

SD Standard deviation.

18

SEO Search engine optimisation.

SInfoNS Secure Information Notifying Sys-

tem with RSS Technology for Mo-

bile Users.

SMS Short message service.

SNT Science, nature and technology.

SOAP Simple object access protocol.

SQL Structured query language.

SSADM Structured systems analysis and

design methodology.

SVG Scalable vector graphic.

SVM Support vector machine.

TCP/IP Transmission control proto-

col/internet protocol.

TF-ICF Term frequency - inverse corpus

frequency.

TF-IDF Term frequency - inverse docu-

ment frequency.

TN True negative.

TP True positive.

uBioRSS Universal Biological Indexer and

Organiser RSS.

UI User interface.

UML Unified modelling language.

UNIX Uniplexed information and comput-

ing service.

URI Uniform resource identifier.

URL Uniform resource locator.

URN Uniform resource name.

VISA Visual Sentiment Analysis System.

VLE Virtual learning environment.

VM Value mining.

VML Vector mark-up language.

vRSS visualRSS.

VSM Vector space model.

W3C World Wide Web Consortium.

WEKA Waikato Environment for Knowl-

edge Analysis.

WNSS Web News Search System.

WSDL Web service definition language.

WWW World wide web.

WYSIWYG What you see is what you get .

XML Extensible mark-up language.

19

List of Algorithms, Code and

Pseudocode

2.1 XML elements and attributes representing two late 20th century novels. . . 48

2.2 Principal elements of an RSS feed’s <channel> (edited for clarity). 49

2.3 A typical populated RSS feed <item> element (edited for clarity). 51

2.4 The RSS feed <item> element of the content displayed in Figure 2.3 (edi-

ted for clarity). 53

4.1 visualRSS’s Java code for hourly polling using Quartz Scheduler: cf. all

case studies. 112

4.2 Java code to allow Rome to connect to a web site and retrieve the hosted

RSS feed: cf. case studies one and two. 112

4.3 Use of Rome objects to populate a Java String object: cf. case studies

one and two. 113

5.1 Column-level occurrence mining rule filters (edited for clarity): cf. case

study one. 131

5.2 Edited column-level XML filters for value mining: cf. case study one. 132

5.3 Edited XML filters for myDataSharer’s dataset 264: cf. case study one. . . 134

5.4 Partial SQL of database table for dataset 264 in myDataSharer: cf. case

study one. 134

7.1 Pseudocode of visualRSS’s polling algorithm: cf. case study two. 169

7.2 visualRSS’s Text Stemmer Indexer class code calling Lucene: cf. case

study two. 171

7.3 Example of templated SQL in visualRSS to dynamically create a dedica-

ted database table for RSS feed 159: cf. case study two. 172

10.1 Mock RSS <item> to demonstrate the use of combinations of <title>

and <description> elements: cf. case study three. 207

20

10.2 Pseudocode of the first stage of the algorithm to generate popular keywords

for a pair of training/testing data: cf. case study three. 210

10.3 Pseudocode of the second stage of the algorithm to calculate keyword fre-

quencies for a pair of training/testing data: cf. case study three. 211

10.4 visualRSS’s Text Stemmer Indexer class extended for classification: cf.

case study three. 213

10.5 visualRSS code implementing Weka for a sub-classification, i.e. iteration,

of a parent classification: cf. case study three. 220

11.1 Pseudocode of the second stage of the sentiment analysis algorithm: cf.

case study three. 238

11.2 Use of SentiStrength in visualRSS: cf. case study three. 243

21

List of Figures

1.1 The relationship of our RSS-mining paradigms, case studies and software. . 38

2.1 The RSS radio wave icon. 46

2.2 Current RSS usage (reproduced from BuiltWith [55]). 52

2.3 The journalistic presentation style of headline, story and snapshot(s): RSS

feed in browser (left), and in a mobile device-based aggregator/reader (right). 52

2.4 The social media icon strip from the home-page of IT development web

site DZone at https://dzone.com/ in late 2015. 54

2.5 UK use of social media in 2013 - 2014 (reproduced from Ofcom [283]). . . . 57

2.6 The knowledge discovery in databases process (reproduced from Fayyad et

al. [108]). 58

2.7 A generic sentiment analysis architecture (reproduced from Feldman [117]). 62

2.8 Two classical examples of the visual representation of data. 65

2.9 ThemeRiver displaying data concerning Cuban leader Fidel Castro between

Nov 1959 - Jun 1961 (reproduced from Havre et al. [170]). 68

2.10 Time-series plot of frequencies of questions asked for various programming

languages at http://www.stackoverflow.com/feeds between 13 00 - 23

00 on 30 Nov 2009: cf. case study one. 70

4.1 The development process for web applications (reproduced from Ginige and

Murugesan [141]): cf. all case studies. 96

4.2 The MVC design pattern (adapted from Murach and Steelman [271]): cf.

all case studies. 101

4.3 Typical n-tiered web application architecture: cf. all case studies. 102

4.4 ORM in visualRSS using Java classes (top) and corresponding database

tables (bottom) for visualisations (attributes and methods have been edited

for clarity): cf. all case studies. 106

22

https://dzone.com/
http://www.stackoverflow.com/feeds

4.5 DFD representing the common software components and related terminol-

ogy of myDataSharer and visualRSS: cf. case studies one and two. 109

4.6 DFD representing the processes of classification and sentiment analysis in

visualRSS: cf. case study three. 116

4.7 UML class diagram of visualRSS’s class hierarchy for case study two, and

its extension for our classification and sentiment analysis work (methods

have been edited for clarity): cf. case study three. 118

4.8 Screen-dump of first page for manual sentiment analysis, developed but

discontinued, in visualRSS: cf. case study three. 119

5.1 DFD illustrating the process to define mining rules for a dataset in my-

DataSharer (data stores and external entities have been edited for clarity):

cf. case study one. 126

5.2 Sample data from polling RSS feeds of mock dataset: cf. case study one. . . 128

5.3 UML class diagram displaying cardinality and specialisation of principal

occurrence and value mining classes (methods have been edited for clarity):

cf. case study one. 130

5.4 Partial screen dump of stage (5) in the DFD in Figure 5.1, displaying the

definition of occurrence mining rule filters in myDataSharer: cf. case study

one. 131

6.1 Case study one’s assignment Extracting and visualising data in myDataShar-

er : cf. case study one. 139

6.2 Extract of data and corresponding visualisation demonstrating use of oc-

currence mining in myDataSharer’s dataset 577: cf. case study one. 144

6.3 Data extract and visualisation of exchange rate fluctuations from myDataShar-

er’s dataset 247: cf. case study one. 145

6.4 A partial screen dump of an incorrect definition of a value mining rule: cf.

case study one. 150

6.5 Distribution of mining rule timings by mining type: cf. case study one. . . . 152

6.6 Histogram of the distribution of visualisation timings: cf. case study one. . 155

6.7 Time-series plot of the daily creation of datasets and visualisations: cf. case

study one. 157

7.1 The conceptual representation of visualRSS as originally published (cf.

O’Shea and Levene [289]) for case study two. 161

23

7.2 Screen-dump of manual mining in visualRSS: cf. case study two. 163

7.3 DFD of the process flow of manual mining in visualRSS (data stores and

external entities have been edited for clarity): cf. case study two. 164

7.4 Sample word-cloud and HTML controls in visualRSS: cf. case study two. . . 166

7.5 UML class diagram of visualRSS’s class hierarchy for defining mining rules

(methods have been edited for clarity): cf. case study two. 167

7.6 A typical visualRSS visualisation displaying the aggregation of keyword

frequencies (top) in a user-selected column chart, and a time-series plot of

the fluctuations in the keyword frequencies (bottom): cf. case study two. . . 173

8.1 Student assignment Visualising RSS : cf. case study two. 177

8.2 Graphical representation of mining types/RSS feed categories distribution:

cf. case study two. 180

8.3 Distribution of visualisations per mining type: cf. case study two. 181

8.4 Graphical representation of the distribution of visualisation types and RSS

feed categories: cf. case study two. 182

8.5 Histogram of RSS feed categories used per visualisation: cf. case study two. 183

8.6 Visualisations in visualRSS for sample student submission: cf. case study

two. 185

8.7 visualRSS as a web service: cf. case study two. 187

10.1 Sample Weka decision tree, formatted using GraphViz [160], displaying

Fisher’s Iris dataset [123]: cf. case study three. 216

10.2 SVM-based detection of cancer cells (reproduced from Statnikov et al.

[372]): cf. case study three. 218

10.3 DFD of the classification process (substantially reproduced from Figure 4.6):

cf. case study three. 220

10.4 Extract of training dataset 19040 in the .arff, i.e. attribute relationship

file format, used by Weka: cf. case study three. 221

10.5 Typical Weka results for a sub-classification, or iteration of a parent clas-

sification. Results for training dataset 19040 and testing dataset 20861 are

displayed: cf. case study three. 222

10.6 Graphical representation of summary classification results: cf. case study

three. 224

10.7 Graphical representation of detailed F-measure results: cf. case study three. 225

24

10.8 Issues with incorrect population and optional nature of RSS feed <item>

elements: cf. case study three. 226

10.9 RSS feed <item> element and keyword issues: cf. case study three. 228

11.1 Mock time-series plot of positive keyword frequency/sentiment correlation:

cf. case study three. 232

11.2 The SentiStrength algorithm (reproduced from [395]): cf. case study three. . 240

11.3 Time-series representation of aggregated daily keyword frequencies and av-

eraged sentiment of keyword Tiger Woods in RSS feed 133 between 01 - 10

Aug 2011: cf. case study three. 246

11.4 Keyword: Afghan: cf. case study three. 250

11.5 Keyword: President : cf. case study three. 251

11.6 Keyword: Tiger Woods: cf. case study three. 252

11.7 Keyword: Wall Street : cf. case study three. 253

12.1 The US presidential election in 2008 (reproduced from Wanner et al. [427]):

cf. case study three. 263

12.2 The MWCC interface (reproduced from Hubmann-Haidvogel et al. [188]):

cf. case study three. 264

12.3 The Narratives interface displaying Barack Obama and relevant keywords

between Nov 2007 - Mar 2008 (reproduced from Fisher et al. [122]): cf.

case study three. 266

13.1 The relationship of our RSS-mining paradigms, case studies and software

(reproduced from Figure 1.1). 274

A.1 Keyword: Anders Behring Breivik : cf. case study three. 298

A.2 Keyword: China: cf. case study three. 299

A.3 Keyword: Guillermo del Toro: cf. case study three. 300

A.4 Keyword: Kardashian, with varying RSS elements: cf. case study three. . . 301

A.5 Keyword: NATO : cf. case study three. 302

A.6 Keyword: President Barack Obama: cf. case study three. 303

A.7 Keyword: Syrian forces: cf. case study three. 304

A.8 Keyword: United States: cf. case study three. 305

B.1 Yourdon’s DFD notation [460]. 315

25

B.2 Tree-map and word-cloud visualisation types in visualRSS: cf. case study

two. 327

B.3 Confusion matrix distribution and metrics for class NCA (Section 10.6.2):

cf. case study three. 328

B.4 The classical Waterfall model of software development (adapted from Press-

man [309]). 330

C.1 Defining mining rules in visualRSS’s Android OS client app: the word-

cloud (Section 7.4.2) displaying keyword frequencies in automatic mining

(left) and entry of an RSS feed’s URL in manual mining (right). 333

C.2 Browsing recent visualisations (left) and a sample pie chart visualisation

(right) in visualRSS’s Android OS client. 334

26

List of Tables

1.1 Parts and chapters according to RSS-mining paradigms and case studies. . 39

2.1 RSS feed <item> elements according to the RSS 2.0 specification [332]. . . . 50

4.1 The development process for web applications (summarised from Ginige

and Murugesan [141]): cf. all case studies. 97

4.2 Approximate MVC and n-tiered web application architecture correspon-

dence: cf. all case studies. 101

4.3 Typical layers of the n-tiered web application architecture: cf. all case

studies. 102

4.4 Distribution of principal open-source, third-party products by common con-

ceptual components: cf. case studies one and two. 110

4.5 Generic mining rules: cf. case studies one and two. 111

4.6 Third-party products considered for visualising data mined from RSS (the

descriptions quote text from the web sites of the respective software pub-

lishers): cf. case studies one and two. 114

4.7 Distribution of principal open-source, third-party products: cf. case study

three. 117

5.1 Occurrence mining variants: cf. case study one. 124

5.2 Column-level mining rules of mock dataset: cf. case study one. 128

5.3 Principal elements and attributes of XML filters for mining rules, and cor-

responding UML classes: cf. case study one. 129

6.1 Breakdown of reported datasets created by mining types: cf. case study one.142

6.2 Breakdown of reported datasets by category and assignment parts two and

three: cf. case study one. 143

6.3 Distribution of visualisation types: cf. case study one. 147

27

6.4 myDataSharer diary extract showing the time taken to define occurrence

mining rules for dataset 466: cf. case study one. 151

6.5 A typical student’s timings to define mining rules: cf. case study one. . . . 152

6.6 Statistics per mining type based upon all datasets created: cf. case study

one. 153

6.7 Statistics per mining type based upon an edited number of datasets created:

cf. case study one. 153

6.8 Changes in student timings when defining mining rules (mean and SD values

are given in (mm ss) format: cf. case study one. 154

6.9 myDataSharer diary extract showing the time taken to define a visualisation

for dataset 235: cf. case study one. 154

6.10 Changes in student timings when defining visualisations: cf. case study one. 155

6.11 Breakdown of reported and unreported visualisations created by type: cf.

case study one. 156

6.12 The busiest days for mining rules during the assignment: cf. case study one. 156

7.1 visualRSS mining types (italics reveal the name of each mining type seen

by users): cf. case study two. 162

7.2 A representation of the keyword frequency index in visualRSS: cf. case

study two. 168

8.1 Sample RSS feeds and categories: cf. case study two. 178

8.2 Tabular representation of mining types/RSS feed categories distribution:

cf. case study two. 180

8.3 Final corpus of RSS feeds and categories: cf. case study two. 181

8.4 Tabular representation of the distribution of visualisation types and RSS

feed categories: cf. case study two. 182

8.5 Mining rules in visualRSS for student submission: cf. case study two. 184

9.1 Summary of related work and mining rules: cf. case studies one and two. . 196

10.1 Original sample RSS feeds and categories (reproduced from Table 8.1): cf.

case study three. 202

10.2 Sample RSS feeds and categories after re-organisation: cf. case study three. 203

10.3 Parameter permutations applied to training/testing data: cf. case study

three. 205

28

10.4 Use of segments for generating training/testing data for a classification, TR

denotes training data and TE (shown in red) refers to testing data: cf. case

study three. 206

10.5 Use of RSS feed elements to generate training/testing data: cf. case study

three. 207

10.6 Tabular representation of summary classification results: cf. case study three.224

10.7 Tabular representation of detailed classification results: cf. case study three. 225

10.8 Re-ordered segments for generating training/testing data for a classification,

TR denotes training data and TE (shown in red) refers to testing data: cf.

case study three. 229

11.1 Summary of sentiment methods employed by SentiStrength (reproduced

from [395]): cf. case study three. 241

11.2 Raw keyword frequency and sentiment analysis outputs for concatenated

keyword TigerWoods in RSS feed 133 on 04 Aug 2011 (edits have removed

references to Reuters news agency and generic sentiment analysis result

text): cf. case study three. 245

11.3 Tabular representation of aggregated daily keyword frequencies and aver-

aged sentiment of keyword Tiger Woods in RSS feed 133 for the period 01

- 10 Aug 2011: cf. case study three. 246

11.4 Keyword: Afghan: cf. case study three. 250

11.5 Keyword: President : cf. case study three. 251

11.6 Keyword: Tiger Woods: cf. case study three. 252

11.7 Keyword: Wall Street : cf. case study three. 253

12.1 Application context criteria for appropriate related work: cf. case study three.267

12.2 Summary of application context of appropriate related work (each quotation

is according to the example of related work described in the respective

section of this chapter): cf. case study three. 268

A.1 Corpus of RSS feeds: cf. case study one. 289

A.2 Student allocation of RSS feeds: cf. case study one. 290

A.3 Original RSS feed and category corpus (Section 8.4.2): cf. case study two. . 292

A.4 RSS feeds withdrawn from feed and category corpus during the Jul - Nov

2011 data gathering period (Section 10.3.2): cf. case studies two and three. 293

29

30

A.5 RSS feed and category corpus following re-organisation (Section 10.3.2): cf.

case study three. 296

A.6 Extract of candidate keyword selection used for keyword frequency/sentiment

correlation (Section 11.7.4): cf. case study three. 297

A.7 Keyword: Anders Behring Breivik : cf. case study three. 298

A.8 Keyword: China: cf. case study three. 299

A.9 Keyword: Guillermo del Toro: cf. case study three. 300

A.10 Keyword: Kardashian: cf. case study three. 301

A.11 Keyword: NATO : cf. case study three. 302

A.12 Keyword: President Barack Obama: cf. case study three. 303

A.13 Keyword: Syrian forces: cf. case study three. 304

A.14 Keyword: United States: cf. case study three. 305

B.1 N-grams (to bigram level) generated from phrase RSS is a dialect of XML,

with stop words edited. 319

B.2 Derivation of TP, TN, FP and FN metrics from a confusion matrix. 328

B.3 Metrics and results for class NCA (Section 10.6.2): cf. case study three. . . 328

D.1 Approximate counts of lines of source code of principal open-source, third-

party products used in myDataSharer and visualRSS: cf. all case studies. . 337

Part I

Introduction and opening

comments

31

Chapter 1

Introduction

1.1 The phenomenon of feeds and RSS

The OED at http://www.oxforddictionaries.com/definition/english/digest de-

fines the term digest as a verb to “Arrange in a systematic or convenient order, especially

by reduction.” When applied to the need to present summaries of detailed or otherwise

lengthy information, common contemporary examples of a digest include a document ab-

stract or synopsis, an executive or legal summary, a headline or a soundbite. Internet-

or web- based digests extend this principle to cyberspace. Since their inception, i.e. circa

late 1990s - early 2000s, as part of Web 2.0 (Appendix B.2) social media (Section 2.3),

digests, or feeds as they are more correctly known, have been broadcast, i.e. syndicated,

by media or commercial organisations, or by individuals. A consequence of this has been

the diversity of feeds produced and their applications. Social networking web sites such as

Twitter [408] and Facebook [106] permit micro-blogging by individuals or organisations,

exchanges between friends to do with matters of interest or current affairs, whilst oth-

er services provide facilities for sharing graphics or particular media, news and opinion

promulgation/dissemination. Each of these constitutes “a compilation or summary of

material or information”, to employ an OED definition of digest as a noun.

Two popular formats of feeds are RSS (Section 2.2) and its rival Atom (Appendix B.2),

both of which deliver frequently updated content such as blog entries, news headlines and

multimedia. RSS, the focus of this thesis, is a dialect of XML although, as described by

Pilgrim [299], the term RSS refers to an “umbrella format that spans several different

versions of at least two different (but parallel) formats.” These alternative versions date

from the late 1990s when a syndication format known as Scripting News was developed

by Winer at UserLand Software (http://www.userland.com/). In 1999, RSS 0.90 was

32

http://www.oxforddictionaries.com/definition/english/digest
http://www.userland.com/

1. Introduction 33

created, and after a series of revisions, the RSS 2.0 specification [332] was released in

2003. RSS 2.0 has since been maintained by the RSSAB [334], and the latest version of

the specification is 2009’s RSS 2.0.11.

A principal application of RSS (Section 3.2) is aggregation, i.e. where large numbers of

RSS feeds are collected into a one or more feeds for delivery to users. This facility is often

provided either via open-source, third-party products or search engines, e.g. Google News

[153] and Yahoo News [457]. RSS-based management services allow customers to publish

their RSS feeds and provide traffic analysis, advertising and emailing services. Search en-

gines for RSS also permit users to discover feeds of interest or perform real-time searches

of feed content. Moreover, given the XML-based origins of RSS, the technology consists

of a semi-structured, machine-readable format (Section 2.2.3) which allows the on-line de-

livery/exchange of information between different platforms and systems.

Despite these applications and academic research employing RSS (Chapter 3), feeds

are typically delivered via a browser, or by readers (Section 3.2). Content is then presented

to users in the journalistic style of headline, story and snapshot(s) (Section 2.2.4), and

consumed. In this thesis, we are concerned with the function, i.e. utility, of RSS within

the context of social media, and how the social utility of the technology can be enhanced

by producing from RSS feeds data that is of a more actionable and effective nature.

1.2 Motivation and application

The motivation for this thesis, i.e. to enhance the social utility of RSS within the context

of social media, originated from a combination of personal and professional interests. The

author has been a user of social media (Section 2.3) covering various topics for many years,

and was formerly employed as an analyst/programmer in the financial sector with a partic-

ular focus on web applications and software engineering. A PhD provided the opportunity

to merge these subjects within the framework of research at a proof of concept level to

employ datasets (Appendix B.2) or types of social media, e.g. feeds, to produce new or

enhanced outputs to represent the data inherent in the content of these media in order to

benefit users in real-world scenarios.

This concept supplied the initial basis for our work, and in the software we originally

developed to realise it, we sought to employ data from a wide variety of formats (Section

5.3) within a social data-sharing environment where we could model user behaviour, al-

though we subsequently focused solely upon the use of RSS. For this reason, it is necessary

that we answer the inevitable question: why did we choose RSS and not another type of

1. Introduction 34

feed? Other types of feeds were available to us, e.g. Facebook [106] and Twitter [408], or

through the use of Atom. Stated simply, our answer to this question is threefold: (1) the

ubiquity of RSS given the range of applications and academic research employing the tech-

nology: we review these in Chapter 3, (2) the longevity of RSS as a mature technology: the

earliest version of RSS dates from 1999 (Section 2.2.2), and therefore predates the other

feed types, i.e. Atom (2005), Facebook (2004) and Twitter (2006), and (3) the diversity

of subject matter found in the content of RSS feeds which consists of frequently updated

news items, blog entries and multimedia produced by individuals, media or commercial

organisations: this diversity is apparent in the RSS feed and category corpora we have

employed (Appendix A).

By adopting RSS as a form of social media (Section 2.3), we have been able to concen-

trate on a single, popular technology: this allowed us to develop the aforementioned initial

basis for this thesis into a specific and mature form to ask: can the social function, i.e.

utility, of RSS be enhanced by producing from it data which is actionable and effective? It

is from here that our hypothesis and objectives (Section 1.3) were developed. It follows

from this that we can define the application, i.e. importance, of our work according to the

reasons of ubiquity, longevity and diversity we have cited for our choice of the technology

given: (1) the landscape of this thesis (Chapter 2), and (2) the contributions made by this

thesis to several of the subject areas of this landscape, which are referred to in Section

1.3.

1.3 Hypothesis, objectives and contributions

Predicated upon the context described in Section 1.2 we present our hypothesis to state

that:

Data of an actionable and effective nature can be produced from the fluctuations

in the keyword frequencies present in the text of RSS feeds to enhance the

social utility of the technology, where this data can benefit users in real-world

scenarios, varying from statistics to marketing and trend analysis, correlating

or tracking topical issues, or for mining financial and sporting data.

In order to validate this hypothesis, we define the three inter-related objectives for this

thesis, as follows:

1. Definition: The need to review the current function of RSS within the context of

social media, and the utility gained from this.

1. Introduction 35

2. Production: To develop the appropriate methods, i.e. paradigms, to mine the text

of RSS in order to produce data of an actionable and effective nature.

3. Demonstration: To formulate and carry out a series of specifically designed and

implemented case studies to demonstrate the paradigms and to use an appropriate

medium to represent their outputs.

The following sections of this chapter define the proof of concept of these objectives which

is demonstrated by the paradigms we employ to mine RSS, the series of case studies

presenting the paradigms, and the software implementing the case studies. Together,

these elements form the contributions made by this thesis to the subject areas of web

engineering (Section 4.2) and text mining (Section 2.6). We exclude any contribution to

information visualisation from this list because we employ the medium of visualisation

(Section 2.8) only as a means of representing the actionable and effective data (Section

2.9) produced by the case studies for our RSS-mining paradigms.

To the best of our knowledge, the paradigms and case studies (Sections 1.4 and 1.5

respectively) that we present in this thesis are unique in their use of RSS as a technology,

and in the use of the web engineering/application principles and content we document

herein, to integrate an array of open-source, third-party products into a coherent and

innovative, alpha-version prototype software (Section 1.6).

We evaluate the realisation of our objectives and the contributions made by this thesis

to the subject areas of web engineering and text mining in Chapter 13. In doing this,

with the exception of the student corpora in the case studies for our first paradigm, we

do not address the social or demographic issues inherent in the work we present or in its

landscape (Chapter 2). Similarly, we do not consider issues of privacy or security.

1.4 RSS-mining paradigms

1.4.1 Definition

Our RSS-mining paradigms are formally defined as:

1. Paradigm one: Defining mining rules upon RSS to determine and visu-

alise trends from textual and numeric data: The definition of mining rules

(Section 4.7.2) upon RSS is intended to provide a straightforward means for users

to specify how textual and numeric data is to be mined from feeds during polling to

update and visualise the objects the rules become part of. This permits the visual

1. Introduction 36

analysis of trends (Appendix B.2) based upon the fluctuations in the frequencies of

popular keywords (Section 1.7) present in the text of RSS feeds, and the use of mod-

ern forms of ticker-tape (Appendix B.2) data, such as financial movements, sports

or lottery results

The premise of this paradigm is to demonstrate that we can use mining rules to

produce from RSS data that is more actionable and effective than we currently see

in the use of the technology (Chapter 3).

It is necessary to state unequivocally here that in this thesis the term mining rules

is of our own devising and applies only to the software implementing the case studies

for our first paradigm. No further meaning of this term is intended or should be

inferred.

2. Paradigm two: Classifying RSS according to the fluctuations in the fre-

quencies of popular keywords and correlating this with sentiment : This

paradigm concerns a semi-automated application of well-known classification tech-

niques to RSS in order to classify feeds into categories, and to determine a correlation

between this and sentiment. We present a set of time-series (Section 2.8.3) plots vi-

sualising this correlation for potential use in business intelligence, statistics, politics,

market research and related subject areas. This paradigm also employs changes

in keyword frequencies in the text of RSS feeds as the basis for classification and

sentiment analysis.

Our second paradigm forms a logical extension to the first, i.e. if our first paradigm

can produce basic actionable and effective data from RSS, can we not apply data

mining techniques to RSS in order to further enhance the technology’s social utility?

1.4.2 Correspondence

Our paradigms are logically consistent with our hypothesis because they are both con-

cerned with the proof of concept demonstration of enhancing RSS’s utility within the

social media context. This consistency of our paradigms is further based upon several

common elements in their case studies: (1) the text of RSS feeds is used as input, (2) the

fluctuations in the frequencies of popular keywords present in the text are used as data, (3)

that these fluctuations are measured between pre-defined starting and ending dates/times,

(4) that a minimal ETL (Appendix B.2) is applied to the text for data cleansing, and (5)

that visualisation is used as the medium for the output (Section 2.8) because of its ability

to coherently represent actionable and effective data to users.

1. Introduction 37

At the same time, both paradigms are conceptually distinct: as befits their nature, the

case studies for our first paradigm are primarily user-driven despite automated elements in

case study two, and our second paradigm does not strictly require user-interaction because

it is based upon semi-automated batch processing.

1.5 Case studies

We employ a series of three laboratory-based case studies to demonstrate our paradigms.

The first two case studies concern our first paradigm, whereas case study three concerns

our second paradigm. The following list summarises each case study:

1. Our first case study took place in late 2009 and employed a corpus of thirty-five

part- and full-time Masters-level students. This case study sought to answer a series

of research questions concerning the feasibility of our first paradigm’s mining rules

and the use of its mining types.

2. Case study two made use of a second corpus of thirty-six part-time Masters-level

students during Dec 2011. This allowed us to research preferences of the mining

types employing textual mining rules refined from case study one (Section 6.4.2),

visualisations, distribution of categories of feeds visualised, and the common use of

these amongst the mining types.

3. Our third case study deals with our second paradigm. The first component of this

case study describes the semi-automated classification of RSS feeds into categories

according to the fluctuations in the frequencies of popular keywords present in their

text, and the second component concerns the determination of a correlation between

the changes in the keyword frequencies and sentiment.

1.6 Software

For our paradigms and their case studies, two alpha-version applications, i.e. myDataShar-

er (myDS) and visualRSS (vRSS), were designed and written. Both applications employ

the n-tiered Java JSP/servlet-based web application architecture described in Section 4.5,

and share several common components and related terminology. In addition, the two ap-

plications make use of the relational database model (Section 4.5.7), and include many

open-source, third-party products (Appendix B.1) from the Java ecosystem on a black-box,

mash-up basis.

1. Introduction 38

1.7 Keywords

In this thesis, the term keyword conforms to the definition provided by the OED at http:

//www.oxforddictionaries.com/definition/english/keyword, i.e. “a word used in an

information retrieval system to indicate the content of a document.” In our paradigms and

their case studies, with one exception, our keywords are näıve n-grams (Appendix B.2),

and in all cases are based upon the fluctuations in the frequencies of popular keywords

in the text of RSS feeds measured between pre-defined starting and ending dates/times.

The conventions and characteristics of our keywords are discussed in Section 4.6.

1.8 The relationship of RSS-mining paradigms, case studies

and software

The relationship between our RSS-mining paradigms, case studies and the software demon-

strating them is formally illustrated in Figure 1.1.

Figure 1.1: The relationship of our RSS-mining paradigms, case studies and software.

1.9 Thesis structure

This thesis is organised into a series of five parts according to the relationship of our

RSS-mining paradigms, case studies and software (Figure 1.1). In connection with this,

Table 1.1 provides a correspondence of the parts and chapters vis-à-vis the paradigms and

case studies, after which we briefly describe the parts and chapters.

http://www.oxforddictionaries.com/definition/english/keyword
http://www.oxforddictionaries.com/definition/english/keyword

1. Introduction 39

Part Chap/ Para- Case Title
App digm study

I 1 Introduction
I 2 Background
I 3 A review of RSS
I 4 Web engineering and software architecture

II 5 One 1 The myDataSharer software
II 6 One 1 Mining and visualising textual and numeric data

from RSS
II 7 One 2 The visualRSS application
II 8 One 2 Mining and visualising data trends in RSS feeds
II 9 One 1 and 2 Paradigm one and related work

III 10 Two 3 Category-based classification of RSS feeds
III 11 Two 3 Correlating keyword frequencies with sentiment in

RSS feeds
III 12 Two 3 Paradigm two and related work

IV 13 Conclusion

V A Case study reference materials
V B Glossaries
V C The Android OS client app for visualRSS
V D Miscellaneous

Table 1.1: Parts and chapters according to RSS-mining paradigms and case studies.

I. Introduction and opening remarks: The first part of this thesis introduces our

work and the background to it. There are four chapters:

• Chapter 1 discusses the phenomenon of WWW-based feeds and RSS to pro-

vide the motivation, hypothesis and objectives of this thesis. We describe our

paradigms, case studies, and software, and also define the function of these items

in connection with our objectives and the contribution(s) to web engineering and

text mining made. Finally, we describe the vocabulary and formatting conven-

tions used in this thesis.

• Chapter 2 provides the landscape of this thesis. We begin by defining RSS and

continue by describing social media and utility, and other subject areas relevant

to our work including data and text mining, sentiment analysis and the use of

visualisation to represent data. We also define the concept of actionable and

effective data in this chapter, but defer web engineering and web application

architecture until Chapter 4.

1. Introduction 40

• Chapter 3 reviews the applications and academic research employing RSS in the

last decade. Moreover, much of the related work cited in this chapter is provided

for reference purposes only. We do not compare our paradigms to appropriate

related work in this chapter: this comparison is made in the final chapters in

Parts II and III respectively, only after the case studies for our paradigms have

been presented.

• Before we can present our software and its use in the case studies for our

paradigms, it is necessary to consider web engineering and web application ar-

chitecture because these subject areas define the context for the development

of our myDS and vRSS software. This is one of the two purposes of Chapter 4.

In addition to this, this chapter concerns the technical nature of common com-

ponents in our myDS and vRSS applications which we describe and illustrate.

II. Paradigm 1: Defining mining rules upon RSS: The five chapters in Part II are

concerned with the two case studies which demonstrate our first paradigm (Figure

1.1):

• The first four chapters form two pairs, where each pair of chapters deals with a

single case study: Chapters 5 and 6 present case study one, whilst Chapters 7

and 8 focus upon our second case study.

• In Chapter 9 we compare case studies one and two with appropriate examples

of related work.

III. Paradigm 2: Classifying RSS according to the fluctuations in the frequen-

cies of popular keywords and correlating this with sentiment: Our third

case study deals with our second paradigm, and is presented in the three chapters in

Part III below:

• Chapters 10 and 11 respectively describe the classification and sentiment anal-

ysis components of case study three.

• Chapter 12 compares our third case study with appropriate examples of related

work.

IV. Conclusion and closing remarks: Chapter 13 presents a summary of this thesis

in terms of our motivation, hypothesis and objectives, paradigms and case studies.

We also reflect upon the PhD programme and our work, and we discuss the future

directions this may take.

1. Introduction 41

V. Appendices: This thesis includes four appendices. Appendix A provides reference

material for our case studies, whilst Appendix B is made up of two glossaries: B.1

lists the open-source, third-party products used in our software, and B.2 concerns

related IT/industry terminology used in presenting our paradigms, case studies and

software. Appendix C describes the Android OS client app for vRSS developed by

Shema [354] for the mobile platform, and Appendix D lists additional resources used

in writing our software and information related to this.

1.10 Vocabulary

The terminology below defines the vocabulary of our paradigms, case studies, and software:

• Actionable and effective data: This term refers to the nature of the outputs

produced by the case studies for our paradigms (Section 2.9).

• Automatic mining: A mining type in vRSS for our second case study which allows

users to select popular keywords in the rssosphere and track these from system-

indexed categories of RSS feeds.

• Dataset: A dataset is a collection of related information made up of distinct ele-

ments concerning a given subject (Appendix B.2).

• Keyword: Although we briefly refer to them in Section 1.7, the conventions and

characteristics of our keywords are discussed in Section 4.6.

• Manual mining: Manual mining is a mining type used in vRSS in case study two.

It allows users to enter RSS feeds and keywords of their own choice, to perform a

granular tracking of subjects.

• Mining: Described in Section 4.7.5, mining is part of the polling process. For an

object which mining rules have become part of, when the RSS feeds defined in the

rules are polled for new postings, the text of the postings is mined according to the

rules, and data is persisted to database storage to update the object.

• Mining rules: Mining rules, the basis of our first paradigm for case studies one and

two, are defined upon RSS by users to specify how data is to be mined from feeds

during polling to update the objects that the rules become part of, i.e. datasets for

case study one and visualisations in our second case study. Mining rules are more

extensively described in Section 4.7.2.

1. Introduction 42

• Mining type: A mining rule, the term mining type identifies how RSS feeds are

mined during polling. Occurrence and value mining were used in our first case study

one with myDS (Section 5.4.1). vRSS’s three mining types in case study two are

automatic, semi-automatic and manual where each was used to select RSS feeds, or

feeds and categories thereof, and keywords (Section 7.4.1).

• Occurrence mining: OM is a mining type used in myDS in our first case study. It

counts the occurrences of strings present in the text of RSS feeds to explore trends

or track issues.

• Paradigm: We make use of the definition of paradigm provided by the OED at

http://www.oxforddictionaries.com/definition/english/paradigm, i.e. “A

world view underlying the theories and methodology of a particular scientific sub-

ject”. We use this term to describe the two methods we present in this thesis to

mine RSS feeds (Section 1.4).

• Persistence: We define persistence as the writing of the current state of an object or

data structure to a platform’s file system or to database storage. Further information

is provided in Appendix B.2.

• Polling: The process carried out by myDS and vRSS to: (1) control how frequently

RSS feeds are polled for new postings, and (2) the mining of any new postings that

have been made to the feeds since they were last polled (Section 4.7.3).

• Postings: The addition of new content to an RSS feed by the feed’s publisher. Each

posting represents a story.

• RSS feeds elements: Due to the XML-origins of RSS (Section 2.2.3), we define

an element of an RSS feed to be either the <channel>, an <item>, i.e. a posting,

or any of their respective constituents, e.g. the <title> of an <item>. Therefore,

when discussing RSS’s format, we use the term element interchangeably.

• Semi-automatic mining: A mining type in vRSS in our second case study allowing

users to track their own keywords from system-indexed categories of RSS feeds.

• Value mining: VM is a mining type in myDS used in case study one. It analyses

RSS feeds which provide structured content. Such feeds are produced by dedicated

web sites which report modern forms of ticker-tape (Appendix B.2) data, such as

financial movements, sports or lottery results.

• Visualisation: A graphical representation of data (Section 2.8).

http://www.oxforddictionaries.com/definition/english/paradigm

1. Introduction 43

1.11 Conventions

We substantially employ the following conventions in this thesis:

• Bibliography: The items in the Bibliography are ordered by author(s), title, pub-

lication details and year. URL-based items are listed in name, URL and year order.

The use of case in the titles of items listed in the Bibliography corresponds to the

titles of actual versions of the items we consulted. Furthermore, where an item is

sourced from a conference, we have used the prefix In Proceedings of the with regard

to the conference’s name.

Several URL-based items refer to teaching materials: where it has proved possible,

we have included the subject and details of the relevant course and its venue. In

addition to this, the year listed for URL-based items in the Bibliography refers to

the year in which the item was published or last modified. If this is not available,

the year given refers to when that item was accessed.

Citations in the body text of paragraphs to items in the Bibliography are denoted by

the surname of at least one of the item’s authors and a reference number. We have

also frequently employed the generic term authors in conjunction with an adjacent

citation. In such cases, the term authors is distinct from our own self-referential use

of the alias author, and no other meaning is intended or should be inferred.

• Case study references in caption text: Captions of algorithms, figures and

tables are typically post-fixed with text identifying them to one or more case studies,

e.g. Figure x.y : Title: cf. case study one.

• Code contributions: We refer to work contributed to our myDS and vRSS software

by former Masters students Danani [86], Harriott [167], Shema [354] and Wilce [442],

at DCSIS, Birkbeck, University of London. Each contribution took the form of the

project required of each student’s respective course. In each case, the author was the

student’s supervisor being responsible for the specification of requirements, project

management and communication.

• Cross references: Cross references refer solely to items appearing in the contents or

lists of algorithms, code and pseudocode, figures and tables, e.g. Section x.y. Similar

rules are used for lists of algorithms, code and pseudocode, figures and tables. Cross

references to appendices refer to the appropriate section of the appendix concerned,

except for those to Appendices B.1 and B.2.

1. Introduction 44

If a cross reference does not refer directly to a URL an item in the Bibliography,

the reference is to a chapter or section describing the use of an open-source, third-

party product: a further reference to the Bibliography or Appendix B.1 is made from

there. Sundry cross references are also made to Appendix B.2.

• Pseudocode: Pseudocode listed in the algorithms presented is highly abstracted

from actual low-level program source code, where the intention is to convey the

outline of a particular process. To this end, excluding typical programming control

structures, e.g. for each/endfor or if/endif, we have used a minimal set of op-

erators, e.g. add, get, in, of, set, and write. Similarly, sub-processes have been

condensed into simple expressions, e.g.:

sort(globalNgrams in descending order);

• Quotations: Direct quotations from items listed in the Bibliography and glossaries

are frequently used herein. In doing this, we have preserved the punctuation and

syntax of the original text including the use of italics and alternative spelling of

terms, e.g. we have used tree-map (Appendix B.2) whilst treemap has been used by

Hearst [172] to refer to the visualisation type. In some quotations: (1) words delim-

ited by square brackets have been added for context and clarity, (2) the expression

[sic] is used to refer to the syntax of the original text, and (3) ellipses, i.e. . . . , have

been used to reduce the length of certain quotations.

• Software written: We refer to our myDS and vRSS software by using the full

names of the applications in titles and captions, but in the body text in chapters,

contractions are used: thus, titles and captions include either myDataSharer or

visualRSS, whilst myDS or vRSS are used in body text.

• Use of abbreviation RSS: Our use of the abbreviation RSS is twofold: (1) when

we refer to RSS, we mean the technology of the medium (Section 2.2), or (2) if a

reference is made to a specific RSS feed, we are referring to that feed as an example

or to its use in one of our case studies. This referral could be according to a specific

feed’s URL, content, numbering or other criteria.

Chapter 2

Background

2.1 Foreword

This chapter provides the landscape of this thesis. Section 2.2 concerns the technology of

RSS which we define together with its history, format and utility. Given the focus in this

thesis of RSS within the context of social media, we describe the latter, its applications

and the utility derived from it in Section 2.3. Subsequent sections of this chapter address

other subject areas relevant to our work: Section 2.4 describes data mining, Section 2.5

considers the classification task of this, and Sections 2.6 and 2.7, respectively, define text

mining and sentiment analysis. The use of the medium of visualisation to represent data

is the theme of Section 2.8. With these subjects areas described, we then focus upon the

nature of the actionable and effective data (Section 2.9) produced by the case studies for

our RSS-mining paradigms (Section 1.4.1).

Our descriptions of the subject areas listed above are necessarily brief given the mass

of material available which is beyond the scope of this thesis to examine.1 We do not

discuss web engineering in this chapter despite its application to our work: this subject

is more appropriately described in Chapter 4 together with the architecture and common

components of our software.

1To demonstrate this, we carried out a Google [148] search for keywords SVM, text and classification on
29 Jan 2016 @ 22 07 GMT which returned 850,000 results: an identical search on Google Scholar [155]
returned 141,000 items.

45

2. Background 46

2.2 RSS

2.2.1 A definition

RSS provides an open method of syndicating and aggregating on-line content. Pilgrim

[299] has described RSS as an “umbrella term for a format that spans several different

versions of at least two different (but parallel) formats.” We describe these versions and

the history of RSS in Section 2.2.2.

Administrators and other staff of web sites belonging to media or commercial organisa-

tions, or simple individuals, create RSS feeds, i.e. semi-structured XML documents, which

most commonly consist of frequently updated news items, blog entries and multimedia.

These XML documents, often having .rss or .xml file extensions, are published on the

servers hosting the web sites and made available by HTTP links as social media. This is

because, as described by RSS Specifications [437], “RSS is a free and easy way to promote

a site and its content without the need to advertise or create complicated content sharing

partnerships.” Furthermore, according to RSS Specifications, on the client side “con-

sumers use RSS readers and news aggregators to collect and monitor their favorite feeds

in one centralized program or location.” Aggregators and readers (Section 3.2) typically

present RSS content to users in the journalistic style of headline, story and snapshot(s)

(Section 2.2.4).

RSS is a pull technology (Ayers and Watt [22]), where the client requests data hosted

by a server: the data is then pulled down from the server to the client as a stream of text

(Section 2.8.2). In contrast to this, push services see new content pushed out to subscribers

by the server: an example of this latter type is provided by Twitter [408]. As a type of

social media (Section 2.3), the use of RSS is ubiquitous, and its radio wave icon displayed

in Figure 2.1, or a variation thereof, is a frequent annotation on web sites and browsers.

In connection with this, in Chapter 3 we review the applications and academic research

employing RSS.

Figure 2.1: The RSS radio wave icon.

2.2.2 History and versions

The following chronological history of RSS is inextricably connected with the numerous

versions of the RSS format published to date, and is based upon the succinct account

2. Background 47

provided by W3Schools [423]. In order to provide additional information, annotations

from the more detailed history at Cover Pages [318] and the three alternative versions

from RSS Specifications [175] are included.

• 1997: Winer at UserLand Software (http://www.userland.com/) developed an

XML-based syndication format known as Scripting News.

• 1999: RSS 0.90 was created by Libby and Guha at Netscape: it was known as RDF

site summary because it included a header which used RDF to store metadata.

RSS 0.90, which also supported Scripting News, was released in Mar 1999 for the

My.Netscape.Com portal.

• 1999: Winer developed Scripting News 2.0b1 which included RSS 0.90 features.

• 1999: Libby at Netscape developed RSS 0.91 which included most features from

Scripting News 2.0b1.

• 1999: UserLand Software adopted RSS 0.91 and deprecated Scripting News.

• 1999: Netscape was acquired by mass media corporation AOL.

• 1999: Netscape discontinued their development of RSS because AOL stopped in-

cluding external RSS feeds in their services. AOL later drops Netscape in 2007.

• 2000: UserLand Software released the official RSS 0.91 specification.

• 2000: Dornfest at O’Reilly [287] developed RSS 1.0, a brand new format using RDF

and namespaces, which was unrelated to previous versions.

• 2000: Winer at UserLand Software developed RSS 0.92 which included RSS 0.91

and optional elements.

• 2002: After leaving UserLand Software, Winer developed RSS 2.0 which included

RSS 0.92 with optional elements.

• 2003: The copyright of the RSS 2.0 specification [332] was transferred by Winer

and UserLand Software to the Berkman Center for Internet & Society at Harvard

Law School (http://cyber.law.harvard.edu/).

• 2003: The RSSAB [334] was founded by Winer to maintain the RSS 2.0 specification

in cooperation with the Berkman Center at Harvard.

http://www.userland.com/
My.Netscape.Com
http://cyber.law.harvard.edu/

2. Background 48

• 2009: Since 2003 the RSSAB has published several new versions of the RSS 2.0

specification. The current version is 2009’s RSS 2.0.11.

The result of this history is that there are a number of versions of RSS which can be

grouped into: (1) the RDF (Appendix B.2) or RSS 1.* branch originated by Netscape,

and (2) the RSS 2.* branch which descends from Userland Software and now Harvard.

W3Schools [423] estimates that about 50% of all RSS feeds use RSS 0.91, and that another

25% use RSS 1.0, with the remaining 25% split between RSS 0.9x versions and RSS 2.0.2

For convenience in this thesis, we identify RSS to mean any and all of these versions.

2.2.3 Format

RSS is a dialect of XML [52] which, as defined by Walsh [425], provides “a markup

language for documents containing structured information.” The textual data format

of XML allows rules to be specified to encode documents and information using tags,

i.e. elements and attributes, in a semi-structured, tree-like form, which hierarchically

represents individual items of data, and the relationships between them. The widespread

use of XML is revealed by the numerous dialects which have been developed for different

applications and initiatives [453]. These vary from a storage medium for files in application

suites such as Microsoft Office [260] and Apache’s OpenOffice [284], to those for feeds such

as RSS and Atom (Appendix B.2). Algorithm 2.1 lists XML defining two late 20th century

novels to illustrate elements, e.g. <title> (3, 9), and attributes, e.g. publisher (5, 11).

1: <?xml version="1.0" encoding="UTF-8"?>
2: <book>
3: <title>Dr Haggard’s Disease<title>
4: <author>Patrick McGrath</author>
5: <pubDetails publisher="Penguin" year="1993"/>
6: <description>Doomed love for a married woman becomes a religion:

what is wrong with Dr Haggard?</description>
7: </book>
8: <book>
9: <title>In the Eye of the Sun<title>

10: <author>Ahdaf Soueif</author>
11: <pubDetails publisher="Bloomsbury" year="1992"/>
12: <description>It is the great English novel about Egypt, and also

the great Egyptian novel about England.</description>
13: </book>
14: </xml>

Algorithm 2.1: XML elements and attributes representing two late 20th century novels.

2Several reported cases of incompatibilities between the different versions of RSS are documented in Section
3.5.1.

2. Background 49

Version 2.0.11 of the RSS 2.0 specification [332] states that an “RSS document is a <rss>

element, with a mandatory attribute called version, that specifies the version of RSS that

the document conforms to.” The specification further states that “Subordinate to the

<rss> element is a single <channel> element”: an RSS feed’s <channel> is made up of

three further mandatory elements, i.e. the <title>, <link> and <description>, and

a series of other optional elements which contain descriptive metadata (Appendix B.2)

about the feed and its contents. The edited text in Algorithm 2.2 represents the principal

elements of a typical <channel> published by the BBC in their web site’s principal RSS

news feed at http://feeds.bbci.co.uk/news/rss.xml. The <item> elements which

make up the content, i.e. postings, of the feed are denoted in line (9) by the XML comment

symbols <!-- and -->.3

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <rss version="2.0">
3: <channel>
4: <title>BBC News - Home</title>
5: <link>http://www.bbc.co.uk/news/#sa-ns_mchannel=rss&ns_source=

PublicRSS20-sa</link>
6: <description>The latest stories from the Home section of the BBC

News web site.</description>
7: <language>en-gb</language>
8: <copyright>Copyright: (C) British Broadcasting Corporation...

</copyright>

9: <!-- Location of <item> elements. -->

10: </channel>
11: </rss>

Algorithm 2.2: Principal elements of an RSS feed’s <channel> (edited for clarity).

The following list describes several other <channel> elements not mentioned in Algorithm

2.2, together with our reasons for not using them in the case studies for our paradigms.

1. <lastBuildDate> and <pubDate>: According to the RSS 2.0 specification [332],

the <lastBuildDate> element provides the “last time the content of the channel

changed.” The <channel> also includes a <pubDate> element which lists the “pub-

lication date for the content in the channel.”

We made no use of these temporal elements in our work because of their optionality.

For the currency of RSS content, we chose instead to rely upon the <pubDate> (Table

2.1) element of each <item> in the <channel>, even where this may have resulted in

3As per Section 1.10, when discussing the format of RSS, we use the term element interchangeably to refer
to the <channel>, <item> or any of their respective constituents.

http://feeds.bbci.co.uk/news/rss.xml

2. Background 50

a marginal, but unavoidable duplication based upon the inclusion, by the publisher,

of repeating content in a feed: an example of this during the classification component

of our third case study is described in Section 10.7.2.

2. <category>: The <category> element in an RSS feed’s <channel> is optional:

therefore, when a feed is published, this element will either be populated with the

names of one or more categories that the publisher believes the content of the feed

belongs to, or alternatively, the element will be unpopulated.

In the author’s opinion, either option means that the <category> element in the

<channel> is potentially ambiguous given an RSS feed with either a single or multi-

category content. This opinion also applies to the <category> element found in each

<item> in the feed’s content. Therefore, we made no use of <category> elements.

An RSS feed’s <channel> also contains numerous postings, i.e. stories, each of which forms

an <item> element in the feed: the location of the <item> elements in the <channel> is

given by line (9) in Algorithm 2.2. Each <item> is made up of the elements listed in Table

2.1 which are, with the exception of the <title> or <description>, optional. An <item>

element usually consists of plain text but HTML, XML and multimedia content may also

be present: thus, RSS’s format is semi-structured.

Element Description

<title> The title of the <item>.

<link> The URL of the <item>.

<description> A description of the <item>, which can be text, HTML or XML,
and may include multimedia.

<author> A URL or email address of the author of the <item>.

<category> One or more categories, given to the <item> by the publisher.

<comments> The URL of a page for comments relating to the <item>.

<enclosure> Describes a media object which is attached to the <item>.

<guid> A string that uniquely identifies the <item>.

<pubDate> The publishing date/time of the <item>, commonly in BST/GMT
format as originally defined in the RFC 822 standard for ARPA
internet text messages [82].

<source> The RSS <channel> that the <item> belongs to.

Table 2.1: RSS feed <item> elements according to the RSS 2.0 specification [332].

2. Background 51

Algorithm 2.3 represents a typical populated RSS <item> element. This <item>, again

originally published by the BBC in their web site’s principal RSS news feed on 02 Jan

2015, has been edited so that it lists only those elements we employ in our paradigms

and their case studies, i.e. the <title>, <description> and <pubDate> elements within

each <item> in a feed. Moreover, we regard these elements to be structural metadata

(Appendix B.2) because of the organisational role they perform in RSS’s format.

1: <item>

2: <title>US sanctions North Korea over Sony</title>

3: <description>The US imposes new sanctions on North Korea in response to

a major cyber-attack against Sony Pictures.</description>

4: <pubDate>Fri, 02 Jan 2015 20:07:38 GMT</pubDate>

5: </item>

Algorithm 2.3: A typical populated RSS feed <item> element (edited for clarity).

2.2.4 RSS use and utility

“The original, and still the most common, use for RSS and Atom is to provide

a content syndication feed : a consistent, machine readable file that allows

web sites to share their content with other applications in a standard way.

Originally. . . this was used to share data among web sites, but now it’s most

commonly used between a site and a desktop application called a reader.”

This quotation, taken from the introduction to Hammersley’s Developing Feeds with RSS

and Atom [165], which was published in 2005, identified the fundamental role of RSS in

providing a common format to share, i.e. syndicate, on-line content, and this remains the

contemporary case. Statistics concerning the early use of RSS provided by Gill [140] refer

to: (1) the tracking by Technorati [387] of “7.7 million blogs in March 2005, compared

with 2 million in March 2004”, and (2) (the now demised) Syndic8 [379] reported that

the number of feeds they tracked grew from “2,500 in mid-2001 to 286,000 in January

2005.” Since that time, RSS applications and tools have become more diversified and

widespread because of social media (Section 2.3), as well as applications and academic

work employing the technology: we review the latter two of these subject areas in Chapter

3. Contemporary use of RSS is estimated by BuiltWith [55], who in measuring WWW

technology trends for 2015, wrote that their records included some “20,518,155 live web

sites using RSS” (Figure 2.2).

2. Background 52

Figure 2.2: Current RSS usage (reproduced from BuiltWith [55]).

Figure 2.3 illustrates the journalistic presentation of RSS content in the style of headline,

story and snapshot(s). On the left, the content is rendered as an <item> in a feed in a

browser: on the right, the same item is displayed by aggregator/reader Flipboard [127]

on an Android OS (Appendix B.1) mobile device. In Algorithm 2.4, the edited text of

the <item> in the original RSS feed from TechCrunch [386], syndicated by FeedBurn-

er [111] at https://techcrunch.com/2015/12/15/spotify-poaches-bbc-radio-exec-

in-push-for-localised-curated-and-undiscovered-content/, is displayed.

Figure 2.3: The journalistic presentation style of headline, story and snapshot(s): RSS
feed in browser (left), and in a mobile device-based aggregator/reader (right).

https://techcrunch.com/2015/12/15/spotify-poaches-bbc-radio-exec-in-push-for-localised-curated-and-undiscovered-content/
https://techcrunch.com/2015/12/15/spotify-poaches-bbc-radio-exec-in-push-for-localised-curated-and-undiscovered-content/

2. Background 53

1: <item>

2: <title>Spotify Poaches BBC Radio Exec In Push For

Localised, Curated And Undiscovered Content</title>

3: <description>Video may have killed the radio star, but streaming

services are bringing it back to life...</description>

4: <pubDate>Tue, 15 Dec 2015 13:15:53 +0000</pubDate>

5: </item>

Algorithm 2.4: The RSS feed <item> element of the content displayed in Figure 2.3 (edi-
ted for clarity).

At http://www.oxforddictionaries.com/definition/english/utility the OED de-

fines utility to mean “The state of being useful, profitable, or beneficial”. Based upon

this, RSS must permit a “useful”, “profitable, or beneficial” utility to both publishers and

consumers. We define RSS’s utility by summarising the “social, spiritual, and mercenary”

reasons given by Hammersley [165] to explain why organisations and individuals syndicate

content in feeds: (1) to increase web site traffic, and to (2) to build up a web site’s “brand

awareness”. Both of these elements also assist in placement in search engine listings and

allow the building of a (3) “community of sites”. The addition of new technologies allows

(4) “others to give additional features to your service”, where this (5) “makes the Internet

an altogether richer place, pushing semantic technology along and encouraging reuse.”

In addition to Hammersley [165], Singh and Sahu [360] have also identified benefits for

both publishers and consumers. We summarise these benefits where RSS: (1) keeps users

up to date with news or other media, (2) provides subscriptions for individual users, (3)

presents article summaries, (4) lacks spam received via email, (5) has a simple subscrip-

tion/unsubscription model, (6) increases web site traffic because feeds help with SEO, and

(7) for advertising and marketing. Many of these reasons for the utility of RSS concern

social media, and it is for that reason that we look at this subject in the next section

(Section 2.3).

2.3 Social media

2.3.1 Defining social media

Although, a massive amount of information is available to do with social media, in this

thesis we are required only to provide an overview of the subject area: we do this by

asking four questions: (1) what is it? (2) what services does it provide? (3) what are these

services used for? and (4) why are these services used?

http://www.oxforddictionaries.com/definition/english/utility

2. Background 54

Articles on web pages, or web sites are frequently annotated with plug-ins that display

icons representing social media services. An example of this can be seen in Figure 2.4 for

IT developers site DZone at https://dzone.com/ in late 2015. In this example, from left

to right, the icons represent DZone’s RSS feeds, Twitter [408], Facebook [106], Google+

[149] and LinkedIn [227].

Figure 2.4: The social media icon strip from the home-page of IT development web site D-
Zone at https://dzone.com/ in late 2015.

We refer to the concise definition of social media provided by WhatIs at http://whatis.

techtarget.com/definition/social-media to answer our first question, i.e. that social

media is “the collective of online communications channels dedicated to community-based

input, interaction, content-sharing and collaboration.” These “online communications

channels” are enabled by Web 2.0 (Appendix B.2) technologies and accessed using a

browser or mobile device.

2.3.2 Applications

Our second and third questions concern the applications and services provided by social

media. These include:

• Blogging: Where web sites permit blogging or micro-blogging. These include Blog-

ger [41], Drupal [99], Joomla [208], LiveJournal [234], Tumblr [407], Twitter [408]

and WordPress [450].

• Content aggregation: As described in Section 3.2.

• E-commerce: Facilitated by on-line banking and retail service providers such as

Amazon [16] and Ebay [101].

• Education: In the use of VLEs or on-line course/MOOC providers, e.g. Blackboard

[39], Coursera [79], Moodle [269], the Open University [285], Udacity [409] and Ude-

my [410]. Another branch of educational use is the sharing of academic content by

Academia [2], Mendeley [256] and ResearchGate [325].

• Information: Where postings are made concerning particular reference subjects,

e.g. Encyclopædia Britannica [103], Scoop.it [348], Techopedia [388], Webopedia

[432] and Wikipedia [440].

https://dzone.com/
https://dzone.com/
http://whatis.techtarget.com/definition/social-media
http://whatis.techtarget.com/definition/social-media

2. Background 55

• Instant messaging: IM text or video messaging facilities include Facebook Mes-

senger [107], Skype [361], SnapChat [363] and WhatsApp [438].

• Personalisation and recommendation: Defined by Levene [224], this concerns

the customisation of web sites, social media or mobile devices, “by users explicitly

specifying their preferences, or implicitly through collection of data about the users

from the log of their searches.” This collection of data is frequently based upon

recommender systems4 employing user preferences and records of past activities,

e.g. Amazon [16] or Ebay [101], or where a social media service recommends content

to users. Two well-known techniques used to generate recommendations are: (1)

collaborative filtering, i.e. recommendations based upon known preferences of a

group of users, and (2) content-based filtering which recommends content based

upon user profiles.

• Sharing: Media sharing allows users to upload photographic, text, multimedia or

other content. This content is then shared with other users. Examples include BBS

software (Appendix B.2) as well as [24], [98], [126], [128], [193], [195], [196], [197],

[199], [229], [272], [261], [302], [368], [375], [417] and [461]. A variation on sharing is

the posting of comments to articles on web sites of newspapers and other periodicals

using Disqus [95] or equivalent services.

• Social networking: Defined by Boyd and Ellison [50] these are “web-based ser-

vices” allowing users to: (1) “construct a public or semi-public profile within a

bounded system, (2) articulate a list of other users with whom they share a connec-

tion, and (3) view and traverse their list of connections and those made by others

within the system. The nature and nomenclature of these connections may vary

from site to site.” On this basis, social networking could extend to include all of the

social media services listed in this section, although for convenience we restrict the

term to refer to popular services such as Bebo [29], Facebook [106], Google+ [149]

and Twitter [408]. More dedicated web sites include LinkedIn [227], questions and

answers web site Quora [314], and the family of web sites at StackExchange [370].

Two subsets of social networking concern: (1) services for meeting people such as

Match [250], Lovestruck [237] or Tinder [400], and (2) social bookmarking where users

bookmark web pages or other content, and share it with other members. Examples

include BibSonomy [37], CiteSeer [73], Delicious [91], Reddit [319] and StumbleUpon

[376].

4We consider the use of RSS by recommender systems in Section 3.4.

2. Background 56

• Streaming: Despite an overlap with sharing above, streaming video services offering

films or television series are provided by Amazon Prime [17], NetFlix [276], Talk-

Talk TV Store [383] (formerly Blinkbox), and (inter)national television networks.

Similarly, podcasts provide audio streaming (Section B.2).

2.3.3 Utility and use

This subject concerns our last question, i.e. why are these services used? This question

addresses the utility of social media, and builds upon our definition of RSS’s utility in

Section 2.2.4.

The uses and gratification theory (Blumler and Katz [43]), as explained by Lane [219],

“suggests that media users play an active role in choosing and using the media. Users

take an active part in the communication process and are goal oriented in their media use.

The theorist say that a media user seeks out a media source that best fulfills the needs

of the user. Uses and gratifications assume that the user has alternate choices to satisfy

their need.”

In a review of uses and gratification theory applied to social networking web sites,

Gallion [133] listed socialising, entertainment, self-status seeking and information as the

reasons why people use social media. Williams and Whiting [439] further referred to

“the application of uses and gratification theory to social media research” as a means to

“explain the many and varied reasons why consumers use and like social media.” We

summarise the “varied reasons” given by Williams and Whiting as follows: (1) social

interaction to maintain contact or interact with others, (2) information seeking to learn

or for awareness, (3) to pass time where users have “idle time or when they are bored”,

(4) entertainment is concerned with enjoyment, (5) relaxation where this focuses on stress

relief, (6) for the expression of opinions, (7) as a communicatory utility where social media

provides material for communication between related groups of people, (8) a convenience

utility which is always available, and (9) information sharing about individuals or groups

of people sharing information about themselves with others.5 In connection with this,

Tamir and Mitchell [384] cited Naaman et al. [273] with reference to surveys of internet

use indicating “that upwards of 80% of posts to social media sites (such as Twitter) consist

simply of announcements about one’s own immediate experiences.” Williams and Whiting

[439] also listed one further reason for the use of social media, i.e. surveillance/knowledge

about others in watching or finding out about other people and their activities on-line.

5Examples of this include the posting on-line of selfie photographs, and sharenting where parents post
pictures of their children on social media.

2. Background 57

Froget et al. [131] also listed similar reasons for the use of Facebook [106]. Commercial

uses of social media cited by Baker [23], include building up a business and promoting it

upon establishment, and learning about other employment/employer availability.

Figure 2.5: UK use of social media in 2013 - 2014 (reproduced from Ofcom [283]).

The popularity of social media, and the utility derived from it, can be measured by the

use of the applications providing it and their types of services (Section 2.3.2), where these

are browser- or mobile device- based. Figure 2.5 displays use of appropriate services by

UK adults, i.e. sixteen years or older, with a social media profile in 2013 - 2014 (Ofcom

[283]).

2.4 Data mining

Stated simply, data mining is the analysis of existing data to discover patterns. These

patterns, according to Witten and Eibe [447] must be “meaningful in that they lead to

some advantage, usually an economic advantage.” Data in data mining is also typically

quantitative especially when we consider the exponential growth in data produced by

social media (Section 2.3) in recent years, i.e. big-data (Appendix B.2). With reference

to Martin [248], applications of data mining may vary between domains but include fraud

detection and e-commerce, gaming and financial services, as well as scientific applications

such as analysing X-ray images and modelling gene behaviour. Whatever the application,

according to Witten and Eibe [447], the search for patterns in data “is automated—or at

least augmented—by computer.”

2. Background 58

The “unifying goal” of this knowledge discovery in databases (KDD) process is defined

by Fayyad et al. [108] as “extracting high-level knowledge from low-level data in the con-

text of large data sets.” We summarise the iterative stages of this process, with reference

to Figure 2.6, as follows: (1) identifying the end user’s goals by understanding the appli-

cation’s domain and prior knowledge, (2) the creation of a target dataset (Appendix B.2),

or samples, upon which discovery is to be performed. This requires pre-processing (3)

where the data is transformed by data cleansing or ETL in order to remove “noise” and

resolve any missing or temporally-based data. (4) concerns data reduction and projection

to determine useful features to represent the data depending on the goal of the task, and

to reduce the number of variables. (5) is when the data mining method is chosen, e.g.

clustering or classification, whereupon (6) selects the actual data mining algorithm to be

used. (7) performs the actual data mining where the search for patterns in data is carried

out. The outputs of (7) are evaluated and interpreted in (8) which may require the re-

peating of any or all of the previous stages to actually discover knowledge. Finally, stage

(9) sees action taken on the discovered knowledge based upon the domain’s requirements.

Figure 2.6: The knowledge discovery in databases process (reproduced from Fayyad et al.
[108]).

Fayyad et al. [108] further wrote that “the two high-level primary goals of data mining

in practice tend to be prediction and description.” The authors described the boundaries

between these goals as being “not sharp”, where prediction predicts “unknown or future

values of other variables of interest”, and description which focuses on “finding human-

interpretable patterns describing the data.” Both goals can be achieved using “a variety”

of data mining methods which include: (1) classification where, given a set of classes, we

2. Background 59

need to determine which class a new sample will belong to, (2) regression which models

the data with the least error, (3) clustering where members of a set are grouped according

to similarity measures (Appendix B.2), (4) summarisation represents the data or subsets

of it, (5) dependency modelling seeks to model dependencies between variables, and (6)

change and deviation detection concerns discovering changes in data since it was previously

measured.

2.5 Classification

There are two principal variants of classifying data:6

1. Supervised learning: Where classification tasks make use of training data in-

stances which are labelled with one of a finite set of classes. This data is then used

to train a classifier, i.e. a technique, to produce a model. The model is subsequent-

ly evaluated on testing data to determine which class the individual members of

the test data belong to. Well-known supervised techniques include DT, MNB and

SVM, and feature selection methods such as chi-square (Appendix B.2). According

to Aggarwal [9], applications of classification techniques include multimedia, text

and time-series data.

2. Unsupervised learning: Applications of unsupervised learning include pattern

recognition, recommender systems and neural networks. One common technique

employed is known as clustering where unlabelled data is grouped, i.e. clustered,

during the classification process based upon similarity measures. In k -means clus-

tering, this process is iterative until a termination condition, i.e. a pre-defined

convergence criterion or a fixed number of iterations, is met.

In the classification work for the first component of our third case study (Chapter 10),

we apply the aforementioned supervised DT, MNB and SVM techniques to RSS in order

to classify feeds into categories based upon the fluctuations in the frequencies of popular

keywords present in their text. We do not describe these classifiers or the reasons for our

selection of them here because these subject areas are more appropriately discussed in

Section 10.5. Nevertheless, it is necessary to comment upon the nature of text mining in

connection with case study three: we discuss this subject in the next section.

6cf. Phan et al. [298], Witten and Eibe [447] and Zhu et al. [467], who refer to semi-supervised learning
as a third variant where both unlabelled and labelled data are used during classification.

2. Background 60

2.6 Text mining

Hotho et al. [181], with reference to the Feldman and Dagan’s [118] “Knowledge Discovery

in Text (KDT)”, defined text mining as dealing:

“with the machine supported analysis of text. It uses techniques from infor-

mation retrieval, information extraction as well as natural language processing

(NLP) and connects them with the algorithms and methods of KDD, data

mining, machine learning and statistics. Thus, one selects a similar procedure

as with the KDD process, whereby not data in general, but text documents

are in focus of the analysis.”

As Hearst wrote [171], “large text collections as a resource to be tapped” may be struc-

tured, e.g. in an RDBMS or XML documents, or unstructured multimedia content dis-

cussed by Kappel et al. [209], with reference to Anastopoulos and Romberg [18] and Ceri

et al. [62], which may be produced by social media (Section 2.3).

Gupta and Lehal [163] identified nine methods of text mining. Briefly described, these

methods are: (1) information extraction which identifies key phrases and relationships

within text by using pattern matching to infer relationships between people, places and

time according to pre-defined sequences in text (Section 2.8.2), (2) topic tracking which

informs users of new topics based upon their previous viewing of a document(s), (3)

text summarisation, using sentence extraction or topic tracking, to provide document

summaries, (4) categorisation or classification where a document may be classified as a bag-

of-words (BoW) (Appendix B.2), (5) clustering to group documents, (6) concept linkage

connects related documents by identifying common themes or subjects, (7) information

visualisation (Section 2.8), (8) question answering where NLP (Appendix B.2) is used to

find the best answer to a question, and (9) association rule mining (Appendix B.2).

Applications of text mining include sentiment analysis (Section 2.7), news filtering and

organisation, document retrieval and classification, as well as email filtering (Aggarwal

and Zhai [11]), in the domains of publishing, telecommunications, IT, finance, politics

and pharmaceuticals. Moreover, these applications can be grouped into the “four main

typologies” discussed by Bolasco et al. [44], i.e.: (1) knowledge management and human

resources, (2) customer care and customer relationship management, (3) technology, and

(4) NLP.

2. Background 61

2.7 Sentiment analysis

Sentiment analysis, also called opinion mining, has been defined by Liu [230] as:

“the field of study that analyzes people’s opinions, sentiments, evaluations,

appraisals, attitudes, and emotions towards entities such as products, services,

organizations, individuals, issues, events, topics, and their attributes.”

As described by Medhat et al. [253], sentiment analysis is an “ongoing field of research

in text mining”. In the second component of our third case study (Section 2.7), we

make use of sentiment analysis to determine a correlation between the sentiment in the

text of RSS feeds and the fluctuations in the frequencies of keywords representing named

entities (Appendix B.2), where the results can be applied to trend analysis. It is necessary

to state that the black-box nature of our sentiment analysis work did not require the

development by the author of a sentiment analyser. Nevertheless, Figure 2.7 represents

a generic sentiment analysis architecture, and the following paragraphs provide a précis

of sentiment analysis methods and applications. These methods and applications are

discussed in more detail in many of the surveys carried out in recent years which include

[78], [85], [204], [230], [253], [274] and [292]. We refer to RSS-based related work employing

sentiment analysis in Section 3.3.3.

Collomb et al. [78], Liu [230] and Medhat et al. [253] have referred to three levels of

sentiment analysis:

1. Document level: Whether an entire document can be positively or negatively

classified, where the document necessarily focuses on a single subject. The weakness

of this approach is that there is no fundamental difference between document- and

sentence- level sentiment analysis because, as Liu [230] described them, “sentences

are just short documents.”

2. Sentence level: This approach determines if each sentence in a document has a

positive, neutral, i.e. no, or negative, sentiment. Point of view is an important

consideration here because, although a sentence can be either subjectively positive

or negative, sentiment is not necessarily subjective (Wilson et al. [445]).

2. Background 62

Figure 2.7: A generic sentiment analysis architecture (reproduced from Feldman [117]).

3. Aspect level: This is also known as word or feature level, and looks at the opinion,

which is either positive or negative, and a target, i.e. the subject, of the opinion.

Rohrdantz et al. [328] wrote that “Most approaches for feature-based sentiment

analysis involve three or four consecutive steps.” These steps involve: (1) features

for different sentiment “targets” which are generated automatically from the text

corpus, or are based upon other methods including pre-defined keywords or part-of-

speech (POS) (Appendix B.2), (2) sentiment words which “evoke positive or negative

associations” are searched for in the documents, (3) a “mapping strategy” relates

sentiment words to features to allow sentiment to be rated, and (4) a visual represen-

tation of the feature-based results permitting interactive exploration of the results.

An example of aspect-level sentiment analysis is provided by the sentence I love

Star Trek but I really hate Star Wars. Two sentiments are produced, i.e. love and

hate, and two aspects, i.e. Star Trek and Star Wars. Therefore, we can summarise

aspect/opinion sentiment for analytical purposes despite issues of emotion and dis-

ambiguation.

A number of methods used for sentiment analysis have been documented by [78], [230]

and [253]. The machine learning method uses supervised learning (Section 2.5) techniques

to determine sentiment by training a known dataset. Application of DT, NB, SVM and

2. Background 63

other classification techniques to sentiment analysis have also been documented by [54],

[58], [147], [159], [270], [365] and [418], and in several of the surveys listed in Section 2.6.7

Lexicon-based sentiment analysis involves calculating the sentiment polarity of a piece

of text, where positive and negative sentiment are produced by the use of lexicons of

positively and negatively weighted “opinion words and phrases” (Medhat et al. [253]).

SentiStrength, used in our sentiment analysis component of our third case study and

described in Chapter 11, is a lexicon-based analyser using weighted opinion words, e.g.

I love you scores 3, but when qualified by a booster word, I really love you, scores 4.

Medhat et al. also identified three ways of compiling the lexicon, i.e. (1) manually, (2)

using a limited manual lexicon augmented by on-line services, or by (3) employing a corpus.

Augustyniak et al. [21] wrote that “simplistic Bag of Words (BoW) lexicon methods for

sentiment polarity assignment with ensemble classifiers are much faster than a supervised

approach to sentiment classification while yielding similar accuracy.”

Collomb et al. [78] described the rule-based method as looking in text for “opinion

words” and then classifying the text “based on the number of positive and negative words.

It considers different rules for classification such as dictionary polarity, negation words,

booster words, idioms, emoticons, mixed opinions etc.”

Statistical methods of sentiment analysis were also described by Collomb et al. [78],

where these methods represent each review as a combination of aspects and ratings: it is

“assumed” that these items “can be represented by multinomial distributions and try to

cluster head terms into aspects and sentiments into ratings.” Medhat et al. [253] also refer

to the use of statistical methods to find “co-occurrence patterns or seed opinion words”,

or by studying the frequency occurrence of words. Hybrid approaches have also been

documented, e.g. the use by Weichselbraun et al. [435] of machine learning and lexical

analysis to identify ambiguous terms and storing them in “contextualized sentiment lexi-

cons”, where in “conjunction with semantic knowledge bases, these lexicons help ground

ambiguous sentiment terms to concepts that correspond to their polarity.”

Applications of sentiment analysis are of course legion, varying from sentiment gathered

from reviews, e.g. relating to film on IMDb [196] or products on Amazon [16], postings

to Facebook [106], micro-blogging on Twitter [408], RSS feeds, blogs or other social media

(Section 2.3). With reference to Feldman [116], these applications include: (1) businesses

and organisations which require consumer opinions to do with products they market and

services they produce, (2) individuals who make decisions to purchase products or services

7cf. Hotho et al. [181] and Aggarwal and Zhai [11], where both refer to the application of DT, NB and
SVM classifiers in text mining: we employ these classifiers in the classification component of our third
case study (Chapter 10).

2. Background 64

based upon word of mouth or on-line reviews, or to find public opinion, e.g. concerning

politics or local issues, (3) on-line advertising where in social media, an organisation may

place an advertisement in response to a favourable review of a product, or a rival product

could be advertised upon receipt of a bad review, and (4) opinion retrieval for general

searches of opinions.

Lastly, we must mention the problems of sentiment analysis. As Liu [230] wrote,

“sentiment analysis is a NLP problem. It touches every aspect of NLP, e.g. coreference

resolution, negation handling and word sense disambiguation”. Medhat et al. [253] have

also cited the lack of resources for Middle Eastern languages including Arabic.

2.8 The visual representation of data

2.8.1 Principles

According to Simoff et al. [359] “the visual data mining process relies on visualisation

and the interaction with it”. In order to achieve this, an effective visual representation of

data must, as Tufte [406] wrote, “visually display measured quantities of social data by

means of the combined use of points, lines, a coordinate system, numbers, symbols, words,

shading and color.” Furthermore, Tufte wrote that:

“It was not until 1750-1800 that statistical graphics-length and area to show

quantity, time-series, scatterplots, and multivariate displays-were invented,

long after logarithms, Cartesian coordinates, the calculus and the basics of

probability theory. The remarkable William Playfair (1759-1823) developed or

improved upon nearly all the fundamental graphical designs, seeking to replace

conventional tables of numbers with the systematic visual representations of

his “linear arithmetic.” ”

Two classical examples of these principles are: (1) the mapping by Dr John Snow (1813

- 1858) of the victims of the 1854 Broad (now Broadwick) Street cholera outbreak in

London’s Soho (indicated by the dots on Figure 2.8a), which permits “graphical analysis”

despite lacking any reference to population density, and (2) the 1869 map by French engi-

neer Charles Joseph Minard (1780 - 1871), displayed in Figure 2.8b, which combines data,

map and time-series (Section 2.8.3) to portray the losses suffered by Napoleon’s Grand

Army in 1812. It is through this “graphical excellence” that visualisations reveal inter-

esting data to truthfully communicate complex ideas with, as Tufte [406] wrote, “clarity,

precision and efficiency.”

2. Background 65

(a) The Soho cholera outbreak in London in 1854 by Snow.

(b) Minard’s representation of Napoleon’s retreat from Moscow in 1812 (translated).

Figure 2.8: Two classical examples of the visual representation of data.

2. Background 66

Ware [429] defined the process of contemporary data visualisation as consisting of four

iterative stages, which we summarise as follows: (1) data collection and storage, (2) pre-

processing of data to transform it into a comprehensible format, (3) the hardware and

software to render an image on screen, and (4) human perception and cognition. This

cognition is primarily visual and it is frequently conveyed by the use of information graph-

ics, or infographics (Appendix B.2). Common contemporary examples of infographics

include: (1) Harry Beck’s map of the London Underground in 1931 [405], originally based

upon circuit diagrams and which has since been duplicated globally, (2) the use of traffic

lights and street signs which give instructions to road users and pedestrians alike, and

(3) in the displaying of weather, satellite navigation or other dedicated on-line mapping

tools such as Google Maps [152] and Bing Maps [38]. In IT itself, infographics are used to

represent database designs, application architecture and software processing by employing

diagram types such as DFDs and ERDMs, and those used in SSADM, UML and other

design methodologies.

A frequent use of infographics is to provide a visual representation of a corpora of text

documents, which may be temporal in nature. We discuss two alternative approaches to

this in the following sections of this chapter.

2.8.2 Text streams

In discussing information visualisation for text mining, Hearst [172] referred to three an-

alytical issues of concern: (1) “visualizing connections among entities within and across

documents”, (2) methods for visualising “occurrences of words or phrases within docu-

ments”, and (3) visualising “relationships between words in their usage in language and

in lexical ontologies.” These issues apply to text streams as a subset of text documents.

In their review of the visualisation of text streams in 2010, Silić and Bas̆ić [358] defined

three types of text data: (1) a “collection of texts”, (2) a “single text”, and (3) a “short

interval of a text stream” arriving in real time, where the last of these is “used to visualize

trends in texts” in real-time. Streaming is defined by Luo et al. [239]:

“By “streaming” we mean that all text documents are divided into a sequence

of batches based on their time stamps and the intake and processing of the

documents are in a batch-by-batch manner. By “incremental” we mean that

processing the current batch of data does not involve reprocessing of data in

previous batches, and its processing results are seamlessly merged into the final

outputs.”

2. Background 67

Unstructured text in text streams is not considered by Silić and Bas̆ić [358] to be “suitable

for visualization, so a text is usually represented in [the] vector space model.” Although

they refer to alternative approaches, Silić and Bas̆ić cite BoW as “an instance of VSM”,

which produces a word frequency “vector in the space of features, which correspond to

the words found in the text.” The authors listed five methods of feature selection for use

when visualising text streams:

1. Bag-of-words: BoW can be improved by removing stop-words, disambiguation or

n-gram extraction.

2. Entity recognition: Using NER (Appendix B.2) to identify entities, and relation-

ships between them.

3. Summarisation: To present the most relevant information, techniques include key-

word extraction, keyword assignment, thematic categorisation, and fact extraction.

4. Document structure parsing: To visualise structural data such as the title, au-

thor, and publication date.

5. Sentiment and affect analysis: To emotionally characterise the content of texts

(Section 2.7).

Silić and Bas̆ić further divided text visualisation methods into two categories:

1. Semantic space: Where “the vectors representing texts are of high dimensions

because textual features are numerous, so dimensionality reduction techniques are

employed in order to map these vectors to 2D or 3D space.” The authors wrote

that “For now, most methods that use the semantic space approach enable trend

discovery” by “time slicing” to create a series of time-based views which can be

analysed to determine “changes in the text stream.”

2. Term trend: For trend analysis (Appendix B.2) in text streams using the “plot

frequencies of important terms found in texts at a given window of time.” Feature

selection can be employed to reduce the amount of data to be displayed, and this

can vary from simple keyword frequencies “to more complex statistical measures of

feature importance such as information gain or χ2”. A frequently cited example of

the term trend approach is ThemeRiver by Havre et al. [170] which displayed a

2. Background 68

representation of a river in order to visualise the changes in frequencies of keywords

over a period of time: this is illustrated in Figure 2.9.8

The “term trend” approach is often employed in conjunction with sentiment analy-

sis (Section 2.7), e.g. to determine sentiment relating to a particular trend, topic or

event, and it is to this subject that we return in Section 3.3.3 when we consider aca-

demic research involving the application of sentiment analysis to RSS. Applications

of text stream visualisation are described briefly in Section 2.6.

Figure 2.9: ThemeRiver displaying data concerning Cuban leader Fidel Castro between
Nov 1959 - Jun 1961 (reproduced from Havre et al. [170]).

8cf. Wanner et al. [428], who in a survey of visual analytics for event detection in 2014 (described in
Section 3.3.3), identified that fifteen of the fifty-one works surveyed made use of the river motif.

2. Background 69

2.8.3 Time-series plotting

A time-series plot is a set of data points typically measured over a period of time and

arranged chronologically. Time-series plots, used since the late 1700s according to Tufte

[406], can be univariate, i.e. single variable, or multivariate, i.e. multi-variable, and the da-

ta points represented may be measured at fixed or varying lengths of time. The description

provided by Investopedia at http://www.investopedia.com/terms/t/timeseries.asp

states that:

“Time series analysis can be useful to see how a given asset, security or econom-

ic variable changes over time. It can also be used to examine how the changes

associated with the chosen data point compare to shifts in other variables over

the same time period.

For example, suppose you wanted to analyze a time series of daily closing

stock prices for a given stock over a period of one year. You would obtain a

list of all the closing prices for the stock from each day for the past year and

list them in chronological order. This would be a one-year daily closing price

time series for the stock.”

The four main components of a time-series plot are, according to Adhikari and Agrawal

[6]: (1) trend where the observable movement of the data measured over time will increase,

decrease or simply stagnate, (2) seasonal variations which vary according to climate, or

cultural traditions, e.g. pre-Christmas preparations in Christian countries, (3) cycle which

relates to circumstances that repeat over a term of years such as the boom/slump economic

cycle, and (4) irregular components which concern the effects of natural catastrophes or

human actions including wars, strikes and political change.

In considering “the effects of these four components”, Adhikari and Agrawal referred

to two models of time-series plots: (1) the multiplicative model which is “based on the

assumption that the four components of a time series are not necessarily independent and

they can affect one another”, and (2) the additive model wherein “it is assumed that the

four components are independent of each other.”

In Section 1.4 we identified our paradigms with the exploration of trends. Moreover,

several of the visualisation types employed in our case studies serve as time-series plots.

The x - y charts used in case studies one and two (Section 4.7.7) are a combination of uni-

and multi- variate plots. Figure 2.10 displays a sample multivariate plot from the results of

our first case study (Section 6.3.3) which illustrates keyword frequency data for a twelve

hour period. Multivariate plots are also provided by the keyword frequency/sentiment

http://www.investopedia.com/terms/t/timeseries.asp

2. Background 70

plots in our sentiment analysis work in Section 11.8.4 and Appendix A.3.4. Examples

of related work in Section 3.3.3 also employ time-series plots to detect trends, topics or

events, whilst others employ the river motif illustrated in Figure 2.9. A detailed study of

the use of visualisation and visual analysis for visualising “time-oriented data” is provided

by Aigner et al. [12].

Figure 2.10: Time-series plot of frequencies of questions asked for various programming
languages at http://www.stackoverflow.com/feeds between 13 00 - 23 00 on 30 Nov
2009: cf. case study one.

2.8.4 Software

Many web sites provide tools for data visualisation. Examples of these include CanvasJS

[59], FusionCharts [132], Google Charts,9 GraphViz [160] and VisualComplexity [420].

Several of these products are included in recent surveys by Kuzniewicz [216], Machlis

[241] and Suda [377] of tools for data visualisation and analysis which concern business

intelligence: Microsoft Excel [259] and Tableau [380] extend this into data mining (Section

2.4). Related to these products are the visualisation facilities provided by the data mining

tools described in Section 10.5. It is also necessary to mention several former web sites that

tended towards data-sharing, e.g. DabbleDB [83], Many-Eyes [245] and Swivel [378], where

users were able to upload data, visualise it and allow comments to be added to it.

9We refer to Google Charts (Appendix B.1) in Section 4.7.7 in the review of products for use in the case
studies for our first paradigm.

http://www.stackoverflow.com/feeds

2. Background 71

2.9 Actionable and effective data: a definition

The major theme of the aforementioned subject areas is the mining and sentiment/visual

analysis of data within the context of social media. Social data is the sum of the informa-

tion produced daily by millions of people globally as they participate in the use of various

types of social media services (Section 2.3.2). A more granular definition is provided by

Vis [419], with reference to Ellis [102], where:

“social media is essentially about communication and users expressing them-

selves, where their content is ‘delivered to other users’. Social data on the other

hand ‘expresses social media in a computer-readable format (e.g., JSON) and

shares metadata about the content to help provide not only content, but con-

text. Metadata often includes information about location, engagement and

links shared. Unlike social media, social data is focused strictly on publicly

shared experiences.’ ”

Therefore, data mining and analysis techniques can be applied to social data where, with

reference to Professor I. Witten [446], the creator of Weka (Section 10.5), “the information

extracted should be “potentially useful.” In one sense, this means actionable–capable of

providing a basis for actions to be taken automatically.” We derive the term actionable

and effective from this quotation, and use it to describe the outputs of the case studies for

our paradigms (Section 1.4) whether the resulting actions are automatic or manual. This

is because: (1) RSS is an example of social media, and (2) the applications and academic

research employing RSS (Chapter 3).

This explanation of actionable and effective data provides the basis within social media,

data and text mining, sentiment analysis and the use of visualisation to represent data,

for our paradigms and their case studies. In our opinion, our case studies are not using

RSS as a source of data for a particular classification of other type of operation. Instead,

we believe that our case studies enhance RSS’s social utility by employing the technology

itself to produce a comprehensible and explainable representation of data which is inherent

within the fluctuations in the keyword frequencies present in the text of RSS feeds: where

according to Witten [446], the “information extracted must be comprehensible in that it

helps to explain the data.” Consequently, the data provided by our case studies is more

actionable and effective than the journalistic style of presentation (Section 2.2.4) that we

currently see in the use of the technology (Chapter 3).

2. Background 72

We employ the medium of visualisation (Section 2.8) for the outputs of our case studies.

This is because of the medium’s ability to coherently represent actionable and effective

data in a manner which can benefit users in several real-world domains by correlating or

tracking topical issues for trend analysis in business intelligence, statistics, politics, market

research and related subject areas, or for mining modern forms of ticker-tape data, such

as financial movements, sports or lottery results. Alternatively, users in these domains

could benefit from a raw form of actionable and effective data.

2.10 Afterword

We began this chapter by defining RSS, together with its history and format. The technol-

ogy’s utility with respect to social media and data, data mining and related disciplines are

then described. The rationale for this is that these subject areas, and web engineering (Sec-

tion 4.2), coalesce to define the landscape of this thesis. In addition, Chapter 3 provides

a related review of the applications and academic research employing RSS.

Chapter 3

A review of RSS

3.1 Foreword

In connection with Chapter 2, the purpose of this chapter is to provide a sampling of the

use of RSS within the context of social media during the last decade. We partition this

review into several sections: Section 3.2 outlines different types of RSS-based applications,

Section 3.3 discusses academic research using RSS feeds in classification and sentiment

analysis, whilst Section 3.4 concerns other related work. Lastly, in Section 3.5, we focus

upon related work which has been affected by the format of RSS, or factors to do with

the technology’s format and use.

In presenting this review, it is necessary for us to state that much of the related work

cited in this chapter is provided for reference purposes only. Moreover, we only compare

appropriate examples of related work with our RSS-mining paradigms (Section 1.4.1) in

the final chapters in Parts II and III, i.e. Chapters 9 and 12 respectively, following the

presentation of the case studies for each paradigm.

3.2 Applications

According to an article in 2014 titled How the Feed Changed the Way We Consume Content

by Hiscott [174], the “RSS feed - or as we now know it, “the feed” - organizes the world into

a series of neat, clickable, constantly updating bits of information.” The article continued:

“The feed now dominates online content consumption, from the news we read on our

mobile devices to the social networks we check constantly throughout the day, as well as

the ads [sic] that integrate onto those platforms.”

73

3. A review of RSS 74

The inter-related categories in the list below group indicative but by no means exhaus-

tive examples of this “content consumption” as they, the categories, document applications

employing RSS within the context of social media (Section 2.3) and other services:

• Advertising: Using RSS for advertising includes services such as: (1) BrandRepub-

lic [51] and equivalent web sites providing RSS feeds to advertise particular services,

e.g. jobs or parts of industry, (2) allowing advertisers to buy space in RSS or other

feeds for their advertisements, e.g. BuySellAds [56], and where (3) advertisements

are displayed in RSS based upon the content of the feeds, e.g. Google AdSense [150]

or FeedBlitz [110].

• Aggregation and readers: RSS aggregation is a process by which software known

as aggregators collect large numbers of RSS feeds, blogs or other types of syndi-

cated content, and aggregate them into one or more feeds for user consumption via

readers. Aggregation may be based upon keyword filtering, user preferences (ei-

ther user-defined or gathered based upon usage), or other classification/text mining

techniques, some of which are described in Chapter 2. Readers, which may be free

of charge, fee-paying or membership-based, allow users to register, or subscribe to,

individual RSS feeds or aggregations thereof, or to other on-line content. This pro-

cess removes from the user the inconvenience of manually trawling numerous web

sites for material of interest. In 2008 the published results of the survey by Lee

et al. [223] of RSS usage in Klang Valley, Kuala Lumpur in Malaysia, identified

two types of aggregator, i.e. those “browser-based (online) or client-based (desktop)

application.” Since that time, given the growth of social media (Section 2.3) and

the mobile platform (Appendix B.2), we do not make use of this distinction in this

thesis and group aggregators with readers together: in some of the examples cited

below, the terms aggregator and reader are substantially synonymous because both

functions are provided by the same web site, mobile device app (Appendix B.2) or

web application.

Content provided by aggregators varies: dedicated news aggregators include Google

News [153], Huffington Post [189] and Yahoo News [457], whilst other aggregators

such as BuzzFeed [57], Feedly [114], Flipboard [127], Pulse [228] and Quartz News

[312], and portals such as iGoogle [194] and NetVibes [277], are more broadly based

in the content they supply. The Europe Media Monitor (EMM) [105] is a multilingual

news aggregator system, which monitors some 10,000 RSS feeds using some 500 pre-

defined news categories. EMM provides information about entities, such as people,

3. A review of RSS 75

organisations and geographical locations mentioned in the news: the related Medical

Information System, i.e. MediSys [255], is concerned with public health.

Other aggregator services, e.g. Flipboard [127] and Pulse [228], provide dedicated

client readers, some of which take the form of apps. Equivalent software is also

available for digests, which may include all or partial content, from other social media

services including questions and answers web site Quora [314], the StackExchange

[370] family of web sites, Twitter [408] and photo-sharing web sites such as Flickr

[126], Instagram [199] and Pinterest [302]. Sage [341] provides an example of a reader

dedicated to the FireFox [121] browser. Popular email clients such as Microsoft

Outlook [262] and Mozilla’s Thunderbird [399] also provide RSS reader services.

Despite the fact that Google Reader [154] was discontinued in 2013, many third-

party hosted aggregator/reader services exist on-line including BazQux [28], Feedbin

[109], InoReader [198], NewsBlur [278], NewzCrawler [279], Reedah [321], RSSOwl

[340] and The Old Reader [392]. Several of these services are included in an extensive

list of RSS aggregators and their characteristics maintained by Wikipedia [441] which

covers different platforms, operating systems and business models. RSS Reader [335]

lists aggregators and readers for dedicated platforms including several for the mobile

platform. In contrast to the above, Fever [119], FreshRSS [130] and Selfoss [350] are

applications which can be downloaded to act as self-hosted RSS aggregators.

• Bulletin board system (BBS): Where users can discuss RSS, Atom (Appendix

B.2) and related technologies. Examples include Tiny Tiny RSS [401] and WebMas-

terWorld [430].

• Delivery mechanism: The existence of RSS feed on a web site or a browser, is

typically revealed by the presence of the radio wave icon (Section 2.2.1), or a vari-

ation thereof. With reference to the quotations from Hiscott [174] at the beginning

of this section concerning feeds dominating “online content consumption”, this is

because RSS, as a dialect of XML, is machine-readable and can therefore exchange

content between systems as a web service, especially where multimedia is concerned.

As described by Møller and Schwartzbach [268], “Together, the XML data represen-

tation format and the HTTP communication protocol provide a powerful foundation

for building Web services.” We see this in blogging and social media (Section 2.3),

and in the mobile platform where RSS (or XML) facilitates the delivery of content

in the background. Examples of this include newer services such as Feedly [114] and

Flipboard [127]: both ultimately are readers relying upon aggregated content from

3. A review of RSS 76

RSS and other sources of data, and presenting it in the journalistic style of headline,

story and snapshot(s) (Section 2.2.4).

• Management services: FeedBurner [111] and FeedBlitz [110] allow customers to

publish their own RSS feeds and provide traffic analysis and emailing services. These

web sites are equivalent to email marketing organisations such as AWeber (http:

//www.aweber.com/) and MailChimp (http://mailchimp.com/). Other sites, e.g.

NetVibes [277], provide brand monitoring and reputation management services to

track trending topics. Sentiment analysis (Section 2.7) of RSS (and other data

formats) is also offered as a fee-paying service by organisations including Semantria

[351], Trackur [404], WebLyzard [431] and Zapier [464] who also provide a service to

convert email to RSS.

• Search engines: Like conventional search engines, these allow users to search RSS

feeds using their own or topical keywords. Additional features may include labelling

news stories, notifications and storing favourite stories. Examples of RSS search

engines include Instant RSS Search [200], RSSMicro [339], and the Ukora News

Search Service [411]. Other RSS search engines provide a dedicated service, such as

RSS4Medics [337].

• Tools: These products can be approximately divided between client and server. The

former, which include the now demised Yahoo Pipes [456] and deprecated Google

Feed API [151], allow RSS feeds to be combined with other content and displayed

on web pages using JavaScript or AJAX. Alternative tools include FeedsAPI [115],

Huginn [190] and the now discontinued Kimono [210].

By contrast, server-side tools include Rome (Section 4.7.5) and rss4j [71], both of

which are Java-based tools which can parse RSS feed content programmatically. Ad-

ditional tools include Microsoft’s Windows RSS Platform as part of their Developer

Network [264], and examples for other programming languages include Groovy’s

XmlSlurper [454], Python’s PythonRSS library [310] and Feedjira for Ruby [113].

Other software allows RSS feeds to be created, e.g. FeedForAll [112], or for HTML

to be converted into RSS (RSS Wizard [336]). In a reversal of this, Page2RSS [290]

can check web pages for updates and generate RSS feeds with the updated sections

of the web pages. Full-Text RSS [125] and WizardRSS [448] transform partial web

feeds into full content feeds. RSS4Twitter [338] allows the delivery of Twitter [408]

tweets in RSS feeds. Voice RSS [421] converts the raw text of RSS into speech in

http://www.aweber.com/
http://www.aweber.com/
http://mailchimp.com/

3. A review of RSS 77

twenty-six languages and language variations.

• Visualisation: The format of RSS (Section 2.2.3) includes no native facilities for

visualisation but RSS data is frequently visualised: we discuss this subject area in

Sections 2.8 and 3.3.3.

3.3 Academic research

3.3.1 The structure of this review

The massive corpus of pre-existing RSS-based related work in the subject areas of data

and text mining, sentiment analysis and visualisation of data is beyond the scope of this

review. Nevertheless, the following sections of this chapter are substantially organised

to provide indicative examples of RSS-based related work in each area. In some cases,

the sections overlap because of the combination of subjects in particular examples of the

related work presented. In addition, in Chapters 9 and 12, we look in greater detail at

specific examples of the related work described below that we consider appropriate to our

paradigms.

3.3.2 Aggregation and classification

In this section, we are concerned with related work which applies well-known classification

techniques to RSS feeds: this work frequently employs aggregation and filtering of content

(Section 3.2).

We find several instances of association rules (Appendix B.2) being applied to text mining

in academic work. Kittiphattanabawon and Theeramunkong [211] used an association

rule-based approach to mining relations within Thai news articles about politics, eco-

nomics and crime. The WNSS, i.e. World News Search System, by Hsu [184] analysed

news collected and published on-line via association rules and clustering to discover “use-

ful” news by extracting phrases from “large corpora of web news stories.” In 2010 Rahman

et al. [315] used association rules to derive feature sets from 115 document abstracts and

applied NB to the features for final classification.

In 2006 Garcia and Ng [135] demonstrated the filtering of RSS content, based upon a

similarity measure (Appendix B.2) between words, and cited the accurate removal of re-

dundant and less-informative RSS news articles. The PersoNews reader by Banos et al.

3. A review of RSS 78

[26] in 2006 employed an NB classifier to filter “uninteresting” RSS feed content based

upon user feedback.

During 2008 Phan et al. [298] focused on large-scale “universal datasets” including

Wikipedia [440], feeds and other sources, to present “a general framework to build clas-

sifiers for short and sparse text & Web data [sic] by making the most of hidden topics

discovered from huge text & Web collections.” RSS feeds were used by Han et al. [166]

in 2009 to “calculate the relevance between the news title and each sentence” in order to

detect, and thereby acquire, the “the news article contents from the news pages without

the analysis of news sites before extraction.” Furthermore, “the relevance between the

news title and each sentence in the news page” was calculated in order to “detect the

news article contents.” Han et al. documented results of up to 98.00% precision, using

feeds from major international news sources during the May 2005 - Sep 2008 period.

The news collection method employed by Han et al. [166], referred to in the previous

paragraph, was used by Liu et al. [231] in 2009. Citing the absence in RSS of “uniform

standards for categorization” and variations in the categories used by publishers to clas-

sify content, Liu et al. developed their NDS, i.e. News Directory System, application to

allow users to create “customizable personal news RSS feeds using existing ones.” NDS

categorised news stories using “one-level flat” and “multi-level tree” directory structures:

the former approach made use of WordNet [449] or Wikipedia [440] to build collections

of names: the latter approach used classification trees. This categorisation of content

worked on the basis of defining a “news article A to be contained in category B” where

“the article A has an occurrence of the word B.” Categories provided by NDS concerned

named entities such as countries, people, organisations or events, and from these cate-

gories, personal news feeds could be configured for individual demands. Users were also

able to re-categorise content as they required. Liu et al. [231] documented tests involving

news extraction and automated classification “which confirmed the availabilities of our

approach.”

In 2007 Fiumara et al. [124] employed an XML database to retrieve and query RSS

and Atom feeds using XQuery. During the same year uBioRSS was developed by Leary et

al. [220] to aggregate syndicated content from academic publishers and science news feeds,

which were subjected to a taxonomic NER (Appendix B.2). The resulting “name index”

was “cross-referenced to current global taxonomic datasets, to provide context for browsing

the publications” by relevant parties. uBioRSS is available at http://ubio.org/rss/.

AtomsMasher by Van Kleek et al. was the subject of a series of papers and articles

http://ubio.org/rss/

3. A review of RSS 79

between 2007 - 2009 which included [414], [413] and [412]. AtomsMasher allowed users to

write simple scripts to express rules for querying, filtering and specifying behaviours on

RSS feeds, email and weather forecasts, which were then carried out by the application.

The prototype of the RoSeS, i.e. Really Open Simple and Efficient Syndication, frame-

work for crawling, filtering and aggregating RSS feeds was documented by Creus et al.

[80] in 2011. The purpose of RoSeS was to permit users to create “personalized feeds by

defining and composing content-based filtering and aggregation queries on collections of

RSS feeds.” These queries were then “translated into continuous multi-query execution

plans”. RoSeS was also employed, or referred to, in work by: (1) Hochard et al. [179] to

develop a “Semantic Map” for RSS feeds to “present a method to annotate RSS feeds with

a domain ontology to support discovery queries expressed as linear expressions in terms of

the ontology”, (2) Horincar et al. [180] in respect of a best-effort refreshing of RSS under

limited bandwidth to prevent information loss, and (3) Shaikh and Rajawat [353] who in

2012 described work concerning RoSeS to enable large-scale aggregation of science-based

Atom feeds.

Saha et al. [342] employed TF-IDF (Appendix B.2) to create keyword vectors which

were classified using SVM. In 2010 the authors wrote that their prototype web service was

restricted to RSS feeds concerning sports and business news. Data was collected from

various news websites and some twenty newsgroups: the training dataset contained “50

articles for business news and 50 articles for sports news.” A further 1,200 files were col-

lected “from news group dataset, BBC, News and CNN websites” for use as testing data.

Citing random precision results produced by their prototype, the authors wrote that “Ex-

perimental results suggest that the proposed method is effective and saves a significant

amount of user processing time.”

Using data collected from Chinese language RSS feeds, in 2010 Teng et al. [391]

sought to build a “self-sufficient news collection system in [sic] disaster domain.” The

authors presented a system of three components: (1) article acquisition employed the

URLs in <item> elements (Section 2.2.3) in the feeds to download the HTML data of

the referenced web pages in order to extract news information from them, (2) article

summarisation used clustering and sentence similarity to identify local topics, and (3)

article classification where for the natural disaster data, an SVM classifier with a linear

kernel determined which “articles are in the predefined domain and which are not.” Teng

et al. reported that evaluation of their summarisation techniques, using valid word and

high-frequency word coverage ratios, returned higher results than alternative approaches,

3. A review of RSS 80

and their classification techniques produced average F-measures (Appendix B.2) of 90.30%.

In 2012 Cingiz and Diri [72] combined data from 2,105 RSS feeds into four categories

of training data, and data from “tweets of 26 normal microbloggers and tweets of 27 bots”,

i.e. Twitterbots (Appendix B.2), for testing. After pre-processing, involving TF-IDF and

chi-square feature selection, data was classified using SVM and MNB. In their results,

Cingiz and Diri found that “bots provide more categorical content than normal users.”

Longe and Salami [236] integrated an aggregator with a multi-class SVM classifier to

automatically categorise feed content, and called their application NBlogs. An experiment

was presented in 2014 which used: (1) 1,020 “manually categorized posts” retrieved from

Nigerian blogs and web sites, and (2) a series of ten categories including Business, Current

Affairs, Education, Entertainment and Science & Technology. The authors documented

results showing that their “text classifier performs well in categorizing” RSS feed content,

but in conclusion Longe and Salami wrote that “it is not reliable to categorize contents

consumed from a feed using the pre-defined category of the Feed”. This was because their

SVM classifier placed some “68% of the feed content retrieved” in a different category

compared to the category specified by the feed’s publisher.

During 2015 Hurtado [191] proposed a method to improve the quality of RSS feeds.

This method involved the web page where a feed is located. For each <item>, the main

textual content and the most prominent image were retrieved: each <item> was then clas-

sified via a one-versus-rest algorithm. Given the 39.98% to 95.62% improvement in item

quality, Hurtado proposed this method’s use in RSS aggregators and readers (Section 3.2).

Clustering of RSS content has also been performed. In 2007 the RSS Clusgator by Li

et al. [226] helped users to read blogs by clustering stories into hierarchies. If a user sub-

scribed to a group of feeds, the clusters containing the stories of the feeds were returned to

the user for faster browsing. The authors compared their results favourably with equiva-

lent times taken to find stories of interest on (the now demised) BlogLines [42]. Qincheng

et al. [311] proposed extracting content from web pages based upon a template index of

pages. NewsStand by Teitler et al. [390] extracted geographic information from RSS feeds

and grouped articles into story clusters: users were able to use a map to view results based

upon significance and location.

Banerjee et al. [25] sought to improve the clustering of small pieces of text by sup-

plementing their descriptions with text from Wikipedia [440], and claimed improvements

in overall clustering accuracy (Appendix B.2). According to Hu and Chou [185], their

RSS Watchdog produced online “news clustering and event monitoring over multiple RSS

3. A review of RSS 81

news streams”, and grouped them temporally per channel, or group of channels, to find

cross-channel temporal relationships.

In 2009, Pera and Ng [295] clustered non-redundant and informative RSS news articles

to filter and classify feed data using a fuzzy logic equivalence relation. This work was

extended by the authors in 2012 [296] with a filtering and clustering approach to RSS,

i.e. FICUS, which started with identifying and removing redundant news articles using

a “fuzzy set information retrieval approach” which then clustered “the remaining non-

redundant RSS news articles according to their degrees of resemblance.”

Caveats to clustering RSS are discussed by Roesler [327] as a subset of text clustering

generally, i.e. the number of documents or RSS feeds/items to be clustered, semantic and

linguistic issues, and the time taken to cluster content, especially in a real-time application.

Other instances of classification/filtering of RSS content include: (1) Wegrzyn-Wolska

and Szczepaniak [434] who classified RSS documents using a fuzzy full-text similarity. (2)

Reed et al. [320] proposed a new term weighting measure known as TF-ICF, i.e. Term

Frequency - Inverse Corpus Frequency, which unlike TF-IDF “does not need term frequen-

cy information from other documents within the document collection”, and which permits

the generation of “document vectors of N streaming documents in linear time.” Reed et

al. documented “above average performance in most cases” when TF-ICF was compared

with five other commonly used term weighting methods in the context of document clus-

tering tasks: 127,742 news feed documents from the Los Angeles Times newspaper and

other sources were used for data. (3) RSS PROYECT by de la Torre-Dı́ez et al. [89]

concerned the use of RSS for syndicating content using filters installed in content man-

agement system Joomla [208]. (4) Bouras et al. [49] published PeRSSonal in 2008 which

was based upon work to do with personalisation and classification by Antonellis et al.

[20]. PeRSSonal used cosine similarity (Appendix B.2) to summarise and categorise RSS

data before delivering personalised outputs, and was later supported with the advaRSS

crawler by Adam et al. [3]. (5) Darabi et al. [87], who in 2012 proposed a ranking model

called LabelledNews which used query-expansion (Appendix B.2) to categorise streaming

news items directly from news feeds without retrieving original content. (6) Adeniyi et

al. [5] employed KNN (Section B.2) clustering to identify click stream data belonging to

clients/visitors, and sought to match it to user groups in order to recommend tailored

browsing.

3. A review of RSS 82

3.3.3 Sentiment analysis

Scope

In this section, we consider RSS and sentiment analysis. This work frequently extends

into the subject areas of visualisation and trend, topic or event detection, or a combi-

nation thereof. For convenience of presentation, we describe RSS-based related work in

these subject areas together in a single section below, which is organised in approximate

chronological order by year of publication. In connection with this, we refer to Wanner

et al. [428] who in 2014 published a state-of-the-art survey of the use of visual analysis

for event detection in text streams. In this study, the authors identified twelve distinctive

sources of text data including email, micro-blogging, RSS and others, used in a total of

fifty-one papers between 2007 - 2013. Wanner et al. wrote that:

“One thing we noticed was that data sources have dramatically changed from

news to social media since 2010. Mainly due to the burst of social media, many

research studies used text data streams generated out of Facebook or Twitter.”

We document the six examples of RSS-based work identified by Wanner et al. because of

the aforementioned consideration by this section of RSS and the subject areas of sentiment

analysis and visualisation. Accordingly, we do not document related work concerning “text

streams generated out of Facebook or Twitter” or other sources cited by Wanner et al.

Nevertheless, several examples of related work compatible with RSS are briefly considered

at the end of this section. Moreover, Section 2.7 refers to a series of surveys of products

for, and the application of well-known classification techniques to, sentiment analysis of

RSS. We do not repeat that material here.

Chronology of related work

Gruhl et al. [161] tracked 11,804 RSS blog feeds over a month in autumn 2003 to amass a

total of 401,021 RSS feed postings.1 Based upon the topics discussed in the feeds, postings

were placed into one of the following three categories: (1) Just Spike where topics spiked

and then became inactive, (2) Spiky Chatter topics with a significant chatter level and

which are very sensitive to external world events, and (3) Mostly Chatter, i.e. a consistent

volume of chatter. Gruhl et al. also investigated methods of propagation of news between

individuals by drawing on the “theory of infectious diseases to model the flow.”

1Gruhl et al. [161] also referred to hourly tracking of “fourteen RSS channels” from rss.news.yahoo.com

to “identify when topics were being driven by major media or real-world events”.

rss.news.yahoo.com

3. A review of RSS 83

Glance et al. [143] used clustering and cosine similarity to discover trends in ap-

proximately 100,000 blogs in 2004. In their work, the authors discussed a Lucene-based

searchable index of blog data, which was used to graph “the normalized trend line over

time for a search query” as a means “to estimate the relative buzz of word of mouth for

given topics over time.” Daily lists of key persons, events and paragraphs were published

by the authors on-line at BlogPulse (http://www.blogpulse.com/) until its demise in

2012. Also in 2004, Albrecht-Buehler et al. [13] published work for their TextPool ap-

plication which summarised recent content in live text streams (Section 2.8.2) including

RSS, by extracting keywords to display related terms in a dynamic “text collage” wherein

related terms were grouped together.

In Thelwall et al. [398] the authors introduced the phrase broad issue scanning in

connection with the use of RSS for “the task of identifying and tracking important public

debates arising within a given broad issue, such as public science concerns.” With reference

to:

“two relevant research traditions for web data analysis, which will be described

here as purist and pragmatic. Either could potentially be suited to broad issue

scanning. The purist approach is to analyse an Internet phenomenon as it

was found, seeking to describe it as accurately as possible. The pragmatic

approach is to analyse a phenomenon from the perspective of attempting to

gain information about an underlying phenomenon, rather than the Internet

data (i.e. for indirect research). The key difference between the two approaches

is that the former typically does not use any data cleansing whereas the latter

tends to use extensive data cleansing.”

The authors sought “to assess whether a purist approach to RSS feeds (i.e. using the

raw feeds without data cleansing) is suitable for broad issue scanning, using a co-word

frequency time series approach.” A corpus of 19,587 RSS feeds was tracked concerning

public fears over science where the authors reported a “low success rate” and wrote that

data cleansing of RSS “is necessary for efficient broad issue scanning. Raw RSS feeds are

unsuitable because some feeds carry extensive and repetitive content.”

Ali et al. [14] applied their DescribeX tool for exploring and visualising the structural

patterns present in XML documents, to a collection of RSS feeds in 2007. The purpose

of this work was to assist in the formulation of XPath queries to find items which could

be aggregated by focusing on metadata (Appendix B.2), e.g. articles with known creation

dates or authorship.

http://www.blogpulse.com/

3. A review of RSS 84

During 2006 Prabowo and Thelwall [305] proposed the use of feature selection techniques

such as chi-square, mutual information (MI) and information gain (IG) (Appendix B.2)

as alternative approaches for ranking term significance in an evolving RSS feed corpus in

order to identify significant topics. Prabowo and Thelwall concluded that chi-square was

the best of the three techniques when they were evaluated to determine the significance of

a term on a certain date, but that it was “far from perfect” because of high scores given

to “relatively insignificant terms.” On similar ground, Prabowo et al. [306] described a

feature-based, clustering approach to generate “overview timelines for major events” from

a “general-purpose corpus of RSS feeds.” The clusters were later assessed by ten people

who found that 68.60% of them “apparently” represented significant events, and were used

to document three then-current (2007) events.

Benson et al. [32] presented a tool in 2008 to provide users with information about

“topics of interest” in RSS and other text streams by using agents. An agent “represents

a significant word, visualizing it by displaying the word itself, centered in a circle sized by

the frequency of word occurrence.” Dynamic visualisation was enabled by changes in the

colour and position of agents and in the ways they responded to one another.

Using data gathered from fifty different RSS feeds between 09 Oct - 10 Nov 2008, Wan-

ner et al. [427] used sentiment analysis and visualisation to reveal the sentiment in news

concerning the presidential candidates during 2008’s US election campaign. Data covering

the period before this election was also used by Fisher et al. [122] in one of the two case

studies documented for their Narratives application. Narratives combined “keywords from

news articles with reactions from social media” to display time-series plots (Section 2.8.3)

showing how stories evolve over time in order to determine their “historical and social

context”. To this end, Narratives included a series of tools to investigate correlations

between keywords.

In 2009 Hristidis et al. [182] employed “keyword search over a time span on multiple

textual streams” which included RSS feeds, blogs and emails from the Enron Corpus2 to

“solve the problem of answering a keyword query on a collection of text streams, where

a result is defined as a combination of events from a set of correlated streams such that

these events collectively contain all the query keywords.” Hristidis et al. defined a result

as a tree of events based mainly upon the commonality of two streams, and presented an

2The Enron Corpus [104] is a collection of 500,000+ emails generated by employees of the Enron Corpo-
ration during that organisation’s collapse in the USA in 2001.

3. A review of RSS 85

incremental algorithm for computing the answer set of a continuous keyword query per-

forming a minimal amount of operations for each event. Media Watch on Climate Change

(MWCC) was also documented in 2009 by Hubmann-Haidvogel et al. [188]: the appli-

cation “aggregates, filters and visualizes environmental Web content from several sources

including 150 Anglo-American news media sites.” Two-dimensional geographic maps, se-

mantic maps, domain ontologies, and word-clouds were integrated together to allow visual

and textual content to be displayed and navigated. Sentiment was automatically calcu-

lated and averaged for keywords within a selected period. Further work on MWCC was

documented by Scharl et al. [347] in 2013 concerning the application’s evolution into an

on-line “domain-specific portal” for “environmental stakeholders.” MWCC can be found

at http://www.ecoresearch.net/climate/.

Krstajić et al. [213] documented the collection of 1,736,246 articles of news data from

the multilingual Europe Media Monitor (EMM) [105] aggregator during 2010. The au-

thors referred to this corpus as “semantically enriched metadata” of “great interest for

our analysis”, and consisting of “entities, categories, geo-tags, URL of the article, source,

publishing time, date and language.” Following the transformation of the data into the

authors’ own XML format, it was analysed for entities and their co-occurrence in news

articles. Two case studies were carried out: (1) where “temporal analysis of entity occur-

rences over a time period of two months” included “cross-language comparison of entity

occurrences” and their visualisation using “stacked time series graphs”, and (2) the “anal-

ysis of relationships among entities, which we realized using a radial graph layout.” This

work was extended by Krstajić et al. [214] in 2012 when Story Collector clustered “new

articles in 24-hour time intervals” from EMM to: (1) show “temporal characteristics of

stories in different time frames with different levels of detail”, (2) allow displays to be up-

dated incrementally, and (3) to sort “the stories by minimizing clutter and overlap from

edge crossings.” Story Collector was demonstrated using events from the “the Arabic

uprising in 2010 and 2011.”

Snowsill et al. [364] sought to detect events in text data streams by “identifying statisti-

cally significant increases in the frequency of n-grams within the stream.” The resulting

n-gram frequencies of were stored in a suffix tree (Appendix B.2), and weighted averages

of frequencies were used to overcome the issue of topic drift. The authors documented

successful tests identifying events in 2008.

Eventscapes was presented by Adams et al. [4] in 2011 to provide a “visual depiction

of event history, mood and controversy.” Although “agnostic to the document source”,

http://www.ecoresearch.net/climate/

3. A review of RSS 86

Adams et al. referred to RSS feeds as input where topic modelling (Appendix B.2) and

clustering were used to determine topics and events which were then arranged chronologi-

cally: document mood and event controversy were also calculated. Eventscapes displayed

images retrieved from RSS to “encapsulate the most salient elements of the textual con-

tent”, and different colours were used to identify the mood in the “timeline and documents”

displayed. Adams et al. described two evaluative case studies which “reflected positively”

on their approach, and discussed future work.

Work by Steed et al. [374] in 2012 focused upon the “interactive exploration of high-

throughput, unstructured text streams.” Data was taken from RSS feeds and other social

media, and animated graphs were used to depict the “term frequency patterns in a text

stream.” Steed et al. used “geospatial metadata” to “reveal temporal trends for specific

areas of the world.” Heat-maps (Appendix B.2) were used to represent trends and the

authors documented these using London’s 2012 Olympic Games and tweets from Twitter

[408] at that time. Steed et al. concluded by referring to future plans which included the

use of sentiment analysis and semi-supervised machine learning (Section 2.5).

During 2012 Wills [444] documented a “road map to generating quick, efficient, and

accurate analytics of RSS and Twitter feeds.” NB and DT classifiers were used to predict

sentiment. Based upon F-measure results, NB outperformed DT with respect to both

Twitter and RSS data. Wills also proposed that production grade classifiers should pay

attention to accuracy of assessment in addition to speed.

Modha et al. [267] described a planned method of analysing Indian political news articles

for sentiment in 2013. We summarise the stages: (1) classifying sentences into opinionated

and non-opinionated groups, (2) dividing opinionated sentences into subjective sentences,

(3) analysing subjective sentences for positive, negative or neutral sentiment, and (4) car-

rying out the same for objective sentences. The authors referred to SVM, NB, BoW and

other data mining techniques for (3) and (4), but no results were presented. Also in 2013,

according to the English language abstract of their paper, Gomes et al. [146] sought to

detect the positive, neutral and negative polarity of sentiment in economic news head-

lines in RSS feeds: unfortunately, the Portuguese language body of their paper precludes

any further consideration of it in this review. Trabelsi and Yahia [403] employed NB to

identify events in RSS feeds produced by Flickr [126] using their RssE-Miner application.

Trabelsi and Yahia wrote that the “main originality of RssE-Miner stands in achieving a

meaningful tradeoff between runtime performance and event identification accuracy from

3. A review of RSS 87

social media RSS feeds.”

In 2014, Hennig et al. [173] applied sentiment analysis to the “detection of trends”

determined by the mining and analysis of blogs performed by BlogIntelligence (http:

//www.blog-intelligence.de/). Using three criteria: (1) term relevance calculated by

TF-IDF, (2) the count of the number of times the term is used as a tag for a specific

posting, and (3) the number of incoming links for a specific posting containing the term,

the “degree and intercept” was calculated to determine if a term’s trend was “ascending,

descending or popular.” A term’s trend was subsequently “enriched” with “sentiment

information” which included the “computation of the term sentiment using sentiment

keywords and the boost of the term trend.” Hennig et al. wrote that “the implementation

with an in-memory database on the BlogIntelligence data set shows promising results in

running time and quality.” More recently in 2015, Bharathi et al. [36] discussed the

use of cosine similarity to classify RSS feeds into one of several news categories and then

analysing them for sentiment using categories happy, sad, fear, excited : unfortunately, few

specifics were provided concerning their method of sentiment analysis.

A divertimento for related work compatible with RSS

Examples of related work that are not specific to RSS, but which are claimed by the

authors to be compatible with the technology, include: (1) VISA, i.e. Visual Sentiment

Analysis System, by Duan et al. [100] in 2012 which was described by its authors as a

“generic sentiment analysis paradigm” which used a mash-up (Appendix B.2) visualisation

to give “analysts and users” “coordinated multiple views” of the sentiment in a document

collection, (2) Wang et al. [426] presented SentiView in 2013 which analysed trends in

sentiment found in forums and blogs in order to consider the “time-varying direction of the

sentiments”, the “number of participants engaged in the discussion”, the “relationships

between public sentiments and participants”, and the “relationships of relevant topics”,

and (3) Steed et al. [373] whose Matisse software employed Twitter [408] despite the

authors writing that it is “capable of consuming any textual information (e.g., RSS news

feeds, blog streams)”.

3.4 Other RSS-related work

• Archiving: The format of RSS lacks any provision for archiving published content,

although private sources such as the Internet Archive [201] may provide some facil-

ities. Alternatively, in 2005 Chmielewski and Hu [69] proposed their BARF server,

http://www.blog-intelligence.de/
http://www.blog-intelligence.de/

3. A review of RSS 88

i.e. Barf Archives RSS Feeds, as a distributed platform to archive, retrieve, and

synchronize RSS feeds allowing users to search for updates made when they were

not on-line. Romsaiyud [330] further proposed an algorithm for retrieving data from

BARF through a network.

• Education: (1) Glotzbach et al. [144] employed RSS as a means of distributing

course announcements to new students, and for students to obtain information and

course-related materials from on-line web sites without visiting them, (2) Cold [77]

described the use of RSS by students to share project work, (3) De Maio et al. [90]

proposed the integration of the Intelligent Web Teacher (IWT) “e-learning Web-

based platform” and RSS “for supporting and improving personalized e-learning

processes”, and (4) Lan and Sie [218] sought to determine the most suitable medium

among SMS, email and RSS to improve learning activities: this work concerned

media richness theory which describes how and why particular media are selected

to deliver a message [84].

• Media: Lee et al. [221] extracted television schedule data from RSS, and Messina

and Montagnuolo [257] presented a system “for aggregating and retrieving RSS items

and broadcast news streams.”

• Mobile devices: In 2006, Blekas et al. [40] proposed RSS feeds for the adaptation

of web content for use in mobile phones. More recently in 2012, Sajjanhar and Zhao

[343] proposed the use of SVM to classify RSS content for delivery to an Android OS

(Appendix B.1) client with “Geoparsing and geocoding web services” for location-

based access to news.

• Ontology: (1) Villoria et al. [416] who sought to make the RSSOwl [340] aggregator

“ontology powered” by adding three semantic functions to it, (2) in 2012 Agarwal et

al. [8] used CF-IDF3 with an ontology based upon “news industry standards” as a

text classifier to classify news terms, (3) Hsu [183] integrated ontology technologies

into feeds and user profiles to provide customised feeds for personal use, and (4)

Yuan et al. [463] proposed a “fuzzy method for matchmaking between a subscriber’s

interest and RSS items”, where ontology was used to link “heterogeneous publishers

with subscribers in semantics rather than in words.”

• Recommender and ranking systems: We note several instances of RSS-related

work involving recommender systems (Section 2.3.2).

3cf. Goossen et al. [157], who in 2011 proposed CF-IDF as a variation of TF-IDF (Appendix B.2).

3. A review of RSS 89

Collaborative filtering was used in FeedMe by Sen et al. [352]. FeedMe made use

of traditional rule-based alert filtering and a collaborative NB filtering algorithm,

based upon user preferences from feedback, to reduce the noise for unwanted inter-

ruptions for knowledge workers. Related to this, the Personal Information Manager

by Sia et al. [356] helped users to monitor their subscription lists and recommended

relevant articles based on their browsing history.

Typically, data processing by recommender systems is performed on the server, e.g.

processing logs and user profiles. In a reversal of this by Chen et al. [67], Content

REcommendation System based on private Dynamic User Profile (CRESDUP) dis-

covered “preferred messages” on the internet according to private user data which

resided, and was processed, on the client side. In 2007, Pon et al. [303] proposed

MTT, or Multiple Topic Tracking, with iScore to “better recommend news articles

for users with multiple interests and to address changes in user interests over time.”

The authors documented several test cases to determine whether RSS stories were

interesting or not to specific users.

Recommendations to users of new content based upon their past was the focus of

RSS reader NectaRSS, by Samper et al. [346], which employed VSM. Wu [452] used

DT, NB, SVM and random forest (Appendix B.2) classifiers to rank user preferences

in RSS feeds: Wu cited the performance of NB, which was slightly behind random

forest, but ahead of SVM in tests applied to a corpus of 112,828 RSS entries from a

total of 163 unique RSS feeds, of which 2,607 had “been clicked”.

More recently in 2010, Ji and Zhou [205] developed an RSS reader and collected

user data to study the effectiveness of recommendation for different features and

feature combinations: their experimental results showed that “favorite fraction”,

i.e. past preference, was the single most important feature and that a combination

of it and text similarity “performs the best.” Citing an increase in blog traffic,

Paik and Hiroshi [291] documented their use of TF-IDF calculations which focused

upon the words in the <title> elements in RSS feeds. The authors proposed a

new recommendation method employing an NB classifier and referred to this work

outperforming previous research of theirs when recommendations were based upon

term frequencies in RSS feed content and the browsing history of users.

In 2014 Hassan et al. [169] used VSM to rank mash-ups (Appendix B.2) built from

RSS feeds: precision and recall results were reported as being on average 30.00%

3. A review of RSS 90

better than binary rankings. Also, in 2014 Tang and Ma [385] put forward their

RSSCube as an improved content syndication and recommendation architecture to

address issues they found with searching, synchronisation performance, and the user

experience in then-current products.

• RSS algebra: Two papers by Getahun et al. [138] and Taddesse et al. [382] con-

cerned the semantic relatedness of RSS news stories and the use of a VSM classifier

(Appendix B.2) to merge news items by comparing relationships between text, el-

ements and items. This work was later extended in 2013 by Getahun and Chbeir

[137] who proposed a “dedicated RSS algebra based on semantic-aware operators

which are capable of considering RSS characteristics”, as a means to address issues

they cited concerning the temporal nature, relatedness/similarity and relationships

between items of RSS content.

• Search engines: To the RSS search engines referred to in Section 3.2, we must add

Zhou et al. [465] who proposed soSpace in 2006 as a self-organising search engine for

RSS, built upon a scalable peer-to-peer technology: the tool enabled content to be

indexed and searched. The authors documented “satisfactory” precision and recall

(Appendix B.2) results.

• Security and notification systems: The open format of RSS (Section 2.2.1) lacks

any provision for security. Preechaveerakul and Kaewnopparat [307] developed Se-

cure Information Notifying System with RSS Technology for Mobile Users (SInfoNS)

as a response to this by applying a cryptography algorithm to an RSS feed before

it is disseminated to relevant users. Work by Gioachin et al. [142] concerned secure

RSS based emergency notifications. Makpangou et al. [242] proposed Friticores, an

“RSS Feed Monitoring and Dissemination System” which advised subscribers when

new content matching their subscription details arrived, and was designed to “help

researchers from underdeveloped Countries.” Post@, i.e. PostAt, an RSS-based

web service that automatically delivered announcements, posted by a publisher to

subscribers, was proposed by Alomari et al. [15].

3.5 Discussion: the format of RSS

The preceding sections of this chapter have concerned the applications and academic

research employing RSS. Here, we change perspective and discuss related work concerning

the format of RSS (Section 2.2.3), factors relating to it and its use.

3. A review of RSS 91

3.5.1 Versions

Despite backwards-compatibility in the different versions of RSS (Section 2.2.2), several

cases to the contrary have been reported: (1) by Pilgrim in The myth of RSS compatibility

[300] in 2004, and (2) where “syndication confusion” (Lee et al. [222]) with the different

formats of RSS caused “uncategorized and irrelevancy of aggregated result[s]”, and led

the authors to develop their PheRSS analyser/aggregator. Changes in the format of RSS

also appear to be unlikely according to the RSS roadmap [333]:

“RSS is by no means a perfect format, but it is very popular and widely

supported. Having a settled spec is something RSS has needed for a long time.

The purpose of this work is to help it become a [sic] unchanging thing, to

foster growth in the market that is developing around it, and to clear the path

for innovation in new syndication formats. Therefore, the RSS spec is, for all

practical purposes, frozen at version 2.0.1. We anticipate possible 2.0.2 or 2.0.3

versions, etc. only for the purpose of clarifying the specification, not for adding

new features to the format. Subsequent work should happen in modules, using

namespaces, and in completely new syndication formats, with new names.”

Liu et al. [231] and Longe and Salami [236], described in Section 3.3.2, have also doc-

umented issues with the published content of the <category> element types in RSS’s

format.

3.5.2 Characteristics of data

In their 2005 paper Liu et al. [233] described hourly polling of 100,000 RSS feeds over

a forty-five day period in order to look at feed size and format, and to analyse updates.

The authors found that a “majority of feeds (55%) update every hour, while many feeds

(25%) do not change for days together.” In other findings, the authors wrote that only

“small portions of RSS content typically change during an update; 64% of updates involve

less than three lines of the RSS content.” As a result of this, the authors proposed that

content providers could indicate “when and at what rate to poll a particular feed.” In 2007

Lambiotte et al. [217] focused on the statistics of word occurrences and of the waiting

times between such occurrences in RSS feeds and blogs.

In a similar vein, as part of the RoSeS project (Section 3.3.2), Hmedeh et al. [177]

surveyed a testbed of 10,794,285 items collected from 8,155 “productive” RSS feeds (from

an overall total of 12,611) during an eight month period in 2010. The authors sought to

3. A review of RSS 92

analyse “three complementary features of real-scale RSS/Atom feeds, namely, publication

activity, items structure and length, as well as, vocabulary of the textual content.” The

principal findings were: (1) “17% of RSS/Atom feeds produce 97% of the items of the

testbed”, (2) the most popular RSS/Atom textual elements found were the <title> and

<description>, while the “average length of items is 52 terms”, and (3) that “the total

number of extracted terms from items written in English is 1,537,730 out of which only a

small fraction (around 4%) is found in the WordNet [449] dictionary.” This was attributed

to the “heavy use in RSS/Atom textual elements of named entities (person and place

names), URLs and email addresses as well as numerous typos or special-purpose jargon.”

The need to disambiguate keywords in RSS feeds in order to identify context can be

achieved using WordNet [449] or DMOZ, i.e. (D)irectory (Moz)illa, a “human-edited di-

rectory of the Web” at https://www.dmoz.org/about.html, or the “graphical interface”

proposed by Webster et al. [433] to reside between the user and DMOZ. Sia et al. [355]

proposed that “RSS aggregation services should monitor the data sources to retrieve new

content quickly using minimal resources and to provide its subscribers with fast news

alerts.” Pinheiro et al. [301] discussed the removal of “irrelevant bits of information” from

RSS with Data Killing Operators.

Scalability was the focus of work by Hmedeh et al. [176] in 2012. The authors cited

the success of syndication technologies and the need to look at “real-time filtering methods

across feeds which allow users to effectively follow personally interesting information.” The

authors considered a series of “three index structures implementing different counting

techniques for pruning as early as possible non matching subscriptions to an incoming

item.” Moreover, Hmedeh et al. advocated a “content-based Publish/Subscribe paradigm”

for syndication where information providers and consumers are “decoupled”.

3.5.3 Extensions

The following extensions of RSS have been proposed/implemented:

• GeoRSS: GeoRSS [136] tags RSS feeds with geographically encoded objects so that

applications can request, aggregate, share and map geographically tagged feeds.

GeoRSS has been employed in work by Anjomshoaa et al. [19] and Tok et al. [402].

• GeoTracker: In 2007 GeoTracker by Chen et al. [68] displayed RSS data in a

“geographic presentation layer” which allowed users to “navigate (zoom, pan) the

RSS view on a world map” using Google Maps [152] to “render locations on the map

automatically.” Photo-sharing web site Flickr [126] also provides a similar service.

https://www.dmoz.org/about.html

3. A review of RSS 93

• GPS/GNSS: The delivery of GPS/GNSS satellite data by RSS has been proposed

by Hu et al. [186].

• jQRSS: A plug-in for jQuery (Appendix B.1) by Petrova-Antonova and Rosen[297].

• Media RSS: Media RSS was a project co-developed by Yahoo [455] in 2004 to

syndicate media types “such as short films or TV, as well as provide additional

metadata with the media” [254] in RSS feeds by employing the <enclosure> element

in each <item> in a feed (Section 2.2.3). In 2009 Media RSS was transferred to the

RSSAB.

• Other: In 2006 Bossa et al. [48], created RSS feeds by extracting information from

HTML pages via their own set of XML-like annotations.

3.5.4 Push or pull?

As described in Section 2.2.1, RSS is a pull technology, i.e. where a request made by a

client pulls data from a server as a stream of text. In contrast to this, servers in other

technologies push services out to subscribers. Two examples of related work have used

RSS as a push service: (1) Ma [240] constructed a “theoretical game model to study

the profitability of an RSS-PUSH delivery mechanism.” Ma concluded that although RSS

“always helps a website to attract more users, it may also reduce the website’s profit. This

happens because newly attracted users are not profitable enough to offset the website’s

increase in maintenance costs and decrease in advertising revenue.” (2) Silberstein et al.

[357] also considered the pull/push issue. Their perspective was the managing of events

where consumers pull events from a “per-producer event store” at query, e.g. log in, time,

as opposed to producers who push events to materialised feeds. The authors concluded

that it is best to “decide whether to push or pull events on a per producer/consumer

basis.”

3.6 Afterword

This chapter has reviewed the current state of the applications and academic research

employing RSS. We have also cited other work concerning the format of RSS and extensions

to the technology. In Chapter 4, we define and illustrate the architectural and technical

foundations of the software which implements the case studies for our paradigms, before

we focus upon the case studies proper in Parts II and III. We also compare appropriate

examples of related work with our paradigms in Chapters 9 and 12.

Chapter 4

Web engineering and software

architecture

4.1 Foreword

Before the case studies for our RSS-mining paradigms (Section 1.4.1) can be presented, it

is necessary to consider web engineering and the architecture of web applications, i.e. these

subject areas define the context for the development of our myDS and vRSS software.

This is the purpose of the first half of this chapter. To this end, Section 4.2 defines

web engineering and the development cycle(s) this entails. Section 4.3 describes web

applications: Section 4.4 extends this theme by focusing upon the MVC design pattern

and the layered architecture typical of n-tiered web applications.

The second half of this chapter concerns our myDS and vRSS software written for

the two case studies for our first paradigm. Architectural and organisational issues of

these applications are described in Section 4.5, before Section 4.6 explains the general

keyword conventions and characteristics used in our paradigms and their case studies.

Section 4.7 defines the architecture and implementation of common components, and

related terminology in myDS and vRSS for our first paradigm. Section 4.8 serves the

same function for our second paradigm with regards to the extension of vRSS and software

characteristics of this in case study three.

Section 4.9 ends this chapter with reference to the tools used to develop our software.

4.2 Web engineering

Web engineering has been defined by Deshpande et al. [94] as:

94

4. Web engineering and software architecture 95

“the application of systematic, disciplined and quantifiable approaches to de-

velopment, operation, and maintenance of Web-based applications. It is both

a pro-active approach and a growing collection of theoretical and empirical

research in Web application development.”

This definition concerns “the platform” (Wilde and Gaedke [443]), i.e. the rise to promi-

nence of the web/browser paradigm since its inception in 1989 by Berners-Lee [33], and

the evolution of web applications (Section 4.3) from static HTML pages to highly complex,

often inter-connected web services within the social media (Section 2.3) context, and the

newer mobile platform (Appendix B.2). Although many of the aspects of traditional soft-

ware engineering are used in the development of web applications, recent years have seen

the web engineering process emerge as a “specialization” (Mayr [251]) of application devel-

opment, which can be differentiated from classical software engineering. Deshpande et al.

[94] documented sixteen “Major Differences between Web Applications and Conventional

Software”: we list several of these differences below:

• The use of “small teams” and “compressed development schedules”.

• Where “ “content is king”, i.e. it is integrated inextricably with procedural process-

ing.”

• An “understanding of additional disciplines required for Web applications, such as

hypertext, graphic design, information architecture”.

• The “evolving standards to which Web applications should or must comply, depend-

ing on the specific circumstances”.

• The use of a “Rapidly evolving implementation environment, encompassing various

hardware platforms”.

Deshpande et al. [94] also referred to a lack of “accepted testing processes”, “criticality of

performance” and risks of competition. Other differences cited by the authors conform to

the two “key attributes” of web application development defined by Ginige and Murugesan

[141] which distinguish it from traditional software development, i.e. the “rapid growth

of the requirements of Web-based systems and the continual change of their information

content.” Ginige and Murugesan further wrote that “scalability and maintainability”

must be present from the beginning. Web applications must also accommodate “different

stakeholders”, e.g. the range of the system’s users involved in planning and management,

maintenance, funding the development and the organisation which requires the system.

4. Web engineering and software architecture 96

Ginige and Murugesan also discussed the “evolutionary” nature of web application

development because “it’s not possible to specify fully what they should or will contain

at the start of their development, because their structure and functionality will evolve

over time.” Therefore, an iterative development cycle consists of “many phases, steps

and activities” (Ginige and Murugesan [141]), which are not carried out in a fixed, con-

secutive sequence like those of the classical Waterfall model (Appendix B.2) of software

development. Pressman and Lowe [308] have instead referred to the “process framework”

of web engineering which “incorporates rapid development cycles.” Each “cycle results in

the deployment of a WebApp increment.” Thus, with reference to Figure 4.1, during a

web application’s lifespan, each increment will iterate from Web Site Maintenance back

through the earlier phases illustrated, i.e. this explains the permanent beta-version status

of much Web 2.0 (Appendix B.2) web development. Web Site Maintenance and the other

phases of the development process are summarised from Ginige and Murugesan [141] in

Table 4.1.

Figure 4.1: The development process for web applications (reproduced from Ginige and
Murugesan [141]): cf. all case studies.

4. Web engineering and software architecture 97

Name Description

Context analysis Where we determine and understand the system’s major objec-

tives, functional and other requirements. Information is gathered

about the application’s environment and operation, and stake-

holders are identified. The result is a set of requirements which

will influence the web application’s design.

Product model Where the relationships between the various system components

are defined. System architecture will focus on hardware, ap-

plication architecture will concern functionality required whilst

software architecture identifies alternative ways to implement the

application architecture. From this, a model of the web appli-

cation will be built, based upon requirements determined from

context analysis.

Process model Parallels the product model and defines the activities necessary

to implement the system. These activities, which will involve

frequent liaison with stakeholders, include requirements analysis,

design, testing and deployment, and may be decomposed into

sub-activities.

Project plan Project managing and scheduling the development.

Web site develop-

ment

The development of the required application software to deliver

the content and functionality. In tandem with this, hardware

testing and integration must be carried out to meet performance

and security requirements.

Web site mainte-

nance

Concerns the maintenance of application content, software and

hardware required after the application’s deployment.

Table 4.1: The development process for web applications (summarised from Ginige and
Murugesan [141]): cf. all case studies.

In addition to the phases listed in Table 4.1, Ginige and Murugesan [141] also wrote that

project management ensures “that all the key processes and activities work in harmo-

ny.” Furthermore, project management, quality assurance and documentation are “spread

throughout the Web development cycle.”

4. Web engineering and software architecture 98

4.3 Web applications

4.3.1 What is a web application?

In the definition of web engineering by Deshpande et al. [94] in Section 4.2, reference is

made to “Web-based applications.” In order to define this term, we defer to the description

provided by Mashable [249] of a web-based, i.e. web, application as:

“an application that is accessed by users over a network such as the Internet

or an intranet. The term may also mean a computer software application that

is coded in a browser-supported programming language (such as JavaScript,

combined with a browser-rendered markup language like HTML) and reliant

on a common web browser to render the application executable.

Web applications are popular due to the ubiquity of web browsers, and the

convenience of using a web browser as a client, sometimes called a thin client.

The ability to update and maintain web applications without distributing and

installing software on potentially thousands of client computers is a key reason

for their popularity, as is the inherent support for cross-platform compatibility.

Common web applications include webmail, online retail sales, online auctions,

wikis and many other functions.”

4.3.2 Types of web applications

In order to identify the different types of web applications, accessed either through a

browser or via apps (Appendix B.2) using mobile devices, we summarise the taxonomy

of domains provided by Deshpande et al. [94], i.e.: (1) informational where examples in-

clude newspapers, catalogues and other periodicals, (2) interactive involving user-provided

information for customised access, e.g. registration, presentation or games, (3) transac-

tional for on-line shopping, ordering goods and banking, (4) workflow for planning and

scheduling systems, inventory management and status monitoring, (5) collaborative work

environments such as distributed authoring systems and tools for collaborative design,

(6) on-line communities or marketplaces, e.g. chat groups, recommender systems, market-

places and auctions, (7) portals for electronic shopping malls and intermediaries, and (8)

web services provided by enterprise applications, information and business intermediaries.

4. Web engineering and software architecture 99

4.4 Web application architecture

The use of a particular software architecture for a project will be determined by differing

business and technical factors, as well as the data required of the application. It is not

within the scope of this thesis to document business considerations, and current language

choices are described in a recent on-line study by Luenendonk [238]. Within the Java

ecosystem itself, where our software resides (Section 4.5), Maple [246] has described a

small number of contemporary frameworks and tools.

The nature of data and data format(s), discussed by Kappel et al. [209], with reference

to Anastopoulos and Romberg [18] and Ceri et al. [62], takes “the layering aspect of

architectures, or the support of different data and data formats - the data aspect of

architecture - into account”. The basis of this distinction is the format of the data that

the web application will process,1 i.e. whether the format conforms to table-based data

in an RDBMS or XML documents, or if it is unstructured “multimedia contents, e.g.,

images, audio, and video” that may be produced by social media (Section 2.3) and which

“typically do not follow an explicit scheme.”

We do not consider the peer-to-peer or multimedia streaming architectures in this thesis

because they do not apply to our paradigms (Section 1.4.1). Alternatively, architectures

for structured data are made up by a series of layers. Several alternative implementations

of this layered architecture exist, extending from the two-tier client/server model to n-

tiered variants, where the intention is to decouple data access and business logic from

the user interface (UI) to allow separation of concerns. This is achieved through the

incorporation into the architecture of the model-view-controller (MVC) design pattern by

Reenskaug [322]. Table 4.2 describes the various components of MVC, and their interaction

is illustrated in Figure 4.2. Moreover, Table 4.2 lists the approximate correspondence of

MVC with the layers of a typical n-tiered web application architecture: these layers are

described in Table 4.3 and their placement in the architecture is illustrated in Figure 4.3.

Layered web application architectures typically include the following components:

• Client: The user agent, i.e. a browser or browser plug-in, mobile device, or where

a server delivers machine-readable data, e.g. RSS, to a client.

• Firewall: To protect a web application from unauthorised or hostile access.

• Proxy: To provide a cache of pages frequently accessed or for tracking purposes.

1We consider the format of RSS to be semi-structured (Section 2.2.3).

4. Web engineering and software architecture 100

• Servers: These will typically include a web server to manage user requests and

responses, a database server where the database resides, and an application server

where system functionality is based.2 Media or content management servers may

also be present in particular systems.

• Legacy applications: Older systems which may form part of a web application.

Architectural/developmental characteristics of layered web applications include:

• An adaptive interface: Where a web site’s interface must be flexible enough

to allow for the rapid introduction of new features or services, e.g. the API of

a fashionable third-party product, or because of the use of a mash-up (Appendix

B.2).

• Aspect-oriented programming: AOP is described in Appendix B.2.

• Patterns: The use of creational, structural and behavioural patterns in application

development, e.g. Gamma et al. [134] or Reenskaug’s MVC pattern [322].

• Frameworks: Software frameworks include support programs, compilers, code

libraries, an API and tools that bring together the different components to en-

able software development. Frameworks for web applications, e.g. Spring (http:

//spring.io/) and Hibernate (http://hibernate.org/), extend this to support

the development of web applications and services by providing libraries for database

access, interface design and session management. Web application frameworks also

alleviate the overhead associated with common activities performed in web applica-

tion development, e.g. writing repetitive boilerplate (Appendix B.2) code for DAO

classes or HTML.

2For convenience, when discussing the architecture of our myDS and vRSS software in the following sections
of this chapter, we employ the generic term web server to substantially include both application and web
servers. This principle is illustrated in Figure 4.3.

http://spring.io/
http://spring.io/
http://hibernate.org/

4. Web engineering and software architecture 101

Model-view-controller n-tiered web application

architecture layer

The model handles the web application’s domain da-

ta via business objects.

Data

The view is seen by users in a browser via HTML,

JSPs or equivalent technologies.

Presentation

The controller manages the flow of the web appli-

cation by receiving requests from users, interacting

with the model, and returning responses via the view.

Application

Table 4.2: Approximate MVC and n-tiered web application architecture correspondence:
cf. all case studies.

Figure 4.2: The MVC design pattern (adapted from Murach and Steelman [271]): cf. all
case studies.

4. Web engineering and software architecture 102

Layer Description

Presentation HTML pages and JSPs, or other equivalent technologies, which

interact with web application via requests and responses ren-

dered in a browser.

Application Implements business logic and requires a run-time environment

to do so. The application layer processes the requests received

from users and serves responses back to them.

Data Provides database access and retrieval services.

Table 4.3: Typical layers of the n-tiered web application architecture: cf. all case studies.

Figure 4.3: Typical n-tiered web application architecture: cf. all case studies.

4. Web engineering and software architecture 103

4.5 The architecture of myDataSharer and visualRSS

4.5.1 Software overview

For the two case studies of our first paradigm, two alpha-version applications, i.e. my-

DataSharer (myDS) for case study one and visualRSS (vRSS) for our second case study,3

were developed. myDS and vRSS conform substantially to MVC and the n-tiered web

application architecture described in Section 4.4: we discuss the Java JSP/servlet-based

implementation of these elements in Sections 4.5.5 and 4.5.6. The use of the relational

database model by each application is described in Section 4.5.7.

Both applications share several common components and related terminology. The

generics of these items are described in Section 4.7.1, and their specialisations in case

studies one and two for our first paradigm are considered in Chapters 5 and 7 respectively.

The extension of vRSS for the classification (Chapter 10) and sentiment analysis (Chapter

11) components of case study three for our second paradigm, and software characteristics

of this, are the subject of Section 4.8. For our case studies, myDS and vRSS also make

use of a series of open-source, third-party products4 available within the Java ecosystem

(Appendix B.1). The use of the principal products in each paradigm is described in

Sections 4.7.1 and 4.8.1 respectively.

4.5.2 Choice of architecture

Within their n-tiered web application architecture, myDS and vRSS both employ Apache

Tomcat (Appendix B.1) as a container, i.e. web server (Figure 4.3), to implement Java

JSPs and servlets to support a request and response programming model (Section 4.5.5).

These technologies are defined in the JEE specification [92] which documents Java APIs

and how to coordinate them. This choice was based upon: (1) the popularity of the Java

language, estimated at approximately 3.00% by W3Techs in their “Usage of server side

programming languages for websites” [451], (2) authorial familiarity with Java, and (3)

the availability of the Java-based open-source, third-party products listed in Appendix

B.1. We discuss our use of Java and OOP in Section 4.5.4.

3In Section 1.11 the naming convention we have used to refer to our software is described, i.e. full
application names are employed in titles and captions, and contractions are used in the body text in
chapters.

4Approximate counts of the number of lines of code in the principal open-source, third-party products used
in our software, together with equivalent counts of the number of the indigenous lines of code in myDS
and vRSS, are listed in Appendix D.2.

4. Web engineering and software architecture 104

4.5.3 Operating system

myDS and vRSS are hosted on two virtual servers running 64-bit versions of Microsoft’s

Windows 7 Professional OS [263].

4.5.4 Programming model

Nørmark [281] defined four programming models: (1) functional in which all “computa-

tions are done by applying (calling) functions”, (2) imperative or procedural programming,

is a top-down paradigm involving the “execution of computational steps in an order gov-

erned by control structures”. This can be traced to Backus, BNF and Fortran in the 1950s

[192]. (3) logic based upon “axioms, inference rules and queries”, and (4) the use of object-

oriented programming concerns the “theory of concepts, and models of human interaction

with real world phenomena” and their behaviour as classes and methods. The brief his-

tory of OOP given by Capretz [60] describes the origin of the term “object-oriented” in

connection with the language Smalltalk by Goldberg and Robson [145]. Capretz [60] fur-

ther wrote that Smalltalk was “first developed in 1972 in the Learning Research Group

at Xerox Palo Alto Research Center”, and was “greatly influenced by Simula as well as

by Lisp.” In addition, Coad and Yourdon [74] have succinctly defined object-oriented

programming (OOP) as:

object-oriented = objects + classification + inheritance + communication

The object-oriented language Java, originally developed by Gosling in the mid-1990s [158],

is the core language of our myDS and vRSS software given the n-tiered Java JSP/servlet-

based web application architecture (Section 4.5.5) that they employ. Our use of Java in

myDS and vRSS shares elements of both the object-oriented and procedural programming

models. Examples of conventional OOP can be found in the servlets of the application

layer in each application, and in the POJO classes which map the model to the tables of

the database via DAOs and ORM (Section 4.5.6). In addition to this, in case study three

a hybrid OOP/procedural model is used in the semi-automated batch processing of RSS

feeds for classification and sentiment analysis (Section 4.8.2).

4.5.5 Managing requests and responses

With reference to the n-tiered architecture defined in Section 4.4, in Java-based web

applications the presentation layer is frequently implemented by HTML pages and JSPs. A

JSP, i.e. a JavaServer page, is defined by version 2.3 of the JSP specification [70] as “a text-

based document that describes how to process a request to create a response.” JSPs makes

4. Web engineering and software architecture 105

use of EL and JSTL tag libraries to display dynamic data. When an HTML form on a JSP

is submitted via a browser, the HTTP request made interacts with the application layer via

Java servlets running in a container, i.e. web server, implemented in myDS and vRSS by

Apache Tomcat (Appendix B.1). Although we use version 2.5 of the servlet specification

in our software, the current version 3.1 [64] describes a servlet as a “Java technology-

based Web component, managed by a container, that generates dynamic content.” The

JSP/servlet interaction is enabled in Apache Tomcat by XML- or Java- based deployment

descriptors which map the URLs of the HTML forms in JSPs to dedicated servlets: the

descriptors also store authentication information for the URLs. Thus, given a particular

request, the descriptor mappings are used by the web server to authenticate the user, and

if this succeeds, the request is forwarded to the appropriate servlet. The method of the

servlet corresponding to the HTTP GET or POST contained in the request is invoked,

necessary processing is performed, and an HTTP response is returned back to the user,

often as a second JSP. Appropriate to a request, servlets communicate with the database

via the data layer (Section 4.5.6) to persist (Appendix B.2) data for storage and retrieval.

The HTTP request and response cycle is stateless, i.e. once a request has been made by

a client via a browser, its connection to the web server is lost because neither device retains

state, i.e. data or instructional information, between different requests and responses. To

maintain state, web applications can use session tracking, where a session can identify a

user across more than one page request or visit to a web site, and store information about

that user. The servlet container, creates a session ID and session object per session, to

maintain contact between client and web server. The session ID, often stored in a small

text file known as a cookie is attached to each request from the client allowing the web

server to relate it to the session object. Cookies, defined by Barth [27] as “name/value

pairs and associated metadata”, reside in the cache of a client’s browser.

4.5.6 Application and data layer correspondence

Figure 4.4 illustrates the correspondence between the application and data layers of the

n-tiered Java JSP/servlet-based web application architecture used by myDS and vRSS. In

this example, two Java classes in vRSS for visualising RSS-mined data are displayed in an

edited UML (Appendix B.2) class diagram, and the equivalent database tables are repre-

sented in an ERDM. Object relational mapping (ORM) maps the Java classes of the appli-

cation layer to the data layer. In this example, vRSS’s Java class Visualisation repre-

sents visualisation objects with a name, data, created date/time and other attributes. One

of these attributes is the list visualisationElements of type Visualisation Element

4. Web engineering and software architecture 106

which is used to represent descriptive metadata (Appendix B.2) for the visualisation, e.g.

axis labels. This arrangement allows an instance of class Visualisation to include one-or-

many objects of class Visualisation Element. In the ERDM, this resolves to a classical

1:M relationship between the two database tables persisting the data at run-time.

(a) UML class diagram.

(b) ERDM of 1:M database relationship.

Figure 4.4: ORM in visualRSS using Java classes (top) and corresponding database tables
(bottom) for visualisations (attributes and methods have been edited for clarity): cf. all
case studies.

Access by the data layers in myDS and vRSS to the relational databases forming their

data models (Section 4.5.7) is enabled by DAO classes. These objects, typically containing

boilerplate code written to enable CRUD methods for operations upon database tables,

contain code adapted by the author from Murach and Steelman [271]. In order for the

DAOs to connect to their respective databases, each application uses JDBC, i.e. Java

database connectivity (Appendix B.2), implemented through a database connection pool.

In DBCP a collection of connection objects is maintained in a pool shared between all

application users. Therefore, when a request from a user requires database access, the

servlet concerned spawns a thread which gets a connection object from the pool. The

database is accessed using the connection object through the appropriate method in a

DAO class, where the necessary SQL for the action is embedded in the code of the method.

Following this, the thread returns the connection object to the pool for subsequent use,

and the server serves the response to the user.

4.5.7 Data model

Both myDS and vRSS employ the popular open-source RDBMS MySQL (Appendix B.1).

MySQL is an implementation of the classical relational database model proposed by Codd

in 1970 [75] and uses relations, i.e. tables, to store data. Each table maintains one or more

4. Web engineering and software architecture 107

primary key attributes (columns) to uniquely identify records (rows): these attributes

may be present on other tables as foreign keys to establish relationships which describe

the ways in which the tables are related. Each relationship has a degree, i.e. one-to-one

(1:1), one-to-many (1:M) or many-to-many (M:N), to determine its cardinality. Principal

constraints on these relationships, defined by Codd in 1979 [76], concern entity integrity

to guarantee the uniqueness of the primary keys in each table, and referential integrity5

to prevent mismatched foreign keys between tables. Both constraint types are used by

an RDBMS to ensure the ACID properties (Appendix B.2) of database transactions for

CRUD operations. The schema or data model of a database is frequently represented

visually by an ERDM.

SQL, originally developed by Chamberlin and Boyce [63] in the early 1970s, is typically

used to define tables and to query and update data in relational databases. SQL has since

been extended several times and it became an ANSI standard in 1986, and an ISO standard

in 1987. The latest version of the language is SQL 2011 [203]. MySQL and its compliance

with ANSI/ISO standards are described in Appendix B.1.

4.6 Keyword conventions and characteristics

Our use of the term keyword is according to the definition provided by the OED at http:

//www.oxforddictionaries.com/definition/english/keyword, i.e. that a keyword is

a “word used in an information retrieval system to indicate the content of a document.”

Other definitions refer to a “word or concept of great significance” or a “significant word

mentioned in an index”. A contemporary example of the use of keywords is provided by a

search engine: keywords are entered into the home-page of the search engine in a browser

by a user with the expectation of a list of links to web sites, i.e. documents, related to

the keywords, being provided as the response. SEO techniques applied to web pages, e.g.

the use of <meta> tagging in HTML, are frequently used to improve a web site’s placing

in search engine listings. Similarly, in the case studies which demonstrate our paradigms,

a “document” is an RSS feed and the keywords are used to “indicate the content” in the

text of the feed.

In our paradigms and their case studies, user-entered or system-generated keywords

are, with the exception of the sentiment analysis component of case study three (Chapter

11), näıve, i.e. simple n-grams (Appendix B.2), which are not disambiguated, subject to

NER or significant cleansing. Furthermore, excluding the user-entered keywords in the case

5cf. Abiteboul et al. [1], where referential integrity is defined as inclusion dependency.

http://www.oxforddictionaries.com/definition/english/keyword
http://www.oxforddictionaries.com/definition/english/keyword

4. Web engineering and software architecture 108

studies for our first paradigm, our keywords are independent of each other, i.e. we pay no

attention to dependent correlation6 or to any other type of keyword relatedness. In addition

to this, we base the popularity of our keywords upon the fluctuations in their frequencies

in the text of RSS feeds measured between pre-defined starting and ending dates/times

(Section 1.4.2). Within this context, we do not account for the temporality of keywords, i.e.

the duration for which a given keyword is present in, or absent from, RSS feeds between

the aforementioned dates/times. Therefore, our keywords and their frequencies conform to

the vector space model (VSM) (Appendix B.2) representation of documents and contents,

i.e. the RSS feeds comprise documents and the content of each vector corresponds to a

bag-of-words (BoW) (Appendix B.2) containing the frequencies of keywords therein. We

employ no other keyword-based metrics. Although variations exist in our paradigms and

their case studies, our general keyword conventions and characteristics are listed below:

• Paradigm 1: case studies one and two: Keywords are lowercase and without

limitation. Case study two further excludes stop words and restricts keywords to

unigrams.

• Paradigm 2: case study three: For our classification work, we allow a maximum

length of trigram7 but use stop words and stemming (Appendix B.2). For our

sentiment analysis work, a basic NER identifies proper nouns as keywords (Section

11.4.5), and we allow stop words, but not stemming.

4.7 Paradigm one: software fundamentals

4.7.1 Common software components

myDS and vRSS both make use of several common software components and related

terminology, e.g. mining rules, and polling and mining. These components are conceptual

rather than actual, i.e. where our code implementing each component in one application

is distinct from the equivalent code in the other.

6cf. Fisher et al. [122], described in Sections 3.3.3 and 12.5.4, who defined dependent correlation as a
means to “discover when co-occurrences between a pair of words are coincidental, and when they are part
of the story.”

7In our opinion, as the length of a keyword increases, the semantics of the term keyword are diluted.

4
.

W
eb

en
gin

eerin
g

a
n

d
so

ftw
a
re

a
rch

itectu
re

1
0
9

Figure 4.5: DFD representing the common software components and related terminology of myDataSharer and visualRSS: cf. case
studies one and two.

4. Web engineering and software architecture 110

Case Application/ Products
study component Mining rules Polling and mining Visualisation

One myDataSharer Rome Quartz Scheduler Google Charts
Rome

Two visualRSS Lucene Lucene Google Charts
Rome Quartz Scheduler

Rome

One Database MySQL
and two Web server Apache Tomcat

Table 4.4: Distribution of principal open-source, third-party products by common concep-
tual components: cf. case studies one and two.

The common components and concepts of myDS and vRSS are represented in Figure 4.5

as generic processes in an abstract DFD.8 This DFD (Appendix B.2) is illustrative, i.e.

it does not display all of the data flows between the processes within either application.

For this reason, the generic nature and common use of these processes are described in

the following sections of this chapter. Where the specifics of the actual implementation of

these components in our myDS or vRSS software extends or differs to these descriptions,

Chapters 5 and 7, respectively, provide more information.

In addition to the DFD in Figure 4.5, Table 4.4 lists the distribution of the principal

open-source, third-party products (Appendix B.1) from the Java ecosystem that are used in

the common components of our myDS and vRSS software on a black-box, mash-up basis.

These products are referred to in the following sections of this chapter for both of our

paradigms, and in Parts II and III for their respective case studies.

4.7.2 Mining rules

Mining rules9 form the basis of our first paradigm. They are defined upon RSS and are

intended to provide a straightforward means for users to specify how textual and numeric

data is to be mined (Section 4.7.5) from feeds during polling (Section 4.7.3) and persisted

to database storage. This is in order to update and visualise the objects that the rules

become part of, i.e. datasets for case study one (Section 5.3), and visualisations in our

second case study (Section 7.3). Table 4.5 lists generic mining rules which apply to the

common components of myDS and vRSS referred to in Section 4.7.1.

8A sibling DFD for case study three for our second paradigm is displayed in Figure 4.6.
9As described in Section 1.4.1, the term mining rules is our own and applies only to the software imple-
menting the case studies for our first paradigm: no further meaning of this term is intended or should be
inferred.

4. Web engineering and software architecture 111

Mining rule Description

RSS feeds The RSS feeds to be mined for data textual and numeric data.

RSS feed ele-
ments

RSS feed elements, defaulted to the <title>, <description> and
<pubDate>, from which mining will occur during polling.

Keywords As described in Section 4.6.

Mining type Identifies how RSS feeds are mined.
In case study one, myDS employs occurrence (OM) and value min-
ing (VM).
In vRSS for case study two, automatic, semi-automatic and man-
ual mining are used.

Duration Dates/times between which polling will occur.

Visualisation The visualisation type to represent data mined from RSS.

Polling frequency The number of hours between polling cycles, defaulted to one.

Name and de-
scription

Descriptive representation of the objects that the mining rules be-
come part. In case study one mining rules become part of datasets
(Section 5.4) and in our second case study, the rules become part
of visualisations (Section 7.4).

Table 4.5: Generic mining rules: cf. case studies one and two.

4.7.3 Polling

Polling in myDS and vRSS is scheduled (Section 4.7.4) on an hourly basis and serves two

purposes: (1) to control how frequently RSS feeds are polled for new postings, and (2) the

mining of any new postings that have been made to the feeds since they were last polled.

This comparison is based upon the BST/GMT date/time recorded in the <pubDate>

element of each <item> in an RSS feed (Section 2.2.3), and the polling date/time. If they

are found, new postings are mined (Section 4.7.5) and data is persisted to database storage

(Section 4.7.6).

4.7.4 Scheduling

myDS and vRSS both employ the open-source, Java-based Quartz Scheduler (Appendix

B.1) to control the frequency of polling in case studies one and two. Despite differences

in each application’s polling arrangements, the basic configuration of Quartz Scheduler

remains the same. This is illustrated in the Java code in Algorithm 4.1 which initialises

the hourly Quartz Scheduler job in vRSS to poll RSS feeds.

4. Web engineering and software architecture 112

1: int schedulerJobNo = 1;
2: SchedulerJob sj = Scheduler_Job_DB.get(schedulerJobNo);
3: jd = new JobDetail(sj.getJobName(), Scheduler.DEFAULT_GROUP,

Poll_RSS_Feeds_ScheduleJob.class);
4: ct = new CronTrigger(sj.getJobQuartzTrigger(), Scheduler.DEFAULT_GROUP, "" +

sj.getJobCronExpression().trim() + "");
5: scheduler.scheduleJob(jd, ct);

Algorithm 4.1: visualRSS’s Java code for hourly polling using Quartz Scheduler: cf. all
case studies.

The integer variable schedulerJobNo (1) is initialised with the value of the primary

key (Section 4.5.7) of the row in the Scheduler Job table in vRSS’s database which

stores the scheduling information needed for polling. The polling information is retrieved

from the database (2) using the get method of the Scheduler Job DAO class (Section

4.5.6). Implicit in (2) is the instantiation of the Scheduler Job object that provides the

scheduling information to the Quartz Scheduler-based JobDetail and CronTrigger (3, 4)

objects. Finally, Quartz Scheduler submits an instruction to the OS (5) to run the job

every hour according to the CRON-based (Appendix B.2) timer expression retrieved in (2).

4.7.5 Mining data from RSS

At the heart of the polling process (Section 4.7.3) is Rome, i.e. (R)ss and at(OM) util-

iti(E)s, which provides a set of utilities to parse RSS and Atom (Appendix B.2) feeds.

During polling to update an object which mining rules have become part of, new postings

made to the RSS feeds defined in the object’s rules are parsed by Rome. The text of the

postings is then mined according to the mining rules and data is persisted to database

storage as part of the object. Rome is also used during the definition of mining rules

(Sections 5.4 and 7.4 respectively) allowing users to sort and restrict the current RSS feed

content, before the objects the rules become part of (Section 4.7.2) are similarly persisted

to the database. Algorithm 4.2 lists Java code for Rome to open a connection to a web

site (1, 2) in order to retrieve the hosted RSS feed. This exchange is made in lines (3) and

(4), after which the <SyndFeed> object (5) is populated with the feed’s content.

1: url = new URL(rssFeedURL);
2: URLConnection urlConn = url.openConnection();
3: XmlReader reader = new XmlReader(urlConn);
4: SyndFeedInput input = new SyndFeedInput();
5: SyndFeed rssFeed = input.build(reader);

Algorithm 4.2: Java code to allow Rome to connect to a web site and retrieve the hosted
RSS feed: cf. case studies one and two.

4. Web engineering and software architecture 113

Rome parses RSS and Atom feeds by using its own generic <SyndFeed> objects. Each

<SyndFeed> contains a variable number of <SyndEntry>, i.e. syndicated entry, objects.

Each <SyndEntry> represents an <item> of the content parsed from an RSS feed, i.e. a

posting (Section 2.2.3). Algorithm 4.3 lists Java code populating a String object named

title with text parsed by Rome from the <title> element of an RSS feed <item>.

1: List<SyndEntry> rssFeedItems = rssFeed.getEntries();

2: for (SyndEntry rssFeedItem : rssFeedItems) {

3: String title = rssFeedItem.getTitle();

4: ...

5: }

Algorithm 4.3: Use of Rome objects to populate a Java String object: cf. case studies
one and two.

Rome (Appendix B.1) was selected for use in our software because it is written in Java

and open-source, well-documented and, at the time of selection, was sponsored by Sun

Microsystems at http://www.java.sun.com. The product’s generic handling of feed types

also precluded any incompatibilities between the different versions of RSS: several reported

cases of this nature are documented in Section 3.5.1. Moreover, Rome was also used in

several of the appropriate examples of related work we compare with our first paradigm

and its case studies in Chapter 9.

4.7.6 Persisting RSS-mined data to database storage

Previous sections of this chapter have described the general arrangements that myDS and

vRSS share for mining data from RSS during polling. The specifics of each application’s

persistence (Appendix B.2) of mined data to database storage are described in Sections

5.6 and 7.6 respectively.

4.7.7 Visualising data

Section 2.8.4 lists a series of third-party products which can be used to visualise data. In

connection with this, for the two case studies for our first paradigm, the products listed

in Table 4.6 were considered according to the following criteria which were based upon

Harriott [167], i.e.: (1) the appropriateness of the product given the Java-based implemen-

tation (Section 4.5.4) of myDS and vRSS, (2) the ability to create a variety of qualitative

and interactive visualisations, (3) to be produced by an established organisation, (4) a

shallow learning curve, (5) to be open-source, and (6) the availability of support.

http://www.java.sun.com

4. Web engineering and software architecture 114

The evaluation of the products listed in Table 4.6, according to these criteria, resulted

in the selection of Google Charts (Appendix B.1) for the case studies for our first paradigm,

because it is free to use, web-based and support is provided via a mailing list.

The Google Charts visualisation process consists of five stages: (1) data to be visualised

is retrieved from the database according to the mining rules specified, (2) the data is

formatted in JavaScript and then (3) transmitted on-line to Google Charts. An SVG or

VML graphic is then returned from Google Charts (4) for rendering in the browser (5).

The Google Charts visualisation types, which provide the majority of the available types

in our myDS and vRSS software, consist of pie and x - y charts: a Google Charts tree-

map (Appendix B.2) was also used in case study two. Other types include a word-cloud

written by the author and a Weka decision tree (Section 10.5) in myDS.

Product Description

JFreeChart An open-source Java chart library available at http://www.

jfree.org/jfreechart/.

GnuPlot A “portable command-line driven graphing utility for Linux,

OS/2, MS Windows, OSX, VMS, and many other platforms.”

GnuPlot is available from (http://www.gnuplot.info/).

Google Charts A JavaScript-based set of libraries that allows interactive visu-

alisations to be embedded in web pages, available at https:

//developers.google.com/chart/.

Processing Available at https://processing.org/, Processing is a “flexi-

ble software sketchbook and a language for learning how to code

within the context of the visual arts.”

prefuse flare Prefuse at http://prefuse.org/ provides “provides visualization

and animation tools for ActionScript and the Adobe Flash Player”.

Simile Exhibit Allows creation of web pages “with advanced text search and fil-

tering functionalities, with interactive maps, timelines and other

visualizations”, at http://www.simile-widgets.org/exhibit/.

Table 4.6: Third-party products considered for visualising data mined from RSS (the
descriptions quote text from the web sites of the respective software publishers): cf. case
studies one and two.

http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://www.gnuplot.info/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://processing.org/
http://prefuse.org/
http://www.simile-widgets.org/exhibit/

4. Web engineering and software architecture 115

4.8 Paradigm two: software miscellany

4.8.1 Extending visualRSS

The common components of our myDS and vRSS software (Section 4.7.1) for the case

studies for our first paradigm, had no significant application in case study three for our

second paradigm (Section 1.4.1). Nevertheless, the n-tiered Java JSP/servlet-based web

application architecture (Section 4.5.5) used in myDS and vRSS does apply to our second

paradigm. This is because the software written for case study three comprises an extension

of vRSS from case study two: therefore that application’s architecture and database were

retained.

Figure 4.6 provides an abstract DFD (Appendix B.2) which displays the basic processes

of the classification and sentiment analysis components for our third case study. As with

the sibling DFD for our first and second case studies (Figure 4.5), this DFD is illustrative

and does not include all of the data flows and processes. Chapters 10 and 11 describe

the processes shown in the DFD for: (1) classifying RSS feeds into categories according

to the fluctuations in the frequencies of popular keywords present in their text, and (2)

to determine a correlation between the changes in the keyword frequencies and sentiment.

The DFD also refers to manual facilities originally developed for our sentiment analysis

work (Figure 4.7): these were superseded by the batch processing elements described in

Section 4.8.2. Table 4.7 complements Figure 4.6 by listing the distribution of the principal

open-source, third-party products employed in these processes. Moreover, the following

sections of this chapter discuss software characteristics of vRSS in case study three.

4.8.2 Batch processing

In Section 4.5.4 Java is referred to as the OOP-based programming language used in our

software. We also employ a hybrid OOP/procedural model in the semi-automated batch

processing of RSS feeds, written for the classification component of our third case study

to validate its use at RSS feed category-level for our sentiment analysis work. The batch

processes manipulate POJOs (Section 4.8.3), e.g. when processing data returned by a

call to a method in a DAO class (Section 4.5.6), but the Java classes implementing the

batch processes are never actually instantiated as objects in the typical object-oriented

manner. The batch processing classes lack constructors and do not implement accessor

and mutator, i.e. get and set, methods, based upon individual attributes of objects: these

classes also include class-based, not instance-based, static methods. Quartz Scheduler

(Section 4.7.4) was used to run the batch processing during case study three.

4
.

W
eb

en
gin

eerin
g

a
n

d
so

ftw
a
re

a
rch

itectu
re

1
1
6

Figure 4.6: DFD representing the processes of classification and sentiment analysis in visualRSS: cf. case study three.

4. Web engineering and software architecture 117

Case study Application/ Products

component Classification Sentiment analysis

Three visualRSS Lucene Lucene

Quartz Scheduler Quartz Scheduler

Weka SentiStrength

Database MySQL

Web server Apache Tomcat

Table 4.7: Distribution of principal open-source, third-party products: cf. case study three.

4.8.3 Class hierarchy

The processes illustrated in Figure 4.6 for classification and sentiment analysis employ a

simple hierarchy of Java classes to maintain the RSS feeds, keyword frequencies and other

data required of their various functions. These classes are illustrated in the edited UML

(Appendix B.2) class diagram in Figure 4.7.

The superclass of this hierarchy, i.e. RSS Feed Miner, has dedicated naming attributes

and an RSS Feed Polling object which includes start and stop dates/times. The RSS

feeds are stored in a series of parallel lists along with the elements and categories to be used.

Keywords are stored in a key/value map in class RSS Feed Occurrence Miner. These

classes were originally written as part of our vRSS software to store mining rules defined in

case study two (Section 7.5), but were readily extended for our third case study, i.e. where

the attributes of classes RSS Feed OccurrenceData Miner and RSS Feed OccurrenceSent

iment Miner address classification and sentiment analysis respectively.

4.8.4 Interface design

In Section 6.4.2, we explain why myDS’s textual mining rules in our first case study were

refined for vRSS in case study two. A consequence of this allowed the development in vRSS

of a lightweight, uncluttered interface, with common controls, e.g. search and customised

blurb at the top of each page, to identify a page’s operation and navigation within the

application. We provide an example of this in Figure 4.8 using one of the pages of the

manual facilities, originally developed but subsequently discontinued, for the sentiment

analysis component of case study three (Chapter 11).

4. Web engineering and software architecture 118

Figure 4.7: UML class diagram of visualRSS’s class hierarchy for case study two, and its
extension for our classification and sentiment analysis work (methods have been edited for
clarity): cf. case study three.

4
.

W
eb

en
gin

eerin
g

a
n

d
so

ftw
a
re

a
rch

itectu
re

1
1
9Figure 4.8: Screen-dump of first page for manual sentiment analysis, developed but discontinued, in visualRSS: cf. case study three.

4. Web engineering and software architecture 120

4.9 Development tools

myDS and vRSS were developed using NetBeans IDE which is described in Appendix B.2.

4.10 Afterword

This chapter has described web engineering and web application architecture as they apply

to our myDS and vRSS software. This material provides the basis for our description of

the architectural and technical foundations of both applications, the common components

they share, and the distinct implementation of these components according to the case

studies of our first paradigm. Case study three’s extension of our vRSS software, and

several characteristics therein for our second paradigm, have also been briefly commented

upon.

The following chapters present the case studies for our paradigms: Part II documents

our first paradigm and its two case studies, whilst Part III focuses upon case study three

for our second paradigm.

Part II

Paradigm 1: Defining mining rules

upon RSS to determine and

visualise trends from textual and

numeric data

121

Chapter 5

Case study one: The

myDataSharer software

5.1 Foreword

This foreword serves two purposes. The first of these concerns the organisation of Part

II of this thesis wherein five chapters present our first RSS-mining paradigm (Section

1.4.1) and its two case studies. The first four chapters, which include this one, form two

pairs where each pair addresses one of the two case studies. Together, this chapter and

Chapter 6 address case study one, whilst Chapters 7 and 8 focus upon our second case

study. The first chapter of each pair concentrates upon software, and the second chapter

concerns actual work and results. Finally, in Chapter 9, we compare our first paradigm

with appropriate examples of related work.

The second purpose of this foreword is to introduce this chapter specifically as part of

our presentation of case study one’s use of mining rules for our first paradigm. Therefore,

we begin with a brief reference to the case study in Section 5.2. The specifics of our

myDS software (Section 5.3) are then described in terms of the common components and

terminology shared by the two applications written for our first paradigm (Section 4.7.1).

This description extends to the two mining types (Section 5.4) implemented in myDS to

define mining rules, and the polling of RSS feeds for new data (Section 5.5). We continue

with database persistence in Section 5.6, the use of myDS’s diary to record user actions

in Section 5.7, and Section 5.8 which concerns visualising data in myDS.

122

5. Case study one: The myDataSharer software 123

5.2 Case study one

myDS was used during our first case study which took place in late 2009. This case study,

described in Chapter 6, employed a corpus of thirty-five part- and full- time Masters-level

students. We sought through our first case study to answer a series of research questions

concerning the feasibility of our first paradigm in terms of the mining types (Section 5.4.1)

developed, and the efficiency of their use.

5.3 The myDataSharer platform

myDS formed the platform for our first case study. The application was originally based

upon the premise of modelling user behaviour within a social data-sharing environment,

i.e. bringing community and data together into a Web 2.0 (Appendix B.2) entity. myDS

allows members to freely form communities of like-minded or interested individuals and

parties. In these communities, textual or numeric data, uploaded from a wide variety of

formats, or mined from RSS, forms datasets that are unrestricted in range and visible

to community members and non-members alike. Various facilities are included to allow

community members to define content upon the datasets, i.e. queries, analyses and visual-

isations, and each community has an integrated BBS (Appendix B.2) supplied by jforum

(Appendix B.1) providing for discussion and debate.

In order to model user behaviour, myDS records information about their activities, data

uploaded or mined and facilities used, via a logging tool called the diary (Section 5.7).

To facilitate this, each myDS user has a personalised home-page listing the communities

they are members of, datasets and other content they have created. This content can be

accessed via a tree-control appearing on every page. Browse pages are also present and a

search facility uses keywords produced from tags entered and content names. Feedback,

profile maintenance and a series of descriptive About pages explain the application.

Despite myDS’s original objectives, in this chapter we focus specifically upon the ap-

plication’s RSS-mining component.

5. Case study one: The myDataSharer software 124

5.4 Defining mining rules

5.4.1 Mining types

We define generic mining rules as they apply to the case studies of our first paradigm in

Section 4.7.2. One of these mining rules is the mining type which identifies how RSS feeds

are mined (Section 4.7.5): two distinct mining types were implemented in myDS and used

by the student corpus in our first case study:

1. Occurrence mining: OM counts the occurrences of specified strings present in

the text of RSS feeds to explore trends or track issues. Examples of these may

include recording the number of times a politician, sportsman or media personality

is mentioned in feeds relating to a particular event. The three variants of OM are

listed in Table 5.1.

2. Value mining: VM analyses RSS feeds which provide structured content. Such

feeds are produced by dedicated web sites which report modern forms of ticker-

tape (Appendix B.2) data, such as financial movements, sports or lottery results.

Therefore VM allows users to define and mine values of interest. An example of VM

is where a user mines values of several currency exchange rates from an RSS feed

for a few days to compare their fluctuations.

Variant Description

Count all items To count all of the <item> elements in an RSS feed.

Count items This will mine the count of <item> elements containing a

specified string in any of the displayed columns, i.e. elements,

of an RSS feed.

An <item> is only counted once even if it contains more than

one instance of the string.

Count occurrences To mine the count of occurrences of a specified string in a

particular column of an RSS feed.

If the column contains multiple occurrences of the string, each

occurrence is counted separately.

Table 5.1: Occurrence mining variants: cf. case study one.

5. Case study one: The myDataSharer software 125

5.4.2 The relationship of mining rules to columns of datasets

The definition of mining rules for a dataset in myDS works on two levels:

1. Dataset-level: Includes a name and description for the resulting dataset, created

once column-level mining rules have been defined.

2. Column-level: A set of mining rules defined upon one or more <item> elements

(Section 2.2.3) of one or more RSS feeds. A dataset can have many sets of column-

level rules.

Once mining rules have been defined for a dataset (Appendix B.2), they are persisted to

database storage. This involves the dynamic creation of a dedicated table for the dataset

in the database (Section 5.6), which is subsequently populated with data mined during

polling of the RSS feeds defined in the column-level mining rules. Each column in the table

corresponds to a set of column-level mining rules. The definition of sets of column-level

mining rules for a dataset works on an iterative, columnar basis, i.e. a set of column-

level rules is produced per iteration of the definition process and requires a mining type

(Section 5.4.1), the RSS feeds to be mined, XML filters which identify elements in the

feeds for the mining type (Section 5.4.3) to mine, and a defining name. Therefore, a set

of OM column-level mining rules can include one or many RSS feeds from which data

will be mined, but because of the nature of VM, only a single RSS feed is permitted in a

column-level set of mining rules.

This connection, between the sets of column-level mining rules and the columns of the

dataset’s table, is the relationship of mining rules to columns of datasets. It follows from

this that a dataset-level set of mining rules can include column-level sets of rules for OM

and VM, but a single column-level set of rules cannot make use of both mining types.

The process to define dataset- and column- level mining rules for a dataset is illus-

trated in the edited DFD in Figure 5.1. In Figure 5.1, the terms dataset and column are

substantially equivalent to their respective level of mining rules.

5. Case study one: The myDataSharer software 126

Figure 5.1: DFD illustrating the process to define mining rules for a dataset in my-
DataSharer (data stores and external entities have been edited for clarity): cf. case study
one.

5. Case study one: The myDataSharer software 127

The process illustrated in Figure 5.1 includes a total of ten stages, each of which has a

dedicated page in myDS. To explain this process: each column-level set of mining rules

requires: (1) the choice of the column’s mining type (Section 5.4.1), (2) the polling fre-

quency (Section 5.5), which is only specified during the first iteration for the first set of

column-level rules, and (3) the RSS feeds to be mined for the column. (4) displays the

data from the RSS feeds already entered and provides various controls to allow users to

sort and restrict it, e.g. to show only RSS feed <item> elements where the Description

Contains text: Afghan. After (4), branching occurs due to the mining type:

• Occurrence mining: (5) allows the definition the OM variant, and the filters for

the mining rules for keywords and RSS feeds to be mined.

• Value mining: (6) requires the choice of RSS feed element to be filtered, and (7)

is concerned with identifying the value to mine from the element chosen in (6).

(8) is a common stage for both mining types requiring a name to be given to the column-

level set of mining rules: this name will in turn be used as the name of the column in

the dataset’s database table. (9) provides a summary of the mining rules for each column

so far defined and allows them to be edited: other options allow the polling frequency

to be modified and for new sets of column-level rules to be created. Finally, (10) allows

dataset-level mining rules to be set, i.e. the dataset’s name and polling dates, whereupon

the mining rules are persisted to database storage (Section 5.6) and the dataset’s table is

created in the database. The new dataset can now be updated with data mined from RSS

feeds during polling (Section 5.5).

In addition to Figure 5.1, Figure 5.2 and Table 5.2 illustrate the correspondence of the

relationship of mining rules to columns of datasets during polling. In this illustration, a

mock dataset has been compiled by combining the examples of OM (Algorithm 5.1) and

VM (Algorithm 5.2) in Section 5.4.3. We can see in Figure 5.2 that the mock dataset

consists of two columns, i.e. Commonwealth and IBMprice, which employ OM and VM

respectively to mine data from three RSS feeds between 17 00 - 21 00 on 29 Sep 2009.

Table 5.2 lists the mining rules for each column of the dataset. Column Commonwealth

employs OM and is updated every hour from RSS feeds BBC news and Sky news1 with the

collected frequency of keyword Commonwealth from the <description> element of each

feed. On the other hand, column IBMprice uses VM to mine the value of IBM’s stock

from the <description> element of Nasdaq’s RSS feed. To return to the relationship

1The RSS feed for Sky news is not actually present in Algorithm 5.1: it has been added here to emphasise
the relationship of mining rules to columns of datasets.

5. Case study one: The myDataSharer software 128

of mining rules to columns of datasets, the actual definition of the column-level mining

rules for the mock dataset would require two iterations of stages (1) to (9) in the process

illustrated in the DFD in Figure 5.1, i.e. the first iteration to define rules for column

Commonwealth, and the second iteration for IBMprice, before (10) persists these and the

dataset-level mining rules to the database.

Figure 5.2: Sample data from polling RSS feeds of mock dataset: cf. case study one.

Column RSS RSS feed Mining Description
name feeds element type

Commonwealth BBC news <description> OM Frequency of word
Sky news Commonwealth

IBMprice Nasdaq <description> VM Value of IBM’s stock

Table 5.2: Column-level mining rules of mock dataset: cf. case study one.

5. Case study one: The myDataSharer software 129

5.4.3 Filters

Function

Each column-level set of mining rules for a dataset makes use of case-sensitive filters.

These filters are based upon the structural metadata (Appendix B.2) in RSS’s format to

identify elements of feeds to determine textual (OM) or numeric (VM) data for mining

during polling (Section 5.5). XML for the filters is produced by myDS during the definition

of mining rules and persisted to database storage as part of the resulting dataset created

(Section 5.6). The principal XML elements used to define the filters and their related UML

(Appendix B.2) classes, are listed in Table 5.3. This table should be read in conjunction

with Figure 5.3 which also lists the attributes of the UML classes: methods are not

displayed for clarity.

Element/attribute Description UML class

<dataminer> A container encapsulating the
<columnminer> elements in a dataset.

DataMiner

<columnminer> Specifies the name and type of a set of
column-level mining rules.

ColumnMiner

<rssminer> For a <columnminer>, this pro-
vides common attributes for the
<rssoccurrenceminer> (OM) or
<rssvalueminer> (VM).
sortfield and sortascending are at-
tributes of <rssminer> to respectively
sort and restrict RSS data during the
definition of mining rules.

RSSMiner

<rssoccurrenceminer> Stores the keywords and the RSS feed
elements to be mined.

RSSOccurrence-

Miner

<rssvalueminer> Stores the RSS feed element to be fil-
tered, and the JavaScript <regexp>, i.e.
regular expression, which locates the po-
sition of the value to mine from that el-
ement.

RSSValueMiner

<rssurl> The RSS feeds to be mined for a
<columnminer>.

<polling interval> The <dataminer>’s polling frequency.

Table 5.3: Principal elements and attributes of XML filters for mining rules, and corre-
sponding UML classes: cf. case study one.

5. Case study one: The myDataSharer software 130

Figure 5.3: UML class diagram displaying cardinality and specialisation of principal oc-
currence and value mining classes (methods have been edited for clarity): cf. case study
one.

Occurrence mining

Figure 5.4 displays a partial screen dump of the myDS page where column-level mining

rules of OM’s Count occurrences variant are being defined upon data published by the

BBC in their web site’s principal RSS news feed at http://feeds.bbci.co.uk/news/

uk/rss.xml. There are two filters: (1) Count Occurrences in Description Containing

Commonwealth which has already been defined, whereas (2) the second filter, involving

the feed’s <title> element, is shown in a partially defined state.

Stated simply, when the resulting column-level mining rules of filter Count Occurrences

in Description Containing Commonwealth are persisted to myDS’s database as part of a

dataset, the XML created by myDS for this filter will be subsequently used during polling

to identify and mine the count of the occurrences of keyword Commonwealth from the

<description> element of the BBC’s news feed.

http://feeds.bbci.co.uk/news/uk/rss.xml
http://feeds.bbci.co.uk/news/uk/rss.xml

5. Case study one: The myDataSharer software 131

Figure 5.4: Partial screen dump of stage (5) in the DFD in Figure 5.1, displaying the
definition of occurrence mining rule filters in myDataSharer: cf. case study one.

Algorithm 5.1 lists edited XML for the Count Occurrences in Description Containing Com-

monwealth filters where the <dataminer> element (1) serves as the encapsulating dataset-

level container for the mining rules. The <rssoccurrenceminer> element (4) defines

the use of OM to mine the frequency of Commonwealth from (9) <rssoccurrencecount

field="DESCRIPTION">Commonwealth</rssoccurrencecount>, i.e. the <description>

element of the BBC’s news feed listed in the <rssurl> element (7): if it became necessary

to mine data from additional RSS feeds for Commonwealth, extra <rssurl> elements would

be needed here. Element <columnminer> (6) specifies the name and type of the column-

level mining rules: these details will be used to create the column of the resulting database

table which will be populated during polling according to the <polling interval> ele-

ment (3). (5) lists the attributes of the <rssminer> used to sort and restrict data from

the RSS feed in the <rssurl> element (7) during the definition of mining rules. Lastly, if

other sets of column-level mining rules were required in this example, each would have its

own respective <rssoccurrenceminer> element filter.

1: <?xml version="1.0" ?>
2: <dataminer>
3: <polling_interval units="HOURS">1</polling_interval>
4: <rssoccurrenceminer>
5: <rssminer sortfield="PUBLISHEDDATE" sortascending="false"

pollfilterenabled="true">
6: <columnminer name="Commonwealth" type="INTEGER"></columnminer>
7: <rssurl>http://feeds.bbci.co.uk/news/uk/rss.xml</rssurl>
8: </rssminer>
9: <rssoccurrencecount field="DESCRIPTION">Commonwealth

</rssoccurrencecount>
10: </rssoccurrenceminer>
11: </dataminer>

Algorithm 5.1: Column-level occurrence mining rule filters (edited for clarity): cf. case study
one.

5. Case study one: The myDataSharer software 132

Value mining

The edited XML listed in Algorithm 5.2 represents filters to record fluctuations in the

price of IBM stock at http://www.nasdaq.com/aspxcontent/NasdaqRSS.aspx?data=

quotes&symbol=IBM. The roles performed by elements <dataminer>, <rssminer>,

<columnminer> and <rssurl> match their OM counterparts. The major difference be-

tween OM and VM is illustrated by the <rssvalueminer> element (4) which includes the

<regexp> element (9) to locate the position in the <description> element of the value

to mine during polling (Section 5.5).

1: <?xml version="1.0" ?>
2: <dataminer>
3: <polling_interval units="HOURS">1</polling_interval>
4: <rssvalueminer field="DESCRIPTION">
5: <rssminer sortfield="PUBLISHEDDATE" sortascending="false"

pollfilterenabled="true">
6: <columnminer name="IBMprice" type="FLOATING"></columnminer>
7: <rssurl>http://www.nasdaq.com/aspxcontent/NasdaqRSS.aspx?

data=quotes&symbol=IBM</rssurl>
8: </rssminer>
9: <regexp>IBM Last ([-+]?[0-9,]*\.[0-9][0-9]*) Change .* % Change

.*% Volume .* As of: .* EDT View: Stock Quote | News
</regexp>

10: </rssvalueminer>
11: </dataminer>

Algorithm 5.2: Edited column-level XML filters for value mining: cf. case study one.

Combining mining types and multiple RSS feeds

The examples of OM and VM filters listed above all implement columns in datasets relating

to a single RSS feed. Nevertheless, mining rules for OM do permit multiple feeds to

be mined for a given column, and more complex combinations of filters can be specified

according to the relationship of mining rules to columns of datasets (Section 5.4.2): Section

5.6 describes an OM example of this. The XML filters for a column-level set of mining

rules are also mutually exclusive, i.e. a column can have filters for OM or VM but not

both, although a dataset can include columns for both, e.g. the mock dataset in Figure

5.2 and Table 5.2. Section 6.3.4 discusses patterns of mining types in case study one.

RSS feed data

Rome (Section 4.7.5) is used to parse the text of new RSS feed postings when mining rules

are defined upon current RSS feed content, allowing it to be sorted and restricted.

http://www.nasdaq.com/aspxcontent/NasdaqRSS.aspx?data=quotes &symbol=IBM
http://www.nasdaq.com/aspxcontent/NasdaqRSS.aspx?data=quotes &symbol=IBM

5. Case study one: The myDataSharer software 133

5.5 Polling and mining

This section and Section 5.6 consider the implementation in myDS of the common com-

ponents and terminology described in Section 4.7.1. In myDS, the polling process is run

by Quartz Scheduler (Section 4.7.3) every hour. The polling frequency, i.e. 1 - 24 hours,

for a given dataset determines when it will be included in the polling process: this single

polling frequency applies to all the columns of a dataset (Section 5.4.2). When polling

includes a dataset, the column-level XML filters created by myDS during the definition of

mining rules (Section 5.4.3) are employed. Each RSS feed in the <rssoccurrenceminer>

or <rssvalueminer> elements contained in the dataset’s <dataminer> (Section 5.4.3), is

polled consecutively for new postings, i.e. new RSS feed <item> elements. If new post-

ings are found in the feed, Rome (Section 4.7.5) parses the relevant elements of each new

<item> and, depending upon the mining rules of the columns in the dataset, new textual

and numeric data is mined and persisted (Section 5.6) to database storage together with

the polling date/time. Thus, mined and temporal data are stored together allowing both

to be easily visualised. The original text of the RSS feeds is not retained.

During polling, mining rules of several datasets can refer to the same RSS feed. To

prevent numerous requests to the feed’s originating web site, myDS incorporates a cache

to ensure that each RSS feed is only read once during polling. The cache is also cleared

prior to a polling cycle. As each dataset (Appendix B.2) is polled consecutively, allowing

for the cache, it is completely independent of every other: thus, the system is scalable.

5.6 Database persistence

The tables for datasets which persist (Appendix B.2) data mined from RSS feeds during

polling in myDS are conventional SQL tables implemented in the application’s database.

Owing to variations in the columns of a dataset caused by the relationship of mining rules

and columns (Section 5.4.2), myDS does not employ a single generic table to store mined

data. For each dataset, a dedicated table is created dynamically in myDS’s MySQL2

database when the definition of mining rules is complete, but before the table can be

populated from polling. In the examples of XML filters for OM and VM given earlier

in this chapter, reference is made to the use of <columnminer> elements in mining rules.

When the mining rules making up a dataset are persisted to database storage in the table

created for the dataset, the name and type of a <columnminer> are used to specify the

name and SQL data type for the corresponding column in the table.

2MySQL and its compliance with ANSI/ISO standards [203] are discussed in Appendix B.1.

5. Case study one: The myDataSharer software 134

Dataset 264 from case study one’s assignment (Chapter 6) demonstrates the use of

<columnminer> elements in naming the columns of dataset tables. In this example, the

Count occurrences variant of OM was used to mine the <description> elements of three

IT-industry related RSS feeds hourly for occurrences of company names Amazon, Google

and Microsoft, and populate three columns of a database table, where each column counted

the occurrences of one of the company names from the three feeds. Algorithm 5.3 lists

edited XML filters of dataset 264’s mining rules where three <rssurl> elements define

the RSS feeds (7 - 9) for <columnminer> MicrosoftCount (6), to be mined for keyword

Microsoft (10) to update the corresponding column of the table represented by the partial

SQL in Algorithm 5.4, wherein (3) lists the attributes of column MicrosoftCount.3

1: <?xml version="1.0" ?>
2: <dataminer>
3: <polling_interval units="HOURS">24</polling_interval>
4: <rssocurrenceminer>
5: <rssminer sortfield="PUBLISHEDDATE" sortascending="false"

pollfilterenabled="true">
6: <columnminer name="MicrosoftCount" type="INTEGER"></columnminer>
7: <rssurl>http://www.theregister.co.uk/headlines.atom

</rssurl>
8: <rssurl>http://www.engadget.com/rss.xml

</rssurl>
9: <rssurl>http://feeds.feedburner.com/TechCrunch

</rssurl>
10: <rssoccurrencecount field="DESCRIPTION">Microsoft

</rssoccurrencecount>
11: </rssminer>
12: </rssocurrenceminer>

. . .

13: </dataminer>

Algorithm 5.3: Edited XML filters for myDataSharer’s dataset 264: cf. case study one.

1: CREATE TABLE ds_264_96025423112009 (
2: id INT(11) NOT NULL AUTO_INCREMENT,
3: MicrosoftCount DOUBLE DEFAULT NULL,

. . .

4: PollDateTime TIMESTAMP NOT NULL,
5: PRIMARY KEY (id)
6:)

Algorithm 5.4: Partial SQL of database table for dataset 264 in myDataSharer: cf. case
study one.

3Column MicrosoftCount is a DOUBLE because INTEGER columns in the XML filters of mining rules
are converted to SQL doubles due to the existence of decimal points in values mined during polling.

5. Case study one: The myDataSharer software 135

5.7 The diary

myDS’s includes a diary which was originally intended to record logical, physical and

temporal data of every action carried out by a user. Each page in myDS contains at least

one diary event. These events, comprising simple alphanumeric codes, allow the diary to

record the details of any operation carried out on application content, i.e. user, community,

dataset or query, analysis or visualisation object, and the type of that operation.

Given that the assignment for case study one focused on mining rules, the diary’s

original purpose was not served, but it did provide data for the case study’s research

questions (Section 6.2.2).

5.8 Visualising data

Given myDS’s original premise as a data-sharing application (Section 5.3), available visu-

alisation types are divided between those for textual data and those for numeric data, the

choice of which is determined by the source of a dataset’s data or mining type.

For textual data, visualisation types include a word-cloud and a tree-map (Appendix

B.2): the latter was provided by Js-Treemap (Appendix B.1). The majority of the pie

and x - y charts for displaying numeric data mined from RSS were implemented in Google

Charts. This product is described in Section 4.7.7 because of its use in both case studies

for our first paradigm. myDS also employs a decision tree visualisation provided by Weka

(Section 10.5).

5.9 Afterword

In this chapter we have described the myDS application which served as the platform for

our first case study. Furthermore, this chapter has also profiled the two mining types which

were implemented in myDS to define mining rules for our first paradigm. The specifics

of myDS, with reference to the common components and terminology shared by the two

applications written for our first paradigm (Section 4.7.1), are also described.

Chapter 6

Case study one: Mining and

visualising textual and numeric

data from RSS

6.1 Foreword

In Chapter 5 we presented our myDS software and its implementation of mining rules.

In this chapter, we concentrate upon the use of myDS in case study one for our first

RSS-mining paradigm (Section 1.4.1). Section 6.2 defines this case study, which formed

an assessed assignment for a corpus of students, and the research questions we sought

to answer concerning the feasibility of mining rules. The results of case study one are

presented in Section 6.3: in doing this, we look at each research question individually

and document examples, patterns and efficiencies in the definition of mining rules and

visualisations. We also discuss difficulties encountered by our students during the case

study. In Section 6.4 we appraise case study one according to its research questions and

student corpus, and the effects of these upon our mining rules.

6.2 The assignment

6.2.1 Synopsis

Case study one sought to test our first paradigm’s definition of mining rules upon RSS.

In Nov - Dec 2009, a laboratory-based assessed assignment involved thirty-five part- and

full- time students with “varying employment and experience backgrounds” (O’Shea and

136

6. Case study one: Mining and visualising textual and numeric data from RSS 137

Levene [288]): this corpus formed the class for a Masters-level module concerning search

engines and web navigation. The assignment required each student to use the OM and

VM mining types in our myDS software to respectively mine textual and numeric data, by

defining mining rules upon small numbers of RSS feeds, and to visualise the data mined

during polling.

6.2.2 Research questions

This case study employed the author’s myDS application to answer the following research

questions (cf. O’Shea and Levene [288]) concerning our first paradigm:

1. Is it possible to define mining rules upon RSS to determine and visualise

trends? This was the most fundamental question of case study one which concerned

whether our students could effectively use mining rules to mine and visualise textual

and numeric data from RSS.

In answering this question, we also document the user experience using examples of

feedback received from our students concerning the difficulties they encountered.

2. How efficient was the process to define mining rules upon RSS? If our first

research question addresses the usability of our technologies, a logical corollary of

this is the efficiency, in terms of time taken, of the process to define mining rules

upon RSS. Despite familiarity with any new process being engendered with frequent

use, because of the unproven nature of the task and software at hand, we employed

the simple metric of how long it took our students to define individual instances of

mining rules during the assignment.

3. Can the diary be used to model user behaviour? This question was intended

in conjunction with myDS’s original aim of modelling user behaviour within a social

data-sharing environment by using the application’s diary (Section 5.7). The diary

was subsequently used to provide data for our second research question. Therefore,

its original function of modelling user behaviour is not considered in detail. Despite

this, diary schedules for mining and visualisation during the assignment are used in

this chapter.

6.2.3 The assignment

Figure 6.1 reproduces the assignment given to our student corpus. This assignment con-

sisted of two mandatory components and a third optional one: the second and third

6. Case study one: Mining and visualising textual and numeric data from RSS 138

components required the defining of mining rules upon RSS in our myDS software. The

stages are described below:

1. Part one: Each student was required to find two datasets of their own choice, to

upload them to myDS, visualise them and to explain the meaning of the data and

visualisation. This part of the assignment was intended to test data-sharing com-

ponents of myDS (Section 5.3) and was not part of the case study: hence it is only

included here for completeness.

2. Part two: Each student was allocated four RSS feeds, from a list pre-selected by

the author, and asked to define mining rules of their own choice upon each feed using

OM or VM (Section 5.4.1). We also asked the students to poll each feed for a period

of four days and, at the end of each day, to produce a visualisation displaying the

data mined from each feed.

3. Part three: This optional part of the assignment required the students to find two

additional RSS feeds of their own, and to also define mining rules and poll them for

four days. Visualisations of each day’s data were also requested.

6.2.4 Setting-up

Selection and allocation of RSS feeds

A master list of sixteen RSS feeds (with a further seven in reserve) was used for the

second part of the assignment (Appendix A.1.1). These feeds were selected because they

covered popular but diverse themes: we also sought to avoid contentious issues such as

race, religion and politics. Our thinking was that this would allow OM, and permit VM to

be served by the sport and financial feeds included. We made no use of a formal taxonomy

to classify our RSS feeds, and to avoid any potential ambiguity arising from them, we did

not employ either of RSS’s <category> element types (Section 2.2.3). Consequently, the

following category names are for convenience of presentation in this chapter only:

• Sport: Yahoo football feed http://sports.yahoo.com/sow.rss.

• Lottery results: Links to the results of lottery feeds in the USA provided by web

site http://www.superpages.com/cities/lottery/index_rss.html.

• Financial: http://www.sloomedia.com/currency/feeds/USD.xml supplied ex-

change rates for the US Dollar against many currencies.

http://sports.yahoo.com/sow.rss
http://www.superpages.com/cities/lottery/index_rss.html
http://www.sloomedia.com/currency/feeds/USD.xml

6. Case study one: Mining and visualising textual and numeric data from RSS 139

Figure 6.1: Case study one’s assignment Extracting and visualising data in myDataSharer :
cf. case study one.

6. Case study one: Mining and visualising textual and numeric data from RSS 140

• Media: The then-current top 100 popular music album releases listed by http:

//feeds.musicchartfeeds.com/itunestop100albums.

• Information technology: IT developers questions and answers web site http:

//www.stackoverflow.com/feeds.

• News: The BBC web site’s principal news feed at http://newsrss.bbc.co.uk/

rss/newsonline_uk_edition/front_page/rss.xml.

The full allocation of RSS feeds to students is listed in Appendix A.1.2, and was randomised

to avoid any pre-determined patterns which could have biased the case study. We also

ensured that each student received at least one feed that we thought could be used for

VM. Certain students were allocated either partially or wholly identical sets of feeds in

order to provide a degree of consistency in the results. Some re-allocation of feeds was

also performed during the case study because of difficulties encountered: we discuss these

issues in Section 6.3.5.

Guidelines

From the start, it was our intention that the assignment and its submission requirements

would allow us to automatically assess any results with the aim of answering our research

questions (Section 6.2.2). By adopting this approach, we avoided the need for post-

assignment student questionnaires or surveys. Instead we were able to focus directly

upon the students’ submissions to analyse results and for feedback, explicitly using the

submissions, and implicitly via the quality of datasets and visualisations produced. The

diary proved instrumental in this analysis by collating data about user activity in a similar

way to that of web servers. This allowed us to gauge the case study’s results according to

the time taken to define mining rules for our second research question.

6.3 Results

6.3.1 Order of presentation

In presenting the results of case study one, we first describe the two categories employed

to analyse the datasets and visualisations created by our students, and then we discuss

each category’s actual results. Both categories are then combined when we consider the

time taken to define mining rules upon RSS during the tenure of the case study.

http://feeds.musicchartfeeds.com/itunestop100albums
http://feeds.musicchartfeeds.com/itunestop100albums
http://www.stackoverflow.com/feeds
http://www.stackoverflow.com/feeds
http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml
http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml

6. Case study one: Mining and visualising textual and numeric data from RSS 141

6.3.2 Categorising our results

Due to the relationship of mining rules to columns of datasets (Section 5.4.2) where, given

the mining rules defined, a column in a dataset (Appendix B.2) can be made up of data

mined from one or more RSS feeds, reference is made deliberately in this section to the

numbers of datasets created in case study one, rather than the numbers of RSS feeds or

columns defined in the mining rules of the datasets. We also use the term mining rules

to substantially include both the dataset- and column- level rules described in Section 5.4.

Additionally, to better report on the successes and failures encountered, we have divided

the number of datasets into two major categories:

1. Reported results: These consist of the datasets and visualisations described in the

submissions to the assignment received from our students, i.e. some 173 datasets

(52.59%) of the total created during the case study.

2. Unreported results: These are datasets and visualisations defined by our students

but which were not included in submissions: some 156 datasets representing 47.41%

of the total.

6.3.3 Is it possible to define mining rules to RSS to determine and

visualise trends?

The rationale of our first research question

The most fundamental question asked in case study one concerned whether our students

could actually use our technologies to define mining rules to effectively mine and visualise

textual and numeric data from RSS. To describe the results of this, we first consider mining

rules, and follow this by describing subjects and examples. We then discuss the patterns

found in the reported results and the nature of the unreported results.

Mining types

The 173 datasets reported by our students included those sourced from RSS feeds allocated

to them for part two of the assignment and also those they originated for part three (Section

6.2). In all a total of 135 OM datasets (78.00%) and thirty-eight VM datasets (22.00%)

were created: these figures are decomposed by parts of the assignment and mining types

in Table 6.1. The difference in the number of datasets defined for each mining type is

readily explained by the quantity of textual data which can be mined from typical RSS

feeds by OM, whereas numeric data for VM can only be mined from feeds produced by

6. Case study one: Mining and visualising textual and numeric data from RSS 142

dedicated web sites which report modern forms of ticker-tape (Appendix B.2) data, such

as financial movements, sports or lottery results.1

Assignment part Number of OM datasets Number of VM datasets

Part two 103 29
Part three 32 9

Total 135 38

Table 6.1: Breakdown of reported datasets created by mining types: cf. case study one.

Range of subjects mined

An analysis of the 173 reported datasets created by our students revealed that keyword

frequencies in an extensive range of subjects were mined from the allocated and student-

originated RSS feeds during the assignment. In presenting the results of this analysis

below, as with Section 6.2.4, the categories of the feeds are used for convenience of pre-

sentation only, and examples illustrate variations in subjects mined:

• Sport: Examples of football included frequencies of postings in RSS feeds men-

tioning local or national (especially South American) teams, results of games, and

counts of the sources of stories on Yahoo’s RSS football feed at http://sports.

yahoo.com/sow.rss, or from various news agencies, e.g. Reuters and Associated

Press. Formula One postings concerned particular racing drivers.

• Lottery: Where datasets included frequencies of lottery draws or the frequency of

a particular number drawn over a particular length of time.

• Culture: Including media criticism and film/television: (1) references to the film

Avatar, (2) frequencies of seasonal references, e.g. Christmas, and (3) counting types

of music or a particular singer such as Shakira or Britney Spears. Other instances

concerned fashion, celebrities, education and language, e.g. counting the use of

various prepositions in an RSS feed.

• Information technology: Social networking such as counting postings to Twitter

[408] by Stephen Fry, whilst other frequencies focused on terms blog and software,

and IT companies, e.g. software houses or internet service providers.

1Of the 329 datasets created during the case study, only a single unreported dataset combined OM and
VM: unfortunately, only a small amount of data was collected.

http://sports.yahoo.com/sow.rss
http://sports.yahoo.com/sow.rss

6. Case study one: Mining and visualising textual and numeric data from RSS 143

• Finance: Recording various rates or trying to find links or correlations between

foreign currencies, prices of precious metals and shares.

• Climate: Weather forecasting and earthquake magnitudes.

• News: Frequencies of prominent politicians such as Barack Obama or Gordon

Brown, postings to news web sites, financial or technological stories, and postings

about countries and cities. Other instances provided frequencies of how many post-

ings on Google News [153] were sourced from UK newspapers Daily Telegraph, The

Times and The Guardian.

• Other: Postings to the RSS feed of Amnesty International, and reporting statistical

data, e.g. the distribution of numeric digits in RSS feeds and numbers of public

holidays in different countries.

Table 6.2 lists the breakdown of the reported datasets by category for the second and third

parts of the assignment.

RSS feed Number of datasets: Number of datasets:

category part two part three

Sport 29 2

Lottery 8 1

Culture 31 3

IT 26 3

Finance 26 3

Climate 0 6

News 11 17

Other 1 6

Total 132 41

Table 6.2: Breakdown of reported datasets by category and assignment parts two and
three: cf. case study one.

6. Case study one: Mining and visualising textual and numeric data from RSS 144

Occurrence mining and programming languages

Figure 6.2 displays an extract from dataset 577 listing the frequencies of questions post-

ed hourly to RSS feed http://www.stackoverflow.com/feeds between 13 00 - 23 00

on 30 Nov 2009, for various programming languages. The originally submitted myDS

visualisation is also displayed.

(a) Extract of data mined during polling.

(b) Time-series plot of data.

Figure 6.2: Extract of data and corresponding visualisation demonstrating use of occur-
rence mining in myDataSharer’s dataset 577: cf. case study one.

http://www.stackoverflow.com/feeds

6. Case study one: Mining and visualising textual and numeric data from RSS 145

Value mining and foreign exchange

Dataset 247 used VM to record Sterling and Euro foreign exchange fluctuations against

the USA Dollar every eight hours. Data was mined using VM from the <title> element of

each <item> (Section 2.2.3) in RSS feed http://www.sloomedia.com/currency/feeds/

USD.xml every eight hours from 18 00 on 22 Nov 2009 to 18 00 on 26 Nov 2009. The data

is listed and visualised in Figure 6.3.

(a) Extract of exchange rate data mined during polling.

(b) Time-series plot of exchange rate fluctuations.

Figure 6.3: Data extract and visualisation of exchange rate fluctuations from myDataShar-
er’s dataset 247: cf. case study one.

http://www.sloomedia.com/currency/feeds/USD.xml
http://www.sloomedia.com/currency/feeds/USD.xml

6. Case study one: Mining and visualising textual and numeric data from RSS 146

6.3.4 Patterns of use

This section is concerned with various trends we noticed in the 173 reported datasets

created by our students.

Preferred mining type

OM was preferred to VM by a significant margin, i.e. of the 173 datasets created in

the reported results, some thirty-eight (22.00%) concerned VM, whilst 135 (78.00%) were

derived from OM (Table 6.1).

Mining multiple RSS feeds for a single dataset

The relationship of mining rules to columns of a dataset (Section 5.4.2) allows multiple

RSS feeds to be defined in a set of OM column-level mining rules. In the majority of the

reported datasets the students used a single feed to define mining rules, where the feed

populated a dataset (Appendix B.2) of only one column. We determined two exceptions

to this:

1. Where students repeatedly re-used the same RSS feed: approximately 25.00% of

reported datasets created mined the same feed more than once to populate more

than one column of a dataset. An example of this was the use of OM’s Count all

items variant to mine Yahoo’s football feed (http://sports.yahoo.com/soccer/

rss.xml) for a dataset of sixteen columns for top European football clubs. The

XML filters (Section 5.4.3) in the mining rules created by myDS for a given column

of this dataset referred to the <title> element of the feed and was named, e.g.

BarcelonaOccYahSoc or BordeauxOccYahSoc, in order to identify both team and

feed.

2. In approximately 7.00% of reported datasets, counts were combined from more than

one RSS feed into a single column of the dataset. The best example of this aggrega-

tion occurred in part three of the assignment (Section 6.2). In dataset 264 (Section

5.6) three IT-industry related RSS feeds were mined hourly for occurrences of compa-

ny names Amazon, Google and Microsoft, i.e. the dataset’s database table included

three columns, each of which counted the occurrences of one of the company names

from the three feeds. The student responsible considered this to provide “broader

scope and higher reliability of the mining results” where high counts indicate that

“web-sites are frequently updated and the topics are highly relevant to them.”

http://sports.yahoo.com/soccer/rss.xml
http://sports.yahoo.com/soccer/rss.xml

6. Case study one: Mining and visualising textual and numeric data from RSS 147

Daily editing of data

A requirement of the assignment given to our students was to visualise the data mined

from their RSS feeds every twenty-four hours of each four day polling period. In doing

this, some students supplied screen dumps either for each day of the, or for the entire,

polling period.

Use of visualisations

Table 6.3 summarises the distribution of the visualisations in the reported datasets. Where

a student created multiple instances of the same visualisation type for a dataset, we have

counted these as a single visualisation: Mixed refers to a collection of several different

visualisation types for a single dataset.

Table 6.3 reveals that the high volume of column chart instances was because it was the

default visualisation type, and this may also have been the most familiar type of x - y chart

to our students. The pie chart proved ineffective in certain cases because of the number of

slices resulting from mined data, and the lack of relationships in mined data reduced the

efficacy of the scatter chart. The decision tree (Section 10.5) was sparsely used because

of its more specific role in classification (Section 2.5), and the textual and numeric data

mined in case study one did not lend itself to decisions and consequences. Similarly, the

tree-map (Appendix B.2) was not used because mined data lacked any implicit hierarchy

of subsets: it was also possible that our students were also unfamiliar with this type of

visualisation.

Visualisation type Number of visualisations

Column chart 70
Line chart 33
Mixed 25
Area chart 16
Bar chart 10
None 7
Pie chart 7
Decision tree 3
Scatter chart 2
Tree-map 0

Total 173

Table 6.3: Distribution of visualisation types: cf. case study one.

6. Case study one: Mining and visualising textual and numeric data from RSS 148

6.3.5 Discussion: explaining the unreported results

Several difficulties were encountered by our students during case study one which caused

delays in producing the reported results (Section 6.3.2). These issues also led to mining

rules being abandoned, and created datasets being unreported. In this section, we discuss

these difficulties and several other issues.

RSS data variations

Polling in myDS is explained in Section 5.5. Despite pre-checking of the RSS feeds allocat-

ed to the students for the second part of the assignment, various feeds were not actually

updated frequently during the polling periods defined by our students. This led to: (1) de-

lays caused by requests for the allocation of a new feed, and (2) a minority of the reported

datasets being sparsely populated. Repeated checking of an RSS feed by one student to

record temperatures in London, indicated that all of its postings appeared to have been

published at the time of polling, hence the student found that no useful data could be

mined. Certain RSS feeds were also found to have their content updated during regular

hours only, e.g. financial feeds would only update during business hours or sports feeds at

weekends, affecting the use of VM. Future-dated postings were routinely excluded by the

polling process.

System and user issues

• Bugs: Several bugs in our myDS software affected the successful definition of mining

rules or mining of data during polling. An example of this was found in one of the

RSS feeds initially allocated to eight students, which repeatedly caused a system

null pointer exception during the definition of VM mining rules: other feeds were

allocated in its place. Other bugs were reported by students during the case study:

some of these were fixed or information about them was posted to the About: Known

issues page in myDS.

• The process of defining mining rules: A small number of our students bemoaned

the fact that once mining rules for a dataset had been defined, persisted to database

and made ready for polling, the rules could not be changed at all, or the dataset

could not be deleted. A consequence of this was that if a mistake was made when

defining mining rules or polling failed to mine data, the students concerned had no

choice but to re-enter the original, or define new, mining rules in a new dataset. Such

delays caused one student to declare “I am losing patience with this assignment.”

6. Case study one: Mining and visualising textual and numeric data from RSS 149

Other students stated that they found the process to define mining rules to be

either “non-intuitive” or “counter-intuitive”, although they did not provide specific

details. myDS’s interface was also described as “academic” and “sterile” because

of a perceived lack of interactivity. In addition, several students reported finding

myDS’s interface difficult to use and therefore it took them longer to define mining

rules for the assignment. There was an extreme case where a student admitted

having failed to produce any significant datasets or visualisations because they did

not understand the relationship between mining rules and the columns of datasets

(Section 5.4.2) We also believe that in a small number of cases, students used VM

instead of OM or vice-versa, or had combined data from feeds incorrectly.

The fourth stage of the process to define mining rules is used to display data from the

RSS feeds already entered. It also provides various controls to allow users to restrict

and sort the data, e.g. to show only RSS feed <item> elements where the Description

Contains text: Afghan, before branching occurs due to the mining type (Section

5.4.2). The restrictions for stage four implicitly used boolean connective AND but

did not allow OR and NOT to be specified: neither did they allow compound entries

for multiple keywords, e.g. Description Includes text: Obama, Afghan, house. A

further issue when defining mining rules was the use of a dedicated page for each

stage of the process. myDS includes nine stages/pages per set of column-level mining

rules (Figure 5.1), and then a further one to convert these rules into a dataset to be

populated during polling. This is a lengthy process requiring a significant attention

to detail on the user’s part when a smaller number of pages could have proved more

satisfactory, even if each page consisted of more than one stage, or where a summary

page could have listed the full set of mining rules being defined. In connection with

this point, at least one student reported finding it difficult to remember what they

had entered when defining mining rules.

Value mining

VM’s requirement for structured numeric data produced by dedicated web sites is de-

scribed in Section 5.4.1. Given that only 22.00% of the reported datasets were value

mined, the following examples describe some of the difficulties our students encountered

with VM when setting the value to mine, i.e. the current value of an, e.g. exchange rate

or stock price, when defining VM mining rules:

6. Case study one: Mining and visualising textual and numeric data from RSS 150

• Masking other changing values: A column-level set of mining rules for VM

allows a numeric value to be mined from an element of an <item> of an RSS feed

during polling. If a user wants the exchange rate between two currencies to be

mined from a feed, and the <description> element of the feed contains the rate’s

current value, then this value must be entered by the user as the value to mine when

mining rules are defined. This enables the position of the current value in the text

of the <description> element to be recorded in the XML filters of the mining rules

(Section 5.4.3). During polling this position is used to locate the rate’s updated

value in the <description> element and mine it. If the text of the element to be

mined contains other changing values, e.g. dates or times, they must be masked,

i.e. disabled, otherwise VM will not work correctly. This happened in a number of

instances where students lacked knowledge of the changing values in the elements of

the RSS feeds they used.

• Incorrectly setting the value to mine: A second issue with VM occurred when

students defined the value to mine as static text, or even selected the wrong RSS

feed element to mine data from. An example of this was dataset 319 where feed

http://themoneyconverter.com/PAB/rss.xml was filtered to record fluctuations

between Sterling and the Panamanian Balboa. As the partial screen dump in Figure

6.4 illustrates, the value to mine consisted of static text GBP from the <title>

element of the feed rather than the <description> (Section 2.2.3) which contained

the exchange rate applicable at the time of masking. Hence, only text GBP was

mined during polling.

Figure 6.4: A partial screen dump of an incorrect definition of a value mining rule: cf.
case study one.

http://themoneyconverter.com/PAB/rss.xml

6. Case study one: Mining and visualising textual and numeric data from RSS 151

6.3.6 How efficient was the process to define mining rules upon RSS?

Explaining our second research question

This question is concerned with the efficiency, in terms of time taken, of the process to

define mining rules upon RSS. Despite familiarity with any new process being engendered

with frequent use, because of the unproven nature of the task and software at hand, we

employed the simple metric of how long it took our students to define individual instances

of mining rules.

Timing the definition and application of mining rules

To determine if the time taken by our students to define mining rules reduced at all, we

made use of data compiled from all 329 datasets created by our students, i.e. 173 reported

in submissions and 156 that were not: of this number, 234 were for OM and ninety-five

for VM. Timings were calculated for the maximum number of seconds recorded between

two diary events (Section 5.7), which for convenience we refer to here as D1, i.e. the time

a user visited the first of the pages required to define mining rules, and D2, i.e. the time

when a dataset was created and polling could begin according to the mining rules defined.

The diary extract in Table 6.4 demonstrates this where it took 93 52 (mm ss) between

events 57045 (D1) and 58094 (D2) to create a set of OM mining rules for dataset 466:

this is despite several intermediate D1 events which may represent repeated visits to the

first page before the definition of mining rules was started.

Event number Event code Date/time

57045 D1 27 Nov 2009 @ 21 57 37

57163 D1 27 Nov 2009 @ 22 05 49

57813 D1 27 Nov 2009 @ 23 09 29

57959 D1 27 Nov 2009 @ 23 20 27

58036 D1 27 Nov 2009 @ 23 27 14

58094 D2 27 Nov 2009 @ 23 31 29

Table 6.4: myDataSharer diary extract showing the time taken to define occurrence mining
rules for dataset 466: cf. case study one.

Table 6.5 displays an example of the source data for a typical student, where start times

for defining mining rules for four OM datasets and four VM datasets, and the duration of

these definitions, are given. To better illustrate the times taken to define mining rules, the

6. Case study one: Mining and visualising textual and numeric data from RSS 152

D2 columns in Table 6.5 do not refer to the actual times recorded for the D2 events, but

to the number of minutes and seconds following a D1 event before they, the D2 events,

occurred. The last row in the table lists the mean times for the datasets created.

Occurrence mining Value mining
D1 date/time D2 (mm ss) D1 date/time D2 (mm ss)

19 Nov 2009 @ 23 41 49 17 25 19 Nov 2009 @ 22 54 42 24 44
20 Nov 2009 @ 00 52 58 66 09 19 Nov 2009 @ 23 21 16 19 39
22 Nov 2009 @ 00 43 25 66 28 22 Nov 2009 @ 01 50 31 06 51
25 Nov 2009 @ 01 52 43 16 36 24 Nov 2009 @ 23 10 47 33 09

Mean 41 39 Mean 21 05

Table 6.5: A typical student’s timings to define mining rules: cf. case study one.

This process was then extended across all datasets created to calculate the overall times

taken to define mining rules for OM and VM during the case study. Figure 6.5 displays

the frequencies of the times taken, and reveals a significant positive skew for each mining

type, where mining rules for a minority of datasets took much longer to define than the

majority. We believe this was due to the reasons discussed in Section 6.3.5. Table 6.6

summarises the mean and standard deviation of each mining type.

Figure 6.5: Distribution of mining rule timings by mining type: cf. case study one.

6. Case study one: Mining and visualising textual and numeric data from RSS 153

Mining type Number of datasets Mean (mm ss) SD (mm ss) Skew

OM 234 13 30 15 41 2.99

VM 95 14 51 14 41 3.01

Table 6.6: Statistics per mining type based upon all datasets created: cf. case study one.

In Section 6.3.5, we explained why our students could have found VM more complicated

than OM. Accordingly, we expected that our statistics would reveal a lower mean and

SD for OM compared with VM because of the shorter times taken to define mining rules.

This did not actually occur, and a 2 -tailed z -test (Appendix B.2) confirmed no statistical

significance between the means of the two populations.

A second z -test was applied to an edited number of datasets, which saw approximately

8.00% of the datasets removed from each population: this 8.00% consisted of twenty OM

and eight VM datasets, where mining rule definition times were above 2,000 seconds, which

we thought to be causing the previously observed positive skew. The second test’s results

showed a difference in significance with an alpha level of 0.05 (95.00%). The results listed

in Table 6.7 show that the mean and SD for OM were lower than their VM counterparts,

and that the skew had been significantly reduced.

Mining type Number of datasets Mean (mm ss) SD (mm ss) Skew

OM 214 09 44 07 40 1.03

VM 87 11 31 07 52 1.03

Table 6.7: Statistics per mining type based upon an edited number of datasets created:
cf. case study one.

We were also interested to see if there was a reduction in the time taken by our students

to define mining rules. Therefore, for each student, we took the time to define rules for the

first dataset they created for a particular mining type, and compared it against the time

taken for the last dataset defined from rules using the same type. Table 6.8 summarises

the changes of timings. We also recorded reductions:

• Occurrence mining: In the majority of cases, an actual reduction was found for

twenty-six (74.00%) of our thirty-five students as opposed to eight (23.00%) who saw

an increase, or in one case where data was incomplete.

6. Case study one: Mining and visualising textual and numeric data from RSS 154

• Value mining: We saw a reduction for ten (29.00%) of our students: seven students

(20.00%) saw an increase and data for the remaining eighteen was incomplete.

The average number of datasets created per student was 6.69 for OM and 2.71 for VM,

which reflected the preference of OM in the datasets reported as per Table 6.1.

Occurrence mining Value mining
Change No of students Mean SD No of students Mean SD

Decrease 26 14 09 12 27 10 17 46 21 53
Increase 8 11 06 19 12 7 08 53 06 04

Table 6.8: Changes in student timings when defining mining rules (mean and SD values
are given in (mm ss) format: cf. case study one.

6.3.7 Timing visualisations

Section 5.8 describes the visualisation types in myDS to display data from a dataset.

Defining a visualisation involves the selection of the type, e.g. bar chart or scatter chart,

and options, e.g. which dataset columns to include, entry of the visualisation’s name and

final confirmation. Though our students were able to select from eight visualisation types,

this section treats these types as one to determine the overall average time taken to define

visualisations, and any reductions found.

Some 302 visualisations were created from the reported and unreported datasets from

mined RSS data. In timing these, we used three diary events for the maximum number

of seconds recorded. For convenience, we refer to these events as V1 when a user visited

the first of the pages to define a new visualisation, V2 when a user visited the page of

an existing visualisation and modified it to create a new visualisation, and V3 when a

visualisation was saved. The diary extract in Table 6.9 demonstrates this principle for a

new visualisation for dataset 235.

Event number Event code Date/time

38072 V1 24 Nov 2009 @ 11 22 17
38074 V1 24 Nov 2009 @ 11 23 09
38122 V1 24 Nov 2009 @ 11 57 15
38124 V1 24 Nov 2009 @ 11 58 13
38130 V3 24 Nov 2009 @ 11 59 32

Table 6.9: myDataSharer diary extract showing the time taken to define a visualisation
for dataset 235: cf. case study one.

6. Case study one: Mining and visualising textual and numeric data from RSS 155

In Table 6.9 event 38072 recorded the first V1 for a new visualisation: later we see V3

event 38130 showing the visualisation being created. The other V1 events imply that

the student revisited the first page between the first and last events, and could well have

visited other pages. We recorded the timings for visualisations for the maximum number

of seconds between the first V1 (or V2) event and a V3 event, where the dataset was

common to both regardless of other page visits between these events.

Figure 6.6: Histogram of the distribution of visualisation timings: cf. case study one.

For defining visualisations, the mean time was 04 28 (mm ss) with an SD of 08 34 (mm

ss). Again, the variation was due to the positive skew evident in Figure 6.6, which displays

a histogram of the frequency of visualisation definition times. Overall, there were average

of 8.63 visualisations per student.

Comparisons between timings for the first and last visualisations for each student,

summarised in Table 6.10, indicate that for twenty-three (66.00%) students, a reduction

was found compared to eight (23.00%) who saw an increase. Timings for four students

could not be determined because of a lack of data. Table 6.11 lists the types of the

visualisations created.

Change Number of students Mean (mm ss) SD (mm ss)

Decrease 23 02 59 03 24

Increase 8 11 13 24 37

Table 6.10: Changes in student timings when defining visualisations: cf. case study one.

6. Case study one: Mining and visualising textual and numeric data from RSS 156

Visualisation type Number created

Column chart 149
Line chart 64
Area chart 38
Bar chart 18
Decision tree 13
Pie chart 12
Scatter chart 7
Tree-map 1

Total 302

Table 6.11: Breakdown of reported and unreported visualisations created by type: cf. case
study one.

6.3.8 Can the diary be used to model user behaviour?

myDS’s diary (Section 5.7) was originally intended to model user behaviour within a

social data-sharing environment (Section 5.3). Given that the assignment for case study

one focused on mining rules, the diary’s original purpose is not considered in detail in this

chapter, although it did provide data for our second research question. The diary was also

used to produce data for the time-series (Section 2.8.3) plot in Figure 6.7 which displays

the daily creation of datasets and visualisations during the case study.

We can see that initially, little work was done until 19 Nov 2009 and that Thursday falls

within the busiest periods, i.e. 26 Nov 2009 for datasets and 03 Dec 2009 for visualisations:

as this was when student lab sessions were held, it was not unexpected. We also see that

Sunday 29 Nov 2009 was a busy mining day. From 03 Dec 2009, there was a drastic fall

before 04 Dec 2009’s original assignment deadline, and a final peak on 05 Dec 2009 due to

an extended deadline. Table 6.12 summarises the busiest mining period of the assignment,

i.e. where 26 - 29 Nov 2009 saw some 122 datasets created. This was followed by the busiest

period for visualisations with thirty-four created on 27 Nov 2009 and forty-five on 03 Dec

2009.

Date Number of OM datasets Number of VM datasets

26 Nov 2009 33 (10.03%) 13 (3.95%)

27 Nov 2009 25 (7.59%) 9 (2.73%)

29 Nov 2009 28 (8.51%) 14 (4.25%)

Table 6.12: The busiest days for mining rules during the assignment: cf. case study one.

6. Case study one: Mining and visualising textual and numeric data from RSS 157

Figure 6.7: Time-series plot of the daily creation of datasets and visualisations: cf. case
study one.

6.4 A posteriori appraisal of case study one

6.4.1 Comparing reported results and research questions

We have documented the results of case study one by dividing the datasets created by our

students by those reported in submissions and those not reported. A total of 173 datasets

were reported together with a comparable number of unreported datasets. In comparing

the reported results back to our research questions, we determined that our mining types

were able to mine textual and numeric data from RSS. We also saw significant reductions

in time taken by a majority of our students to define mining rules. OM was proved to be

the preferred mining type, i.e. 78.00% of datasets created were mined from OM compared

to some 22.00% for VM. This is because the majority of feeds on the internet consist of

textual rather than numeric data. We compare our first paradigm’s use of mining rules

with appropriate related work in Chapter 9.

6. Case study one: Mining and visualising textual and numeric data from RSS 158

6.4.2 Refining mining rules

Section 6.3.5 discusses the delays caused by, and difficulties encountered by some of our

students with, the iterative and long-winded process to define mining rules, especially for

those rules using VM. This necessitated a review of mining rules for our second case study.

As a result of this, we decided to focus exclusively on mining only textual data from RSS

for visualisation, by refining our textual mining rules to use simple, direct mining types.

myDS was originally written as a data-sharing application with an RSS-mining compo-

nent: consequently the application included many now-redundant elements and a cluttered

interface. Therefore, in tandem with the refining of our textual mining rules, we decided to

implement our second case study in a new lightweight application called visualRSS (vRSS)

which we present in Chapters 7 and 8.

6.4.3 The question of a pilot study

No pilot study of our myDS software or its implementation of mining rules was carried

out prior to case study one. This was due to deadlines and the absence of an available

corpus of testers during the application’s development. Within the actual module for

which the assignment of the case study was part of (Section 6.2.1), other assignments

further precluded a pilot study carried out by some, or all of, the student corpus. myDS

was thoroughly tested during its development stages prior to case study one and stress

tests were carried out with Apache JMeter (Appendix B.1) appropriate to the number of

expected students in the module. Nevertheless, we accept that a pilot study could have

identified some of the issues we discuss in Section 6.3.5 concerning the unreported results,

and that this may have reduced the work to refine the textual mining rules (Section 6.4.2)

for case study two.

6.4.4 RSS feeds and student corpus demographics

In addition to the results of case study one, it is necessary to consider issues relating to

the student corpus we employed (Section 6.2.1). Given that this corpus formed a class

for a module taught by our main supervisor, i.e. Professor M. Levene, it was available

to us at the time and we employed it homogeneously without considering demographics.

Similarly, the RSS feeds making up the list used for the second part of the assignment

(Section 6.2.4) were also selected on this basis, except where we sought to avoid contentious

issues. Concerning the selection of RSS feeds by the students for the third part of the

assignment, as with part two, no demographically- or ethically- based questions were

6. Case study one: Mining and visualising textual and numeric data from RSS 159

raised by the students concerning the feeds used, or the data mined and visualised. With

reference to this latter point, at the beginning of case study one the assignment (Section

6.2) made it known to the corpus that “myDS will record this data and metadata which

will be later analysed”.

Had we undertaken a demographically-based allocation of RSS feeds to students in case

study one, we acknowledge that our results may have varied along such lines, although

such variations would inevitably have been constrained by the nature and size of the

corpus. It is also possible that a demographically-based allocation of feeds could have

given rise to the contentious issues we sought to avoid. We also accept that alternative

demographically-based student or user, or RSS feeds and category, corpora may well have

produced other, different results for this case study.

6.4.5 Loss of data

It is germane to state here that a small quantity of data was lost after case study one. This

data, consisting of postings to the BBS supplied by jforum (Appendix B.1) and integrated

into myDS, was created as part of the process to define mining rules (Section 5.4). No

data concerning the actual mining rules, datasets and visualisations was lost.

6.4.6 Publication

The original version of case study one described in this chapter, together with the profile

of myDS in Chapter 5, was published in O’Shea and Levene [288].

6.5 Afterword

In this chapter we have presented the research questions which formed the basis of our

first case study. These questions concerned: (1) the actual definition of mining rules upon

RSS to mine and visualise textual and numeric for trend analysis (Appendix B.2), (2)

the efficiency of this process, and (3) whether myDS’s diary could be used to model user

behaviour. We have also discussed how our research questions were met according to the

results of the case study. We have also appraised the case study and the refining of our

textual mining rules for case study two.

Chapter 7

Case study two: The visualRSS

application

7.1 Foreword

This chapter is the first of two presenting the second case study for our first RSS-mining

paradigm (Section 1.4.1). We begin with Section 7.2 which briefly defines this case study,

and we continue by explaining the concept of vRSS in Section 7.3. Section 7.4 describes

the use of refined mining rules within vRSS as the application was originally implemented

for case study two,1 and Section 7.5 examines the anatomy of vRSS’s mining types. The

remaining sections of this chapter concern how vRSS implements the other common com-

ponents and terminology of the two applications written for our first paradigm (Section

4.7.1). Section 7.6 focuses on polling and data storage, and Section 7.7 describes the cal-

culation of keyword frequencies from polled data in vRSS. Lastly, Section 7.8 details the

storage of RSS textual content, and data visualisation is illustrated in Section 7.9.

7.2 Case study two

An alpha-version of vRSS was tested in case study two by thirty-six part- and full- time

Masters-level students in a second assessed assignment during Dec 2011. This version of

vRSS included the textual mining rules refined from case study one (Section 6.4.2), which

allowed us to research preferences of the mining types employing the rules, visualisations,

distribution of categories of feeds visualised, and the common use of these amongst the

mining types. The case study’s assignment and results are described in Chapter 8.

1vRSS was later extended for case study three (Section 4.8.1).

160

7. Case study two: The visualRSS application 161

Figure 7.1: The conceptual representation of visualRSS as originally published (cf. O’Shea
and Levene [289]) for case study two.

7. Case study two: The visualRSS application 162

7.3 The concept of visualRSS

The infographic (Appendix B.2) representing the concept of vRSS in Figure 7.1, was

originally published in 2012 (cf. O’Shea and Levene [289]) to illustrate the functionality

of the principal components of the application. vRSS allows users to define mining rules

to create visualisations, wherein the fluctuations in the frequencies of popular keywords

present in the text of RSS feeds are mined during polling and visualised, in order to identify

trends in the feeds. The implementation of this concept involved the refined textual mining

rules, together with the realisation of the common components and terminology described

in Section 4.7.1, according to the objectives of the case study.

7.4 Mining rules

7.4.1 The definition process

For our first case study, mining rules (Section 4.7.2) placed emphasis upon the relationship

of the rules to the columns of datasets (Section 5.4.2). In case study two, the refined

textual mining rules place this emphasis upon the visualisation of data (Section 7.3), by

employing one of the three mutually exclusive mining types (Table 7.1). These simple,

direct mining types form a balance between user-selection of individual RSS feeds and

keywords on the one hand, i.e. manual mining, and the selection of system-generated

keywords from system-indexed categories of RSS feeds in automatic mining on the other

hand, with semi-automatic mining forming an intermediary.

Mining type Alternatively Description
known as

Automatic Simple Selection by users of popular keywords in the rsso-
sphere from system-indexed categories of RSS feeds.

Semi-
automatic

Mixed Users enter their own keywords and track these from
system-indexed categories of RSS feeds.

Manual My Manual entry by users of RSS feeds and keywords,
to perform a granular tracking of subjects.

Table 7.1: visualRSS mining types (italics reveal the name of each mining type seen by
users): cf. case study two.

7
.

C
a
se

stu
d
y

tw
o
:

T
h
e

visu
a
lR

S
S

a
p
p
lica

tio
n

1
6
3

Figure 7.2: Screen-dump of manual mining in visualRSS: cf. case study two.

7. Case study two: The visualRSS application 164

Figure 7.3: DFD of the process flow of manual mining in visualRSS (data stores and
external entities have been edited for clarity): cf. case study two.

In all three mining types, keyword frequencies are updated by mining new postings made

to RSS feeds during polling (Section 7.6). Section 7.5 examines the anatomy of the mining

types, and in conjunction with this, the following paragraphs use Figures 7.2 and 7.3 to

describe the manual mining process.

Figure 7.3 uses an edited DFD (Appendix B.2) to illustrate the stages of manual

mining. Stage (1) requires the choice of the mining type which calls the appropriate page

for the type. (2) and (3) concern the specification of keywords and RSS feeds. When

an RSS feed is manually entered, its URL is displayed in the RSS feeds table at the

top of the page in Figure 7.2. This allows the postings to the feed over the last 1 - 24

hours to be browsed according to the Show keywords for last: x hours control of the

7. Case study two: The visualRSS application 165

word-cloud (Section 7.4.2). Keywords are entered through the HTML <textarea> at the

bottom of the page. Frequencies of the keywords (4) are set, i.e. calculated, from the

postings to the user-entered RSS feeds within the aforementioned hour control. Keywords

and frequencies are then displayed in the word-cloud. Stages (2 - 5) are iterative whereby

at any time, RSS feeds and keywords entered can be edited, or the word-cloud re-drawn.

Once a user is satisfied with their RSS feeds and keywords, the keyword frequencies

from the word-cloud are displayed in a sample visualisation (5) on a new page. This sample

visualisation provides the basis of a new permanent visualisation should the user decide to

save the mining rules. Saving a set of mining rules corresponds to (6) in the DFD in Figure

7.3, where the various rules, i.e. the sample visualisation’s type, RSS feeds, keywords and

polling dates, are persisted to database storage (Appendix B.2). The frequencies of the

keywords are subsequently updated during polling (Section 7.6), and are automatically

included in the new visualisation when it is displayed in vRSS: a typical visualisation of

data mined is illustrated in Section 7.9.

Other facilities in vRSS include a keyword-based search facility which allows users to

browse vRSS’s feeds and visualisations, a personalised list of a user’s recent visualisations,

and a series of About, i.e. help, pages.

7.4.2 The role of the word-cloud

During the definition of mining rules in vRSS, a customisable word-cloud (Appendix B.2)

is constantly displayed to inform the user of the frequencies of the keywords they have

entered or selected according to the use of RSS feeds, or categories thereof, by the mining

type being used. The word-cloud format is employed because of its ability to visually

represent the keyword frequencies as a bag-of-words (BoW) (Appendix B.2).

For convenience, Figure 7.4 reproduces the word-cloud from Figure 7.2. HTML con-

trols can be seen allowing the number of keywords displayed to be changed, to show or

hide keyword frequencies, sorting keywords and stemming (Appendix B.2): the stemming

control was not actually used in case study two because it was not implemented in time for

the case study. The control Show keywords for last: x hours varies the display of keyword

frequencies in the word-cloud to the current date/time minus the number of hours between

1 - 24.

For automatic mining, the keywords displayed in the word-cloud are calculated using

two elements (Section 2.2.3) of the RSS feeds in the selected system-indexed categories.

This is a three-stage process: (1) the text of the <title> elements in the RSS feeds in

the system-indexed categories are merged to produce a list of keywords, after which (2)

7. Case study two: The visualRSS application 166

Figure 7.4: Sample word-cloud and HTML controls in visualRSS: cf. case study two.

the frequency of each keyword is calculated from the <description> elements of the feeds

using Lucene (Section 7.7), and (3) a new word-cloud is produced displaying the popular

keywords found and their frequencies. Semi-automatic employs an equivalent process

except that no use is made of the <title> element in the selected system-indexed RSS

feeds: keywords are entered by users instead, but keyword frequencies are calculated from

the <description> elements as before. In the case of manual mining, illustrated in Figure

7.2, where the RSS feeds and keywords are manually entered by the user, the frequencies

of the keywords displayed in the word-cloud are calculated only from the <description>

elements of the feeds.

7.4.3 Keywords

For purposes of uniformity across the mining types, keywords (Section 4.6) in vRSS are

simple, English language unigrams without context or meaning, and with a maximum

length of fifty lowercase characters. During polling (Section 7.6), a minimal ETL cleanses

RSS text, i.e. HTML is purged, non-alphanumeric characters are edited from keywords,

stop words (Appendix B.2) are removed, and all numbers are treated as positive.

7. Case study two: The visualRSS application 167

7.5 The anatomy of a mining type

Although each mining type in vRSS (Section 7.4) has a dedicated page, all the types

employ the same basic mechanism to define mining rules upon RSS. This mechanism forms

a simple hierarchy of Java classes maintaining the RSS feeds, current keyword frequencies

and other mining rules. These classes,2 preserving something of the naming and format

of the mining types used in case study one (Section 5.4.1), are illustrated in Figure 7.5

using an edited UML (Appendix B.2) class diagram. The superclass of this hierarchy, i.e.

RSS Feed Miner, includes dedicated naming elements and an RSS Feed Polling object.

RSS feeds are stored in a series of parallel lists along with the elements, categories and

the mining type to be used.

Objects of the RSS Feed Occurrence Miner subclass use a key/value map to maintain

the keyword frequencies which are displayed in the word-cloud (Section 7.4.2) on the page

of the mining type being used. For each mining type, during the definition of mining

rules, the frequency of a particular keyword in map<keywordFrequencies> is aggregated

from the contents of the list<rssFeeds> attribute of the superclass: for the automatic

and semi-automatic mining types, the list<rssFeedCategories> attribute is also used

to record the RSS feed categories selected. Instances of these classes form the equivalent

of the XML filters of the mining rules used in myDS (Section 5.4.3) in case study one.

Figure 7.5: UML class diagram of visualRSS’s class hierarchy for defining mining rules
(methods have been edited for clarity): cf. case study two.

2This class hierarchy was later extended for our third case study (Section 4.8.3).

7. Case study two: The visualRSS application 168

7.6 Polling RSS feeds and mining keywords

In Section 7.4.2, reference is made to the use of the <description> element of RSS feeds for

the calculation of keyword frequencies during the definition of mining rules. vRSS employs

Quartz Scheduler (Section 4.7.4) to poll system-indexed RSS feeds every hour. Algorithm

7.1 lists the pseudocode of the polling process wherein the keyword frequencies found in

the <description> element of each new <item>, i.e. posting, in each feed are persisted

to the keyword frequency index in the application’s database. This index is structured as

a series of M:N database relationships to store keyword frequencies mined from different

<item> elements of RSS feeds (Section 2.2.3). Table 7.2 displays a representation of the

index, although only frequencies of keywords from the <description> elements of RSS

were used in our second case study because of time constraints affecting development.

Polling date/time Keyword RSS feed RSS element Frequency

29 Apr 2014 @ 11 00 00 keyword1 rssFeed1 <title> 4

29 Apr 2014 @ 11 00 00 keyword2 rssFeed1 <description> 2

29 Apr 2014 @ 11 00 00 keyword1 rssFeed1 <title> 6

29 Apr 2014 @ 12 00 00 keyword2 rssFeed3 <description> 1

29 Apr 2014 @ 12 00 00 keywordn rssFeedn <description> 3

Table 7.2: A representation of the keyword frequency index in visualRSS: cf. case study
two.

Algorithm 7.1 lists pseudocode for the hourly polling process as it was implemented for

case study two. The polling process first calculates the current polling date/time (1), i.e.

the last hour, and follows this with two consecutive stages represented by the for loops

(2, 16).

7. Case study two: The visualRSS application 169

1: set pollingDateT ime← (now− 1 hour);
2: for each (rssFeed) do
3: get <item> postings in rssFeed;
4: for each (<item> in rssFeed) do
5: set text ← null;
6: if (<pubDate> of <item> ≥ pollingDateT ime) then
7: set text ← sanitise(<description>);
8: get list of keyword frequencies from text;
9: for each (keyword in list) do

10: write keyword, frequency, pollingDateT ime to index;
11: end for
12: end if
13: write <item>, pollingDateT ime to database;
14: end for
15: end for
16: for each (visualisation) do
17: read keywords of visualisation from database;
18: for each (keyword in visualisation) do
19: get frequency of keyword in pollingDateT ime from index;
20: increment frequency of keyword in visualisation;
21: write keyword, frequency, pollingDateT ime to database;
22: end for
23: add pollingDateT ime to visualisation
24: end for

Algorithm 7.1: Pseudocode of visualRSS’s polling algorithm: cf. case study two.

1. The first loop (2) mines data from each RSS feed indexed by vRSS. For a particular

feed, its URL is polled and the postings of the feed are retrieved (3). For each

posting (4), i.e. <item>, the published date/time, i.e. the <pubDate> element, (4) is

checked to determine if the posting was made within the current polling period (6).

If any new postings are found, the text of each posting’s <description> element

(7) is parsed by Rome (Section 4.7.5), and sanitised.3 From this sanitised text, a

list of keywords (8) is calculated by Lucene (Section 7.7), and each mined keyword

together with its frequency and the polling date/time is written to the index (9, 10).

Lastly, the <item> of the RSS feed is written to the database (13).

2. The second loop (16) works per visualisation. For each visualised keyword (17,

18), the number of instances mined, from all of the RSS feeds in the visualisation’s

mining rules during the current polling period, is retrieved from the index (19). The

frequency of the keyword in the visualisation is then updated with the new instance

count (20, 21). Finally (23), the visualisation is updated with the polling date/time.

3Sanitisation refers to the basic data cleansing described in Section 7.4.3.

7. Case study two: The visualRSS application 170

7.7 Calculating keyword frequencies from RSS-mined data

vRSS makes use of the Java-based open-source, third-party product Lucene (Appendix

B.1) to calculate the frequencies of popular keywords present in the text of RSS feeds,

either in the word-cloud displayed during the definition of mining rules (Section 7.4.2) or

during polling (Section 7.6). With reference to McCandless et al. [252], the four basic

steps used by Lucene to achieve this are described in the list below (line number references

are to Algorithm 7.2):

1. Extraction: The original content of a data source, e.g. the text of an RSS feed,

.pdf file for Adobe Acrobat Reader [7] or .doc(x) file for Microsoft Word [265] is

extracted (2).

2. Analysis: Depending upon requirements, the analysis stage prepares the customis-

able analyzers which will be used during indexing, e.g. Lucene’s StandardAnalyzer

for conversion of text to lowercase and the inclusion/exclusion of stop words (3 - 9).

3. Indexing: A Directory object is used to define the index’s location either in mem-

ory or the platform’s file system (10): vRSS employs memory-based indexes. A

Lucene IndexWriter object, associated with the index, is created, and together

with the extracted text, a Document is produced (12). The analyzers applied to the

document are used to write a stream of tokens to the index, i.e. the document is

added to the index, where the tokens are used as lookup keys for retrieval (13 - 15).

4. Querying: From (16) an IndexReader object is used to query the index based upon

the lookup keys and to return output. (18, 19) show a Text TermVectorMapper

object used by the IndexReader to get the newly calculated keyword frequencies

which are returned to vRSS (20), whereupon the index is closed (21).

The implementation of these steps for case study two is displayed in Algorithm 7.2 which

lists an extract of Java code from the Text Stemmer Indexer class in vRSS. Despite the

name of the class, as previously mentioned in Section 7.4.2, stemming was not imple-

mented, hence its absence in Algorithm 7.2. In Sections 10.4.6 and 11.6.1 respectively,

we describe the extension of the Text Stemmer Indexer class for the classification and

sentiment analysis components of case study three.

7. Case study two: The visualRSS application 171

1: StandardAnalyzer standardAnalyzer = null; // Lucene analyzer to convert text

// to lowercase and include/

// exclude stop words.

// 1. Extraction.

2: this.setTextToStemIndex(/* Text previously extracted

from RSS feeds. */);

// 2. Analysis.

3: if (this.includeStopWords()) {

4: standardAnalyzer = new standardAnalyzer(Version.LUCENE_30, "English");

5: }

6: else {

7: Set<String> stopWords = (Set<String>) Stop_Word_Listener.getStopWords();

8: standardAnalyzer = new standardAnalyzer(Version.LUCENE_30,

"English", stopWords);

9: }

// 3. Create memory-based index.

10: Directory index = new RAMDirectory();

11: IndexWriter iw = new IndexWriter(index,

standardAnalyzer, true,

IndexWriter.MaxFieldLength.UNLIMITED);

// Index analysed contents of document.

12: Document doc = new Document();

13: doc.add("Text", this.getTextToStemIndex(), Field.Store.YES,

Field.Index.ANALYZED, Field.TermVector.YES);

14: iw.addDocument(doc);

15: iw.close();

// Read index.

16: IndexReader ir = IndexReader.open(index);

17: Text_TermVectorMapper ttvm = new Text_TermVectorMapper();

// 4. Querying.

18: int docId = 0;

19: ir.getTermFreqVector(docId, "Text"), ttvm);

20: this.setKeywordFrequencies(ttvm.getWordFrequencies());

21: ir.close();

Algorithm 7.2: visualRSS’s Text Stemmer Indexer class code calling Lucene: cf. case
study two.

7. Case study two: The visualRSS application 172

7.8 Persisting RSS to database storage

In addition to the keyword frequency index and visualisations being updated with data

mined from postings made to RSS feeds during polling (Section 7.6), the postings, i.e.

<item> elements, are also persisted (Appendix B.2) to dedicated feed tables in vRSS’s

MySQL4 database. This is illustrated in line (13) in Algorithm 7.1, and allows users

to browse the content of RSS feeds indexed by vRSS at any time. Moreover, if a new

RSS feed is entered by a user during the definition of manual mining rules: (1) category

allocation of the feed is performed by vRSS’s administrator upon receipt of an automated

email from the application, (2) the feed is added to vRSS’s system-indexed RSS feeds,

and (3) a template is used to automatically create a table for the feed in the database.

Algorithm 7.3 lists an example of the templated SQL for RSS feed 159’s table, where its

name is post-fixed with a unique identifier and the columns correspond to the elements of

an RSS feed <item> described in Section 2.2.3.

1: CREATE TABLE _rss_159_245774_29122010_1293628782822 (

2: id INT(11) NOT NULL AUTO_INCREMENT,

3: Title VARCHAR(1024) DEFAULT NULL,

4: Description VARCHAR(8192) DEFAULT NULL,

5: PublishedDate VARCHAR(1024) DEFAULT NULL,

6: Link VARCHAR(2048) DEFAULT NULL,

7: Authors VARCHAR(1024) DEFAULT NULL,

8: Categories VARCHAR(1024) DEFAULT NULL,

9: Contents VARCHAR(1024) DEFAULT NULL,

10: UpdatedDate VARCHAR(1024) DEFAULT NULL,

11: URL VARCHAR(2048) DEFAULT NULL,

12: CreatedDateTime TIMESTAMP NOT NULL,

13: UserNo VARCHAR(50) NOT NULL,

14: RSSFeedNo INT(11) NOT NULL,

15: PRIMARY KEY (id)

16:)

Algorithm 7.3: Example of templated SQL in visualRSS to dynamically create a dedica-
ted database table for RSS feed 159: cf. case study two.

7.9 Visualising data mined from RSS

In vRSS, when a set of mining rules is persisted to database storage to create a new

visualisation, the visualisation initially displays no data. The mining rules include two

4MySQL and its compliance with ANSI/ISO standards [203] are discussed in Appendix B.1.

7. Case study two: The visualRSS application 173

dates during which polling (Section 7.6) will occur: it is only between these dates that the

frequencies of the keywords to be displayed in the visualisation are updated. A typical

visualisation includes two charts: (1) an aggregation displaying the frequencies of the

keywords since polling began, where the chart type is the one selected by the user for a

sample visualisation (Section 7.4.1) prior to a set of mining rules being persisted to the

database. (2) a time-series (Section 2.8.3) plot depicts keyword frequency fluctuations

during the period of the aggregation.

Figure 7.6: A typical visualRSS visualisation displaying the aggregation of keyword fre-
quencies (top) in a user-selected column chart, and a time-series plot of the fluctuations
in the keyword frequencies (bottom): cf. case study two.

Figure 7.6 illustrates a typical visualisation in vRSS. Several IT-related keywords are dis-

played for a week in Dec 2011: aggregated frequencies are shown in the user-selected type,

i.e. in this example a column chart, and the time-series plot depicts keyword frequency

7. Case study two: The visualRSS application 174

fluctuations during the aggregation’s period. The page in vRSS displaying a saved vi-

sualisation also includes the keywords and RSS feeds from which the displayed keyword

frequencies are calculated: these are not shown in Figure 7.6. With the exception of

the word-cloud, the various pie, x - y charts, and tree-map visualisations in vRSS are

implemented using Google Charts (Section 4.7.7).

7.10 Afterword

In this chapter we have presented the vRSS software written for our second case study. We

have described how and why the application implements textual mining rules refined from

case study one (Section 6.4.2) to mine data from RSS to be visualised. In conjunction with

this, we have described how vRSS implements the common components and terminology

of the two applications written for our first paradigm (Section 4.7.1). The use of vRSS in

case study two, the last for this paradigm, is the subject of the next chapter, Chapter 8,

before we compare mining rules with appropriate examples of related work in Chapter 9.

Chapter 8

Case study two: Mining and

visualising data trends in RSS

feeds

8.1 Foreword

In this chapter we present the results of our second case study which involved the use

of our vRSS software (Chapter 7). We begin by defining the rationale and objectives

of this case study in Section 8.2. Like our previous case study, this case study took

the form of an assessed assignment for a second corpus of students: we describe the

assignment, its research questions and the original RSS feed and category corpus used in

Section 8.3. Section 8.4 summarises the results of the assignment, and in Section 8.5 we

employ a student’s submission to demonstrate the use of the refined mining rules in vRSS.

We conclude with an appraisal of case study two in Section 8.6, where this case study

represents the culmination of our work for our first RSS-mining paradigm (Section 1.4.1).

8.2 Rationale and objectives

Chapter 7 has described our vRSS software, and its use of textual mining rules refined

from case study one (Section 6.4.2). In order to evaluate the refined rules in an alpha-

version of vRSS, case study two formed an assessed assignment (Section 8.3) in Dec 2011

for the student corpus making up that year’s class of the search engines and web naviga-

tion module previously used in case study one (Section 6.2.1). This corpus consisted of

thirty-six part- and full- time Masters-level students, again of “varying employment and

175

8. Case study two: Mining and visualising data trends in RSS feeds 176

experience backgrounds” (O’Shea and Levene [288]). Our objectives in this case study

were to research preferences of the mining types employing the refined mining rules, vi-

sualisations, distribution of categories of feeds visualised, and the common use of these

amongst the mining types (Section 7.4).

8.3 The assignment

8.3.1 Description

Figure 8.1 reproduces case study two’s assignment. It consisted of three mandatory com-

ponents:

1. Part one: Each student was required to register with vRSS and to familiarise

themselves with the application’s About pages, to look at the examples of the various

mining types available and their use of keywords.

2. Part two: Each student was asked to select categories of RSS feeds from the corpus

provided (Section 8.3.2), or to use groups of feeds of their own choice, and choose

up to six unigram keywords from these feeds. These keywords were to be entered

into vRSS using each of the three mining types. vRSS was then used to track the

frequencies of the keywords for a seven day period.

3. Part three: This final part of the assignment called for each student to supply

a report when their tracking period was over. The report was to list the feeds

and keywords tracked, to explain why they were chosen, the mining types used, to

visualise the results obtained, and to say why a specific type of visualisation was

used to do this.

8.3.2 RSS Feeds and categories

We planned to employ data from an original corpus of fifty-seven RSS feeds arranged

into seven categories (Appendix A.2.1). Each category was given a simple, generic label

for identification, e.g. Business, finance and economics (BFE), in order to avoid any

potential ambiguity arising from either type of <category> element found in the format

of RSS (Section 2.2.3).

The RSS feeds in each category were chosen to be English language in content, global

or regional rather than applicable to a specific country, and also to be wide-ranging and

8. Case study two: Mining and visualising data trends in RSS feeds 177

Figure 8.1: Student assignment Visualising RSS : cf. case study two.

8. Case study two: Mining and visualising data trends in RSS feeds 178

RSS feed category Number
of RSS

feeds

Sample RSS feed

Business, finance and e-
conomics (BFE)

5 http://feeds.bbci.co.uk/news/business/

rss.xml

Fashion, celebrity and
lifestyle (FCL)

6 http://www.entertainmentwise.com/rss/

celebrity.rss

Film 6 http://www.denofgeek.com/index.rss

Music 7 http://www.billboard.com/rss/the-feed/

News and current affairs
(NCA)

12 http://feeds.bbci.co.uk/news/world/rss.

xml

Science, nature and
technology (SNT)

9 http://feeds.technologyreview.com/

technology_review_top_stories

Sport 5 http://www.espn.co.uk/rss/sport/story/

feeds/0.xml?type=2

Table 8.1: Sample RSS feeds and categories: cf. case study two.

relevant in nature. Table 8.1 lists a sample RSS feed for each category in the corpus

used. We sought to bias the corpus towards current affairs and scientific subjects, and also

decided to use genuine RSS feeds rather than the outputs of aggregators or readers (Section

3.2), in order to maintain real-world data knowing that the categories were unbalanced.

Furthermore, because our students were able to add RSS feeds of their own to vRSS during

the assignment, imbalances in the numbers of feeds per category were inevitable.

The fifty-seven RSS feeds in the corpus were polled during the Jul - Nov 2011 period

when we were gathering data for case study three (Section 10.3.2). During this time,

seven of the feeds were withdrawn from the corpus (Appendix A.3.1) reducing the number

of feeds to fifty before case study two began: the reasons for the withdrawal are more

appropriately described in Section 10.7.1.

8.4 Results

8.4.1 Organisation

The assignment for case study two (Section 8.3) was deliberately free in format because

we did not want to bias our students in any way that would affect results. Related to this

was our preference to collect a wide variety of data for our research objectives. Therefore,

our students were able to choose keywords, add new RSS feeds and use the mining types

without restriction.

http://feeds.bbci.co.uk/news/business/rss.xml
http://feeds.bbci.co.uk/news/business/rss.xml
http://www.entertainmentwise.com/rss/celebrity.rss
http://www.entertainmentwise.com/rss/celebrity.rss
http://www.denofgeek.com/index.rss
http://www.billboard.com/rss/the-feed/
http://feeds.bbci.co.uk/news/world/rss.xml
http://feeds.bbci.co.uk/news/world/rss.xml
http://feeds.technologyreview.com/technology_review_top_stories
http://feeds.technologyreview.com/technology_review_top_stories
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2

8. Case study two: Mining and visualising data trends in RSS feeds 179

In discussing the results below, we initially pay attention to how the mining types

were used and then focus upon the corpus of RSS feeds and categories. We subsequently

comment upon the visualisations created by our students to display the frequencies of the

keywords mined from the feeds during the assignment. We also discuss a specific example

of vRSS’s implementation of our first paradigm.

8.4.2 Mining rules

Use of mining types

For the second and third parts of the assignment, our students’ submissions included

some 135 visualisations in all. Given that the type of each visualisation was chosen as

part of vRSS’s mining rules process (Section 7.4.1) of selecting categories of RSS feeds

and keywords, we were able to determine that the majority of the visualisations employed

different permutations of RSS feed categories (Figure 8.5). In a small number of cases

though, students used the same feeds and keywords for each mining type, e.g. one student

used keywords economy, recession, depression, war and apocalypse “because of major

events in current affairs”, where semi-automatic mining proved the most successful mining

type because “it tracked 4 keywords for 7 days”. In terms of the mining types used to

create the 135 visualisations, semi-automatic mining was the most popular type with some

forty-eight (35.60%) instances created. Least popular was manual mining with forty-three

instances (31.80%) produced.

Table 8.2 and Figure 8.2 display the distribution of the mining types and RSS feed

categories. Semi-automatic mining proved to be the favourite type among our students

with 170 (48.57%) instances used to define mining rules. Automatic mining received

some 121 (34.57%) uses despite some dissatisfaction with this type because, according

to one of our students, generic keywords convey “less meaning and are less indicative of

specifics.” However, with automatic mining intended to provide a current buzz, this was

not surprising. Within the use of semi-automatic mining, the most popular RSS categories

were BFE and NCA.

RSS feeds and categories

Case study two ended with some 202 RSS feeds, including those in new categories such as

Travel and Astronomy, being polled hourly for new postings. The most popular categories

were NCA with fifty-two feeds (25.74%), SNT with thirty-nine feeds (19.30%), and Sport

(thirty-one feeds or 15.35%): least popular was the Miscellaneous category with two feeds

8. Case study two: Mining and visualising data trends in RSS feeds 180

(1.00%), closely followed by EA with six feeds (2.97%) and Travel with five feeds (2.48%).

Table 8.3 lists the distribution of the 202 RSS feeds according to their categories: for

feeds added by the students when defining manual mining rules, category allocation was

performed by the author (Section 7.8).

RSS feed category Mining type
Automatic Semi-automatic Manual

Astronomy 0 1 1
Business, finance and economics (BFE) 20 28 12
Entertainment and arts (EA) 8 12 0
Fashion, celebrity and lifestyle (FCL) 8 11 0
Film 10 12 2
Gaming 8 13 1
Miscellaneous 3 7 1
Music 8 12 0
News and current affairs (NCA) 19 28 20
Science, nature and technology (SNT) 18 17 14
Sport 16 21 7
Travel 3 8 1

Total 121 170 59

Table 8.2: Tabular representation of mining types/RSS feed categories distribution: cf.
case study two.

Figure 8.2: Graphical representation of mining types/RSS feed categories distribution: cf.
case study two.

8. Case study two: Mining and visualising data trends in RSS feeds 181

RSS feed category No of RSS feeds

Astronomy 9
Business, finance and economics (BFE) 24
Entertainment and arts (EA) 6
Fashion, celebrity and lifestyle (FCL) 8
Film 13
Gaming 6
Miscellaneous 2
Music 7
News and current affairs (NCA) 52
Science, nature and technology (SNT) 39
Sport 31
Travel 5

Total 202

Table 8.3: Final corpus of RSS feeds and categories: cf. case study two.

8.4.3 Visualisations

vRSS’s visualisation types, i.e. a pie and x - y charts, word-cloud and a tree-map were used

to create 135 visualisations. Figure 8.3 shows that column and bar charts were the most

popular visualisation types with 115 (85.19%) instances for all three mining types. We

believe that the word-cloud and tree-map (Appendix B.2) types were unpopular because

our students were unfamiliar with them, and also that these types do not associate words

with specific colours to convey information.1

Figure 8.3: Distribution of visualisations per mining type: cf. case study two.

1cf. Hearst [172], who wrote that “treemaps have not been proven successful at showing textual data.”

8. Case study two: Mining and visualising data trends in RSS feeds 182

RSS feed category Visualisation type
Col/bar Pie Word- Tree-
chart chart cloud map

Astronomy 1 0 1 0
Business, finance and economics (BFE) 50 3 4 3
Entertainment and arts (EA) 16 1 2 1
Fashion, celebrity and lifestyle (FCL) 12 2 3 2
Film 19 2 2 1
Gaming 17 2 2 1
Miscellaneous 10 0 1 0
Music 15 2 2 1
News and current affairs (NCA) 56 4 4 3
Science, nature and technology (SNT) 35 5 5 4
Sport 36 4 3 1
Travel 10 0 2 0

Total 277 25 31 17

Table 8.4: Tabular representation of the distribution of visualisation types and RSS feed
categories: cf. case study two.

Figure 8.4: Graphical representation of the distribution of visualisation types and RSS
feed categories: cf. case study two.

The distribution and types of the 135 visualisations created during case study two are

illustrated in Table 8.4 and Figure 8.4 according to the RSS feed categories visualised.

8. Case study two: Mining and visualising data trends in RSS feeds 183

We can see that the column and bar charts were the most popular visualisation types

with 277 (79.14%) instances overall. This includes fifty-six uses of category NCA and fifty

for category BFE. Related to this, the histogram in Figure 8.5 demonstrates the inverse

relationship between the permutations of RSS feed categories used in visualisations and

the number of visualisations.

Figure 8.5: Histogram of RSS feed categories used per visualisation: cf. case study two.

8.5 Anatomy of a student submission: a demonstration of

mining rules in visualRSS

To complement Sections 7.4 and 7.9, this section provides an example of vRSS’s imple-

mentation of our first paradigm’s mining rules. Table 8.5 reproduces parts two and three

of a submission for case study two’s assignment by one of our students. The submission

employed a substantially common set of keywords and RSS feeds taken from financial and

current affairs feeds in categories BFE and NCA (Section 8.3.2) concerning the “glob-

al financial crisis” in late 2011. Figure 8.6 displays the visualisations supplied with the

submission wherein column charts and a pie chart display aggregated frequencies, and

time-series (Section 2.8.3) plots depict keyword frequency fluctuations during the polling,

i.e. aggregation, period.

8. Case study two: Mining and visualising data trends in RSS feeds 184

Visual’n Mining rule Description

1 Mining type Automatic
RSS feed categories BFE, NCA
Keywords european, government, news, people, police and

year
Duration 07 Dec 2011 @ 20 00 00 - 14 Dec 2011 @ 20 00 00.
Comments The first visualisation used the automatic mining

type where the student remarked that “It is no sur-
prise that the terms european and government fea-
tured quite high on this list” and that the time-
series plot “is a little frenetic as the word selection
isn’t especially focused.”

2 Mining type Semi-automatic
RSS feed categories BFE, NCA
Keywords crisis, debt, european, economic, financial and

sovereign
Duration 07 Dec 2011 @ 20 00 00 - 14 Dec 2011 @ 20 00 00.
Comments “The next visualisation (2) where the keywords are

specifically chosen, is an attempt to show how the
intensity of new items about the global financial
crisis change over the course of a week.” It was the
“timeline that’s most interesting here, as it shows
the change in the level of reporting of the topic over
time.”

3 Mining type Semi-automatic
RSS feed categories BFE, NCA
Keywords belgium, france, germany, greece, ireland, italy, por-

tugal and spain
Duration 08 Dec 2011 @ 20 00 00 - 14 Dec 2011 @ 20 00 00.
Comments This visualisation “works really well. Sticking with

the Euro crisis topic, it is an attempt to see which
countries were mentioned the most in News and
Current Affairs. I chose a pie chart for this. Pre-
dictably Germany, France and Italy feature high.”

4 Mining type Semi-automatic
RSS feed categories NCA
Keywords britain, crisis, debt, economic, europe, european,

financial, france, germany, greece, ireland, italy,
merkel, sovereign, spain uk and united

Duration 06 Dec 2011 @ 20 00 00 - 13 Dec 2011 @ 00 00 00.
Comments A semi-automatic case which was the student’s

“favourite. It’s essentially the same as (2)” us-
ing “significantly more search terms”. “Again it’s
the timeline that’s most revealing. There’s a really
clear increase in euro-crisis news on Friday and a
notable dip during the weekend.”

Table 8.5: Mining rules in visualRSS for student submission: cf. case study two.

8. Case study two: Mining and visualising data trends in RSS feeds 185

(a) Visualisations 1 and 2.

(b) Visualisations 3 and 4.

Figure 8.6: Visualisations in visualRSS for sample student submission: cf. case study two.

8. Case study two: Mining and visualising data trends in RSS feeds 186

8.6 A posteriori appraisal of case study two

8.6.1 Reception

Case study two was borne out of the need to refine the textual mining rules used in case

study one (Section 6.4.2). Therefore, case study two is distinct from its predecessor despite

both studies being laboratory-based and involving corpora of student users: the research

objectives of each case study also differ.

The implementation of mining rules in case study two focused less upon structural

RSS metadata (Appendix B.2) inherent in the relationship of mining rules to columns of

datasets (Section 5.4.2). Instead, the mining rules concentrated upon the application of

simple, direct mining types (Section 7.4.1) to mine data from RSS for visualisation. In this

respect, our work for case study two conforms to the purist approach used by Thelwall et

al. [398] which we describe in Section 3.3.3.

Like myDS prior to case study one (Section 6.4.3), no pilot study was carried out for

vRSS: this was again due to deadlines and the absence of an available corpus of testers

during the application’s development. Nevertheless, during the case study, many con-

structive comments were received concerning both vRSS and the assignment. In support

of this, we cite the range of subject areas covered by the results presented in Section 8.4,

and the range of applications suggested for vRSS in Section 8.6.3.

8.6.2 Students and RSS feeds

In Section 6.4.4 we described our homogeneous use of case study one’s student corpus

without regard to the demographics of the corpus, except where we sought to avoid con-

tentious issues in the RSS feed selection and allocation. We adopted the same approach

to the respective student, and RSS feed and category corpora, of case study two. The

students (Section 8.2) were advised in the assignment that they were participating in an

“experiment” (Section 8.3), where data and metadata would be analysed later. Moreover,

no demographic or other issues were raised by the students concerning case study two even

after they added their own RSS feeds to the original corpus (Section 8.3.2), bringing it to

a total of 202 feeds (Table 8.3). We expect that if any issues had occurred during the case

study, that the addition of feeds by the students would have been the most likely cause,

and may also have led to other, different results.

8. Case study two: Mining and visualising data trends in RSS feeds 187

8.6.3 Applications

In the third part of case study two’s assignment, we asked our students to propose appli-

cations for vRSS. Many of the suggestions made confirmed the author’s own opinions in

subject areas such as:

• Business intelligence: As a data source for big-data analytics (Appendix B.2), or

in using mining rules (Section 4.7.2) to turn semi-structured data into tabular form

for use in data mining (Section 2.4) fact and decision tables.

• Linguistics: To reveal geographical, cultural or political bias in news reporting, or

calculating n-gram (Appendix B.2) relationships between keywords to assist search

engine results.

• Tracking and trending: Where an organisation might place mouse-over or other

advertisements in web pages based upon popular keywords, or to track frequencies

of keywords to determine market share.

More germane is the use of vRSS as a web service, e.g. as a browser extension or API to

allow web sites to display vRSS’s outputs on the fly, as illustrated in Figure 8.7.

Figure 8.7: visualRSS as a web service: cf. case study two.

8.6.4 Publication

This chapter’s description of case study two’s results, together with the profile of vRSS in

Chapter 7, are extended from their original publication in O’Shea and Levene [289].

8. Case study two: Mining and visualising data trends in RSS feeds 188

8.6.5 Extensions to visualRSS

• Android OS client: For the mobile platform, a client app (Appendix B.2) was

developed by Shema [354] during 2013 for our vRSS software: the client, written

using the Android OS, is described in Appendix C.

• Case study three: vRSS was extended during 2013 - 2015 for case study three for

our second paradigm (Section 4.8.1).

8.7 Afterword

In this chapter, we have described the rationale for our second case study which concerned

the use of textual mining rules refined from case study one to allow a more straightforward

mining of data from RSS for visualisation. We have presented the results of this case study

based upon our students’ use of vRSS’s mining types, the final corpus of RSS feeds and

categories and visualisations created. Furthermore, we have used a student’s submission

for the assignment to demonstrate mining rules in vRSS. This chapter also appraises case

study two which represents the culmination of the work for our first paradigm. Chapter

9, the last of the five chapters in Part II, reviews this paradigm’s use of mining rules and

compares it with appropriate related work.

Chapter 9

Paradigm one and related work

9.1 Foreword

In this chapter we compare our first RSS-mining paradigm with those examples of related

work described in Chapter 3 that we believe to be appropriate to the paradigm (Section

1.4.1). To this end, the organisation of this chapter is simple: Section 9.2 briefly reviews

the two case studies for our first paradigm. This is followed by a detailed description in

Section 9.3 of each example of related work, where we employ application context and use

of RSS as the criteria for its comparison with our first paradigm’s mining rules. Finally,

Section 9.4 provides a final review of mining rules and the related work.

Each section in this chapter concerned with an example of related work is named for

the title and author(s) of the example described therein.

We do not consider issues of software and application architecture in the related work

described in this chapter:1 nor do we consider the applications of RSS described in Section

3.2.

9.2 Paradigm one: a brief summary

Our first paradigm is based upon the premise that we can employ mining rules to produce

from RSS data that is more actionable and effective than we currently see in the use of

the technology (Chapter 3).

The definition of mining rules (Section 4.7.2) upon RSS to determine and visualise

trends is intended to provide a straightforward means for users to specify how textual and

1Despite the focus of this chapter, an interesting fact is that two of the examples of related work, described
in Sections 9.3.1 and 9.3.2 respectively, make use of Rome (Section 4.7.5) to parse RSS feeds.

189

9. Paradigm one and related work 190

numeric data is to be mined from feeds during polling to update and visualise the objects

the rules become part of. We summarise the paradigm’s two case studies as follows:

• Case study one: Chapters 5 and 6 described an assessed assignment held in late

2009 wherein a corpus of thirty-five Masters-level students were required to mine

and visualise data from small numbers of RSS feeds allocated to them, as well as

from their own feeds. This work, employing our myDS software, made use of the

two mining types listed below:

1. Occurrence mining: OM counts the occurrences of specified strings in the

text of RSS feeds to explore trends or track issues. The three variants of OM

are described in Section 5.4.1.

2. Value mining: VM analyses RSS feeds which provide structured content.

Such feeds report modern forms of ticker-tape (Appendix B.2) data, such as

financial movements, sports or lottery results.

In this case study, we sought to assess the feasibility of the mining types developed

and the efficiency of their use. Mining rules were used to successfully create 173

reported datasets. Within this number, OM proved to be the preferred mining

type with 78.00% of the datasets employing it, compared to 22.00% for value-based

numeric data for VM. An overall total of 302 visualisations, covering a wide range

of subjects, were also produced where standard x - y charts were the most popular

types. We also observed efficiencies in the definition of mining rules because of

reductions in the time taken despite the difficulties described in Section 6.4.2.

• Case study two: This case study, presented in Chapters 7 and 8, refined our

previous use of textual mining rules from case study one, and employed a second

corpus of thirty-six Masters-level students in another assessed assignment during Dec

2011. Each student was required to select up to six unigram keywords and system-

indexed categories of RSS feeds, or groups of their own feeds. Thence, using our

vRSS software, the students were required to track the frequencies of these keywords

from the feeds for a seven day period, after which they were to report and visualise

their results. The case study used three simple, direct mining types to mine RSS

for data for visualisation. These mining types allowed a balance between manual

selection of individual RSS feeds and keywords on the one hand, and selection of

system-generated keywords from system-indexed categories of feeds on the other. A

9. Paradigm one and related work 191

further intermediate type allowed the use of system-indexed categories of feeds and

user-entered keywords.

Our objectives were to research preferences of the mining types employing the refined

mining rules, visualisations, distribution of categories of feeds visualised, and the

common use of these amongst the mining types. A total of 135 visualisations were

created, with semi-automatic mining proving the most popular mining type: column

and bar charts were the most popular visualisation types with 85.19% instances

created. In all, some 350 permutations of one or more RSS feed categories were used

in the 135 visualisations. The original corpus of fifty RSS feeds and seven categories,

which was extended by the feeds chosen by the students during the case study, gave

a final total of 202 feeds grouped into twelve categories. News and current affairs

(NCA) with fifty-two RSS feeds, was the most popular category compared to the

Miscellaneous category with two feeds (Section 8.4.2).

9.3 Related work

9.3.1 AtomsMasher: Personalised Context-Sensitive Automation for

the Web by Van Kleek et al.

AtomsMasher by Van Kleek et al. was the subject of a series of publications between 2007

- 2009 which included [414], [413] and [412]. According to [413], AtomsMasher allowed an

author to write simple rules that defined reactive behaviours, i.e. behaviours in terms of

relationships between entities and their current contextual state. These rules could be used

to query, filter and specify behaviours on RSS feeds, email and weather forecasts, which

were subsequently carried out by the application. AtomsMasher was considered by its

authors to be a “personal automation tool” which was aimed at “a similar audience to that

of most mashups and EUA”. In connection with this, Van Kleek et al. [413] cited Hartmann

et al. [168] by identifying this “audience” with “the growing group of web designers and

developers that are familiar with HTML and scripting languages”. AtomsMasher made use

of an RDF data model (Appendix B.2) for its knowledgebase. Van Kleek et al. provided

the following definition of the five elements of AtomsMasher’s architecture:

1. The periodic retrieval of “external information” via RSS and Atom web feeds, API

calls to web services, email and IM.

2. “Feed Prisms” to “create feed-specific import filters” in order to “distil information

from packed and misappropriated source schema fields into RDF.”

9. Paradigm one and related work 192

3. Feed rules which “reconcile new items produced by prisms with entities” already in

the application’s knowledgebase, “resolving references to entities mentioned in the

new entity’s properties”.

4. State rules which “drive the state model by analyze [sic] incoming entries and setting

state variables based on patterns in these items”.

5. “Behaviour rules - execute reactive behaviours based on incoming items and state

variable values, and causes actions to occur.”

Examples of AtomsMasher’s use documented by Van Kleek et al. concerned scenarios

which could potentially benefit from the automation of processes used to retrieve, consult

and consolidate multiple sources of information. The following example of a context-based

reminder, i.e. to remind me to call my mother when I get home, illustrates the use of

AtomsMasher’s rules and syntax:

If //state/feed rule

and(New.type.equals(‘plaze’), New.location.name.equals("Central Sq Apts"));

then

my.location = Location("Home", {geo:New.geo});

if //query/behaviour rule

my.location.equals(Location("Home"));

then

showReminder("Call mom!");

In this example, AtomsMasher was instructed to look for incoming items of type plaze

whose name equals Central Sq Apts. Having found such an item, a Location object is

created, called Home, which is assigned geospatial coordinates from the item. Home is

then stored in the state table (indicated by my) with the value of the location variable.

The behaviour rule above is satisfied when the state variable location equals the Home

object created beforehand.

No experimental results were documented in Van Kleek et al. [413], but the authors

referred to ongoing work towards making the system more predictable and understandable,

and accessible to non-programmers.

9. Paradigm one and related work 193

9.3.2 RoSeS : A Continuous Query Processor for Large-scale RSS Fil-

tering and Aggregation by Creus et al.

Really Open Simple and Efficient Syndication, i.e. RoSeS, was a project by the Agence

Nationale de la Recherche, i.e. the National Agency for Research, in France between

Sep 2008 - Dec 2010. According to project documentation available on-line at http:

//www-bd.lip6.fr/wiki/roses/start, RoSeS was aimed at:

“defining a set of web resource syndication services and tools for localizing,

querying, generating, composing and personalizing RSS feeds available on the

Web.

The proposed approach is based on the observation that web content syn-

dication can be considered as a particular large-scale distributed data manage-

ment problem that might be solved by combining peer-to-peer data sharing

infrastructures, XML data management and continuous query processing.”

In 2011 Creus et al. [80] documented the prototype implementation of RoSeS as a “system

for large-scale content-based RSS feed querying and aggregation.” This prototype was

part of the generic RoSeS framework which sought to implement “a range of services for

crawling, filtering and aggregating of RSS feeds. A central goal of this framework is to

enable large-scale RSS aggregation based on algorithms and data structures which are

scalable in terms of the number of feeds, publications and subscription.”

Rather than the “standard online RSS aggregation services”, Creus et al. focused on

“applying and extending current data stream management and continuous query process-

ing solutions.” Thus, RoSeS was based upon “declarative languages, views and multi-query

optimization.” A web-based interface allowed users to create “personalized feeds by defin-

ing and composing content-based filtering and aggregation queries on collections of RSS

feeds.”

The language implemented in RoSeS provided “instructions for registering feeds (reg-

ister), defining new feeds (create) and creating subscriptions (subscribe).” To illustrate

the use of these instructions, we reproduce elements of the example of RoSeS documented

by Creus et al.:

“Suppose Bob regularly organizes with his friends outings to rock concerts.

He therefore defines a publication RockConcertStream, including items about

concerts from feed FollowedTwitterStream, and rock concert announces from

feed EventAnnounces. For this, he first registers the corresponding source

streams in the system and creates a new publication RockConcertStream:”

http://www-bd.lip6.fr/wiki/roses/start
http://www-bd.lip6.fr/wiki/roses/start

9. Paradigm one and related work 194

The language of RoSeS made use of three clauses to perform this action: (1) a mandatory

from clause, “which specifies the input feeds called main feeds”, (2) a series of join clauses

for “joining main feeds with other feeds called annotation feeds where secondary feeds

only produce annotations (no output) to main feed elements”, and (3) an optional where

clause for “defining filtering conditions on main feeds and annotation feeds.” An RSS feed

called RockConcertStream.rss results from these actions, which we can see below in line

create feed RockConcertStream:

register feed http://www.infoconcert.com/rss/news.xml as

EventAnnounces;

register feed http://twitter.com/statuses/user_timeline

/174451720.rss as FollowedTwitterStream;

create feed RockConcertStream

from (EventAnnounces as $ca | FollowedTwitterStream) as $r

where $ca[title contains ’rock’] and $r[description

contains ’concert’];

RockConcertStream can now be subscribed to using:

subscribe to RockConcertStream output file ’RockConcertStream.rss’

every 10 minutes;

The Java-based prototype of RoSeS employed a three-level architecture: (1) acquisition

which acquired and transformed “RSS documents into a continuous stream of RoSeS

items”, (2) evaluation which used an “algebraic multi-query plan” to evaluate the algebraic

operations upon the incoming RoSeS items and manage the creation, changing and deletion

of publication queries, and (3) dissemination which transformed RoSeS objects into various

output formats which included RSS, SMS and email.

9.3.3 RSS query algebra: Towards a better news management by Geta-

hun and Chbeir

In 2013 Getahun and Chbeir [137] proposed a “dedicated RSS algebra” that included

operators which were “application domain specific and can be tuned according to the user

preferences.” The authors gave the basis for their algebra as being that existing “XML

query algebras are not fully appropriate to retrieve RSS news”, because of three principal

reasons: (1) the need for “semantic-aware operators” where the text-rich content of RSS

is “dependent upon the wording and verification of the author”, (2) the need for a time-

oriented retrieval because of the dynamic nature of news, and (3) the need for “identifying

9. Paradigm one and related work 195

relationships between items” because of the evolution and relatedness of news items. The

authors defined their work as presenting:

• A “set of specialized RSS operators that takes into consideration the similarity and

relationship between elements and textual values.” This similarity was based upon

string comparisons “between tag names and contents.”

• A “highly expressive algebra that allows a user to formulate both simple and complex

query expressions” including Query-by-Example (QBE) by Zloof [468].

• A “set of query equivalence rules that are used to optimize a query.”

• A “prototype to validate our proposal.”

Getahun and Chbeir used EBNF [202], together with symbols of their own, to define their

RSS data model as a tree representing news items. Each element of the tree had two basic

parts: a tag name of the element, and content which referred to text for either a simple

element or other complex element. We illustrate this below by using the <title> and

<pubDate> elements of an <item> (Section 2.2.3) published by the BBC in their web site’s

principal RSS news feed at http://feeds.bbci.co.uk/news/rss.xml on 02 Jan 2015:

<title>US sanctions North Korea over Sony</title>

<pubDate>Fri, 02 Jan 2015 20:07:38 GMT</pubDate>

These two elements of the <item> become the following complex element in the authors’

notation:

NewElement

(
“item”,

{
NewElement(“title”, “US sanctions North Korea over Sony”),

NewElement(“pubDate”, “Fri, 02 Jan 2015 20:07:38 GMT”)

})

In order to be used on RSS feeds, the algebra proposed by Getahun and Chbeir extended

to the definition of a set of functions and operators that included select, join, union, inter-

sect, difference, merge and additive union and additive intersect,2 which operate through

windows, i.e. “A window is a mechanism to extract [a] finite set of items from the infinite

data stream.”

2Getahun and Chbeir [137] defined a “similarity join” as a “binary operator defined on two windows.”
Therefore, the additive union and additive intersect operators worked by accepting as “input two windows
each containing the results of a similarity-join operator.” If we had two windows, i.e. w1 and w2, where
each had been generated by a similarity-join operator, additive union would return “all elements in either
w1 or w2”, whereas additive intersect would return “all elements of w1 having similar elements in w2.”

http://feeds.bbci.co.uk/news/rss.xml

9. Paradigm one and related work 196

The authors tested their algebra using a desktop prototype application called EasyRSS-

Manager against a dataset of 902 real news items from the AG corpus of news articles [162],

and cited results where their “semantic query processing provides a number of relevant

documents that could not be retrieved otherwise”. The authors also compared their soft-

ware with other principal RSS aggregators based upon keyword selection, similarity-based

operators and merging, and reported that only their prototype provided a “customizable,

adaptive and rule-based merging approach.” Getahun and Chbeir concluded by consider-

ing future work including an on-line version of their software for evaluation and feedback.

9.4 Review

9.4.1 Application context and use of RSS

The examples of related work described in this chapter all employ the definition of rules

upon RSS, some of which involve the specification of keywords or phrases for content

filtering, or the use of structural metadata in RSS’s format. These rules govern how

data mined from RSS and used according to application context. We review these rules,

together with the mining rules of our first paradigm, in Table 9.1 and in the following

paragraphs.

Author(s) Application Own Context and use of RSS
syntax

Van Kleek et
al.

AtomsMasher Yes Allowed users to write simple rules to
query, filter and specify behaviours on
RSS content.

Creus et al. RoSeS Yes Data stream management and continu-
ous query processing permitting users to
create personalised RSS feeds by defin-
ing content-based filtering and aggrega-
tion queries on collections of feeds.

Getahun and
Chbeir

RSS algebra Yes Functions and operators to query RSS
content based upon the temporal nature,
relatedness/similarity and relationships
between items of content.

O’Shea myDataSharer/
visualRSS

No Defining mining rules upon RSS to de-
termine and visualise trends from textu-
al and numeric data.

Table 9.1: Summary of related work and mining rules: cf. case studies one and two.

9. Paradigm one and related work 197

In Section 9.3.1 we referred to Van Kleek et al. [413] citing Hartmann et al. [168] to define

the target audience of AtomsMasher to include “the growing group of web designers and

developers familiar with HTML and scripting languages”. This function of AtomsMasher,

in allowing this user base to write scripts for “reactive behaviours” based upon RSS con-

tent, largely precludes a comparison between AtomsMasher and our mining rules despite

the similarity of rules based upon RSS.

RoSeS by Creus et al. [80] is, in its most basic form, an RSS feed aggregator (Section

3.2). This aggregation, illustrated by the example listed in Section 9.3.2, and which

permits users to produce personalised feeds based upon filtering and querying RSS content,

distinguishes it from the purpose of our mining rules.

In the RSS query algebra by Getahun and Chbeir [137], a complex set of operators

are employed to focus upon the temporal nature, relatedness/similarity and relationships

between items, of RSS content. Their prototype “allows a user to formulate RSS query

[sic] using our operators.” We cite the example of the unary similarity selection opera-

tor provided by the authors, i.e. “Let w be a window defined on CNN news published

between 5 and 7 o’clock on December 3, 2009 and PT = {0.6,True}”,3 where we have to

identify “all news in w having title element describing ‘Bus explosion in Damascus’ (with

a similarity value of 0.6).” If w represents the results retrieved, it will not be restricted to

“Bus explosion in Damascus”. Rather, w will include <item> elements containing similar

words, e.g. coach (similar to bus), detonation (similar to explosion) and Syria (similar

to Damascus), because of “the semantic similarity value greater than or equal to 0.6.”

Similarly, the QBE operator in the algebra will, given a sample news item, retrieve “all

news items in w similar to it.”

When compared with the relational algebra by the authors, our mining rules provide

a grouping of RSS feeds into categories only in our second case study. Mining rules do

not include any provision for relatedness or similarity given our keyword conventions and

characteristics (Section 4.6). Consequently, the raison d’être of the algebra presented by

Getahun and Chbeir [137] has no specific connection with our first paradigm. Moreover,

operators in their RSS algebra are based upon the retrieval from RSS feeds of those items

satisfying the algebraic operators used.

It is this last point that distinguishes our mining rules from the three examples of

related work we describe, i.e. none of the examples makes a dedicated use of the frequencies

of popular keywords present in the text of RSS feeds, whereas mining these is at the heart

3In the RSS algebra by Getahun and Chbeir [137], for selection and top-n operators PT represents an
equality threshold and TRUE determines the use of semantics or not.

9. Paradigm one and related work 198

of our work, especially the textual mining rules refined from case study one (Section 6.4.2).

9.4.2 Syntax

The example of registering an RSS feed in RoSeS by Creus et al. [80] in Section 9.3.2

is, in the author’s opinion, the closest example of work related to the XML filters used

in our original implementation of mining rules in case study one (Section 5.4.3). RoSeS

also employs a dedicated syntax : this consideration also extends to the use of scripting in

AtomsMasher by Van Kleek et al. [413] (Section 9.3.1), and the RSS algebra by Getahun

et al. [137] described in Section 9.3.3.

The removal of the aforementioned XML filters when the original implementation of

mining rules was refined for our second case study, allowed our final use of mining rules

to employ standard HTML page controls (Section 7.4.2) and Java classes (Section 7.5)

to provide a more straightforward means for users to specify how textual data is to be

mined from RSS for visualisation. In this syntax-free implementation, our mining rules

also differ to the related work described in this chapter.

9.5 Afterword

Despite the constraints of its case studies, described in Sections 6.4 and 8.6 respectively,

our first paradigm’s use of RSS produces the actionable and effective data that we describe

in Section 2.9, together with visualisation as a representative medium of it for the benefit

of users in differing domains. Thus, the paradigm’s implementation of mining rules, and

their syntax-free specification of RSS feeds and keywords, are distinct from the related

work described in this chapter. This difference also extends to RSS aggregators cited in

Section 3.2 where, although methods including keyword filtering are used to filter content

for aggregation, the outputs are typically one or more feeds for user consumption via

readers.

Part III

Paradigm 2: Classifying RSS

according to the fluctuations in

the frequencies of popular

keywords and correlating this with

sentiment

199

Chapter 10

Case study three: Category-based

classification of RSS feeds

10.1 Foreword

Like Section 5.1, this foreword is concerned with introducing Part III of this thesis, and

this chapter specifically. Part III is made up of three chapters for our second RSS-mining

paradigm (Section 1.4.1). The first of these chapters concerns the first component of case

study three, i.e. a semi-automated application of well-known classification techniques to

RSS to classify feeds into categories according to the fluctuations in the frequencies of

popular keywords present in their text. In the second component of our third case study

(Chapter 11), we sought to determine a correlation between the changes in the keyword

frequencies and sentiment and visualised the results. Part III concludes with a comparison

of case study three (Chapter 12) with appropriate examples of related work from Chapter

3.

In presenting our third case study, this chapter and Chapter 11 are not concerned with

detailed definitions of their respective subject areas of classification, data and text mining

and sentiment analysis: these subjects are considered in Chapter 2. We have instead placed

greater attention upon the classification and sentiment analysis techniques we employed,

and the integration of the principal open-source, third-party products (Appendix B.1)

used, into an extension of our vRSS software from case study two. Therefore, this chapter

and Chapter 11 interleave details of the aforementioned integration, research work and

results.

This chapter is made up of some six sections. In Section 10.2 the objectives of our

classification work are defined, whilst software and the RSS feed and category corpus used

200

10. Case study three: Category-based classification of RSS feeds 201

are described in Section 10.3. Section 10.4 is concerned with training and testing data

wherein we discuss the pre-processing, organisation and use of RSS feeds in this data

together with the algorithm used to produce it via semi-automated batch processing. Our

choice of an open-source, third-party classification product and our use of it is the subject

of Section 10.5, and this extends to profiles of the three classifiers we employed. This is

followed by a description of the classification process and the presentation of summary

and detailed results in Section 10.6. In the appraisal of our classification work in Section

10.7, we review issues with the format of, and published content in, RSS together with

keyword miscellany.

10.2 The rationale for the keyword-based classification of

RSS

The objectives of our work classifying RSS feeds into categories, based upon the fluctua-

tions in the frequencies of popular keywords found in their text, were threefold:

1. To employ a DT classifier to produce a ballpark (Appendix B.2) result, which could

be subsequently confirmed by other MNB and SVM classifiers. Therefore, we would

have a substantially consistent set of results reached by the three classifiers which

we did not need to maximise because of the proof of concept nature of our work.

2. To determine whether our feature selection for producing training/testing data,

based upon permutations of the parameters described in Section 10.4.2, and differ-

ent combinations of RSS feed elements (Section 10.4.4), would vary our classification

results to any significant degree

3. To use the classification of RSS feeds and keywords to validate the use of semi-

automated batch processing of RSS feeds at category-level for our sentiment analysis

work (Chapter 11).

10.3 Setting-up

10.3.1 Software

The classification work described in this chapter made use of an extension to our vRSS

software. Given that this extension employed the same architecture and database as the

original application written for case study two (Chapter 5), we do not focus upon either

10. Case study three: Category-based classification of RSS feeds 202

here, although the extension and other software characteristics concerning vRSS in case

study three are described in Section 4.8. In this chapter, we restrict our description of

software to: (1) the production of training/testing data for classification, (2) the process

of classification proper, and (3) the principal open-source, third-party products used. In

connection with this, although Quartz Scheduler (Section 4.7.4) was used to run the semi-

automated batch processing for our classification work, we do not describe its use below:

rather, we pay particular attention to the use of the following products:

• Lucene: Our classification work made use of permutations of keywords, e.g. stem-

ming, stop words and n-grams to the level of trigram (Section 10.4.2). In Section

10.4.6 we document the extension of our previous use of Lucene in case study two

for these elements.

• Weka: The choice of popular data mining tool Weka, its integration into our vRSS

software, and the selection and use of DT, MNB and SVM classifiers using default

parameters, is described in Section 10.5.

10.3.2 RSS feeds and categories

The original intention with our classification work was to employ the same corpus of RSS

feeds and categories used in case study two (Section 8.3.2), but with data gathered during

the Jul - Nov 2011 period. In Table 10.1, we reproduce the list of sample RSS feeds for

each category.

RSS feed category Number
of RSS

feeds

Sample RSS feed

Business, finance and e-
conomics (BFE)

5 http://feeds.bbci.co.uk/news/business/
rss.xml

Fashion, celebrity and
lifestyle (FCL)

6 http://www.entertainmentwise.com/rss/
celebrity.rss

Film 6 http://www.denofgeek.com/index.rss
Music 7 http://www.billboard.com/rss/the-feed/
News and current affairs
(NCA)

12 http://feeds.bbci.co.uk/news/world/rss.
xml

Science, nature and
technology (SNT)

9 http://feeds.technologyreview.com/
technology_review_top_stories

Sport 5 http://www.espn.co.uk/rss/sport/story/
feeds/0.xml?type=2

Table 10.1: Original sample RSS feeds and categories (reproduced from Table 8.1): cf.
case study three.

http://feeds.bbci.co.uk/news/business/rss.xml
http://feeds.bbci.co.uk/news/business/rss.xml
http://www.entertainmentwise.com/rss/celebrity.rss
http://www.entertainmentwise.com/rss/celebrity.rss
http://www.denofgeek.com/index.rss
http://www.billboard.com/rss/the-feed/
http://feeds.bbci.co.uk/news/world/rss.xml
http://feeds.bbci.co.uk/news/world/rss.xml
http://feeds.technologyreview.com/technology_review_top_stories
http://feeds.technologyreview.com/technology_review_top_stories
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2

10. Case study three: Category-based classification of RSS feeds 203

This corpus originally included fifty-seven feeds, but issues encountered (Section 10.7.1)

during the data gathering period reduced the count of feeds to fifty. Appendix A.3.1 lists

the seven feeds in question. In all, the data used in our classification work involved a total

of 128,886 <item> elements gathered from the fifty RSS feeds in the corpus. Furthermore,

we made no use of the <category> element types in the format of RSS (Section 2.2.3)

during our classification work: this was in order to avoid any potential ambiguity arising

from them.

A second change to the corpus for case study three was due to initially poor DT

classification results for RSS feed categories FCL, Film and Music in comparison with

the other categories. This resulted in those categories being merged into a single, generic

Entertainment and arts (EA) category, and another feed being relocated. Table 10.2

lists sample RSS feeds from each re-organised category, and the full corpus, used in all

subsequent training/testing data produced for classification, is listed in Appendix A.3.2.

Category name Number
of RSS

feeds

Sample RSS feed

Business, finance and e-
conomics (BFE)

5 http://feeds.bbci.co.uk/news/business/
rss.xml

Entertainment and arts
(EA)

18 http://www.billboard.com/rss/the-feed/

News and current affairs
(NCA)

12 http://feeds.bbci.co.uk/news/world/rss.
xml

Science, nature and
technology (SNT)

10 http://feeds.technologyreview.com/
technology_review_top_stories

Sport 5 http://www.espn.co.uk/rss/sport/story/
feeds/0.xml?type=2

Table 10.2: Sample RSS feeds and categories after re-organisation: cf. case study three.

10.4 Training and testing data

The following sections of this chapter describe the components of the feature selection

(Appendix B.2) for our training/testing data as a prelude to describing the algorithm to

produce the data in Section 10.4.5.

10.4.1 Pre-processing

The classification component of case study three made use of a minimal ETL (Appendix

B.2) involving:

http://feeds.bbci.co.uk/news/business/rss.xml
http://feeds.bbci.co.uk/news/business/rss.xml
http://www.billboard.com/rss/the-feed/
http://feeds.bbci.co.uk/news/world/rss.xml
http://feeds.bbci.co.uk/news/world/rss.xml
http://feeds.technologyreview.com/technology_review_top_stories
http://feeds.technologyreview.com/technology_review_top_stories
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2

10. Case study three: Category-based classification of RSS feeds 204

• The removal of HTML from the text of <title> and <description> elements in

the RSS feeds of our corpus. This was achieved by employing jsoup (Appendix B.1).

• The extension of the basic keyword conventions and characteristics described in

Section 4.6 to substantially employ the following:

– Accents: Accents, e.g. näıve or être, were removed.

– N-grams: We used trigrams as the highest type of n-gram (Appendix B.2) for

our keywords in order to balance computational efficiency against the number of

n-grams produced. Each n-gram was further restricted to sixty-four keywords.

Thus, if we generated a keyword list of bigrams, the number of n-grams totalled

128, i.e. sixty-four unigrams and sixty-four bigrams. Similarly, a keyword list

of trigrams included sixty-four trigrams and 128 uni- and bi grams.

– Number of characters per RSS <item> element: Within an element of an

RSS feed <item>, we allowed keywords to span sentences where that element

was composed of more than one sentence, but we did not allow keywords to be

generated from text spanning more than one element of the same RSS <item>,

or those preceding or succeeding it. We used the first 1,024 characters of a

<title> element and the first 8,192 characters of a <description> element

from any given RSS feed <item>.

– Numbers: By default, numeric values, e.g. 75.00% or 300.00, were excluded.

– Stemming and stop words: The use of keyword stemming and stop words

(Appendix B.2) in our sentiment work is described in Section 10.4.6.

This sanitisation was performed dynamically during the generation of training/testing data

(Section 10.4.5). In this way, we were able to base our feature selection upon permutations

of the parameters described in Section 10.4.2, and different combinations of RSS feed

elements (Section 10.4.4).

10.4.2 Tranches and parameter permutations

We organised the full corpus of RSS feeds and categories (Section 10.3.2) into four duration-

based tranches, each of ten or thirty/thirty-one day periods, where a tranche was applied

to a classification (Section 10.6.1) to define its duration. The tranche numbering used is

listed below:

10. Case study three: Category-based classification of RSS feeds 205

1. Tranche 1: Consecutive monthly 30 or 31 day periods, e.g. 01 - 30(31) Aug 2011.

2. Tranche 2: Consecutive monthly 10 day periods, e.g. 01 - 10, 11 - 20 and 21 - 30

(but not 31) of a given month.

3. Tranche 3: Cross monthly 10 day periods, e.g. 27 Jul - 05 Aug 2011.

4. Tranche 4: Cross monthly 30 day periods, e.g. 17 Aug - 15 Sep 2011.

Table 10.3 lists the permutations of stemming and stop words included in the tranches of

training/testing data in order to determine if they would cause any significant variations

in our classification results.

Permutation Parameters

number Stemming Stop words N-gram type

1 false false unigram

2 true false unigram

3 false true bigram

4 true true bigram

5 false false bigram

6 true false bigram

7 false true trigram

8 true true trigram

9 false false trigram

10 true false trigram

Table 10.3: Parameter permutations applied to training/testing data: cf. case study three.

10.4.3 Segmentation

Our process to produce training/testing data for a classification is based upon the du-

ration of the tranche applied to it (Section 10.4.2). Within the duration, the tranche is

decomposed into a series of ten segments. For a thirty day month, segments are three

days long, but in a month of thirty-one days the last segment is four days. In the case of

a ten day duration, segments are daily. This allowed us to produce training data in nine

of the segments and left the tenth segment for testing: the ten segments were rotated so

that each segment was used once for testing.

10. Case study three: Category-based classification of RSS feeds 206

The static nature of this rotation is depicted in Table 10.4 for a typical month where

the column headings identify the number and days of each segment, and each row repre-

sents the training/testing data (shown in red) according to the segments. For any given

classification, the first row was made up of testing data covering the three days of the first

segment, whilst the remaining nine segments for days 04 - 30(31) formed the training data.

The rotation of the segments is illustrated by the movement of the testing data along the

top-left to bottom-right diagonal line of the table. Therefore, the testing data for the last

row was made up from the days of segment ten, and the training data was made up from

the days of the other nine segments.

This process produced ten dedicated pairs of training/testing data where each pair, i.e.

each row of the table, was independent of the others. Therefore, in our classification work,

this ordering allowed each training/testing data pair to form a cross-validation (Appendix

B.2) fold, and permitted us to vary the inputs to our classifications with regard to the

following feature selection criteria:

• The duration of the tranche applied to the classification, and permutations of the

parameters described in Section 10.4.2.

• Nine training data segments and one testing data segment. Although the ordering

used was fixed, we discuss the effects of changing it in Section 10.7.3.

• A combination of RSS feed elements (Section 10.4.4) for keyword frequency produc-

tion.

Segments and days of tranche
1: 01 2: 04 3: 07 4: 10 5: 13 6: 16 7: 19 8: 22 9: 25 10: 28
-03 -06 -09 -12 -15 -18 -21 -24 -27 -30(31)

TE TR TR TR TR TR TR TR TR TR
TR TE TR TR TR TR TR TR TR TR
TR TR TE TR TR TR TR TR TR TR
TR TR TR TE TR TR TR TR TR TR
TR TR TR TR TE TR TR TR TR TR
TR TR TR TR TR TE TR TR TR TR
TR TR TR TR TR TR TE TR TR TR
TR TR TR TR TR TR TR TE TR TR
TR TR TR TR TR TR TR TR TE TR
TR TR TR TR TR TR TR TR TR TE

Table 10.4: Use of segments for generating training/testing data for a classification, TR
denotes training data and TE (shown in red) refers to testing data: cf. case study three.

10. Case study three: Category-based classification of RSS feeds 207

10.4.4 RSS feed elements

Two combinations of <title> and <description> elements from each RSS feed <item>

(Section 2.2.3) were used to produce training/testing data: the combinations are listed in

Table 10.5.

Number Not- Keywords generated Keyword freqs calculated

of RSS ation from RSS elements from RSS elements

elems

1 TxD <title> <description>

2 TDxTD <title> and <description> <title> and <description>

Table 10.5: Use of RSS feed elements to generate training/testing data: cf. case study
three.

We henceforth use the convention, i.e. TxD and TDxTD, displayed in the Notation column

in Table 10.5, to identify combinations of RSS <title> and <description> elements in

our training/testing data. This notation is one of convenience: there is no mathematical

or other significance inherent in it. We demonstrate this notation using the mock RSS

<item> element listed in Algorithm 10.1.

1: <item>

2: <title>Venusian intervention on Mars?</title>

3: <description>Is Venusian intervention on Mars inevitable? That is the

question being asked by pundits today. Many expect the

president of Mars to declare martial law.</description>

4: <pubDate>Fri, 02 Jan 2015 20:07:38 GMT</pubDate>

5: </item>

Algorithm 10.1: Mock RSS <item> to demonstrate the use of combinations of <title>
and <description> elements: cf. case study three.

If the mock RSS feed <item> in Algorithm 10.1 is mined for unstemmed unigrams which

exclude stop words, the resulting keywords (converted to lowercase) and frequencies pro-

duced by the alternative combinations of RSS feed elements are:

1. TxD: The keywords generated from the <title> element are intervention, mars and

venusian. Frequencies calculated from the <description> element are intervention

(1), mars (2) and venusian (1), because intervention and venusian occur once, but

mars occurs twice.

10. Case study three: Category-based classification of RSS feeds 208

2. TDxTD: Where both <title> and <description> elements are used for generat-

ing popular keywords and calculating their frequencies, the results are: asked (1),

declare (1), expect (1), inevitable (1), intervention (2), law (1), mars (3), martial

(1), president (1), pundits (1), question (1), today (1), and venusian (2). To take

keyword mars as an example, it has a frequency of three because it occurs once in

the <title> and twice in the <description>.

10.4.5 Algorithm

A two-stage process

Quartz Scheduler was used to run the semi-automated batch processing (Section 4.8.2)

during the first component of third case study three in order to produce training/data for

classification. This two-stage process involves: (1) generating popular keywords for the

tranche’s duration, and (2) calculating the daily frequencies of each popular keyword from

each RSS feed within the tranche. For each classification, this process was carried out ten

times, i.e. once for each of the ten pairs of training/testing data (Section 10.4.3).

The following paragraphs describe the process to generate popular keywords and cal-

culate their frequencies for one of the ten pairs of training/testing data used in a given

classification (Section 10.6.1): line number references correspond to the pseudocode of

Algorithms 10.2 and 10.3. Java classes used in these algorithms to store keyword fre-

quencies, and later re-used in our sentiment analysis work (Chapter 11), are described in

Section 4.8.3. The use of Lucene in calculating keyword frequencies in the classification

component of case study three duplicated the product’s role in case study two (Section

7.7), but with the extensions described in Section 10.4.6 to handle bi- and tri- grams.

Data structures and variables

The principal data structures and variables used in Algorithms 10.2 and 10.3 are listed

below:

• day : A day of the tranche.

• globalKeywords: The validated collection of up to sixty-four popular n-grams of

each type in the training/testing data pair. globalKeywords is populated from glob-

alNgrams.

• globalNgrams: The collection of all n-grams in the training/testing data pair for

the duration of the tranche: populated from all rssFeedElementNgrams objects.

10. Case study three: Category-based classification of RSS feeds 209

• rssFeed : An RSS feed belonging to an rssFeedCategory.

• rssFeedCategory : The category of feeds an rssFeed belongs to.

• rssFeedElement : Depending upon the combination RSS feed elements being used,

the collection of all of the <title> or <description> elements from every rssFeed-

Item in an rssFeed for a day of the tranche.

• rssFeedElementNgrams: The collection of n-grams and frequencies for an rss-

FeedElement object.

• rssFeedItem: The <item> elements of an rssFeed for a day.

• tranche: The duration, i.e. number of days, of a training/testing data pair.

In addition to the items above, in stage two of the process, rssFeedDailyNgrams elements

collect n-grams and frequencies from all rssFeedElement objects in an rssFeed for a day of

the tranche.

Stage one: generating popular keywords

In Algorithm 10.2, in order to generate popular keywords for a training/testing data pair

for the duration of the tranche (6), the rssFeedElement from which the frequencies are

to be calculated, e.g. the <title> or <description> element (7), is read in the order

of each rssFeedCategory and rssFeed (8). Therefore for every day of the tranche (9 -

11), if it is not a day used for producing testing data, for each rssFeed in the current

rssFeedCategory (12), the text of every rssFeedItem is read from the rssFeedElement (15)

and sanitised (Section 10.4.1). For the now-sanitised text of each rssFeedItem, n-grams are

indexed, i.e. n-gram frequencies are calculated, by Lucene (16). Every n-gram is written

to rssFeedElementNgrams (17 - 19) which collects the n-grams for the rssFeedElement.

When more than one RSS feed element is employed to generate popular keywords, i.e. the

<title> and <description>, this process is repeated for each element.

The n-grams from each rssFeedElement are written to globalNgrams as they are pro-

duced (25 - 27). When globalNgrams is fully populated from all of the rssFeedElement

elements used, its n-grams are sorted in descending order of frequency and type (29). This

determines the most popular n-grams overall, from which the sixty-four most popular key-

words of each n-gram type are extracted and validated (30 - 34). These n-grams form

the global keyword list globalKeywords for the current pair of training/testing data and

are persisted (Section 10.4.7) to database storage (35). When producing testing data for

10. Case study three: Category-based classification of RSS feeds 210

a pair (4), irrespective of the number of RSS feed elements used, the generation of the

popular keywords is ignored because the training data for that pair (5) has already been

produced and only has to be retrieved from the database to populate globalKeywords.

1: set globalKeywords ← null;
2: set globalNgrams ← null;
3: set mode ← (training or testing);
4: if (mode = testing) then
5: read globalKeywords from database;
6: else
7: for each (rssFeedElement) do
8: for each (rssFeedCategory) do
9: for each (day in tranche) do

10: set rssFeedElementNgrams ← null;
11: if (day not testing segment day) then
12: for each (rssFeed in rssFeedCategory) do
13: set text ← null;
14: for each (rssFeedItem in rssFeedElement) do
15: set text ← sanitise(rssFeedItem);
16: get index of ngrams in text;
17: for each (ngram not in index) do
18: add ngram to rssFeedElementNgrams;
19: end for
20: end for
21: end for
22: end if
23: end for
24: end for
25: for each (ngram in rssFeedElementNgrams) do
26: add ngram to globalNgrams;
27: end for
28: end for
29: set globalNgrams ← sort(globalNgrams in descending order);
30: for each (ngram in globalNgrams) do
31: if ((ngram = valid) and (countPerNgram ≤ 64)) then
32: add ngram to globalKeywords;
33: end if
34: end for
35: write globalKeywords to database;
36: end if

Algorithm 10.2: Pseudocode of the first stage of the algorithm to generate popular
keywords for a pair of training/testing data: cf. case study three.

10. Case study three: Category-based classification of RSS feeds 211

Stage two: calculating keyword frequencies

To calculate the frequency of each keyword for every RSS feed per day of the tranche for

our training/testing data, we made use of the process described in Algorithm 10.3. We

begin with each RSS feed category, i.e. rssFeedCategory, in line (1). For every day in

the tranche, assuming that the current day is not excluded (2, 3), for each rssFeed in the

rssFeedCategory (4), every rssFeedItem in the rssFeedElement (6) is read (8): this will

depend upon the combination of RSS feed elements used (Section 10.4.4). When the text

is read (9), it is sanitised before its n-grams frequencies are calculated by Lucene (10).

Each n-gram (10) is then either added to rssFeedDailyNgrams (13), or if already present

it is incremented (15). Lastly, lines (20 - 24) persist to the database daily frequencies of

global n-grams in rssFeedDailyNgrams to be used in a classification.

1: for each (rssFeedCategory) do
2: for each (day in tranche) do
3: if (day not testing segment day) then
4: for each (rssFeed in rssFeedCategory) do
5: set rssFeedDailyNgrams ← null;
6: for each (rssFeedElement) do
7: set text ← null;
8: for each (rssFeedItem in rssFeedElement) do
9: set text ← sanitise(rssFeedItem);

10: get index of ngrams in text;
11: for each (ngram in index) do
12: if (ngram in rssFeedDailyNgrams) then
13: increment ngram in rssFeedDailyNgrams;
14: else
15: add ngram to rssFeedDailyNgrams;
16: end if
17: end for
18: end for
19: end for
20: for each (ngram in rssFeedDailyNgrams) do
21: if (ngram in globalKeywords) then
22: write ngram to database;
23: end if
24: end for
25: end for
26: end if
27: end for
28: end for

Algorithm 10.3: Pseudocode of the second stage of the algorithm to calculate keyword
frequencies for a pair of training/testing data: cf. case study three.

10. Case study three: Category-based classification of RSS feeds 212

10.4.6 Keyword variations

Weka (Section 10.5), used for the classification of training/testing data, implements a

StringToWordVector filter to convert text into a bag-of-words (BoW) (Appendix B.2).

However, having used Lucene in our second case study (Section 7.7), we retained it to

produce the following parameter permutations required of our training/testing data, i.e.:

• Stemming: This was enabled by Lucene’s implementation of Porter’s Snowball

algorithm (Appendix B.2). The effects of stemming are described in Section 10.7.2.

• Stop words: As per case study two we used MySQL’s list of stop words, and

employed it to remove any n-grams composed purely of stop words.

• N-grams: Allowing bi- and tri- grams (Appendix B.2).

Algorithm 10.4 lists Java code from vRSS’s Text Stemmer Indexer class, which was re-

vised from our second case study (Section 7.7). The code listed permits keyword stemming,

but equivalent code for non-use of stemming is not included. The first test in the code is for

stop words (6). If stop words are used and n-grams larger than unigrams are required (8),

a SnowballAnalyzer extends the use of StandardAnalyzer for stemming (9). To produce

n-grams up to a particular size, a ShingleAnalyzerWrapper, seeded with the appropriate

parameter value, is used (10). If only unigrams are required, a single SnowballAnalyzer

is used (13). Line (17) onwards repeats this code but without stop words.

10.4.7 Database persistence

Irrespective of the combination of RSS feed elements (Section 10.4.4) used to produce

training/testing data, the end result is the keyword frequencies for the duration of a

tranche and its permutation of parameters (Section 10.4.2). The keyword frequencies,

which consist of the ten pairs of training/testing data required for a classification, are

persisted (Appendix B.2) to vRSS’s database. In the database, the data for each pair is

stored in separate, but related, tables where a typical training data table includes up to

192 columns depending upon the n-gram type used for the keywords, i.e. sixty-four per

n-gram type, and 1,350 rows of data based upon fifty RSS feeds for twenty-seven days, i.e.

nine segments, of the tranche’s duration, or 1,400 rows for twenty-eight days. A testing

data table could have as many columns but only 150 or 200 rows covering the three/four

days of the training segment. These tables subsequently populate the .arff files used

later by Weka during classification (Section 10.6.2).

10. Case study three: Category-based classification of RSS feeds 213

1: SnowballAnalyzer snowballAnalyzer = null; // Lucene analyzer extends

// StandardAnalyzer to allow

// stemming.

2: ShingleAnalyzerWrapper shingleAnalyzer = null; // Lucene analyzer to

// calculate n-grams.

3: int minnGramLength = 1;

// 1. Extraction.

4: this.setTextToStemIndex(/* Text previously extracted

from RSS feeds. */);

5: // 2. Analysis.

6: if (this.includeStopWords()) {

7: Set<String> stopWords = (Set<String>) Stop_Word_Listener.getStopWords();

8: if (this.getnGramLength() > minnGramLength) {

9: snowballAnalyzer = new SnowballAnalyzer(Version.LUCENE_30,

stopWords);

10: shingleAnalyzer = new ShingleAnalyzerWrapper(snowballAnalyzer,

this.getnGramLength());

11: }

12: else {

13: snowballAnalyzer = new SnowballAnalyzer(Version.LUCENE_30,

stopWords);

14: }

15: }

16: else {

17: if (this.getnGramLength() > minnGramLength) {

18: snowballAnalyzer = new SnowballAnalyzer(Version.LUCENE_30, null);

19: shingleAnalyzer = new ShingleAnalyzerWrapper(snowballAnalyzer,

this.getnGramLength());

20: }

21: else {

22: snowballAnalyzer = new snowballAnalyzer(Version.LUCENE_30, null);

23: }

24: }

Algorithm 10.4: visualRSS’s Text Stemmer Indexer class extended for classification: cf.
case study three.

10. Case study three: Category-based classification of RSS feeds 214

10.5 Product and classifier selection

10.5.1 Product choice

The choice of product for our classification work was guided by the following criteria:

(1) the use of an established product, (2) an integrated tool-set which could be readily

integrated into vRSS without the need to learn a programming/scripting language, (3)

the product being open-source, and (4) the availability of support. We found that on-

line surveys and academic reviews of popular data mining tools, including but not limited

to [45], [93], [156], [266], [293], [317] and [366], frequently referred to KNIME,1 MATLAB,2

Orange,3 R,4 RapidMiner5 and Weka.6

We chose the Weka machine learning software (Appendix B.1), because several of

our criteria were satisfied by the references to it in the surveys listed above. More-

over, Weka was categorised by Mikut and Reischl [266] as both a data mining “suite”

and “library”, where Weka components “have been integrated into many other open-

source tools” including “RapidMiner and KNIME.” Weka’s popularity was further revealed

by SourceForge at http://sourceforge.net/projects/weka/files/stats/timeline?

dates=2000-04-27+to+2016-03-08, which reported that between 27 Apr 2000 - 08 Mar

2016, Weka had been downloaded in excess of seven million times.7 8

10.5.2 Classifier choice

Our choice of DT, MNB and SVM classifiers was based upon their use/reference by/in

work by [11], [72], [235], [243], [329], [349], [458], [424] and [462], as well as others listed

in Section 2.7. To this end, our first use of Weka employed a DT classifier to provide a

ballpark result which could subsequently be confirmed by other MNB and SVM classifiers.

We employed the DT, MNB and SVM classifiers in Weka on a black-box basis using default

parameters except where discussed below.

1https://www.knime.org.
2http://uk.mathworks.com/products/matlab/.
3http://orange.biolab.si/community/.
4https://www.r-project.org.
5https://rapidminer.com.
6http://www.cs.waikato.ac.nz/ml/weka/.
7We also made previous use of Weka in our first case study (Section 5.8).
8An interesting fact is that page http://www.sentistrength.wlv.ac.uk/#About of the web site for Sen-
tiStrength, used for the sentiment analysis component of case study three (Chapter 11), makes reference
to Weka’s .arff file format. We describe our use of this format in Section 10.6.2.

http://sourceforge.net/projects/weka/files/stats/timeline?dates=2000-04-27+to+2016-03-08
http://sourceforge.net/projects/weka/files/stats/timeline?dates=2000-04-27+to+2016-03-08
https://www.knime.org
http://uk.mathworks.com/products/matlab/
http://orange.biolab.si/community/
https://www.r-project.org
https://rapidminer.com
http://www.cs.waikato.ac.nz/ml/weka/
http://www.sentistrength.wlv.ac.uk/#About

10. Case study three: Category-based classification of RSS feeds 215

10.5.3 The decision tree (DT)

Weka’s J48 classifier is an implementation of Quinlan’s C4.5 algorithm [313] to generate

decision trees. Quinlan described the:

“program C4.5 from which the whole system derives its name. This program

generates a classifier in the form of a decision tree, a structure that is either

• a leaf, indicating a class, or

• a decision node that specifies some test to be carried out on a single

attribute value, with one branch and subtree for each possible outcome

of the test.

A decision tree can be used to classify a case by starting at the root of the tree

and moving through it until a leaf is encountered. At each nonleaf decision

node, the case’s outcome for the test at the node is determined and attention

shifts to the root of the subtree corresponding to this outcome. When this

process finally (and inevitably) leads to a leaf, the class of the case is predicted

to be that recorded at the leaf.”

We based our use of decision trees upon Drazin and Montag [96], who discussed how Weka’s

J48 classifier used “pruning tactics” to “affect the classification accuracy of a testing set

of data.” Pruning is concerned with reducing the complexity of decision trees to optimise

classification accuracy (Appendix B.2). There are two approaches: (1) post-pruning which

concerns reductions in the complexity of grown trees, whereas (2) pre-pruning focuses

instead on pruning a growing tree. Drazin and Montag, using the soybeans dataset by

Michalski and Chilausky [258], found that post-pruning classification accuracy improved

to a level of 92.80% as confidence9 was raised to a maximum value of 0.50. For pre-pruning,

accuracy fell when the minimum number of instances per leaf was increased over a range

of one to forty.10 Figure 10.1 displays a Weka decision tree, reformatted using GraphViz

[160], of Fisher’s Iris dataset [123]. The numbers in parenthesis per leaf represent the

number of total instances in the current classification at this leaf (numerator)/the number

of incorrect classifications at this leaf (denominator).

The objective in selecting an attribute for the partitioning of a decision tree is to

reduce the uncertainty in the data to the maximum possible extent, i.e. to select the

9Confidence in Weka’s (Appendix B.1) J48 classifier is used to “test the effectiveness of post-pruning” [96]
where “lowering the confidence factor decreases the amount of post-pruning.”

10cf. Rajput and Arora [316].

10. Case study three: Category-based classification of RSS feeds 216

attribute with the maximum expected reduction in entropy caused by partitioning the

data according to the attribute. An attribute with a significant reduction will be preferred

to other attributes. Entropy is the measure of the uncertainty associated with the selected

attribute.

Figure 10.1: Sample Weka decision tree, formatted using GraphViz [160], displaying Fish-
er’s Iris dataset [123]: cf. case study three.

10.5.4 Multinomial näıve Bayes (MNB)

Näıve Bayes is a probabilistic classifier based upon the premise that the existence or

otherwise of a feature in a class is unrelated to the existence or otherwise of any other

feature. Vectors of feature values are classified into one of a finite set of classes. When

applied to document categorisation, a document is seen as a BoW, and a multinomial

version of Bayes can be applied. Frank and Bouckaert [129] defined MNB as “the version

of naive Bayes that is commonly used for text categorization problems.” Furthermore:

“In the MNB classifier each document is viewed as a collection of words and

the order of words is considered irrelevant. The probability of a class value c

given a test document d is computed as”

10. Case study three: Category-based classification of RSS feeds 217

“where nwd is the number of times word w occurs in document d, P(w |c) is

the probability of observing word w given class c, P(c) is the prior probability

of class c, and P(d) is a constant that makes the probabilities for the different

classes sum to one. P(c) is estimated by the proportion of training documents

pertaining to class c and P(w |c) is estimated as”

“where Dc is the collection of all training documents in class c, and k is the size

of the vocabulary (i.e. the number of distinct words in all training documents).

The additional one in the numerator is the so-called Laplace correction, and

corresponds to initializing each word count to one instead of zero. It requires

the addition of k in the denominator to obtain a probability distribution that

sums to one. This kind of correction is necessary because of the zero-frequency

problem: a single word in test document d that does not occur in any training

document pertaining to a particular category c will otherwise render P(c|d)

zero.”

We made use of Weka’s default NaiveBayesMultinomial classifier as it was supplied, de-

spite the existence of a NaiveBayesMultinomialText classifier. This latter classifier works

on strings of text rather than the numeric keyword frequencies, i.e. features, produced by

Lucene (Section 10.4.6) which made up our Weka .arff data (Section 10.6.2) files.11

10.5.5 The support vector machine (SVM)

The history of SVMs can be traced back to Boser et al. [47] and Cristianini and Shawe-

Taylor [81]: here we refer to the definition provided by Manning et al. [243]:

“An SVM is a kind of large-margin classifier: It is a vector-space-based machine-

learning method where the goal is to find a decision boundary between two

classes that is maximally far from any point in the training data (possibly

discounting some points as outliers or noise).”

11The applicability to our classification work of the NaiveBayesMultinomial and
NaiveBayesMultinomialText classifiers was discussed on 17 Apr 2014 on the Weka mailing list
at http://list.waikato.ac.nz/pipermail/wekalist/2014-April/060604.html.

http://list.waikato.ac.nz/pipermail/wekalist/2014-April/060604.html

10. Case study three: Category-based classification of RSS feeds 218

Where the maximal decision boundary, i.e. the hyperplane, separates the classes and has

the largest distance between border-line data points, i.e. support vectors. With reference

to biomedicine, Statnikov et al. [372] wrote that if such a hyperplane, i.e. “linear decision

surface does not exist, the data is mapped into a much higher dimensional space (“feature

space”) where the separating decision surface is found”. This non-linear classification

is illustrated in Figure 10.2 where the feature space is enabled by the kernel trick, i.e.

a similarity measure (Appendix B.2) or kernel function, based upon the distribution of

similarities between a given data point and other data points around it.

Figure 10.2: SVM-based detection of cancer cells (reproduced from Statnikov et al. [372]):
cf. case study three.

According to Manning et al. [243], “SVMs are inherently two-class classifiers.” Despite

this, common multi-class SVM classification methods include the use of sets of “one-

versus-rest” or “one-versus-one” classifiers. Our work employed the one-versus-one method

because of the implementation of this in the Java version of the LIBSVM library [65] which

Weka provides a wrapper for: there is no actual default SVM classifier in Weka.

We employed LIBSVM within Weka using default parameters except for the use of a

linear kernel, which is more applicable to SVM-based text classification. Joachims [206] has

cited four reasons for this: (1) “High dimensional input space” can handle “large feature

spaces”, (2) that most features are “irrelevant”, (3) the sparse nature of vectors with “few

entries which are not zero”, and with reference to the classical Reuters-21578 dataset

(Lewis [225]), because (4) “most text categorization problems are linearly separable”. The

use of a linear kernel is also supported by: (1) Teng et al. [391] who reported “that we

can achieve better classification results through the linear SVMs”, (2) Rennie and Rifkin

[324] who wrote that “in informal experiments, we also found that linear performs at least

as well as non-linear kernels”, and (3) Yang and Liu [458] who “obtained a slightly better

result with the linear SVM than with the non-linear models.”

10. Case study three: Category-based classification of RSS feeds 219

10.6 Classification

10.6.1 Implementation

Our classification of RSS feeds involved two-stages run using Quartz Scheduler (Section

4.7.4): each stage is described below and corresponds with the appropriate process in the

DFD displayed in Figure 10.3:

1. perform sub-classifications: In Section 10.4 we described the production of ten

pairs of training/testing data for a classification. In the first stage of the classification

process, Weka is used to classify each pair of training/testing data independently of

the others. We refer to this process as sub-classification in order to distinguish it

from the actual parent classification in stage two of the process. Thus, a classification

is actually made up from a series of ten iterations, where each iteration sub-classifies

a pair of training/testing data.

Algorithm 10.5 lists Java code to call Weka to perform a sub-classification in vRSS

for a distinct pair of training/testing data which acts as a fold in cross-validation

(Appendix B.2). In this code, we can see the training/testing data .arff files

(Section 10.6.2) being retrieved in lines in (1) and (3), where the class attribute, i.e.

the RSS feed category, is set for each in (2) and (4). (5) and (6) concern the retrieval

of the classifier and its parameters from the database, leading to (9) its training.

Finally the classifier is evaluated (10) and the sub-classification is performed (11).

The Weka output of a particular sub-classification is reproduced in Figure 10.5.

In this case, an MNB classification of bigrams allowed keyword stemming and the

popular keywords, which included stop words, were generated from the <title>

element of the RSS feeds in our corpus, and frequencies were calculated from the

<description> elements. In the sub-classification, 1,350 training instances covered

nine segments for the period 04 - 30 Sep 2011, and were tested on 150 instances of

testing data covering segment 01 - 03 Sep 2011. Of these, we can see 114 correctly

sub-classified testing instances in Figure 10.5.

2. calculate average result: The outputs produced by the ten sub-classifications

are averaged to produce a final result for the classification based upon the tranche,

parameter permutation, combination of RSS feed elements, and training/testing data

described in Section 10.4.

10. Case study three: Category-based classification of RSS feeds 220

Figure 10.3: DFD of the classification process (substantially reproduced from Figure 4.6):
cf. case study three.

// Read training data from Weka .arff data file.

1: Instances trainingInstances = new Instances(trainingData.arff);

// Set last column as training data’s class attribute.

2: trainingInstances.setClassIndex(trainingInstances.numAttributes() - 1);

// Read testing data from Weka .arff data file.

3: Instances testingInstances = new Instances(testingData.arff);

// Set last column as test data’s class attribute.

4: testingInstances.setClassIndex(testingInstances.numAttributes() - 1);

// Get classifier and options.

5: Classifier cls = // Set type of Weka classifier from database.

6: String options = // Set Weka options for classifier from database.

7: String[] optionsArray = options.split(" ");

8: cls.setOptions(optionsArray);

// Train the classifier.

9: cls.buildClassifier(trainingInstances);

// Evaluate the classifier on the testing data.

10: Evaluation eval = new Evaluation(trainingInstances);

11: eval.evaluateModel(cls, testingInstances);

Algorithm 10.5: visualRSS code implementing Weka for a sub-classification, i.e. iteration,
of a parent classification: cf. case study three.

10. Case study three: Category-based classification of RSS feeds 221

10.6.2 Data formats

The .arff, i.e. attribute relationship file format, was developed for use with Weka (Section

10.5). Figure 10.4 displays an extract of an .arff file where some minor formatting has

been performed for clarity. The data lists the first ten unigrams of training dataset 19040,

and the frequency of each unigram in each of the five RSS feeds of the Banking, finance

and economics (BFE) category (Section 10.3.2) for the first day of the classification, i.e.

04 Sep 2011. The file has the following items:

• The @relation declaration provides a text name for the data.

• @attribute defines the name and data type of an attribute, i.e. keyword. The

last @attribute listed identifies the class, i.e. RSSFeedCategoryDescription, and

includes a list of the RSS feed categories.

• @data represents the data in the relation. Each row forms a single instance of training

or testing data, i.e. the frequencies of the keywords, calculated from the appropriate

elements of a particular RSS feed for a given day, and is terminated by the name of

the class that the feed belongs to.

Figure 10.4: Extract of training dataset 19040 in the .arff, i.e. attribute relationship file
format, used by Weka: cf. case study three.

10. Case study three: Category-based classification of RSS feeds 222

Figure 10.5: Typical Weka results for a sub-classification, or iteration of a parent classi-
fication. Results for training dataset 19040 and testing dataset 20861 are displayed: cf.
case study three.

In case study three, a typical .arff file for training data covering twenty-seven days of

a month, i.e. nine segments, included some 1,350 (27 days * 50 RSS feeds) or 1,400 (28

days * 50 RSS feeds) @data rows and up to 192 columns for the keywords, i.e. sixty-four

per n-gram type (Section 10.4). A testing data .arff file included some 150 (3 days * 50

RSS feeds) or 200 (4 days * 50 RSS feeds) @data rows.

For a given classification, twenty .arff files were required, i.e. one for the training data

and one for the testing data of each sub-classification (Section 10.6.1). Figure 10.5 displays

the results of the sub-classification of a pair of training/testing data: in this example, we

see the results of training dataset 19040 on test dataset 20861. The Summary section

of the results includes the number of correctly/incorrectly sub-classified instances, whilst

the Detailed Accuracy by Class includes TP, TN, FP and FN figures used to calculate

the precision, recall, and F-measure metrics per RSS feed category, i.e. class, used. The

rows of the Confusion Matrix (Kohavi and Provost [212]) represent actual classes and the

columns indicate predicted classes.12 Correctly sub-classified instances are visible in the

top-left to bottom-right diagonal line: in this case we can see 114 correctly sub-classified

12In Appendix B.2 we explain the precision, recall and F-measure metrics, and illustrate the calculation
of the TP, TN, FP and FN figures for class NCA using the confusion matrix in Figure 10.5.

10. Case study three: Category-based classification of RSS feeds 223

instances belonging to test dataset 20861, i.e. in the Summary we see that the confusion

matrix includes 9 (BFE), 25 (NCA), 15 (SNT), 15 (Sport) and 50 (EA).

Once the series of ten sub-classifications for a classification has completed (Section

10.6.1), the second stage of our classification process averages the F-measure, precision

and recall metrics, based upon their values per class in the Detailed Accuracy by Class

part of the Weka outputs produced by each sub-classification, in order to produce a final

result (Section 10.6.3).

10.6.3 Results

Metrics

We employed the popular F-measure, precision and recall metrics (Appendix B.2) to sum-

marise our classification results. In both the summary and detailed results, we have also

aggregated the tranching (Section 10.4.2) and RSS feed elements (Section 10.4.4).

Summary statistics

Table 10.6 summarises our results by listing the number of individual classifications made

for each classifier, as well as F-measure and other metrics for each classifier averaged

across their respective number of classifications. We can see a substantially consistent

result for all three classifiers, but where MNB and SVM produced more comparable results

despite a 0.02% difference between their F-measure (Appendix B.2) values. The lower DT

result is explained by the large number of classifications we ran to do with pruning based

upon Drazin and Montag [96] (Section 10.5). Given the tranches described in Section

10.4.2, reference to Drazin and Montag for tranche one resulted in a wider range of DT

classifications and results, whereas default Weka parameters in the other tranches produced

DT results comparable with those for MNB and SVM.

10. Case study three: Category-based classification of RSS feeds 224

Classifier No of clas-

sifications

Avg F-

measure

Avg pre-

cision

Avg recall

DT 740 0.72 0.77 0.71

MNB 200 0.79 0.83 0.80

SVM 200 0.77 0.81 0.77

Table 10.6: Tabular representation of summary classification results: cf. case study three.

Figure 10.6: Graphical representation of summary classification results: cf. case study
three.

Detailed breakdown

The detailed results in Table 10.7 include the parameter permutations in Section 10.4.2.

We see that DT values were again lower than MNB and SVM, and classifications using

keyword stemming were frequently outperformed by those without stemming, e.g. the

MNB classification for bigrams with stemming and stop words returned an F-measure of

0.79, whilst unstemmed and stopped/unstopped classifications returned 0.80. Similarly,

the DT classification using bigrams, with stemming but without stop words, gave an F-

measure of 0.71, whilst those not using stemming scored 0.73 regardless of their use of

stop words or not.

10. Case study three: Category-based classification of RSS feeds 225

Par permutation Classifier

No Stem Stop Len DT (Avg) MNB (Avg) SVM (Avg)

Fm Pr Rc Fm Pr Rc Fm Pr Rc

1 F F 1 0.72 0.78 0.71 0.79 0.83 0.80 0.77 0.81 0.76

2 T F 1 0.70 0.74 0.69 0.79 0.83 0.80 0.77 0.81 0.77

3 F T 2 0.73 0.78 0.72 0.80 0.83 0.80 0.77 0.81 0.76

4 T T 2 0.71 0.75 0.70 0.79 0.83 0.80 0.77 0.81 0.77

5 F F 2 0.73 0.78 0.72 0.80 0.84 0.80 0.77 0.82 0.77

6 T F 2 0.71 0.76 0.71 0.80 0.83 0.80 0.78 0.82 0.77

7 F T 3 0.73 0.78 0.72 0.79 0.83 0.80 0.76 0.81 0.76

8 T T 3 0.72 0.76 0.71 0.79 0.82 0.80 0.77 0.81 0.77

9 F F 3 0.73 0.78 0.72 0.80 0.84 0.80 0.77 0.82 0.77

10 T F 3 0.71 0.76 0.71 0.80 0.83 0.80 0.77 0.81 0.77

Table 10.7: Tabular representation of detailed classification results: cf. case study three.

In Table 10.7 the left hand columns read: No refers to the number of the parameter

permutation (Table 10.3), Stem is stemming, Stop refers to stop words and Len concerns

the n-gram type’s length. Right hand columns Fm, Pr and Rc refer to the F-measure,

precision and recall metrics respectively. Figure 10.7 displays the detailed F-measure

results.

Figure 10.7: Graphical representation of detailed F-measure results: cf. case study three.

10. Case study three: Category-based classification of RSS feeds 226

10.7 A posteriori appraisal of the classification component

of case study three

10.7.1 The format of RSS

During the Jul - Nov 2011 data gathering period for case study three, we encountered

a series of issues with data mined from our corpus of RSS feeds and categories (Section

10.3.2). This resulted in seven feeds being withdrawn from the corpus before case study

two began in Dec 2011. These feeds are listed in Appendix A.3.1, and the reasons for their

withdrawal concerned the incorrect population and optional nature of <item> elements

(Section 2.2.3) when they were published, as the following examples demonstrate:

• Incorrect population of elements: Figure 10.8a shows RSS feed 146, i.e. film

and television web site Ain’t it Cool News, with the <description> element of each

<item> populated with the <pubDate>.

• Non-population of elements: In RSS feed 180, i.e. Scientific American magazine,

the non-population of the <pubDate> caused many duplicate postings, e.g. Figure

10.8b displays the same story for a period of four hours during polling.

(a) Extract from RSS feed 146 where the <description> element has been populated by the
<pubDate> element.

(b) Extract from RSS feed 180 where the <pubDate> element for each <item> is not-populated.

Figure 10.8: Issues with incorrect population and optional nature of RSS feed <item>

elements: cf. case study three.

Whilst the optionality of elements granted by the format of RSS provides much flexibility,

it follows that the publisher of a feed is also responsible for the content of their feed. We

believe that the format of RSS can be criticised in this respect. This is because optionality

allows publishers to not populate elements in feeds which are of use to clients, and which

10. Case study three: Category-based classification of RSS feeds 227

may be required by aggregators and readers (Section 3.2) to function correctly, e.g. the

<pubDate> element of each <item> in a feed. Similarly, with reference to: (1) the actual

instances of incorrectly populated <item> elements described above, and (2) the work

by Liu et al. [231] and Longe and Salami [236] which concerns the populated contents

of the <category> element types in RSS (Section 3.3.2), it is also the responsibility of

the publisher to ensure the correctness of their feed’s content. Where our paradigms and

their case studies are concerned, we: (1) do not propose any amendments to the format

of RSS, (2) have not contacted the relevant feed publishers concerning the issues we have

described: our corrective action was instead to remove from our RSS corpus those feeds

affected by the issues described, and (3) have made no use of RSS’s <category> element

types in our classification work because of the potential ambiguity described in Section

2.2.3.

10.7.2 Keyword miscellany

Despite a substantially consistent set of results produced by our DT, MNB and SVM

classifiers (Section 10.6.3), we were aware that the extensions to the keyword conventions

and characteristics (Section 4.6) for our classification work (Section 10.4.1) led to the

inclusion in our results of instances of the names of news agencies, slogans or buzz words,

e.g. reuters, variations of bbc world news or minute world news. The following list identifies

keyword-related issues that we found in our training/testing data (Section 10.4):

• Repeated RSS feed postings: Where a publisher posted identical <item> el-

ements to their RSS feeds more than once on the same day resulting in double

(or more) counting of keyword frequencies. Figure 10.9a illustrates an instance of

this marginal, but unavoidable duplication in RSS feed 107, where the <title>

and <description> elements carry the same content, but the <pubDate> elements

list the different times at which the same content was repeatedly published on 21

Aug 2011. This is similar to the duplication caused by the absence of a populated

<pubDate> element per <item> illustrated in Figure 10.8b.

• Non-alphabet characters: In our use of the product, Lucene (Section 7.7) broke

hyphenated words into separate keywords, e.g. blu-ray became blu and ray. Simi-

larly, when calculating keyword frequencies from the text of RSS feeds, Lucene au-

tomatically filtered commas and other punctuation characters. This caused pseudo-

keywords, e.g. mubarakgoeson was produced from the text of the <description>

element in RSS feed 175 on 02 Aug 2011 which contained text “CAIRO (Reuters)

10. Case study three: Category-based classification of RSS feeds 228

- Egypt’s fallen leader, Hosni Mubarak, goes on trial Wednesday over his role in

killing protesters, in a stark message to Arab rulers elsewhere that they too may one

day be held to account.”

(a) Extract from RSS feed 107 on 21 Aug 2011 displaying repeating content.

(b) Extract from RSS feed 159 on 03 Sep 2011 potential pseudo-keywords.

(c) Extract from RSS feed 175 on 12 Aug 2011 for keyword libyan rebel.

Figure 10.9: RSS feed <item> element and keyword issues: cf. case study three.

• Spanning: Had we allowed keywords to span <item> elements of RSS feeds and

if they had proved popular enough, they could have biased the generation of valid

keywords, e.g. Figure 10.9b displays <title> elements of RSS feed 159 which would

have resulted in pseudo-keywords such as battle top goat.

• Stemming: We found that stemming can be affected by possession, e.g. murdoch’s

became murdochs if not stemmed. Similarly, murdoch’s became murdoch if stemmed.

A further issue with keyword stemming concerned pluralisation. In Figure 10.9c

stemmed keywords were generated, and their frequencies were calculated, from the

<title> and <description> elements of RSS feed 175, i.e. Reuters news agency,

for 12 Aug 2011. Using these criteria, the calculated frequency for bigram libyan

rebels was three after all the keywords were automatically converted to lowercase.

However, the phrase libya rebels in the <title> element of <item> 16,277 was ex-

cluded from this frequency because libyan does not stem to libya by default using the

implementation of Porter’s Snowball algorithm (Appendix B.2) in Lucene (Section

10.4.6). In Section 10.6.3 we describe results of classifications using stemming to be

consistently lower compared to those without it.

10. Case study three: Category-based classification of RSS feeds 229

Although many of these issues could have been addressed by using a corrective ETL (Ap-

pendix B.2) to cleanse the text of our RSS feeds, and therefore improve the performance of

our classifiers, doing so would have matched the pragmatic approach adopted by Thelwall

et al. [398]. We did not do this because such an approach is contrary to the correspon-

dence of our paradigms (Section 1.4.2), and also to the proof of concept nature of our

classification work which did not require us to maximise our results.

10.7.3 Training and testing data segmentation

Section 10.4.3 describes the static rotation of segments of training/testing data for a clas-

sification based upon the duration of the tranche applied to it. We expect that if the

segments were re-ordered, the results of a new classification based upon this re-ordering

would be consistent with those produced by the original static rotation, if not identical

to them. This expectation is predicated upon the fact that the underlying keyword fre-

quencies for each of the ten pairs of training/testing data would remain unchanged by

the re-ordering. Therefore the outputs of the sub-classifications and averaging of them

(Section 10.6.1) would remain substantially the same as before.

Table 10.8 demonstrates this expectation, e.g. to take the fifth row, we see the test

data set to segment nine which covers days 25 - 27, and the remaining days form the nine

training segments: in the original ordering in Table 10.4 we see an identical sequence for

row nine: similarly, the dates for the other segments remain as they were before.

Segments and days of tranche
1: 01 2: 04 3: 07 4: 10 5: 13 6: 16 7: 19 8: 22 9: 25 10: 28
-03 -06 -09 -12 -15 -18 -21 -24 -27 -30(31)

TR TR TR TR TR TE TR TR TR TR
TR TE TR TR TR TR TR TR TR TR
TR TR TR TR TR TR TR TR TR TE
TR TR TR TE TR TR TR TR TR TR
TR TR TR TR TR TR TR TR TE TR
TE TR TR TR TR TR TR TR TR TR
TR TR TR TR TR TR TE TR TR TR
TR TR TR TR TR TR TR TE TR TR
TR TR TR TR TE TR TR TR TR TR
TR TR TE TR TR TR TR TR TR TR

Table 10.8: Re-ordered segments for generating training/testing data for a classification,
TR denotes training data and TE (shown in red) refers to testing data: cf. case study
three.

10. Case study three: Category-based classification of RSS feeds 230

10.8 Afterword

This chapter has presented the classification component of our second paradigm. We

began this chapter by defining the corpus of RSS feeds and categories, and subsequently

discussed in detail the nature of our training/testing data: this also included details of

the principal open-source, third-party products used. We have described the classifiers

and process used to produce a substantially consistent set of classification results, despite

the maximisation of these not being our purpose. In the same vein, we have also cited

issues with the format of RSS and keywords, which if addressed, could improve the results

of the classifications. This work presented in this chapter also validates the use of semi-

automated batch processing of RSS feeds at category-level for our sentiment analysis work

(Chapter 11).

Chapter 11

Case study three: Correlating

keyword frequencies with

sentiment in RSS feeds

11.1 Foreword

This chapter focuses on the final component of case study three for our second RSS-mining

paradigm (Section 1.4.1) where we correlated changes in the keyword frequencies in RSS

feeds with sentiment (Section 2.7). We begin with the objectives of this work in Section

11.2. Our selection of a sentiment analysis tool is discussed in Section 11.3, and the other

apparatus of this work, i.e. the RSS feed and category corpus and its organisation, is the

subject of Section 11.4.

Section 11.5 describes the algorithm we employed to produce raw keyword frequen-

cy/sentiment data. In connection with this, Section 11.6 focuses upon the integration into

our software and implementation of the principal open-source, third-party products used

for our sentiment analysis work: attention is paid here to the scoring of sentiment as well

as linguistic issues. Section 11.7 describes the processing of the raw data and the selection

from it of candidate keywords for correlation: this correlation is demonstrated in Section

11.8 by a set of time-series plots. Lastly, Section 11.9 provides an appraisal of the second

component of our third case study.

231

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 232

11.2 Objectives

The specific objectives of the sentiment analysis component of case study three sought to

determine a correlation between: (1) the sentiment contained in the text of RSS feeds,

and (2) the fluctuations in the frequencies of keywords representing named entities in the

feeds, and to visualise the results for trend analysis (Appendix B.2). Figure 11.1 provides

an example of this correlation in a mock time-series (Section 2.8.3) plot where: (1) the

red line represents the fluctuations in the aggregated frequencies of an arbitrary keyword,

and (2) the blue line illustrates the average positive sentiment related to the keyword, in

the postings to a particular RSS feed for ten days in Aug 2011.

Figure 11.1: Mock time-series plot of positive keyword frequency/sentiment correlation:
cf. case study three.

For our sentiment analysis work, we used semi-automated batch processing (Section 11.5)

to produce raw keyword frequency/sentiment data. We then selected from this data a

series of candidate keywords and made use of Pearson’s correlation coefficient (Appendix

B.2) to plot the correlation between the fluctuations in the frequencies of each keyword

and the positive and negative sentiments related to these. It is necessary to state here

that determining this linear correlation was the sole purpose of this component of case

study three. We were not concerned with a deeper analysis of the underlying distribution

of the keywords in the text of our RSS feeds: we regard this as a direction for the future

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 233

research work discussed in Section 13.7.1.

The aforementioned batch processing superseded a set of web pages that were originally

developed for manual selection of RSS feeds and keywords for sentiment analysis, and to

download or email results. These manual facilities were discontinued and consequently,

we do not discuss them in this chapter, although they are referred to in Section 4.8.1.

In addition to this, an example of the first page for selecting keywords and categories of

RSS feeds is displayed in Section 4.8.4 where we comment upon the interface design of our

vRSS software.

11.3 Sentiment analysis and sentiment analyser

Stated simply, sentiment analysis refers to determining the positive, neutral or negative

sentiment in a piece of text, i.e. a document, sentence or aspect thereof. We do not

provide a more detailed description of sentiment analysis, also called opinion mining, in

this chapter because this subject is discussed in Section 2.7. Moreover, we review related

RSS-based sentiment analysis work in Section 3.3.3. Nor did the black-box nature of

our work require the development of a sentiment analyser: the software written for our

sentiment analysis work comprised an extension of vRSS from case study two which is

described, together with software characteristics of this, in case study three in Section 4.8.

In preference to products reviewed in recent surveys (Section 2.7), Weka (Section

10.5) or other data mining tools providing sentiment analysis facilities, we employed a

Java-based sentiment analyser called SentiStrength (Appendix B.1), because of the prod-

uct’s ease of integration into the extension of our vRSS software. SentiStrength has also

been used in related work including: (1) Nielsen [280] for comparing word lists used in

sentiment analysis of microblogs, (2) Zhou et al. [466] for micro-blogging analysis, (3) Ku-

cuktunc et al. [215] to analyse sentiment in Yahoo Answers, and (4) Giannopoulos et al.

[139] for “diversifying user comments on news articles” according to such criteria as “sim-

ilarity, sentiment expressed within comments, article’s named entities also found within

comments and commenting behavior of the respective users.” Details concerning other

applications and academic research employing SentiStrength are listed on the product’s

web site (Appendix B.1).

In Section 2.7, we explained aspect-level sentiment analysis. This approach focuses on

a word or feature level in text to gauge positive or negative sentiment, and a target, i.e.

the subject of the opinion. SentiStrength employs a lexicon-based approach in its adoption

of aspect-level sentiment analysis, i.e. it uses a series of weighted word lists. We made

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 234

use of SentiStrength to produce sentiment related to keywords in the text of RSS feed

<title> and <description> elements (Section 2.2.3).

According to the SentiStrength Java Manual [396], with regard to the “polarity detec-

tion on longer texts”, e.g. the text of RSS feeds, SentiStrength can produce a binary, i.e.

positive-negative, or a trinary, i.e. positive-neutral-negative, result. We discuss our use

of the latter scale and the use of linguistics in SentiStrength in Section 11.6.2, as well as

the product’s interface, and its integration into the aforementioned extension of our vRSS

software.

11.4 Apparatus

In this section we describe the use of RSS feeds and categories in the algorithm described

in Section 11.5 to generate raw keyword frequency/sentiment data.

11.4.1 RSS feed and category corpus

For our sentiment analysis work, we employed the corpus of fifty RSS feeds organised

into five categories1 previously used for the classification component of case study three

(Section 10.3.2). Although this corpus covered the three month period between Jul - Sep

2011, we focused upon the month of Aug 2011.

11.4.2 Tranche organisation

As with our classification work (Section 10.4.2), we partitioned our data into a series of

tranches:

• Tranche 1: Fixed monthly period, i.e. 01 - 31 Aug 2011.

• Tranche 2: Fixed 10 day periods, i.e. 01 - 10, 11 - 20 and 21 - 31 Aug 2011.

• Tranche 3: Cross monthly 10 day periods, i.e. 27 Jul - 05 Aug 2011 and 27 Aug -

05 Sep 2011.

• Tranche 4: Cross monthly 30 day periods, i.e. 17 Jul - 15 Aug 2011 and 17 Aug -

15 Sep 2011.

1We made no use of the <category> element types in the format of RSS during our sentiment analysis
work because of the potential ambiguity described in Section 2.2.3.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 235

11.4.3 RSS feed categories

Within a given tranche, we made use of the categories of RSS feeds (Section 11.4.1) in

two distinct ways:

1. Single category: Firstly, on an individual basis, each category was used to generate

a global list of popular keywords from its feeds, thence each <item> in each feed in

the category was tested for sentiment related to each keyword.

2. All categories: An all-categories analysis produced a global list of popular keywords

from all of the RSS feeds in all of the categories, where each <item> in each feed in

each category, was then tested for sentiment related to each keyword.

Each sentiment analysis was also repeated for the combinations of RSS feed elements in

Section 11.4.4, to give an overall total of ninety-six individual analyses (Section 11.7.2).

11.4.4 RSS feed elements

Our sentiment analysis process employed RSS feed <item> elements in a similar manner

to our classification work2 described in Section 10.4.4, i.e.:

1. One RSS feed element per <item> (TxD): Where popular keywords were gen-

erated from the text of the <title> elements of the RSS feeds involved, and the

<description> elements were used for keyword frequency calculation and sentiment

analysis.

2. Two RSS feed elements per <item> (TDxTD): <title> and <description>

elements were used to generate a set of popular keywords, and for the calculation of

frequencies and analysis of sentiment.

11.4.5 Keywords and named entity recognition (NER)

In an extension of our keyword conventions and characteristics described in Section 4.6, we

employed a basic NER (Appendix B.2) to identify proper nouns for use as keywords. Stated

simply, each keyword had to be comprised entirely of uppercase characters, e.g. BBC, or

satisfy one of three mutually exclusive alternatives: (1) where the first character of each

word was in uppercase, e.g. British Broadcasting Corporation, (2) the first character of

2As per Section 10.4.4, the TxD and TDxTD notation describing the combinations of RSS feed elements
is one of convenience: there is no mathematical or other significance inherent in it.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 236

any given word was in uppercase, e.g. according to British, or (3) where the first character

of the first word was in uppercase, e.g. City of London.

We made use of the final option because of its inclusivity. This option rejects accord-

ing to British which consists of two lowercase words, both of which are also stop words

(Appendix B.2), before a proper noun is encountered, but it accepts British Broadcasting

Corporation because the leading character of the first word British is in uppercase: simi-

larly, it accepts City of London. We allowed twelve keywords per n-gram type to the level

of trigram, to be generated in our sentiment analyses (Section 11.7.2): the use of bi- and

tri-grams in SentiStrength is described in Section 11.6.2. Use of stop words was allowed,

but any keyword composed purely of them, e.g. This is the, was disallowed. Similarly,

keyword stemming (Appendix B.2) was not permitted.

11.5 Algorithm

11.5.1 Order of presentation

In this section we describe the production of raw keyword frequency/sentiment data ac-

cording to the apparatus described in Section 11.4. This involved using Quartz Scheduler

(Section 4.7.4) to run the semi-automated batch processing and the re-use of Java ob-

jects from our classification work to store keyword frequencies (Section 4.8.3). The other

principal open-source, third-party products used are described in Section 11.6.

11.5.2 Generating popular keywords

We do not describe or provide pseudocode for this stage of the sentiment analysis process.

This is because it is practically identical to its classification counterpart (Section 10.4.5)

to generate popular keywords for a tranche’s duration. There are two exceptions: (1)

there is no production of training or testing data, and (2) the need for additional keyword

validation for NER and stop words described above.

11.5.3 Calculating keyword frequencies

Calculating keyword frequencies is very similar to the equivalent process in Section 10.4.5

for our classification work, but with the necessary extension for sentiment analysis. Pseu-

docode for this algorithm is listed in Algorithm 11.1, and the list below describes the

principal data structures and variables used:

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 237

• day : A day of the tranche.

• globalKeywords: The collection of generated popular keywords for the tranche in

a sentiment analysis: this collection is produced by the first stage of the sentiment

analysis algorithm.

• rssFeed : An RSS feed belonging to an rssFeedCategory.

• rssFeedCategory : The category of feeds an rssFeed belongs to.

• rssFeedElement : Depending upon the combination of RSS feed elements being

used, the collection of all of the <title> or <description> elements from every

rssFeedItem in an rssFeed for a day of the tranche.

• rssFeedItem: The <item> elements of an rssFeed for a day.

• rssFeedDailyNgrams: The collection of n-grams and frequencies indexed from all

rssFeedElement objects in an rssFeed for a day.

• tranche: The duration, i.e. number of days, of a sentiment analysis.

With reference to the line numbers in Algorithm 11.1, we begin with the RSS feed category

or categories (Section 11.4.3), i.e. rssFeedCategory. For each rssFeedCategory (1), for every

day in the tranche, for each rssFeed in the rssFeedCategory (3), every rssFeedItem in each

rssFeedElement in the rssFeed (5) is read (7): this depends upon the combination of

elements used (Section 11.4.4). When the text is read (8), it is sanitised3 before its n-

grams are indexed, i.e. n-gram frequencies are calculated (9) by Lucene (Section 11.6.1).

Each n-gram (10) is then either added to rssFeedDailyNgrams (14), or if already present

it is incremented (12).

Lines (16 - 28) are concerned with sentiment analysis, after which the algorithm con-

tinues as per classification. In line (16), if an n-gram from the index of text created in

(9) is found in globalKeywords, we know that text contains an n-gram which can be used

for keyword-based sentiment (Section 11.3). Two pre-requisite steps are needed before

sentiment analysis can occur:

1. The need to concatenate the individual words of bi- and tri- grams to remove spaces

is dictated by SentiStrength (Section 11.6.2). This is element concatNgram in the

if . . . endif in lines (20 - 25).

3The sanitisation of the text of an rssFeedItem is substantially consistent with the description given in
Section 10.4.1 with the exception of any variations required of the apparatus described in Section 11.4.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 238

2. If the concatenation of a bi- or tri- gram occurs, then any instances of this keyword

in the text of the <item> element to be analysed for sentiment must also be replaced

with the concatenated version, i.e. element concatText in (22).

1: for each (rssFeedCategory) do
2: for each (day in tranche) do
3: for each (rssFeed in rssFeedCategory) do
4: set rssFeedDailyNgrams ← null;
5: for each (rssFeedElement) do
6: set text ← null;
7: for each (rssFeedItem in rssFeedElement) do
8: set text ← sanitise(rssFeedItem);
9: get index of ngrams in text;

10: for each (ngram in index) do
11: if (ngram in rssFeedDailyNgrams) then
12: increment ngram in rssFeedDailyNgrams;
13: else
14: add ngram to rssFeedDailyNgrams;
15: end if
16: if (ngram in globalKeywords) then
17: set concatNgram ← null;
18: set concatText ← null;
19: set result ← null;
20: if (ngram not unigram) then
21: set concatNgram ← concatenate(ngram);
22: set concatText← replace(ngram in textwith

concatNgram);
23: else
24: set concatNgram ← ngram;
25: end if
26: set result ← analyse(sentiment of concatNgram

in concatText);
27: write result to database;
28: end if
29: end for
30: end for
31: end for
32: for each (ngram in rssFeedDailyNgrams) do
33: if (ngram in globalKeywords) then
34: write ngram to database;
35: end if
36: end for
37: end for
38: end for
39: end for

Algorithm 11.1: Pseudocode of the second stage of the sentiment analysis algorithm:
cf. case study three.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 239

(26) represents the occurrence of the analysis by SentiStrength, i.e. analysing concatText

for sentiment related to concatNgram: the result of this analysis is then persisted (Ap-

pendix B.2) to the database (27). The outputs of the algorithm are considered in Section

11.7 after we describe the use of SentiStrength in vRSS in Section 11.6.2. Lines (32 -

35) concern the writing to the database of the daily frequencies of those n-grams which

sentiment was actually related to, i.e. unigrams, and bi- and tri- grams concatenated to

concatNgram in lines (20 - 25), as they were found in globalKeywords.

11.6 Third-party tools

11.6.1 Customising Lucene

Our previous use of Lucene to calculate keyword frequencies is described in Section 7.7 for

case study two, and in Section 10.4.6 for the classification component of case study three.

Both of these instances employed lowercase keywords which made use of the default con-

version of uppercase to lowercase performed in Lucene’s StandardAnalyzer. In order to

use uppercase in our sentiment work, vRSS’s use of Lucene required: (1) the customisation

of Lucene’s StandardAnalyzer and SnowBallAnalyzer by disabling case conversion code,

and (2) adjusting vRSS’s Text Stemmer Indexer class to accommodate the customised

analyzers, now called StandardUpperCaseAnalyzer and SnowBallUpperClassAnalyzer

respectively. We do not reproduce any code concerning these customisations in this thesis.

11.6.2 Using SentiStrength

Interface

Several versions of SentiStrength are available for use. These include: (1) the product’s

web site (Appendix B.1), (2) an interactive Microsoft Windows [263] executable file, and a

pre-compiled Java library for programmatic use. Whichever version is used, SentiStrength

has been described in Thelwall et al. [397] as:

“a lexicon-based classifier that uses additional (non-lexical) linguistic informa-

tion and rules to detect sentiment strength in short informal English text. For

each text, the SentiStrength output (for both version 1 and version 2) is two

integers: 1 to 5 for positive sentiment strength and a separate score of 1 to 5

for negative sentiment strength. Here, 1 signifies no sentiment and 5 signifies

strong sentiment of each type. For instance, a text with a score of 3, 5 would

contain moderate positive sentiment and strong negative sentiment. A neutral

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 240

text would be coded as 1, 1. Two scales are used because even short texts can

contain both positivity and negativity and the goal is to detect the sentiment

expressed rather than its overall polarity.”

Figure 11.2: The SentiStrength algorithm (reproduced from [395]): cf. case study three.

Figure 11.2, which is reproduced from the materials for course Sentiment strength detection

for the Social Web [395], provides an overview of the algorithm used by SentiStrength. A

more concise description is given by Thelwall [394]:

“When SentiStrength reads a text, it splits it into words and separates out

emoticons and punctuation. Each word is then checked against the lexicon for

matching any of the sentiment terms. If a match is found then the associated

sentiment score is retained. The overall score for a sentence is the highest

positive and negative score for its constituent words and for multiple sentences

and [sic] the maximum scores of the individual sentences is taken.”

According to Thelwall [394], the word scores can be modified by: (1) “a list of emoticons

together with human-assigned sentiment scores”, (2) a “list of idioms with sentiment

strength weights.” Moreover, SentiStrength “incorporates a number of rules to cope with

special cases.”4 Table 11.1 lists the sentiment methods, reproduced from the Sentiment

strength detection for the Social Web [395] course materials, employed by SentiStrength.

4SentiStrength (Appendix B.1) maintains a series of text files which contain weighted word lists for its
lexicon and other sentiment methods. For our purposes, these files were placed within the folder structure
of our vRSS software.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 241

Method Example

sentiment word strength list terrify=-4

spelling corrected nicce -> nice

booster words alter strength very happy

negating words flip emotions not nice

repeated letters boost sentiment/+ve niiiice

emoticon list :) =+2

exclamation marks count as +2 unless ve hi!

repeated punctuation boosts sentiment good!!!

negative sentiment ignored in questions h8 me?

Table 11.1: Summary of sentiment methods employed by SentiStrength (reproduced from
[395]): cf. case study three.

Linguistics

In Thelwall [394] reference is made to experimental work evaluating SentiStrength. Thel-

wall concluded that “SentiStrength has near-human accuracy on general short social web

texts but is less accurate when the texts often contain sarcasm, as in the case of political

discussions. The accuracy of SentiStrength can be enhanced by extending its lexicon and

altering its mood setting for sets of texts with a narrow topic focus. As the case studies

illustrate, SentiStrength can be used to analyse large scale sentiment patterns in the social

web in addition to its commercial uses.”

Table 11.1 lists the “grammatical information” [394] used by SentiStrength, although

the product “does not attempt to use grammatical parsing (e.g., part of speech tagging)

to disambiguate between different word senses. This is because it is designed to process

very informal text from the social web and so, unlike typical linguistic parsers, does not

rely upon standard grammar for optimal performance.”

Our selection of candidate keywords for correlation is described in Section 11.7.4.

Despite the use of a basic NER (Section 11.4.5), and the concatenation of bi- and tri- grams

described below, this selection made no provision for linguistic context or semantics such as

irony or sarcasm, beyond SentiStrength’s own aforementioned “grammatical information”

[394].

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 242

Outputs

All versions of SentiStrength produce the same type of output when analysing text for

sentiment. To illustrate this, according to the apparatus described in Section 11.4, we re-

use our previous example with concatenated text I love StarTrek but I really hate StarWars,

and the concatenated keyword list of StarTrek and StarWars. This results in:

3 -5 -1 I love[3]StarTrek but I really hate[-4][-1 booster word]StarWars

[sentence: 3,-5] [result: max + and - of any sentence]

3 -5 -1 provides an overall summary of the results, i.e. a positive sentiment of 3 is recorded

for the word love in relation to StarTrek, and a negative rating of -5 for the use of the

word hate in connection with StarWars. The negative rating for StarWars is calculated

from an initial rating of -4, given to the word hate and a further -1 because of the booster

word really. The final number in the sequence 3 -5 -1 is the neutral rating, i.e. 3 - 4 =

-1. In a longer piece of text consisting of several sentences, the result of an analysis is

based upon the maximum and minimum sentiment found, i.e. [result: max + and - of any

sentence].

Reference is made in Section 11.3 to our use of SentiStrength’s trinary scale for “po-

larity detection on longer texts”, such as the text of RSS feeds: the SentiStrength Java

Manual [396] further states that this scale works in similar fashion to Taboada’s SOCAL

program [381], where “the total positive sentiment is calculated and compared to the total

negative sentiment. If the total positive is bigger than 1.5* the total negative sentiment

then the classification is positive, otherwise it is negative. Why 1.5? Because negativity

is rarer than positivity, so stands out more (see the work of Maite Taboada).”

Implementation

In order to implement SentiStrength, we incorporated the aforementioned pre-compiled

Java version of the product directly into our extended vRSS software (Section 4.8.1).

Algorithm 11.2 lists the basic Java code we implemented in vRSS in order for Sen-

tiStrength to produce a trinary, i.e. positive-neutral-negative, result for “polarity detec-

tion on longer texts” [396]. Line (1) contains a comma-separated list of keywords that

sentiment will be based upon. (2) sets the parameters for the analysis, i.e. explain will

add an explanation to the results of the analysis, trinary concerns the scale of the result,

and keywords is the prefix of the comma-separated string of keywords in (1). For example,

using our previous concatenated text I love StarTrek but I really hate StarWars, the con-

catenated keyword list (1) consists of StarTrek and StarWars: therefore, in the sentiment

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 243

analysis, the word love relates to StarTrek but hate refers to StarWars.5 (3) and (4)

instantiate an instance of SentiStrength and set its parameters to execute the analysis:

this action calls SentiStrength’s method computeSentimentScores (5), seeded with the

concatenated text previously extracted from RSS feeds. The trinary results are acquired

in lines (6 - 9), after which they are persisted to database storage.

1: String keywords = (/* Keywords previously generated in algorithm. */);

// Initialise parameters.
2: String[] pars = {"sentidata", "explain", "trinary", "keywords", keywords};

// Instantiation of SentiStrength.
3: SentiStrength ss = new SentiStrength();
4: ss.initialise(pars);

// Analyse text.
5: String explanation = ss.computeSentimentScores(/* Text previously extracted

from RSS feeds. */);

// Get results.
6: String[] results = explanation.split(" ");
7: int positiveResult = Integer.parseInt(results[0]);
8: int neutralResult = Integer.parseInt(results[2]);
9: int negativeResult = Integer.parseInt(results[1]);

Algorithm 11.2: Use of SentiStrength in visualRSS: cf. case study three.

Use of bi- and tri- grams

The parameter permutation supplied to SentiStrength for an analysis in line (2) of Algo-

rithm 11.2, includes the value keywords for keyword-based sentiment. Although, we have

used keywords for this purpose, it is germane to state the product was designed only for

unigrams. We know this from an email conversation between Professor M. Thelwall, i.e.

SentiStrength’s writer, and the author on 05 May 2015:6 to quote the former:

“I am sorry but this is only possible for unigrams. Perhaps as a workaround

you could preprocess the texts to convert the phrases into words. For example

Star Wars becomes StarWars, and then use StarWars as the keyword? Is this

practical for you?”

As suggested, it was necessary to concatenate the individual words of bi- and tri- grams to

remove spaces, e.g. City of London became CityofLondon, similarly golfer Tiger Woods

became TigerWoods, to permit their use as keywords in SentiStrength.

5According to the SentiStrength Java Manual [396], parameters to “classify text near specified keywords”
have default values of four.

6The full transcript of this conversation is available from the author upon request.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 244

11.7 Post-algorithm data processing

11.7.1 Sentiment analysis 71

In describing the next stages of our sentiment analysis work, we use bigram Tiger Woods

as a keyword to represent golfer Eldrick Tont Tiger Woods, in RSS feed 133, i.e. Reuters

news agency’s feed for sport, from sentiment analysis 71. This analysis employed the feeds

in the Sport RSS feed category (Section 11.4.1) for a ten day duration of tranche 2 between

01 - 10 Aug 2011 (Section 11.4.2). Both <title> and <description> elements of RSS

feed 133 were used for generating popular keywords and calculating their frequencies.

11.7.2 Raw keyword frequency/sentiment data

We ran a total of ninety-six individual sentiment analyses. Of this number, eighty of

the analyses were for a single RSS feed category and the remaining sixteen were for all

categories. We arrive at the total of eighty for the single category analyses with reference

to the apparatus described in Section 11.4. Although four tranches were used, tranches

2, 3 and 4 included several durations of different date ranges. Therefore, with a total

of eight durations overall, for five RSS feed categories, we have forty analyses: extend-

ing this to include the two combinations of RSS feed elements, we have eighty analyses.

To summarise: eight durations for the tranches, multiplied by five RSS feed categories,

multiplied by two RSS feed element combinations, i.e. ((1 + 2 + 3 + 2) * 5) * 2 = 80.

A further analysis was also run for each duration including all five RSS feed categories:

therefore, allowing for eight durations and two RSS feed element combinations, we have

another sixteen analyses.

For every analysis, the algorithm described in Section 11.5 produced raw keyword fre-

quency/sentiment data based upon its permutation of the apparatus described in Section

11.4, i.e. where according to the combination of RSS feed elements used in each analy-

sis, the instances of these elements in every <item> in every RSS feed in the category or

categories used were, for each day of the tranche, analysed for sentiment relating to every

popular keyword generated.

Table 11.2 lists a sample of the raw keyword frequency/sentiment data of sentiment

analysis 71, where each row: (1) corresponds to either a <title> or <description>

element of an <item> posted to RSS feed 133, i.e. Reuters news agency, on 04 Aug 2011

containing the text Tiger Woods, and (2) lists SentiStrength’s explanation for the analysis

of sentiment relating to Tiger Woods in the text of the element. Text concerning Reuters

and generic SentiStrength result text, e.g. [result: max + and - of any sentence], has been

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 245

edited from the explanations for clarity. Moreover, in Table 11.2 we also see an example

of our concatenation of bi- and tri- gram keywords for SentiStrength (Section 11.6.2).

Row Explant- Published date/time Keyword Sentiment
No ion frequency Pos’ve Neu’l Neg’ve

1 04 Aug 2011 @ 02 24 17 1 1.00 -1.00 -4.00
1 -1 -4 Motivated TigerWoods a ‘scary’ prospect on [sentence: 1,-4]

2 04 Aug 2011 @ 02 24 17 1 1.00 0.00 -1.00
1 -1 0 TigerWoods may have been sidelined [sentence: 1,-1]

3 04 Aug 2011 @ 20 07 52 1 1.00 0.00 -1.00
1 -1 0 on Thursday shortly before TigerWoods teed off to make [sentence: 1,-1]

4 04 Aug 2011 @ 21 14 48 1 1.00 0.00 -1.00
1 -1 0 on Thursday shortly before TigerWoods teed off to make [sentence: 1,-1]

5 04 Aug 2011 @ 21 35 06 1 3.00 1.00 -1.00
1 -1 0 TigerWoods flashed his trademark smile [sentence: 3,-1]

Table 11.2: Raw keyword frequency and sentiment analysis outputs for concatenated
keyword TigerWoods in RSS feed 133 on 04 Aug 2011 (edits have removed references to
Reuters news agency and generic sentiment analysis result text): cf. case study three.

11.7.3 Aggregation

We next aggregated the raw keyword frequency/sentiment data per sentiment analysis.

Daily frequencies for each keyword per RSS feed were added together whilst the positive,

neutral and negative sentiments were averaged. Table 11.3 lists the daily aggregations of

<item> elements of RSS feed 133 for the period 01 - 10 Aug 2011 for Tiger Woods in

sentiment analysis 71. The contents of Table 11.2 form the row for 04 Aug 2011 in Table

11.3, i.e. the addition of the keyword frequencies give a result of five, and the average of

the positive sentiment over the five rows gives (1.00 + 1.00 + 1.00 + 1.00 + 3.00) / 5 =

1.40. Figure 11.3 provides a time-series plot of the same data.

11.7.4 Candidate keyword selection

Following aggregation, for each sentiment analysis we calculated the total number and

percentage of days each of its keywords appeared in each RSS feed for the duration of the

tranche for the analysis. This principle formed the basis for our selection of candidate

keywords for correlation with sentiment, because we could identify individual instances

of keywords according to the apparatus (Section 11.4) used to produce the raw keyword

frequency/sentiment data for any analysis. Nevertheless, in doing this many keywords

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 246

were routinely discarded because of: (1) the effects of the keyword miscellany7 described

in Section 10.7.2, and where (2) tests of random batches of ten keywords revealed the

inclusion of 40 - 50.00% of “non-useful terms” (Thelwall et al. [398]).

Date Keyword Sentiment
frequency Positive Neutral Negative

01 Aug 2011 1 1.00 0.00 -1.00
02 Aug 2011 2 1.50 0.00 -1.00
03 Aug 2011 3 1.00 -0.33 -2.00
04 Aug 2011 5 1.40 0.00 -1.60
05 Aug 2011 4 2.00 1.00 -1.00
06 Aug 2011 7 1.43 1.00 -1.86
07 Aug 2011 2 2.00 1.00 -1.00
08 Aug 2011 1 1.00 0.00 -1.00
09 Aug 2011 3 1.00 -0.67 -1.67
10 Aug 2011 4 1.00 -0.25 -1.25

Table 11.3: Tabular representation of aggregated daily keyword frequencies and averaged
sentiment of keyword Tiger Woods in RSS feed 133 for the period 01 - 10 Aug 2011: cf.
case study three.

Figure 11.3: Time-series representation of aggregated daily keyword frequencies and av-
eraged sentiment of keyword Tiger Woods in RSS feed 133 between 01 - 10 Aug 2011: cf.
case study three.

7The third and fourth rows of Table 11.2 provide an example of this keyword miscellany where repeating
content has been published in RSS feed 133 on 04 Aug 2011.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 247

The majority of our candidate keywords comprised valid proper nouns such as: European

Stocks (BFE), Dark Knight Rises (EA), Afghan (NCA), Samsung Electronics (SNT) and

Arsenal (Sport), where respective RSS feed categories are included in parentheses. An

extract from our final selection of candidate keywords is given in Appendix A.3.3: the list

below substantially defines the selection criteria employed:

• Translations of names: We treated Muammar Gaddafi and Moammar Gadhafi

as alternative bigrams.

• Personal names: References to a surname or full name identified individual people,

e.g. Kardashian for Kim Kardashian, or Steve Jobs but not Steve. We also: (1)

applied this principle to the use of titles where President Barack Obama was used

as a distinct trigram, and (2) included titles such as Prime Minister or President as

distinct keywords.

• Names of political or corporate entities: We employed full names such as

European Central Bank in place of European Central.

• Keyword stemming: The non-use of stemming (Appendix B.2) resulted in key-

words such as Libya and Libyan being treated distinctly.

We can see in Table 11.3 that keyword Tiger Woods appeared in RSS feed 133 every day

of the tranche for sentiment analysis 71. Therefore, given this 100% percentage inclusion

margin, Tiger Woods became a candidate keyword. A second example of a candidate

keyword is given by unigram Apple in RSS feed 148, i.e. IT news web site Eweek, in

sentiment analysis 102 which covered the full month of Aug 2011, i.e. tranche 1, and

employed the <title> and <description> elements of the RSS feeds in the Science,

nature and technology (SNT) category for generating popular keywords and calculating

their frequencies (Section 11.4.4).

11.8 Results

11.8.1 Perspective

In Section 11.8.4 we provide a set of four time-series plots, and a further eight are includ-

ed in Appendix A.3.4. Each of the twelve plots illustrates an example of our keyword

frequency/sentiment results. We employed the Apache Commons Mathematics Library

(Appendix B.1) to calculate Pearson correlations (Appendix B.2), i.e. for each candidate

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 248

keyword, positive, neutral and negative correlations were calculated. With reference to

the two aggregation examples described above, Tiger Woods for RSS feed 133 for every

day of sentiment analysis 71 resulted in a positive Pearson coefficient of 0.28, and Apple

gave a positive coefficient of 0.53 for RSS feed 148 in sentiment analysis 102 for Aug 2011.

11.8.2 Expectations

Predicated upon raw keyword frequency/sentiment data (Section 11.7.2) and the appara-

tus of RSS feeds, categories and elements, and differing tranche durations of days (Section

11.4), our expectations of correlation amongst our ninety-six analyses were that there

would be no median result according to these criteria or subsets thereof. We, more plausi-

bly, expected individual candidate keywords to demonstrate either a positive or negative

correlation, based upon the aforementioned apparatus and the stories contained therein.

11.8.3 Plot criteria

Keywords and RSS feed categories

The keyword frequency/sentiment time-series plots below, and in Appendix A.3.4 are con-

cerned with the aggregated frequencies of a single candidate keyword and either the av-

eraged positive or negative sentiment from a single RSS feed. Moreover, both ranges are

normalised, and neutral sentiment (Section 11.3) has been edited from the plots for clarity.

We have used a single candidate keyword from a single RSS feed in our plots because

the majority of the ninety-six individual analyses making up our raw keyword frequen-

cy/sentiment data (Section 11.7.2) were based upon a single RSS feed category: therefore,

in each analysis the candidate keyword originated from one of the feeds in that category.

Where a candidate keyword from one of the sixteen analyses for all fifty RSS feeds and

five categories in our corpus (Section 11.4.1) is illustrated in a plot, only the positive or

negative sentiment for that keyword, in a single RSS feed in one of the RSS feed categories

in the analysis, is displayed. For example, the plot for keyword President (Figure 11.5)

displays the frequency and sentiment in RSS feed 107 for the thirty day tranche from 17

Jul - 15 Aug 2011 of the particular sentiment analysis, although the keyword President

and related sentiment occurred in thirty different RSS feeds within the same analysis.

Appendix A.3.3 lists an extract from our final candidate keyword selection together

with the RSS feed and category displayed in each plot. The twelve plots in Section

11.8.4 and Appendix A.3.4 represent a cross-section of the candidate keyword selection

to illustrate different patterns of raw keyword frequency/sentiment data and alternative

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 249

permutations of the apparatus of RSS feeds, categories and elements, and differing tranche

durations of days described in Section 11.4.

Normalisation

In each time-series plot, the aggregated keyword frequencies and averaged sentiment have

been normalised to display values between 0 and 1, or 0 and -1, depending upon the type

of sentiment displayed. This re-scaling has been calculated using the following formula:

zi =
x i - min(x)

max(x) - min(x)

Therefore, the majority of the time-series plots consist of two graphs: (1) the first graph

displays the fluctuations in the aggregated keyword frequency and the averaged positive

sentiment, and (2) the second graph plots the average negative sentiment and the aggre-

gated but inverted, i.e. multiplied by -1, keyword frequency.

Plot annotations

Each time-series plot below, and in Appendix A.3.4, is annotated as follows:

• Keyword: The candidate keyword.

• N-gram length: The length of the keyword’s n-gram type.

• RSS feed number: The RSS feed from which the keyword was taken.

• RSS feed category: The category of the RSS feed in the sentiment analysis or All,

if an analysis involved all categories in our corpus.

• RSS feed elements: As Section 11.4.4.

• Duration: The number of days an analysis ran for, i.e. the duration of the tranche

(Section 11.4.2).

• Margin: The percentage of the number of days in the duration the keyword ap-

peared in the RSS feed.

• Correlation: Pearson correlation(s) for the averaged sentiment.

• Comments: A brief explanation of the plot.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 250

11.8.4 Keyword frequency/sentiment correlation plots

Keyword: Afghan

N-gram length 1

RSS feed Number: 107, Category: NCA, Elements: TxD

Duration Dates: 17 Jul - 15 Aug 2011, Number of days: 30, Margin 53.33%

Correlation Positive: 0.70, Negative: -0.33

Comments Negative sentiment regarding events in Afghanistan.

Table 11.4: Keyword: Afghan: cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure 11.4: Keyword: Afghan: cf. case study three.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 251

Keyword: President

N-gram length 1

RSS feed Number: 107, Category: All, Elements: TDxTD

Duration Dates: 17 Jul - 15 Aug 2011, Number of days: 30, Margin 96.67%

Correlation Positive: 0.18, Negative: -0.41

Comments Negative sentiment for various presidents globally.

Table 11.5: Keyword: President : cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure 11.5: Keyword: President : cf. case study three.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 252

Keyword: Tiger Woods

N-gram length 2

RSS feed Number: 133, Category: Sport, Elements: TDxTD

Duration Dates: 01 - 10 Aug 2011, Number of days: 10, Margin 100.00%

Correlation Positive: 0.28, Negative: -0.62

Comments Balanced sentiment at the 2011 WGC-Bridgestone golf tournament.

Table 11.6: Keyword: Tiger Woods: cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure 11.6: Keyword: Tiger Woods: cf. case study three.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 253

Keyword: Wall Street

N-gram length 2

RSS feed Number: 121, Category: All, Elements: TDxTD

Duration Dates: 01 - 10 Aug 2011, Number of days: 10, Margin: 70.00%

Correlation Positive: 0.81, Negative: -0.50

Comments Stock values fall on Wall Street in early Aug 2011.

Table 11.7: Keyword: Wall Street : cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure 11.7: Keyword: Wall Street : cf. case study three.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 254

11.9 A posteriori appraisal of the sentiment analysis com-

ponent of case study three

11.9.1 Patterns of correlation

The plots in Section 11.8.4 and Appendix A.3.4 demonstrate that the correlation deter-

mined between the sentiment and the fluctuations in the frequencies of keywords repre-

senting named entities in RSS feeds, can be visualised in time-series plots. Furthermore,

the plots represent a cross section of our final selection of candidate keywords (Appendix

A.3.3), and illustrate that keyword frequency/sentiment correlation can occur in different

patterns. We see examples of these patterns in the varying lengths of duration of 10 or

30(31) days, and in the alternative combinations of RSS feed elements used, i.e. Kardashi-

an in Figure A.10. The plots also employ specific and generic keywords referring to an

individual or to a title, e.g. President Barack Obama (Figure A.6) and President (Figure

11.5) respectively. In addition, two of the plots are based upon analyses covering multiple

subject areas because of their use of all of the RSS feed categories in our corpus (Section

11.4.1). The following sections of this appraisal identify constraints in our approach to

keyword frequency/sentiment correlation.

11.9.2 Keyword temporality

We note the presence of gaps in our keyword frequency/sentiment plots to do with the

absence of keywords. An example of this is provided by Figure 11.4 for keyword Afghan,

where the gaps include the four day interval 21 - 24 Jul 2011. The gaps in this and other

examples are present because of: (1) keyword stemming, (2) the absence of postings to

the appropriate RSS feed for the period in question or for the particular named entity, or

(3) a lack of postings from which sentiment can be produced. With reference to keyword

Afghan, the following two examples illustrate the first and third reasons:

1. Figure 11.4 records no data for RSS feed 107 for period 03 - 04 Aug 2011. Two post-

ings were actually recorded by vRSS for this period: their respective <description>

elements read:

• “One Nato soldier in eastern Afghanistan is shot dead by a man in police

uniform, while another is killed in a militant attack, officials say.”

• “Afghans get new satire inspired by hit UK comedy”.

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 255

In the first posting, keyword Afghan is not present as a unigram despite its forming

the root of word Afghanistan, and in the second posting, our non-use of stemming

precluded Afghans which would otherwise have stemmed to Afghan.

2. According to Figure 11.7, no postings were made to RSS feed 121 on the weekend

of 06 - 07 Aug 2011 for keyword Wall Street.

11.9.3 Keyword relatedness

In each of the keyword frequency/sentiment plots in Section 11.8.4 and Appendix A.3.4,

the positive and negative sentiment correlations refer to a single candidate keyword drawn

from a single RSS feed, as described in Section 11.8.3. Therefore, the plots do not allow

any form of keyword relatedness (Section 4.6), nor do the candidate keywords (Section

11.7.4) allow for the “grammatical information” [394] described in Section 11.6.2.

11.9.4 Other issues

• Seasonal variations: Our corpus of RSS feeds and categories is circa Aug 2011.

Summer is traditionally a passive, holiday period in certain industries in comparison

with autumn and winter, e.g. arts and entertainments.

• SentiStrength: The default scores used by SentiStrength (Section 11.3) for the

lack of positive or negative sentiment in a piece of text are 1 and -1 respectively.

These are, in the author’s opinion, susceptible of misinterpretation, i.e. either score

could be seen as indicating a weak sentiment where none actually exists.

• Uniformity: The absence of a basis for a comparative analysis to gauge the success

or otherwise of the correlations for each n-gram (Appendix B.2) type used, where we

plausibly expected individual candidate keywords to demonstrate either a positive

or negative sentiment (Section 11.8.2).

11. Case study three: Correlating keyword frequencies with sentiment in RSS feeds 256

11.10 Afterword

In this chapter, we have found that a correlation between sentiment in the text of RSS feeds

and the fluctuations in the frequencies of keywords can be determined. We have described

the apparatus and process employed, and have employed of a set of time-series plots to

illustrate different keyword frequency/sentiment patterns of correlation: in appraising this

correlation, we have also identified several applicable constraints. Nevertheless, the two

components of case study three do complement each other, e.g. in the development of

the regular semi- or fully- automated batch processing facility to classify and analyse RSS

data for sentiment referred to in Section 13.7.2. Subject to comparing case study three

with appropriate related work in Chapter 12, this chapter concludes the presentation of

our second RSS-mining paradigm.

Chapter 12

Paradigm two and related work

12.1 Foreword

This chapter compares our second RSS-mining paradigm (Section 1.4.1) with examples

of related work from Chapter 3 that we believe to be appropriate to the paradigm. We

begin with a brief summary of the paradigm and its constraints in Section 12.2, before

decomposing the components of case study three into two further sections. Each of these

sections focuses on one of the components of the case study, although this chapter is

principally concerned with our sentiment analysis work rather than classification. Section

12.3 summarises our classification work and briefly references related work. On the other

hand, Section 12.4 gives a précis of our sentiment analysis work, before Section 12.5 profiles

four appropriate examples of related work. Section 12.6 provides a summary comparison

between our sentiment work and the related work cited.

For consistency with Chapter 9: (1) each section in this chapter concerned with an

example of related work is named for the title and author(s) of the example described

therein, and (2) we retain application context and use of RSS as the criteria for the

comparison of related work with our second paradigm. Moreover, we do not consider issues

of software and application architecture in the related work described in this chapter: nor

do we consider the applications of RSS described in Section 3.2.

12.2 Paradigm two

12.2.1 Summary

Our second paradigm, to classify RSS according to the fluctuations in the frequencies of

popular keywords and correlating this with sentiment, builds upon our first paradigm.

257

12. Paradigm two and related work 258

If basic actionable and effective data (Section 2.9) can be produced from RSS by the

case studies of our first paradigm, the logical extension of this is to apply data mining

techniques to RSS in order to further enhance the social utility of the technology.

12.2.2 Constraints

Constraints specific to the classification component of case study three have been described

in Section 10.7. Similarly, constraints applicable to the case study’s sentiment analysis

component are the focus of Section 11.9. Given the particular nature of these constraints,

we do not repeat them here.

12.3 Classification

12.3.1 Paradigm 2

Chapter 10 describes the classification component of case study three which consisted of

a semi-automated application of well-known classification techniques to RSS in order to

classify feeds into categories according to the fluctuations in the frequencies of popular key-

words present in their text. A DT classifier was initially implemented in Weka (Appendix

B.1) to provide a ballpark (Appendix B.2) result which could be subsequently confirmed

by other MNB and SVM classifiers. We did not seek to maximise our classification results

because of the proof of concept nature of our work. Nevertheless, at the end our classifi-

cation work, which used data gathered during Jul - Nov 2011 from our corpus of fifty RSS

feeds organised into five categories, average F-measure results per classifier were between

70.00 - 80.00%. We were also interested to determine whether our classification results

would be affected by: (1) a series of tranches varying in length from ten to thirty/thirty-

one days, and (2) feature selection (Appendix B.2) based upon parameter permutations of

RSS feed elements and categories, stop words, stemming, and näıve n-grams to the level of

trigram. In addition to this, we sought to use the classification of RSS feeds and keywords

to validate our use of semi-automated batch processing of RSS feeds at category-level for

our sentiment analysis work.

12.3.2 Review

Section 2.7 refers to a series of surveys of products for, and the application of well-known

classification techniques to, sentiment analysis. For this reason, and because of the objec-

tives of our classification work described above, this chapter does not make any comparison

12. Paradigm two and related work 259

between the related RSS-based classification work described in Section 3.3.2 and the clas-

sification component of case study three (Chapter 10). This stipulation specifically applies

to the related work by Banos et al. [26], Cingiz and Diri [72], Saha et al. [342] and Teng

et al. [391], and others because of their use of NB, MNB and SVM classifiers.

Nevertheless, although their contexts and methodologies vary, two cases of related

RSS-based classification work, which we have described in Section 3.3.2, do document

issues concerning the format of RSS which are equivalent to those we encountered during

our own classification work:

1. Contextual comments made by Liu et al. [231] concern the absence in RSS of “uni-

form standards for categorization.” As a result of this, “news sites determine how

to categorize news articles by themselves.” The authors further described variations

in the categories used by publishers to classify content, where the content was not

always sufficiently decomposed, and where the categories would not “satisfy every

individual user.”

2. The work by Longe and Salami [236] where the authors focused on the mismatch be-

tween the pre-defined category of an RSS feed and actual feed content, and reported

that their SVM classifier placed “68% of the feed content retrieved” in a different

category compared to the category specified by the feed’s publisher.

These issues concern the <category> element in either the <channel> of an RSS feed, or

in its <item> elements. We agree with the findings by Liu et al. and Longe and Salami

regarding the <category> element types, and in order to avoid any potential ambiguity

they may have caused (Section 2.2.3), we made no use of them in the case studies for our

paradigms. Concerning our classification work, in Section 10.7.1 we discuss issues to do

with the incorrect population and optionality of other <item> elements in RSS.

12.4 Sentiment analysis

12.4.1 Paradigm 2

The second component of case study three sought to determine a correlation between

the fluctuations in the frequencies of popular keywords present in the text of RSS feeds

and sentiment. To do this we made use of a lexicon-based sentiment analyser called

SentiStrength (Section 11.3) to calculate sentiment related to proper nouns identified by

a basic NER. A set of time-series plots visualise the correlation using varying numbers of

days and different combinations of RSS feed elements during Aug 2011.

12. Paradigm two and related work 260

12.5 Related work

We consider four examples of related work in this section which we regard as appropriate

to the sentiment analysis component of our second paradigm (Chapter 11). These exam-

ples demonstrate the landscape of the related work described in Section 3.3.3, where this

extends from sentiment analysis into the subject areas of visualisation and trend, topic or

event detection, or a combination thereof. We provide a detailed description and review

of each example, and conclude with a collective summary.

12.5.1 Are Raw RSS Feeds Suitable for Broad Issue Scanning? A

Science Concern Case Study by Thelwall et al.

In Thelwall et al. [398], the authors referred to “two relevant traditions of web data

analysis”: (1) “The purist approach is to analyse an Internet phenomenon as it is found,

seeking to describe it as accurately as possible”, and (2) the “pragmatic approach is to

analyse a phenomenon from the perspective of attempting to gain information about an

underlying phenomenon, rather than the Internet data (i.e. for indirect research).” The

“key difference between the two approaches is that the former typically does not use any

data cleansing whereas the latter tends to use extensive data cleansing.”

In an experiment in 2006, the authors sought “to assess whether a purist approach

to RSS feeds (i.e. using the raw feeds without data cleansing) is suitable for broad issue

scanning, using a co-word frequency time series approach.” The authors defined the term

broad issue scanning to “describe the task of identifying and tracking important public

debates arising within a given broad issue, such as public science concerns.”

Co-word frequencies were used to track stories in 19,587 RSS feeds. The authors first

identified items containing words in the “science-relevant” set, i.e. {science, scientist, sci-

entists, scientific, research, researcher, researchers, researching, researched}. Additionally,

items were identified relating to “public science concerns if they also contained one of the

following set of concern words”, i.e. {argue, argued, fear, afraid, worry, worried, concern,

concerned, frightened, scare, scared, risk, risked, risky}. The authors stated that the “word

lists were constructed by introspection and scanning postings judged to be about science

debates. The collection of items containing at least one word in each of the two sets is

labelled the science concern corpus. The words in this corpus are co-words in the sense of

co-occurring with one ‘science’ word and one ‘concern’ word.”

Thelwall et al. referred to the “low success rate” of their experiment despite their use,

with reference to Gruhl et al. [161], of four methods of identifying words using varying

12. Paradigm two and related work 261

numbers of days, i.e. spikes of one day, short bursts of three days, medium bursts of five

days, and long bursts of nine days. Of their results, “only two genuine debates” concerning

ozone and the Terri Schiavo1 case were found in the top 1,000 “burst” words. The au-

thors used this result to conclude that “useful information is available in RSS feeds, once

topics have been identified, and also that our broad issue scanning method was only able

to identify a fraction of postings on this topic: hence the full set of feeds should be used

to investigate topics, once identified.” Thelwall et al. also wrote that “The domination

of the results by non-useful terms” shows that data cleansing is “necessary for efficient

broad issue scanning. Raw RSS feeds are unsuitable because some feeds carry extensive

and repetitive content.”

Thelwall et al. [398] differ from the sentiment component of case study three in two

respects: (1) the authors focused on a single theme of public fears about science. In con-

trast, a diversity of named entities is identified in the corpus of RSS feeds and categories

used for our sentiment analysis work, and (2) the use of co-word frequencies relating to

these fears, which is counter to our use of the fluctuations in the frequencies of popular

keywords present in the text of RSS feeds.

More fundamentally, it is necessary to address the concluding comment by Thelwall

et al. that “Raw RSS feeds are unsuitable because some feeds carry extensive and repeti-

tive content.” We disagree with this conclusion in connection with both of our paradigms,

despite issues with keywords described in Sections 10.7.2 and 11.9. We base this convic-

tion upon the correspondence of the paradigms which describes their logical consistency

according to their use of RSS (Section 1.4.2).

12.5.2 Visual Sentiment Analysis of RSS News Feeds Featuring the

US Presidential Election in 2008 by Wanner et al.

In a case study published in 2009, Wanner et al. [427] employed a combination of sentiment

and visualisation techniques to reveal the emotional content of news stories concerning the

US presidential election in 2008.

Data was gathered from the <title>, <description> and <pubDate> elements (Sec-

tion 2.2.3) of fifty different RSS feeds at half-hourly intervals between 09 Oct - 10 Nov

2008. The texts of the <title> and <description> elements of each <item> were then

concatenated, and filtering removed “those documents that contained none of the follow-

ing signal words:” Obama, McCain, Biden, Palin, Democrat and Republican. The authors

1A legal struggle in the USA during the period 1990 - 2005 concerning the right-to-die.

12. Paradigm two and related work 262

reported that more than 23,000 news items “contained at least one of the six strings.” The

authors also calculated “Pairwise similarities between news items” to count the “number

of non-stopwords that two items have in common (normalized by the length of the larger

item).”

In order to determine the sentiment of each RSS <item> in their dataset, the authors

relied upon “a freely available list of words that evoke positive or negative associations.”

The counts of the “number of positive and negative words” were then used to “evaluate

the whole news item as rather positive if it contains in total more positive words than

negative.” Similarly, an item with more negative words than positive words was considered

negative. “The absolute relation of positive against negative words normalized by the

item’s length, provides our sentiment score.”

Figure 12.1a illustrates the semantics used by Wanner et al. to visualise their dataset.

An interactive series of lines was used, i.e. a line per day, where “each colored object

depicts one news item.” A news item’s emotional score was encoded by a vertical scale, and

different symbols were used to identify news items according to the aforementioned “signal

words”. The translucently coloured symbols, i.e. blue (Democrats), red (Republicans) and

grey for both, illustrated whether the text of an <item> mentioned either political party or

both of them. Furthermore, the shape of the objects showed “whether the first candidate,

the second candidate or only the name of the political party itself was mentioned.” Figure

12.1b reproduces what Wanner et al. referred to as Bad news for the Democrats data:

approximately one week before the election, many news items included negative references

to a plot to assassinate Barack Obama in a murder spree, and to a corruption scandal

involving a Democrat party senator.

Wanner et al. [427] wrote that their “timeline visualization builds upon three basic

elements”: (1) colour denoting the political party, (2) different shapes to identify “the

discussed persons”, and (3) that the “emotional score of each RSS news article resulted

in the vertical position of the representative symbol on the time line.” The authors

concluded that their visualisation technique could be used to monitor public emotional

discussions, and evaluate product reviews and public opinion on a particular subject.

Reference was also made to potential uses in public relations and media concerning the

offering of “sentiment analysis functionality of a multitude of large RSS feeds in real-time”,

and to people taking early action “before a topic dominates news coverage.”

12. Paradigm two and related work 263

(a) Visualisation semantics.

(b) Bad news for the Democrats.

Figure 12.1: The US presidential election in 2008 (reproduced from Wanner et al. [427]):
cf. case study three.

Two key differences distinguish Wanner et al. from the sentiment component of case study

three. The first of these is the data domain: Wanner et al. focused exclusively upon a

single event, i.e. the presidential election in the USA in 2008, in contrast to the diversity of

named entities in our corpus of RSS feeds and categories. The second difference concerns

the method used to analyse RSS feed <item> elements for sentiment. Wanner et al. based

polarity upon the count of words for one sentiment type being greater than the number of

words for the other: this differs from our use of sentiment related to the popular keywords

present in the text of RSS feeds.

12.5.3 Multiple coordinated views for searching and navigating Web

content repositories by Hubmann-Haidvogel et al.

Media Watch on Climate Change (MWCC) was described by Hubmann-Haidvogel et al.

[188] in 2009 as a “domain-specific news aggregation portal” that “combines a portfolio of

12. Paradigm two and related work 264

semantic services with a visual information exploration and retrieval interface.” The au-

thors wrote that MWCC, which is available at http://www.ecoresearch.net/climate/,

addresses questions relating to: (1) on-line content repositories and the means to visu-

alise/search them for data, (2) effective and scalable methods to identify and assess the

importance of (specifically geospatial) phrases in text, (3) the generation of controlled

vocabularies based upon semantic associations within large document collections, and (4)

the integration and visualisation of annotated data for searching.

MWCC “aggregates, filters and visualizes environmental Web content from several

sources including 150 Anglo-American news media sites.” Incoming content is annotated

in three ways: (1) geospatially to do with geography, (2) temporally which adds times-

tamps for events reported, and (3) semantically by computing significant phrases and

keywords. A log-likelihood ratio (Appendix B.2) is used to determine significant phrases

and keywords in the corpus, keyword frequencies are determined using chi-square, and

an ontology component suggests concepts and relations automatically from a controlled

vocabulary (Appendix B.2). This dictionary is constructed from co-occurrences of words,

key phrases and the use of WordNet [449] for disambiguation.

Figure 12.2: The MWCC interface (reproduced from Hubmann-Haidvogel et al. [188]):
cf. case study three.

http://www.ecoresearch.net/climate/

12. Paradigm two and related work 265

MWCC’s interface, illustrated in Figure 12.2, integrates two-dimensional geographic and

semantic maps, domain ontologies, and word-clouds to allow visual and textual content

to be displayed and navigated. Moreover, MWCC automatically calculates and averages

sentiment for a selected period, which according to Scharl et al. [347], with reference to

Weichselbraun et al. [435], is based upon “aggregated polar opinions identified in the

document.” Since its inception, further work on MWCC was documented by Scharl et

al. [347] in 2013 concerning the application’s evolution into an on-line “domain-specific

portal” for “environmental stakeholders.”

MWCC’s use of RSS-sourced data and its visualisation of popular keywords and senti-

ment analysis, is analagous to the sentiment analysis component of our third case study.

In addition to this, the placement of its functionality in a web application employing a

Java-based architecture, makes MWCC [188] the closest example of related work to our

own. Nevertheless, we are able to balance these similarities against two significant dis-

tinguishing features of our work: (1) that given its range of data sources and interface,

MWCC is addressed to a broader application context than our proof of concept RSS-based

keyword/sentiment correlation work, and (2) that MWCC is a domain-specific tool con-

cerning the subject area of climate change: on the other hand, we employ simple generic

labels, e.g. News and current affairs, to categorise our RSS feed corpus, without any use

of a controlled vocabulary (Appendix B.2) beyond the use of a basic NER in our sentiment

analysis work (Section 11.4.5).

12.5.4 Narratives: A Visualization to Track Narrative Events as they

Develop by Fisher et al.

This section concerns work by Fisher et al. [122] and their Narratives application. It

is necessary to state that Narratives did not produce sentiment analysis of the trends,

topics or events it visualised, but we include it because of the application’s use of keyword

correlation.

Narratives was presented by Fisher et al. in 2008 as a means to help users to “place

news stories in their historical and social context by understanding how the major topics

associated with them have changed over time.” The application was based on a platform

developed under a former internet technologies initiative by Microsoft, i.e. LiveLabs,2 to

2The manifesto for LiveLabs, which ended in 2010, is available at https://web.archive.org/web/

20081115081705/http://livelabs.com/blog/the-live-labs-manifesto/.

https://web.archive.org/web/20081115081705/http://livelabs.com/blog/the-live-labs-manifesto/
https://web.archive.org/web/20081115081705/http://livelabs.com/blog/the-live-labs-manifesto/

12. Paradigm two and related work 266

acquire real-time data from “many social media content types, including weblogs.” Con-

tent was monitored for news stories using a “scraper”, and a classifier checked URLs

to determine whether an article was news or not, and each article was summarised for

“significant keywords” which were also extracted. This “stream of input of events” was

the principal data source for Narratives, where each event consisted of “the URL to a

referring blog”, the target article’s URL and up to ten keywords. Narratives employed

time-series (Section 2.8.3) plots to display fluctuations in keyword popularity.

Fisher et al. wrote that “Narratives is distinct” from tools such as ThemeRiver by

Havre et al. [170] (Section 2.8.2), which allow “side-by-side” [122] comparisons between

keywords, because of the ways it, i.e. Narratives, allowed users to investigate correlations

between keywords: (1) date-based correlation, i.e. “what else was happening on this date

around this particular keyword?” The top ten keywords for the date in question were

ordered by frequency using fonts sized accordingly. (2) numerical correlation computed

and displayed a Pearson correlation (Appendix B.2) “between every pair of terms visible

onscreen.” (3) most correlated terms where, for a particular word, Narratives collected

a list of all articles that the requested keyword was associated with, and then collected

the frequencies of all keywords associated with those articles. (4) dependent correlation

where for each correlated item, Narratives presented “the curves for the conjunction of

the two terms: thus, it shows only articles where both terms occurred.” The authors

wrote that “This distinction between types of correlation” was a means to “discover when

co-occurrences between a pair of words are coincidental, and when they are part of the

story.”

Figure 12.3: The Narratives interface displaying Barack Obama and relevant keywords
between Nov 2007 - Mar 2008 (reproduced from Fisher et al. [122]): cf. case study three.

12. Paradigm two and related work 267

Two case studies were presented by the authors to evaluate Narratives. The first of these

concerned Barack Obama between Nov 2007 - Mar 2008 prior to the US presidential elec-

tion in 2008. This case study is illustrated in Figure 12.3 which displays many changes in

keyword frequencies. The second case study examined “the amount of discussion around

one company.” Fisher et al. expected Google’s [148] “most related terms to be linked to

the company’s products.” Instead, attention at the time was focused on a communications

related bid in an auction which Google lost, and Microsoft’s attempt to purchase Yahoo

[455].

The keyword correlation in Narratives distinguishes it from the sentiment analysis compo-

nent of our third case study, i.e. Narratives used correlation to identify related keywords,

whereas on the other hand, we correlate fluctuations in the frequencies of popular keywords

present in RSS text with sentiment.

12.6 Summary

Table 12.1 lists a collection of simple criteria which we use in Table 12.2 to summarise

the application context and use of RSS of the four examples of appropriate related work

described in the previous sections of this chapter. Table 12.2 also includes the senti-

ment analysis component of our third case study, but we emphasise that this is not for

comparison of functionality but to illustrate application context.

Criterion Description

RSS Employs RSS as the principal data source.

Other data sources Are other data sources used in addition to RSS?

Domain-specific data Does the related work concern a specific subject area, e.g. cli-
mate change?

Data constraints Within the domain, do constraints apply, e.g. a controlled vo-
cabulary or keyword co-occurrences?

Topic, trend or event
detection

Are topics, trends or events detected?

Sentiment analysis Is data analysed for sentiment?

Visualisation Are visualisation facilities provided by the software?

Table 12.1: Application context criteria for appropriate related work: cf. case study three.

1
2
.

P
a
ra

d
igm

tw
o

a
n

d
rela

ted
w

o
rk

2
6
8

Authors Criteria Context and use of RSS

R
S

S

O
th

er
d

at
a

so
u

rc
es

D
om

ai
n

-s
p

ec
ifi

c
d

at
a

D
at

a
co

n
st

ra
in

ts

T
op

ic
,

tr
en

d
or

ev
en

t
d

et
ec

ti
on

S
en

ti
m

en
t

an
al

y
si

s

V
is

u
al

is
at

io
n

Thelwall et al. X X X X X Public fears about science using “broad issue scanning”, and data cleansing.

Wanner et al. X X X X X Sentiment and visual analysis of news concerning the US election in 2008.

Hubmann-Haidvogel et al. X X X X X X X MWCC “aggregates, filters and visualizes environmental Web content”.

Fisher et al. X X X X Visualisation of events and keyword-based correlation related to these.

O’Shea X X X Proof of concept correlation of keyword frequencies and sentiment analysis.

Table 12.2: Summary of application context of appropriate related work (each quotation is according to the example of related
work described in the respective section of this chapter): cf. case study three.

12. Paradigm two and related work 269

We consider the four examples of related work to be appropriate to the second component

of our third case study because they, like our sentiment analysis work, extend into the

subject areas of visualisation and trend, topic or event detection, or a combination thereof.

Nevertheless, we have cited differences between our own sentiment analysis work and each

example of related work on an individual basis. Despite these differences, in Table 12.2 we

can see that similarities of context and use of RSS also exist, specifically with respect to

Hubmann-Haidvogel et al. [188] in Section 12.5.3. Given the topicality of current research

concerning sentiment analysis and visualisation, this is not surprising.

On the other hand, there are two generic differences that distinguish our own work.

The first of these concerns the use by three of the four examples of related work of senti-

ment analysis within their data specific domain, regardless of whether this involves con-

straints. In contrast, our use of sentiment analysis is effectively unbounded, and as the set

of time-series plots in Section 11.8.4 and Appendix A.3.4 demonstrates, keyword frequen-

cy/sentiment correlation can occur in different patterns (Section 11.9.1), given that the

plots include varying lengths of duration or alternative combinations of RSS feed elements,

specific and generic keywords, as well as one or more categories of RSS feeds concerning

different data domains.

Secondly, at their most fundamental level, each of the examples of related work makes

use of RSS (and in some cases of other types) as a source of data according to their

application context. On the other hand, the defining objective of our own sentiment

analysis work is to enhance the social utility of RSS as a technology, by producing data

from feeds which is actionable and effective, rather than using RSS as a source of data for

a particular classification of other type of operation. We describe this data and our use of

visualisation as a representative medium of it, for the benefit of users in differing domains

in Section 2.9.

12.7 Afterword

This chapter has compared our second paradigm with four landscape-defining examples

of related work. We have identified similarities and differences between each example

and our own work with reference to application context and use of RSS. These review

criteria extend to the use/enhancement of RSS where the latter of these, and the different

patterns of our keyword frequency/sentiment correlation, epitomise the differences between

our sentiment analysis work and the related work described.

Part IV

Conclusion and closing comments

270

Chapter 13

Conclusion

13.1 Foreword

This chapter presents a summary of this thesis. To this end, Section 13.2 concerns the

raison d’être and motivation of our work, from which we developed the hypothesis and

objectives of this thesis. Individual objectives are the subjects of Sections 13.3, 13.4

and 13.5 respectively, wherein we assess their achievement: Section 13.5 extends this

assessment by describing the findings of the case studies within the context of our RSS-

mining paradigms (Section 1.4.1), and also the real-world domains which could benefit

from the actionable and effective data produced from RSS in our case studies.

We highlight the constraints and risks inherent in our work in Section 13.6, together

with our own reflections upon the PhD programme. Finally, in Sections 13.7 and 13.8

respectively, we discuss the directions for future work and concomitant requirements of a

beta-version of our vRSS software.

13.2 Summary of research basis

This thesis is concerned with the function, i.e. utility, of RSS within the context of social

media and how this can be enhanced. In spite of the applications and academic research

employing RSS described in Chapter 3, RSS feeds are typically delivered to users via

a browser, or by readers, where content is presented as headline, story and snapshot(s)

(Section 2.2.4), and consumed. Predicated upon the motivation of producing from RSS

data that is more actionable and effective than this journalistic style, which originated

from a combination of personal and professional interests (Section 1.2), the hypothesis of

this thesis, which we reproduce from Section 1.3, stated that:

271

13. Conclusion 272

Data of an actionable and effective nature can be produced from the fluctuations

in the keyword frequencies present in the text of RSS feeds to enhance the

social utility of the technology, where this data can benefit users in real-world

scenarios, varying from statistics to marketing and trend analysis, correlating

or tracking topical issues, or for mining financial and sporting data.

We further defined three inter-related objectives for this thesis in order to validate this

hypothesis:

1. Definition: The need to review the current function of RSS within the context of

social media, and the utility gained from this.

2. Production: To develop the appropriate methods, i.e. paradigms, to mine the text

of RSS in order to produce data of an actionable and effective nature.

3. Demonstration: To formulate and carry out a series of specifically designed and

implemented case studies to demonstrate the paradigms and to use an appropriate

medium to represent their outputs.

We judge the contributions made to web engineering and text mining by this thesis as being

based upon the demonstration of the proof of concept of our objectives by our paradigms

(Section 1.4.1) and their case studies. We define the contributions in the following sections

of this chapter.

13.3 Definition

The definition of actionable and effective data (Section 2.9) is not a demonstrable objective

and therefore not a contribution made by this thesis. Nevertheless, for completeness, we

include it here as our first objective because of the basis it provides for our paradigms and

their case studies in the subject areas discussed in Chapter 2, i.e. data and text mining,

sentiment analysis and the use of visualisation to represent data.

In Chapter 2 we also reviewed the applications and services provided by social media

in order to identify the nature of the utility they provide. According to Gallion [133],

this utility concerns socialising, entertainment, self-status seeking and information. This

analysis builds upon the definition by Hammersley [165] of the “social, spiritual and merce-

nary” reasons why organisations and individuals syndicate content in feeds. Other benefits

have also been identified by Singh and Sahu [360].

13. Conclusion 273

Therefore, with regard to the above, we define our enhancement of RSS’s utility within

the context of social media as the result of employing RSS itself to produce a compre-

hensible and explainable representation of data which is inherent within the fluctuations

in the keyword frequencies present in the text of RSS feeds. Consequently, the resulting

data is more actionable and effective than that of the aforementioned journalistic style of

presentation.

13.4 Production

The n-tiered Java JSP/servlet-based web application architecture employed by our myDS

and vRSS software is described in Section 4.5. In order to implement our case studies,

the alpha-versions of each application integrate many open-source, third-party products1 2

from the Java ecosystem. These products are defined in Appendix B.1 and include, but are

not limited to: (1) hourly polling by Quartz Scheduler, (2) to have Rome parse the text of

new postings made to RSS feeds, and (3) the calculation from the mined text of keyword

frequencies by Lucene, (4) the visualisation of these keyword frequencies by Google Charts,

and the use of (5) Weka to data mine them, and (6) SentiStrength to analyse them for

sentiment, where this software and processing is contained in the (7) Apache Tomcat web

server, which also communicates with the relational databases implemented in (8) MySQL.

The successful integration of these products into a coherent and innovative alpha-

version prototype software, based upon and documented according to the web engineer-

ing/application principles and content of this thesis, provides the vehicle by which we

have been able to realise the case studies which demonstrate the proof of concept of our

paradigms. It is this development work that constitutes the contribution made by this

thesis to web engineering, because without it, our paradigms would have remained purely

theoretical.

1The distribution of the principal open-source, third-party products in our myDS and vRSS software for
our case studies is described in Sections 4.7.1 and 4.8.1 respectively.

2Approximate counts of the number of lines of code in the principal open-source, third-party products used
in our software, together with equivalent counts of the number of indigenous lines of code in myDS and
vRSS, are listed in Appendix D.2.

13. Conclusion 274

13.5 Demonstration

13.5.1 The relationship of RSS-mining paradigms, case studies and soft-

ware

For context, the relationship between our paradigms, case studies and software is illus-

trated in Figure 13.1, which is reproduced from Figure 1.1.

Figure 13.1: The relationship of our RSS-mining paradigms, case studies and software
(reproduced from Figure 1.1).

13.5.2 Paradigm one

The premise of our first paradigm (Section 1.4.1) is to demonstrate that we can use mining

rules to produce from RSS data that is more actionable and effective than we currently

see in the use of the technology (Chapter 3). The definition of mining rules (Section 4.7.2)

upon RSS to determine and visualise trends is intended to provide a straightfoward means

for users to specify how textual and numeric data is to be mined from feeds during polling

to update and visualise the objects the rules become part of. We summarise each case

study for this paradigm and their principal findings below:

1. Case study one: Held in late 2009, this case study is described in Chapters 5 and

6. In an assessed assignment, a corpus of thirty-five Masters-level students were

allocated small numbers of RSS feeds to mine and visualise data from: the students

were also asked to do this with their own feeds. This work employed the two mining

types listed below which were implemented in our myDS software:

• Occurrence mining: OM counts the occurrences of specified strings in the

text of RSS feeds to explore trends or track issues. The three variants of OM

13. Conclusion 275

are described in Section 5.4.1.

• Value mining: VM analyses RSS feeds which provide structured content.

Such feeds report modern forms of ticker-tape (Appendix B.2) data, such as

financial movements, sports or lottery results.

The original research questions of this case study (Section 6.2.2) concerned the feasi-

bility of our first paradigm in terms of the mining types developed and the efficiency

of their use. We found that:

• Mining rules were successfully used to create 173 datasets which were docu-

mented in the submissions by the student corpus.

• A total of 302 visualisations of the data mined from RSS feeds during polling,

based upon the definition of mining rules, were produced and cover a wide range

of subjects.

• We observed efficiencies in the definition of mining rules because of reductions

in the time taken.

• The mining of textual data from RSS using OM proved it to be the preferred

mining type with 78.00% of the reported datasets employing it, compared to

22.00% for value-based numeric data for VM. This difference is explained by

the majority of RSS feeds on the internet consisting of frequently updated text-

based items, rather than numeric data.

• Standard x - y charts were the most popular types of visualisations (Section

6.3.4).

2. Case study two: This case study, presented in Chapters 7 and 8, refined our

previous use of textual mining rules in case study one (Section 6.4.2) because of

difficulties encountered by our students, and employed a second corpus of thirty-six

Masters-level students in an assessed assignment during Dec 2011. Each student was

required to select categories of system-indexed RSS feeds, or to use groups of feeds of

their own choice, and up to six unigram keywords from these feeds, and enter them

into vRSS using the refined textual mining rules. vRSS then tracked the frequencies

of these keywords for a seven day period. At the end of this period, the students

were to report and visualise their results. Case study two employed:

• Refined mining rules focused less upon structural RSS metadata (Appendix

B.2) inherent in the relationship of mining rules to columns of datasets (Section

13. Conclusion 276

5.4.2) in case study one. Instead, the rules concentrated upon the application

of simple, direct mining types to mine data to be visualised.

• These mining types allowed a balance between user-selection of individual RSS

feeds and keywords on the one hand, i.e. manual mining, and the selection

of system-generated keywords from system-indexed categories of RSS feeds in

automatic mining on the other hand. A third type, i.e. semi-automatic mining,

formed an intermediary allowing the use of system-indexed categories of feeds

and user-entered keywords.

• The original corpus of fifty RSS feeds and seven categories, which was extended

by the feeds added by the students during the case study, gave a final corpus of

202 feeds grouped into twelve categories. The most popular category in terms

of the number of RSS feeds was NCA with fifty-two RSS feeds, least popular

was the Miscellaneous category with two feeds.

Our objectives in case study two were to research preferences of the mining types

employing the refined mining rules, visualisations, distribution of categories of feeds

visualised, and the common use of these amongst the mining types. The most salient

findings were:

• 135 instances of mining rules were used to create 135 visualisations.

• Semi-automatic mining proved to be the most popular mining type with some

forty-eight (35.60%) instances created. Least popular was manual mining with

forty-three instances produced: (31.80%) of the total.

• Column and bar charts were the most popular visualisation types with 115

(85.19%) instances created.

• The 135 visualisations created include some 350 permutations of RSS feed cat-

egories, i.e. where a visualisation displayed data sourced from one or more RSS

feed categories. The most popular choice was the use of column and bar charts

to visualise the NCA category of feeds: we recorded fifty-six instances. Overall,

the column and bar charts amounted to 277 (79.14%) of the total number of

permutations.

• Five visualisations employed ten or more of the twelve RSS feed categories.

• Many constructive comments were received during the case study for both the

vRSS application and the nature of the assignment.

13. Conclusion 277

In Chapter 9 we described three cases of related work appropriate to our first paradigm.

Each example required the definition of rules upon RSS to govern how data in feeds was

used according to application context. Stated simply, these rules were concerned with:

(1) querying, filtering and specifying behaviours on RSS content (Van Kleek et al. [413]),

(2) data stream management and continuous query processing to create personalised RSS

feeds (Creus et al. [80]), and (3) an algebra to query RSS based upon temporal and other

relationships between items of content (Getahun and Chbeir [137]). In contrast to these

examples, our mining rules present a syntax-free means to specify how textual and numeric

data is to be mined from RSS.

Given this contextual difference between the mining rules of our first paradigm and

the related work referred to above, and also with Chapter 3’s review of the applications

and academic research employing RSS, to the best of our knowledge, our approach of

defining mining rules as a means of mining textual and numeric data from RSS to produce

actionable and effective data, is unique. Therefore, considering the results of case studies

one and two which demonstrate the paradigm, we can infer that mining rules are able

to successfully mine and visualise information from RSS, and that our first paradigm

establishes a contribution to text mining.

13.5.3 Paradigm two

Our second paradigm (Section 1.4.1) concerns a semi-automated application of well-known

classification techniques to RSS in order to classify feeds according to the fluctuations in

the frequencies of popular keywords present in the text of feeds, and to determine a

correlation between this and sentiment. The rationale of this paradigm is that if our first

paradigm can produce basic actionable and effective data from RSS, the logical extension

of this is to apply data mining techniques to RSS in order to further enhance the social

utility of the technology. We summarise each component of the paradigm’s single case

study, i.e. case study three, and its findings below:

• Classification: The classification component of our third case study is described in

Chapter 10. This work consisted of the semi-automated classification of RSS feeds

into categories according to changes in the keyword frequencies present in their text.

We modified the RSS feed and category corpus from case study two into five cate-

gories and fifty feeds. A series of tranches, varying in length from ten to thirty/thirty-

one days employing data gathered during Jul - Nov 2011, was used to generate train-

ing and testing data with a feature selection (Appendix B.2) based upon parameters

13. Conclusion 278

of RSS feed elements, stemming, stop words and näıve n-grams to the level of tri-

gram. Having selected and integrated Weka (Appendix B.1) into an extension of our

vRSS software, we applied a DT classifier to permutations of the aforementioned

parameters to provide a ballpark result which could be subsequently confirmed by

other MNB and SVM classifiers. The DT classifier produced an overall F-measure

result of 0.72. The MNB and SVM classifiers achieved slightly superior F-measures

of 0.79 and 0.77 respectively: this difference between the DT and other classifiers

was due to our use of DT pruning according to Drazin and Montag [96].

Our classification work demonstrates that RSS feeds can be classified based upon the

frequencies of popular keywords. We did not seek to maximise our results because of

the proof of concept level of our work, but we were interested to determine whether

our results would be affected by variations in the feature selection, and to use the

classification of RSS feeds and keywords to validate the use of semi-automated batch

processing of RSS feeds at category-level for our sentiment analysis work.

• Sentiment analysis: In the final component of case study three, we correlated

changes in the keyword frequencies in the text of RSS feeds with sentiment. Proper

nouns were identified in our corpus of feeds and categories for Aug 2011 using a basic

NER (Appendix B.2), and a lexicon-based sentiment analyser called SentiStrength

(Appendix B.1) was employed to calculate sentiment related to them.

The principal result of this work is the visualisation, in Section 11.8.4 and Appendix

A.3.4, of the correlation in a set of time-series plots. These plots illustrate that key-

word frequency/sentiment correlation can occur in different patterns, given that the

plots include varying lengths of days, alternative combinations of RSS feed elements,

and the use of specific and generic keywords referring to individuals or to a title, or

to multiple data domains according to the categories of RSS feeds used. This differs

to those examples of related work employing sentiment based upon a single domain

which we compared with our sentiment analysis work in Chapter 12.

It is this, and the defining objective of our sentiment analysis work to enhance the

social utility of RSS by producing data from feeds which is actionable and effective,

that distinguishes our second paradigm from other work. This use of RSS as a

technology rather than a source of data presents, to the best of our knowledge, a

unique contribution to text mining.

13. Conclusion 279

13.5.4 Application

In presenting our paradigms and their case studies, we have identified several real-world do-

mains where users could benefit from actionable and effective data in either a raw form or

a visual representation of it. These domains include correlating or tracking topical issues

for trend analysis in business intelligence, statistics, politics, market research and related

subject areas, or for mining modern forms of ticker-tape data, such as financial move-

ments, sports or lottery results. An alternative use of our vRSS software as a browser

plug-in is illustrated in Section 8.6.3. Despite these domains, which we identify according

to the achievement of our objectives for this thesis (Section 13.5), there are a series of

constraints which apply to our work: we consider these in Section 13.6.1.

13.6 Reflections

13.6.1 The PhD programme

In Section 13.2 the motivation, hypothesis and objectives of this thesis, as they were origi-

nally defined in Chapter 1, are restated. These elements, the necessary work involved and

contributions made thereof, constitute an instance of the PhD programme [393]. We take

this opportunity to briefly reflect upon some of the circumstances and choices, constraints

and justifications made regarding the proof of concept demonstration of our paradigms by

their case studies during our PhD programme: within these reflections, we also identify

directions for future work. Inevitably, these reflections overlap because of the inextricably

connected nature of our work: for this reason, the relevant subject areas are simply listed

in alphabetical order below:

• Case study results: Despite the references in Section 13.5 to the documented re-

sults of our case studies, we are aware that these results could have proved otherwise.

In case studies one and two, such differences could have been caused by alternative

student, or RSS feeds and category, corpora: for this reason we expand upon these

constraints elsewhere in this section. For our third case study, other classifiers or

sentiment analysis methods/tools may also have produced different results, and as

a result, we consider this as a direction for the future work we discuss in Section

13.7.1.

• Data flow diagrams: We employed DFDs (Appendix B.2) in this thesis: (1) in

order to present a concise and lightweight representation of the processes and flows

13. Conclusion 280

of data in our myDS and vRSS software, and (2) because of authorial familiarity. We

acknowledge that UML activity, information flow and use case behavioural diagrams

could have been used as an alternative.

• Keyword frequency and sentiment causation: We do not consider the issue of

causation in the sentiment analysis component of case study three (Chapter 11), i.e.

do keyword frequency fluctuations cause changes in sentiment or vice-versa? It is

our opinion that this is a bidirectional relationship, i.e. an event or story can cause

sentiment which can be related to keywords therein, but sentiment can also result

in a story with keywords. We cite two stories from Jul 2016 to demonstrate this:

1. Story causing sentiment: The Chilcot enquiry was held in the UK to deter-

mine that country’s role in the Iraq War in 2003. When the enquiry published

its report, the widespread national and international news media coverage of

this story included much criticism of the UK’s then-prime minister Tony Blair.

Thereafter, the content of RSS and other social media frequently included key-

words such as Tony Blair or Blair, and negative sentiment therein related to

the former prime minister as its subject. This example demonstrates a story

causing sentiment, or exacerbating pre-existing sentiment.

2. Sentiment causing story: The example we cite here concerns negative sen-

timent allegedly expressed towards popular singer Taylor Swift in the lyrics of

a song titled Famous written by Kanye West. The reporting of this sentiment

demonstrates that an opinion can trigger media coverage, i.e. where the expres-

sion of a sentiment or nature thereof, becomes the basis of a story, which will

include the names of the affected individuals, so enabling their use as keywords.

• Keywords and linguistics: Although the conventions and characteristics of our

keywords (Section 4.6) do permit the use of abbreviations, mining rules in our first

paradigm, and system-generated keywords in our second and third case studies, do

not consider issues of relatedness. Nor do they include keywords consisting partially

or wholly of emoticons, i.e. simple text or graphical representations of sentiment such

as :-) for happiness or :’(for crying, despite provision for these in SentiStrength

in the sentiment analysis component of case study three (Section 11.6.2). Moreover,

our keywords do not include contractions such as CUL8R, i.e. See you later, typical

of texting or tweeting in social media (Section 2.3) where the character length of a

posting is restricted. We were also aware that, in the classification component of

13. Conclusion 281

case study three, our keywords included named entities and slogans (Section 10.7.2),

despite our later use of a basic NER in that case study’s sentiment analysis work.

The currency of these and other types of keywords, or of managerial- or technological-

originated jargon, e.g. the term reboot to describe the re-launching of a film fran-

chise or TV series, in natural language and their concomitant social effects is beyond

the proof of concept level of this thesis. Nevertheless, we regard some of the afore-

mentioned linguistic issues as directions for the future research work we describe in

Section 13.7.1.

• Mining rules: In Section 6.4.2 the refining of textual mining rules as a result of

difficulties in our first case study is described. We believe that the subsequent use of

the refined rules in case study two (Chapter 8), given the positive feedback received,

makes our first paradigm’s definition of mining rules upon RSS more amenable to a

wider population.

• Order of RSS-mining paradigms and case studies: The order in which the

work for our paradigms and case studies was carried out concerns the definitions of

our RSS-paradigms and their correspondence (Section 1.4). For our first paradigm,

the order of its two case studies was because of the need to demonstrate that mining

rules could be successfully defined upon RSS. Paradigm two is a logical progression

of paradigm one, i.e. could we not also apply data mining techniques to RSS? Other

influencing factors, described elsewhere in this section, include student corpora and

the laboratory-based nature of the case studies.

• Pilot studies: We carried out no pilot studies for the case studies for our first

paradigm: this is discussed in Sections 6.4.3 and 8.6.1 respectively. The use of

semi-automated batch processing of RSS feeds in case study three (Section 4.8.2)

precluded the need for a pilot study therein. Upon reflection, given this generic

absence, we conclude that it is not possible to retrospectively gauge the influence

that pilot studies may have had on individual case studies as they were developed

and carried out.

• RSS: There are three pertinent issues:

1. Social media: In Section 1.2, we defined ubiquity, longevity and diversity as

the reasons for the selection of RSS as an example of social media (Section 2.3)

for our work. Given: (1) the utility of RSS (Section 2.2.4), (2) the range of

13. Conclusion 282

applications and academic research employing the technology (Chapter 3), and

(3) the results of the case studies for our paradigms, we infer that this choice

has been vindicated.

2. Corpora: This principally concerns demographics and the use of more exten-

sive corpora, i.e. in terms of larger numbers of feeds and categories of them.

Both issues are directions for the future work we discuss in Section 13.7.1.

3. Format: Although Section 10.7 concerns the classification component of our

third case study, the issues described therein to do with the format of, and

published content in, RSS are substantially applicable to all three case studies

for our paradigms.

• Software: The development of our myDS and vRSS software as web applications

(Section 4.3) for the case studies for our first paradigm was necessary to provide a

consistently available medium to allow each case study’s student corpus to complete

its respective assessed assignment. The extension of vRSS for case study three

was a logical consequence of this development, especially when we consider that

our original intention was to use the discontinued manual facilities written for our

sentiment analysis work: we refer to these facilities in Section 4.8.1.

We do regret the non-use of big-data (Appendix B.2) products in our work, the

popular availability of which did not coincide with the development periods of myDS

or vRSS. Related to this, we also acknowledge the availability and use of the array

of open-source, third-party products (Appendix B.1) in our software because of the

absence of a bespoke tool for our particular use of RSS.

• Student corpora: The submissions for the assessed assignments of our first and

second case studies were produced by the classes of a Masters-level module in 2009

and 2011 respectively, the subject of which concerned search engines and web navi-

gation. Each class comprised an available corpus of students of “varying employment

and experience backgrounds” (O’Shea and Levene [288]). In Sections 6.4.4 and 8.6.2

respectively, we describe our homogenous use of the student corpora where they

provided sufficient numbers of users to test the mining rules for our first paradigm.

We did not consider the demographics of either student corpus in these case studies.

As a consequence of this, we cannot exclude the possibility that alternative student or

user corpora, based upon demographics may have produced other, different results.

Given the absence of users for case study three because of its use of semi-automated

13. Conclusion 283

batch processing of RSS feeds, we cannot speak in the same terms for the classi-

fication and sentiment analysis work for our second paradigm. A second, related

consequence of using such corpora was the laboratory-based nature of case studies

one and two: our third case study was by its nature laboratory-based. We consider

demographics and limited real-world commercial use of our software as directions for

the future research work discussed in Section 13.7.1.

13.6.2 Advice for a potential PhD student

The following list defines our advice for a potential PhD student which extends to cover

the full range of the PhD programme where: (1) it is incumbent upon the student to be

certain of their chosen research subject, and also its relevance within its native academic,

commercial or other environment. In connection with this, it may be advisable that the

student has several research subjects in mind at this time. With this basis established,

the student must (2) carefully select their supervisor(s). Both supervisor(s) and student

must now (3) define the boundaries of their work within the aforementioned environment.

It follows that (4) a plan of work must be developed within the first year. Henceforth, the

student must remain focused upon this plan and not be side-tracked by unnecessary or

excessive detail which may cause delay. This can be prevented by the student (5) main-

taining regular contact with their supervisor(s) to ensure that the plan is being followed,

but the student should also (6) be prepared to disagree with their supervisor(s) given good

reason. It is also sensible for the student to (7) maintain an amicable relationship with

their supervisor(s). The student should also (8) be aware of work related to their own,

and in connection with this, (9) seek to build up a network of contacts through published

work in journals and conferences. This networking requires that the student must be pre-

pared, and understand the need, to (10) criticise related work and accept criticism of, and

be ready to defend, their own work especially when their viva voce takes place. It may

also be useful (11) for the student to familiarise themselves with the work of the external

examiners adjudicating their viva.

Further advice to a potential PhD student concerns the necessary application, patience

and tolerance required to complete the PhD programme, despite the inevitable doubts,

and consequent temptation to abandon their work. The student should also be aware of

the seemingly ever-increasing amount of time required by the PhD programme for research

work and thesis writing/revising up to the moment of final submission.

13. Conclusion 284

13.7 Directions for future work

We divide the directions for future work, beyond the proof of concept of our paradigms

and their case studies, into two inter-related areas described in the following sections of

this chapter.3

13.7.1 Research

We identify the following key five subject areas for future research work:

1. Commercial use: Research based upon limited commercial use.

2. Demographics: We reflect upon our use of student corpora in our case studies

in Section 13.6.1. Alternative approaches for future research include giving greater

attention to demographics in student, or other user, corpora. This could be based

upon the allocation of: (1) generic or tailored RSS feeds and category corpora to

specific demographic groups, or (2) generic corpora of RSS feeds and categories to

different demographic parties, in order to determine variations in mining rules or

sentiment according to contentious issues such as race, religion and politics.

3. Keywords and linguistics: This concerns future work requiring a more thorough

mining and processing of keywords. Although some of the issues listed below are

specific to case study three for our second paradigm, we believe that other items are

generally applicable to both of our paradigms and their case studies.

Issues include: (1) addressing the keyword anomalies described in Section 10.7.2, (2)

more extensive use of NER for keyword disambiguation, (3) further use of stemming

and stop words, (4) the use of NLP (Appendix B.2) techniques in order to detect

keyword context or semantics in the text of RSS feeds, (5) the issue of relatedness in

our keywords (Section 4.6), (6) the application of popular classification techniques,

e.g. MNB and SVM (Section 10.5), as alternative methods of sentiment analysis

to the use of a lexicon-based product, e.g. SentiStrength (Appendix B.1), in case

study three, (7) comparing human/machine sentiment especially where non-lexicon

methods of sentiment analysis (Section 2.7) are concerned,4 and (8) the use of sta-

tistical techniques to explore the distribution of keywords in the text of RSS feeds,

3With the exception of the loss of a small quantity of data after case study one (Section 6.4.5), all software
written for, and data created during, the cases studies for our RSS-mining paradigms has been archived
for storage.

4This is the subject of a proposed post-PhD paper by the author and supervisors.

13. Conclusion 285

e.g. TF-IDF (Appendix B.2), beyond our present correlation of keyword frequencies

and sentiment (Chapter 11).

4. RSS feeds and categories: The use of more extensive corpora in terms of larger

numbers of feeds and categories, or to base corpora, or allocation thereof, upon

demographics.

5. Mobile client: Including the client app developed by Shema [354] for the Android

OS (Appendix C).

13.7.2 Facilities

The future research work and beta-version of vRSS, described in Sections 13.7 and 13.8

respectively, would both be served by the future development in the application of the

following:

• The recommendation of RSS content to users. The recommendation methods de-

scribed in Section 2.3.2, could be added to our software to suggest RSS feeds, visu-

alisations or analyses of sentiment which may be of interest to users.

• The provision of an archive of RSS feed content together with search and retrieval

functionality.

• Given related work concerning trend, topic or event detection, or a combination

thereof in RSS feeds (Section 3.3.3), the incorporation into our software of detection

facilities to allow interactive visualisation and sentiment analysis of timelines.

There are three applicable corollaries:

1. In Section 11.2 we referred to discontinued work in vRSS for manually running

sentiment analyses. The collection of web pages written provides the nucleus

for an interactive facility allowing users to select RSS feeds and keywords for

sentiment analysis, where this could be enhanced through the use of boolean

connectives AND, OR and NOT.

2. A regular semi- or fully- automated classification and sentiment analysis of RSS

data for sentiment to produce time-series (Section 2.8.3) plots.

3. A greater use of open-source, third-party products and web services for the

keyword and linguistic issues referred to in Section 13.7.1, e.g. the use of

software available from the Stanford Natural Language Processing Group [371].

13. Conclusion 286

• Where the XML-based format of RSS (Section 2.2.3) and the technology’s use as a

delivery mechanism, enable our paradigms to be extended to feed types other than

RSS.

13.8 A beta-version of visualRSS

Based upon the description of the alpha-version of our vRSS software in Chapter 7, we

identify the following technical considerations for a beta-version of vRSS:

• Architecture: The retention of the existing n-tiered Java JSP/servlet-based web

application architecture described in Section 4.5 but with: (1) a more extensive use

of creational, structural and behavioural design patterns (Gamma et al. [134]), (2) a

greater use of AOP for cross-cutting concerns (Appendix B.2), and (3) web services.

• Database: There are two alternatives here: (1) vertically partitioning the database

into components, i.e. dedicated databases, or database partitions, for RSS feeds,

keywords, mining rules, datasets and visualisations, or (2) by horizontal sharding

(Appendix B.2) requiring the use of multiple databases based upon a common prop-

erty, e.g. geography. The use of NoSQL products (Appendix B.2) must also be

considered as an option here.

• Scalability: To guarantee performance, more hardware could be added: (1) verti-

cally, by increasing the number or speed of application processors, or (2) using more

physical/logical servers.

Other requirements of a beta-version of vRSS concern a (better) integration of the applica-

tion’s two halves. As a result of its original development for case study two, its extension

(Section 4.8.1) and the use of batch processing in case study three, vRSS lacks a single,

all-inclusive working interface. A result of an improved integration would provide the

trend, topic or event detection, semi- or fully- automated classification and the sentiment

facilities identified in Section 13.7.2.

Lastly, limited commercial use of a beta-version of vRSS, by users in one or more of

the domains referred to in Section 13.5.4, would be of considerable benefit to the future

work we describe above.

Part V

Appendices

287

Appendix A

Case study reference materials

A.1 Case study one

A.1.1 RSS feed corpus

RSS

feed

number

RSS feed URL Mining

type

1 http://www.stackoverflow.com/feeds OM

2 http://sports.yahoo.com/sow.rss VM

3 http://www.denofgeek.com/index.rss OM

4 http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/

front_page/rss.xml

OM

5 http://www.superpages.com/cities/lottery/index_rss.

html

VM

6 http://feeds.boingboing.net/boingboing/iBag OM

7 http://news.cnet.com/2547-1_3-0-5.xml OM

8 http://www.scripting.com/rss.xml OM

9 http://feeds.musicchartfeeds.com/itunestop100albums OM

10 http://feeds2.feedburner.com/TheNextWeb OM

11 http://www.premierleague.com/rss/ptv/page/

ArticleIndex/0,,12306~2233528,00.xml

VM

12 http://www.football.co.uk/news/rss.aspx VM

13 http://www.scorespro.com/rss/live-soccer.xml VM

288

http://www.stackoverflow.com/feeds
http://sports.yahoo.com/sow.rss
http://www.denofgeek.com/index.rss
http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml
http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml
http://www.superpages.com/cities/lottery/index_rss.html
http://www.superpages.com/cities/lottery/index_rss.html
http://feeds.boingboing.net/boingboing/iBag
http://news.cnet.com/2547-1_3-0-5.xml
http://www.scripting.com/rss.xml
http://feeds.musicchartfeeds.com/itunestop100albums
http://feeds2.feedburner.com/TheNextWeb
http://www.premierleague.com/rss/ptv/page/ArticleIndex/0,,12306~2233528,00.xml
http://www.premierleague.com/rss/ptv/page/ArticleIndex/0,,12306~2233528,00.xml
http://www.football.co.uk/news/rss.aspx
http://www.scorespro.com/rss/live-soccer.xml

A. Case study reference materials 289

14 http://www.scorespro.com/rss/live-formula.xml VM

15 http://www.metacritic.com/rss/movie/film.xml OM or

VM

16 http://conor.net/feeds/rss/tube.xml OM

17 http://www.thinkbroadband.com/rss/full/ OM

18 http://twitter.com/statuses/user_timeline/12719612.

rss

VM

19 http://feeds.instyle.com/instyle/thisjustin OM

20 http://www.sloomedia.com/currency/feeds/USD.xml VM

21 http://conor.net/feeds/rss/tube.xml OM

22 http://themoneyconverter.com/OMR/rss.xml VM

23 http://themoneyconverter.com/PAB/rss.xml VM

Table A.1: Corpus of RSS feeds: cf. case study one.

A.1.2 Allocation of RSS feeds to students

Student RSS feed number

number One Two Three Four

1 10 12 14 19

2 2 5 9 20

3 10 12 14 19

4 3 4 6 22

5 6 9 12 20

6 2 3 6 13

7 2 7 10 23

8 5 11 17 19

9 3 6 19 23

10 4 7 19 23

11 3 6 14 22

12 6 9 11 23

13 12 14 22 27

14 2 4 8 23

http://www.scorespro.com/rss/live-formula.xml
http://www.metacritic.com/rss/movie/film.xml
http://conor.net/feeds/rss/tube.xml
http://www.thinkbroadband.com/rss/full/
http://twitter.com/statuses/user_timeline/12719612.rss
http://twitter.com/statuses/user_timeline/12719612.rss
http://feeds.instyle.com/instyle/thisjustin
http://www.sloomedia.com/currency/feeds/USD.xml
http://conor.net/feeds/rss/tube.xml
http://themoneyconverter.com/OMR/rss.xml
http://themoneyconverter.com/PAB/rss.xml

A. Case study reference materials 290

15 3 6 13 22

16 1 7 8 22

17 4 6 7 12

18 5 11 17 19

19 1 8 17 22

20 4 6 19 22

21 2 5 9 20

22 2 5 9 22

23 6 11 17 23

24 4 5 19 23

25 4 7 10 23

26 3 6 17 22

27 2 11 19 22

28 1 8 19 22

29 5 11 17 19

30 2 5 10 23

31 1 4 13 22

32 3 5 9 20

33 1 4 5 11

34 4 8 13 19

35 3 6 13 22

Table A.2: Student allocation of RSS feeds: cf. case study one.

A. Case study reference materials 291

A.2 Case study two

A.2.1 Original RSS feed and category corpus

RSS

feed no

RSS feed URL Category

106 http://feeds.abcnews.com/abcnews/worldnewsheadlines NCA

107 http://feeds.bbci.co.uk/news/world/rss.xml NCA

108 http://rss.cnn.com/rss/cnn_world NCA

109 http://www.nytimes.com/services/xml/rss/nyt/

GlobalHome.xml

NCA

112 http://www.msnbc.msn.com/id/3032506/device/rss/rss.xml NCA

113 http://english.pravda.ru/export.xml NCA

114 http://www.france24.com/en/monde/rss NCA

115 http://www.denofgeek.com/index.rss Film

118 http://www.zdnet.com/search?t=1,7&mode=rss SNT

119 http://feeds.bbci.co.uk/news/technology/rss.xml SNT

121 http://feeds.bbci.co.uk/news/business/rss.xml BFE

123 http://www.ok.co.uk/rss/32/okfashion FCL

124 http://rss.feedsportal.com/c/592/f/7507/index.rss Film

125 http://www.billboard.com/rss/the-feed/ Music

127 http://rss.feedsportal.com/c/375/f/434908/index.rss FCL

128 http://evilbeetgossip.film.com/feed/ FCL

129 http://newsrss.bbc.co.uk/rss/sportonline_world_edition/

front_page/rss.xml

Sport

130 http://rss.cnn.com/rss/edition_sport Sport

131 http://www.espn.co.uk/rss/sport/story/feeds/0.xml?

type=2

Sport

132 http://www.skysports.com/rss/0,20514,12040,00.xml Sport

133 http://feeds.reuters.com/reuters/sportsNews Sport

134 http://feeds.wired.com/wired/index SNT

140 http://feeds.feedburner.com/totalfilm/news/ Film

141 http://www.mtv.com/rss/news/movies_full.jhtml Film

143 http://feeds.feedburner.com/thr/film Film

144 http://www.hollywoodnews.com/feed/ Film

http://feeds.abcnews.com/abcnews/worldnewsheadlines
http://feeds.bbci.co.uk/news/world/rss.xml
http://rss.cnn.com/rss/cnn_world
http://www.nytimes.com/services/xml/rss/nyt/GlobalHome.xml
http://www.nytimes.com/services/xml/rss/nyt/GlobalHome.xml
http://www.msnbc.msn.com/id/3032506/device/rss/rss.xml
http://english.pravda.ru/export.xml
http://www.france24.com/en/monde/rss
http://www.denofgeek.com/index.rss
http://www.zdnet.com/search?t=1,7&mode=rss
http://feeds.bbci.co.uk/news/technology/rss.xml
http://feeds.bbci.co.uk/news/business/rss.xml
http://www.ok.co.uk/rss/32/okfashion
http://rss.feedsportal.com/c/592/f/7507/index.rss
http://www.billboard.com/rss/the-feed/
http://rss.feedsportal.com/c/375/f/434908/index.rss
http://evilbeetgossip.film.com/feed/
http://newsrss.bbc.co.uk/rss/sportonline_world_edition/front_page/rss.xml
http://newsrss.bbc.co.uk/rss/sportonline_world_edition/front_page/rss.xml
http://rss.cnn.com/rss/edition_sport
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2
http://www.skysports.com/rss/0,20514,12040,00.xml
http://feeds.reuters.com/reuters/sportsNews
http://feeds.wired.com/wired/index
http://feeds.feedburner.com/totalfilm/news/
http://www.mtv.com/rss/news/movies_full.jhtml
http://feeds.feedburner.com/thr/film
http://www.hollywoodnews.com/feed/

A. Case study reference materials 292

148 http://www.eweek.com/rss.xml SNT

149 http://hosted.ap.org/lineups/WORLDHEADS-rss_2.0.

xml?SITE=WHIZ&SECTION=HOME

NCA

153 http://www.vanityfair.com/services/rss/feeds/

everything.xml

FCL

158 http://www.infoworld.com/rss.xml SNT

159 http://www.businessweek.com/rss/bwdaily.rss BFE

160 http://rss.cnn.com/rss/money_topstories.rss BFE

161 http://feeds.reuters.com/reuters/businessNews BFE

162 http://online.wsj.com/xml/rss/3_7432.xml BFE

163 http://feeds.people.com/people/headlines FCL

165 http://www.music-news.com/rss/news.asp Music

166 http://loft965.com/feed/ Music

167 http://www.mojo4music.com/blog/index.xml Music

168 http://www.musicweek.com/rss.asp?navcode=232 Music

170 http://www.theengineer.co.uk/XmlServers/

navsectionRSS.aspx?navsectioncode=186

SNT

171 http://feeds.bbci.co.uk/news/science_and_

environment/rss.xml

SNT

172 http://feeds2.feedburner.com/nmecom/rss/newsxml Music

173 http://www.spotify.com/uk/feed/ Music

174 http://www.prospectmagazine.co.uk/category/

magazine/feed/

NCA

175 http://feeds.reuters.com/reuters/worldNews NCA

176 http://www.spiegel.de/international/index.rss NCA

177 http://newsfeed.time.com/feed/ NCA

178 http://www.msnbc.msn.com/id/3032117/device/rss/rss.

xml

FCL

179 http://feeds.reuters.com/reuters/technologyNews SNT

181 http://feeds.technologyreview.com/technology_

review_top_stories

SNT

Table A.3: Original RSS feed and category corpus (Section 8.4.2): cf. case study two.

http://www.eweek.com/rss.xml
http://hosted.ap.org/lineups/WORLDHEADS-rss_2.0.xml?SITE=WHIZ&SECTION=HOME
http://hosted.ap.org/lineups/WORLDHEADS-rss_2.0.xml?SITE=WHIZ&SECTION=HOME
http://www.vanityfair.com/services/rss/feeds/everything.xml
http://www.vanityfair.com/services/rss/feeds/everything.xml
http://www.infoworld.com/rss.xml
http://www.businessweek.com/rss/bwdaily.rss
http://rss.cnn.com/rss/money_topstories.rss
http://feeds.reuters.com/reuters/businessNews
http://online.wsj.com/xml/rss/3_7432.xml
http://feeds.people.com/people/headlines
http://www.music-news.com/rss/news.asp
http://loft965.com/feed/
http://www.mojo4music.com/blog/index.xml
http://www.musicweek.com/rss.asp?navcode=232
http://www.theengineer.co.uk/XmlServers/navsectionRSS.aspx?navsectioncode=186
http://www.theengineer.co.uk/XmlServers/navsectionRSS.aspx?navsectioncode=186
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
http://feeds2.feedburner.com/nmecom/rss/newsxml
http://www.spotify.com/uk/feed/
http://www.prospectmagazine.co.uk/category/magazine/feed/
http://www.prospectmagazine.co.uk/category/magazine/feed/
http://feeds.reuters.com/reuters/worldNews
http://www.spiegel.de/international/index.rss
http://newsfeed.time.com/feed/
http://www.msnbc.msn.com/id/3032117/device/rss/rss.xml
http://www.msnbc.msn.com/id/3032117/device/rss/rss.xml
http://feeds.reuters.com/reuters/technologyNews
http://feeds.technologyreview.com/technology_review_top_stories
http://feeds.technologyreview.com/technology_review_top_stories

A
.

C
a
se

stu
d
y

referen
ce

m
a
teria

ls
2
9
3

A.3 Case study three

A.3.1 Withdrawals from RSS feed and category corpus

RSS feed

number

RSS feed URL Category Reason withdrawn Withdrawn

date

139 http://feeds.feedburner.com/variety/headlines Film <pubDate> element not

populated.

01 Nov 2011

146 http://www.aintitcool.com/node/feed?category= Film <description> element

populated by <pubDate>

element.

01 Nov 2011

150 http://www.economist.com/rss/international_rss.xml NCA RSS feed not populated. 01 Nov 2011

151 http://feeds.foxnews.com/foxnews/world NCA Unknown. 01 Nov 2011

152 http://feeds.feedburner.com/newint NCA <pubDate> element not

populated.

01 Nov 2011

169 http://news.sky.com/sky-news/rss/home/rss.xml NCA <pubDate> element not

populated.

01 Nov 2011

180 http://rss.sciam.com/ScientificAmerican-Global SNT <pubDate> element not

populated.

01 Nov 2011

Table A.4: RSS feeds withdrawn from feed and category corpus during the Jul - Nov 2011 data gathering period (Section 10.3.2):
cf. case studies two and three.

http://feeds.feedburner.com/variety/headlines
http://www.aintitcool.com/node/feed?category=
http://www.economist.com/rss/international_rss.xml
http://feeds.foxnews.com/foxnews/world
http://feeds.feedburner.com/newint
http://news.sky.com/sky-news/rss/home/rss.xml
http://rss.sciam.com/ScientificAmerican-Global

A
.

C
a
se

stu
d
y

referen
ce

m
a
teria

ls
2
9
4

A.3.2 Re-organised RSS feed and category corpus

RSS feed

number

RSS feed URL Initial

cate-

gory

Final

cate-

gory

Number of RSS

<item> elements

retrieved during

Jul - Sep 2011

106 http://feeds.abcnews.com/abcnews/worldnewsheadlines NCA NCA 1,053

107 http://feeds.bbci.co.uk/news/world/rss.xml NCA NCA 11,107

108 http://rss.cnn.com/rss/cnn_world NCA NCA 602

109 http://www.nytimes.com/services/xml/rss/nyt/GlobalHome.xml NCA NCA 10,025

112 http://www.msnbc.msn.com/id/3032506/device/rss/rss.xml NCA NCA 3,144

113 http://english.pravda.ru/export.xml NCA NCA 563

114 http://www.france24.com/en/monde/rss NCA NCA 2,413

115 http://www.denofgeek.com/index.rss Film EA 332

118 http://www.zdnet.com/search?t=1,7&mode=rss SNT SNT 3,005

119 http://feeds.bbci.co.uk/news/technology/rss.xml SNT SNT 481

121 http://feeds.bbci.co.uk/news/business/rss.xml BFE BFE 3,514

123 http://www.ok.co.uk/rss/32/okfashion FCL EA 138

124 http://rss.feedsportal.com/c/592/f/7507/index.rss Film EA 1,333

125 http://www.billboard.com/rss/the-feed/ Music EA 862

127 http://rss.feedsportal.com/c/375/f/434908/index.rss FCL EA 702

128 http://evilbeetgossip.film.com/feed/ FCL EA 1,037

http://feeds.abcnews.com/abcnews/worldnewsheadlines
http://feeds.bbci.co.uk/news/world/rss.xml
http://rss.cnn.com/rss/cnn_world
http://www.nytimes.com/services/xml/rss/nyt/GlobalHome.xml
http://www.msnbc.msn.com/id/3032506/device/rss/rss.xml
http://english.pravda.ru/export.xml
http://www.france24.com/en/monde/rss
http://www.denofgeek.com/index.rss
http://www.zdnet.com/search?t=1,7&mode=rss
http://feeds.bbci.co.uk/news/technology/rss.xml
http://feeds.bbci.co.uk/news/business/rss.xml
http://www.ok.co.uk/rss/32/okfashion
http://rss.feedsportal.com/c/592/f/7507/index.rss
http://www.billboard.com/rss/the-feed/
http://rss.feedsportal.com/c/375/f/434908/index.rss
http://evilbeetgossip.film.com/feed/

A
.

C
a
se

stu
d
y

referen
ce

m
a
teria

ls
2
9
5

129 http://newsrss.bbc.co.uk/rss/sportonline_world_edition/

front_page/rss.xml

Sport Sport 5,747

130 http://rss.cnn.com/rss/edition_sport Sport Sport 542

131 http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2 Sport Sport 4,613

132 http://www.skysports.com/rss/0,20514,12040,00.xml Sport Sport 22,298

133 http://feeds.reuters.com/reuters/sportsNews Sport Sport 1,806

134 http://feeds.wired.com/wired/index SNT SNT 1,218

140 http://feeds.feedburner.com/totalfilm/news/ Film EA 931

141 http://www.mtv.com/rss/news/movies_full.jhtml Film EA 18

143 http://feeds.feedburner.com/thr/film Film EA 1,105

144 http://www.hollywoodnews.com/feed/ Film EA 1,791

148 http://www.eweek.com/rss.xml SNT SNT 1,480

149 http://hosted.ap.org/lineups/WORLDHEADS-rss_2.0.xml?SITE=

WHIZ&SECTION=HOME

NCA NCA 7,411

153 http://www.vanityfair.com/services/rss/feeds/everything.xml FCL EA 19

158 http://www.infoworld.com/rss.xml SNT SNT 828

159 http://www.businessweek.com/rss/bwdaily.rss BFE BFE 8,258

160 http://rss.cnn.com/rss/money_topstories.rss BFE BFE 3,832

161 http://feeds.reuters.com/reuters/businessNews BFE BFE 5,437

162 http://online.wsj.com/xml/rss/3_7432.xml BFE BFE 828

163 http://feeds.people.com/people/headlines FCL EA 1,171

165 http://www.music-news.com/rss/news.asp Music EA 3,798

166 http://loft965.com/feed/ Music EA 663

http://newsrss.bbc.co.uk/rss/sportonline_world_edition/front_page/rss.xml
http://newsrss.bbc.co.uk/rss/sportonline_world_edition/front_page/rss.xml
http://rss.cnn.com/rss/edition_sport
http://www.espn.co.uk/rss/sport/story/feeds/0.xml?type=2
http://www.skysports.com/rss/0,20514,12040,00.xml
http://feeds.reuters.com/reuters/sportsNews
http://feeds.wired.com/wired/index
http://feeds.feedburner.com/totalfilm/news/
http://www.mtv.com/rss/news/movies_full.jhtml
http://feeds.feedburner.com/thr/film
http://www.hollywoodnews.com/feed/
http://www.eweek.com/rss.xml
http://hosted.ap.org/lineups/WORLDHEADS-rss_2.0.xml?SITE=WHIZ&SECTION=HOME
http://hosted.ap.org/lineups/WORLDHEADS-rss_2.0.xml?SITE=WHIZ&SECTION=HOME
http://www.vanityfair.com/services/rss/feeds/everything.xml
http://www.infoworld.com/rss.xml
http://www.businessweek.com/rss/bwdaily.rss
http://rss.cnn.com/rss/money_topstories.rss
http://feeds.reuters.com/reuters/businessNews
http://online.wsj.com/xml/rss/3_7432.xml
http://feeds.people.com/people/headlines
http://www.music-news.com/rss/news.asp
http://loft965.com/feed/

A
.

C
a
se

stu
d
y

referen
ce

m
a
teria

ls
2
9
6

167 http://www.mojo4music.com/blog/index.xml Music EA 94

168 http://www.musicweek.com/rss.asp?navcode=232 Music EA 451

170 http://www.theengineer.co.uk/XmlServers/navsectionRSS.aspx?

navsectioncode=186

SNT SNT 626

171 http://feeds.bbci.co.uk/news/science_and_environment/rss.

xml

SNT SNT 608

172 http://feeds2.feedburner.com/nmecom/rss/newsxml Music EA 115

173 http://www.spotify.com/uk/feed/ Music EA 20

174 http://www.prospectmagazine.co.uk/category/magazine/feed/ NCA NCA 67

175 http://feeds.reuters.com/reuters/worldNews NCA NCA 6,279

176 http://www.spiegel.de/international/index.rss NCA NCA 562

177 http://newsfeed.time.com/feed/ NCA NCA 1,373

178 http://www.msnbc.msn.com/id/3032117/device/rss/rss.xml FCL SNT 2,172

179 http://feeds.reuters.com/reuters/technologyNews SNT SNT 1,945

181 http://feeds.technologyreview.com/technology_review_top_

stories

SNT SNT 469

Table A.5: RSS feed and category corpus following re-organisation (Section 10.3.2): cf. case study three.

http://www.mojo4music.com/blog/index.xml
http://www.musicweek.com/rss.asp?navcode=232
http://www.theengineer.co.uk/XmlServers/navsectionRSS.aspx?navsectioncode=186
http://www.theengineer.co.uk/XmlServers/navsectionRSS.aspx?navsectioncode=186
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
http://feeds2.feedburner.com/nmecom/rss/newsxml
http://www.spotify.com/uk/feed/
http://www.prospectmagazine.co.uk/category/magazine/feed/
http://feeds.reuters.com/reuters/worldNews
http://www.spiegel.de/international/index.rss
http://newsfeed.time.com/feed/
http://www.msnbc.msn.com/id/3032117/device/rss/rss.xml
http://feeds.reuters.com/reuters/technologyNews
http://feeds.technologyreview.com/technology_review_top_stories
http://feeds.technologyreview.com/technology_review_top_stories

A. Case study reference materials 297

A.3.3 Corpus of candidate keywords (extract)

Column Doc identifies those candidate keywords visualised in the time-series plots in Sec-

tion 11.8.4 and Appendix A.3.4.

Keyword N-gram No Margin RSS feed no/ Doc
length days % category/elements

Afghan 1 30 53.33 107/NCA/TxD Yes
Anders Behring Breivik 3 10 70.00 175/NCA/TDxTD Yes
Android 1 10 70.00 178/SNT/TxD No
Apple/Microsoft 1 31 90.32 148/SNT/TDxTD Yes
Aston Villa 2 10 80.00 132/Sport/TxD No
China 1 31 80.65 159/BFE/TDxTD No
Dark Knight Rises 3 10 30.00 143/EA/TDxTD No

David Cameron 2 10 50.00 107/NCA/TDxTD No
England 1 10 90.00 107/All/TDxTD No
Google 1 31 77.42 118/SNT/TDxTD No
Guillermo del Toro 3 10 50.00 140/EA/TDxTD Yes
Kardashian 1 10 70.00 144/EA/TxD and

TDxTD
Yes

Libyan rebel/rebels 2 10 50.00 149/NCA/TxD No
London 1 10 80.00 131/All/TxD No

Manchester City/United 2 10 70.00 129/Sport/TDxTD No
NATO 1 10 90.00 175/NCA/TxD Yes
President 1 30 96.67 107/All/TDxTD Yes
President Barack Obama 3 10 50.00 107/All/TDxTD Yes
Stakes at York 3 10 90.00 132/Sport/TDxTD No
Sir Alex Ferguson 3 30 70.00 132/Sport/TDxTD No
Syrian troops 2 10 60.00 149/NCA/TxD No

Syrian forces 2 30 50.00 175/NCA/TxD Yes
Tiger Woods 2 10 100.00 133/Sport/TDxTD Yes
UK 1 30 73.00 165/EA/TDxTD No
United States 2 31 67.74 109/NCA/TDxTD Yes
Wall Street 2 10 70.00 121/All/TDxTD Yes
Wesley Sneijder 2 10 90.00 132/Sport/TDxTD No
World Cup 2 10 100.00 129/Sport/TxD No

Table A.6: Extract of candidate keyword selection used for keyword frequency/sentiment
correlation (Section 11.7.4): cf. case study three.

A. Case study reference materials 298

A.3.4 Additional keyword frequency/sentiment correlation plots

Keyword: Anders Behring Breivik

N-gram length 3

RSS feed Number: 175, Category: NCA, Elements: TDxTD

Duration Dates: 27 Jul - 05 Aug 2011, Number of days: 10, Margin: 70.00%

Correlation Positive: 0.46, Negative: -0.55

Comments Negative sentiment concerning the Jul 2011 killings in Norway.

Table A.7: Keyword: Anders Behring Breivik : cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure A.1: Keyword: Anders Behring Breivik : cf. case study three.

A. Case study reference materials 299

Keyword: China

N-gram length 1

RSS feeds Number: 159, Category: BFE, Elements: TDxTD

Duration Dates: 01 - 31 Aug 2011, Number of days: 31, Margin: 80.65%

Correlation Positive: 0.53, Average negative: -0.49

Comments Balanced sentiment for Chinese financial and economic affairs.

Table A.8: Keyword: China: cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure A.2: Keyword: China: cf. case study three.

A. Case study reference materials 300

Keyword: Guillermo del Toro

N-gram length 3

RSS feed Number: 140, Category: EA, Elements: TDxTD

Duration Dates: 27 Jul - 05 Aug 2011, Number of days: 10, Margin: 50.00%

Correlation Positive: 0.67, Negative: -0.68

Comments Positive sentiment pitching movies with director Guillermo del Toro.

Table A.9: Keyword: Guillermo del Toro: cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure A.3: Keyword: Guillermo del Toro: cf. case study three.

A. Case study reference materials 301

Keyword: Kardashian

N-gram length 1

RSS feed Number: 144, Category: EA, Elements: TxD and TDxTD

Duration Dates: 11 - 20 Aug 2011, No of days: 10, Average margin: 70.00%

Correlation Average positive: 0.75, Average negative: -0.69

Comments The wedding of media personality Kim Kardashian.

Table A.10: Keyword: Kardashian: cf. case study three.

(a) Positive sentiment TxD (left), TDxTD (right).

(b) Negative sentiment TxD (left), TDxTD (right).

Figure A.4: Keyword: Kardashian, with varying RSS elements: cf. case study three.

A. Case study reference materials 302

Keyword: NATO

N-gram length 1

RSS feeds Number: 149, Category: SNT, Elements: TxD

Duration Dates: 01 - 10 Aug 2011, Number of days: 10, Margin: 90.00%

Correlation Positive: 0.61, Negative: -0.72

Comments Negative responses to NATO operations in Afghanistan and Libya.

Table A.11: Keyword: NATO : cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure A.5: Keyword: NATO : cf. case study three.

A. Case study reference materials 303

Keyword: President Barack Obama

N-gram length 3

RSS feed Number: 107, Category: NCA, Elements: TDxTD

Duration Dates: 27 Jul - 05 Aug 2011, Number of days: 10, Margin: 50.00%

Correlation Positive: 0.74 Negative: -0.42

Comments Domestic and foreign troubles for President Barack Obama.

Table A.12: Keyword: President Barack Obama: cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure A.6: Keyword: President Barack Obama: cf. case study three.

A. Case study reference materials 304

Keyword: Syrian forces

N-gram length 2

RSS feeds Number: 175, Category: NCA, Elements: TxD

Duration Dates: 17 Aug - 15 Sep 2011, Number of days: 30, Margin: 50.00%

Correlation Positive: 0.81, Negative: -0.77

Comments Anti-government violence and the response by the state in Syria.

Table A.13: Keyword: Syrian forces: cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure A.7: Keyword: Syrian forces: cf. case study three.

A. Case study reference materials 305

Keyword: United States

N-gram length 2

RSS feed Number: 109, Category: NCA, Elements: TDxTD

Duration Dates: 01 - 31 Aug 2011, Number of days: 31, Margin 67.74%

Correlation Positive: 0.61, Negative: -0.54

Comments Domestic, economic and foreign difficulties in the USA.

Table A.14: Keyword: United States: cf. case study three.

(a) Positive sentiment.

(b) Negative sentiment.

Figure A.8: Keyword: United States: cf. case study three.

Appendix B

Glossaries

B.1 Glossary of products

This glossary lists the open-source, third-party products1 2 from the Java ecosystem that

have been used in our myDS and vRSS software on a black-box, mash-up basis. Certain

products used in compiling the appendices of this thesis are also listed herein. If a listed

product is not open-source, it is otherwise freely available for use from its publishers.

Descriptive quotations are also taken from the publishers’ web sites.

Android The Android OS (https://www.android.com/) for mobile devices produced

by Google [148].

Apache Commons Mathematics Library A self-contained library of “mathematics

and statistics components addressing the most common problems not available in the Java

programming language”, available at https://commons.apache.org/proper/commons-

math/.

Apache JMeter Available at http://jmeter.apache.org/, Apache JMeter “is open

source software, a 100% pure Java application designed to load test functional behavior

and measure performance. It was originally designed for testing Web Applications but has

since expanded to other test functions.”

1The distribution of the principal third-party products in our myDS and vRSS software for our case studies
is described in Sections 4.7.1 and 4.8.1 respectively.

2Approximate counts of the number of lines of code in the principal third-party products used in our
software, together with equivalent counts of the number of indigenous lines of code in myDS and vRSS,
are listed in Appendix D.2.

306

https://www.android.com/
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
http://jmeter.apache.org/

B. Glossaries 307

Apache Tomcat Apache Tomcat, available at http://tomcat.apache.org/, is an

“open source implementation of the Java Servlet, JavaServer Pages, Java Expression Lan-

guage and Java WebSocket technologies.” Version 6.0.26 of Apache Tomcat is used by

myDS and vRSS as web server (Section 4.5).

Black Duck Open Hub “Black Duck Open Hub (formerly Ohloh.net) is an online

community and public directory of free and open source software (FOSS), offering analytics

and search services for discovering, evaluating, tracking, and comparing open source code

and projects.” Black Duck Open Hub can be found at https://www.openhub.net/.

CLOC CLOC “counts blank lines, comment lines, and physical lines of source code in

many programming languages.” It is available at https://github.com/AlDanial/cloc.

Google Charts A service provided by Google, available at https://developers.

google.com/chart/?hl=en, which allows data to be visualised within a web page using a

“rich gallery of interactive charts and data tools.”

jforum jforum is a Java-based BBS (Appendix B.2) available from http://jforum.

net/. Version 2.1.8 is used in myDS.

jQuery A “fast, small, and feature-rich JavaScript library” available at https://

jquery.com/: version 1.5.1 was employed by vRSS for sliders on pages.

Js-Treemap A JavaScript implementation of a tree-map (Appendix B.2) by Cowie,

available at http://js-treemap.sourceforge.net/.

jsoup jsoup is a “Java library for working with real-world HTML. It provides a very

convenient API for extracting and manipulating data, using the best of DOM, CSS, and

jquery-like methods.” jsoup is available at http://jsoup.org/.

Lucene Lucene “is a high-performance, full-featured text search engine library written

entirely in Java. It is a technology suitable for nearly any application that requires full-

text search, especially cross-platform.” Lucene is available at https://lucene.apache.

org/core/ and version 3.0.2 is used in our vRSS software.

http://tomcat.apache.org/
https://www.openhub.net/
https://github.com/AlDanial/cloc
https://developers.google.com/chart/?hl=en
https://developers.google.com/chart/?hl=en
http://jforum.net/
http://jforum.net/
https://jquery.com/
https://jquery.com/
http://js-treemap.sourceforge.net/
http://jsoup.org/
https://lucene.apache.org/core/
https://lucene.apache.org/core/

B. Glossaries 308

MySQL MySQL (http://mysql.com/) is a popular RDBMS supported by Oracle

(http://www.oracle.com/). Several versions of MySQL were used during the develop-

ment of our myDS and vRSS software, and their use in the case studies for our paradigms.

Version 5.5.16 of MySQL, which includes extensions to the SQL standard, was the earliest

version used and its compliance with ANSI/ISO standards [203] is described on the prod-

uct’s web site at http://dev.mysql.com/doc/refman/5.5/en/compatibility.html.

NetBeans NetBeans is an open-source IDE primarily intended for Java, but which sup-

ports several other programming languages. NetBeans is sponsored by Oracle (http:

//www.oracle.com/), and several versions were used in the development of our software.

NetBeans is available at https://netbeans.org/.

Quartz Scheduler Quartz Scheduler, available from Terracotta at https://quartz-

scheduler.org/, is an:

“open source job scheduling library that can be integrated within virtually

any Java application - from the smallest stand-alone application to the largest

e-commerce system.”

Version 1.8.3 of Quartz Scheduler is used in myDS and vRSS.

Rome Rome, available at http://rometools.github.io/rome/, “is a set of RSS and

Atom Utilities for Java” that provides:

“ROME includes a set of parsers and generators for the various flavors of

syndication feeds, as well as converters to convert from one format to another.

The parsers can give you back Java objects that are either specific for the

format you want to work with, or a generic normalized SyndFeed class that lets

you work on with the data without bothering about the incoming or outgoing

feed type.”

SentiStrength SentiStrength is “a lexicon-based classifier” [397] written in Java. Sen-

tiStrength 2, available at http://sentistrength.wlv.ac.uk/, was implemented in vRSS

for the sentiment analysis component of case study three (Chapter 11).

http://mysql.com/
http://www.oracle.com/
http://dev.mysql.com/doc/refman/5.5/en/compatibility.html
http://www.oracle.com/
http://www.oracle.com/
https://netbeans.org/
https://quartz-scheduler.org/
https://quartz-scheduler.org/
http://rometools.github.io/rome/
http://sentistrength.wlv.ac.uk/

B. Glossaries 309

Simple XML Simple XML is a “high performance XML serialization and configura-

tion framework for Java. Its goal is to provide an XML framework that enables rapid

development of XML configuration and communication systems.”

Version 2.7 of Simple XML, available at http://simple.sourceforge.net/home.php,

is used for the REST (Appendix B.2) interface which resides between vRSS and its Android

OS client (Appendix C).

TinyMCE TinyMCE is a “platform-independent web-based JavaScript WYSIWYG

HTML editor control”. Version 3.4.4, available at http://www.tinymce.com/, was em-

ployed by vRSS to allow entry of visualisation-related comments by the student corpora

during case study two (Chapter 8).

Weka Weka is a “collection of machine learning algorithms for data mining tasks. The

algorithms can either be applied directly to a dataset or called from your own Java code.

Weka contains tools for data pre-processing, classification, regression, clustering, associ-

ation rules, and visualization. It is also well-suited for developing new machine learning

schemes.”

Version 3.7.x of Weka was used during the classification component of our third case

study, and is available at http://www.cs.waikato.ac.nz/ml/weka/index.html.

B.2 Glossary of terminology

This glossary concerns IT/industry terminology used in connection with the work present-

ed in this thesis.

Atomicity, consistency, isolation and durability (ACID) The four ACID prop-

erties of the classical relational database model (Codd [75]), described by Haerder and

Reuter [164] with regard to database transactions, i.e. a transaction is defined as “a short

sequence of interactions with the database”, for CRUD operations, are: (1) atomicity

which requires that each transaction is “all-or-nothing”, i.e. if one part of the transaction

fails, then the entire transaction fails and is (if necessary) rolled back. (2) consistency

where a transaction reaching its normal end, commits its results and “preserves the con-

sistency of the database.” (3) isolation refers to the consistency of the database’s state

where the events “within a transaction must be hidden from other transactions running

concurrently.” (4) durability where once “a transaction has been completed and has com-

mitted its results to the database, the system must guarantee that these results survive

http://simple.sourceforge.net/home.php
http://www.tinymce.com/
http://www.cs.waikato.ac.nz/ml/weka/index.html

B. Glossaries 310

any subsequent malfunctions.”

Accuracy Defined by Thealing’s Data Mining Glossary at http://www.thearling.

com/glossary.htm as “A measure of a predictive model that reflects the proportionate

number of times that the model is correct when applied to data.” Accuracy is determined

by the formula:

P =
TP + TN

TP + TN + FP + FN

TP, TN, FP, and FN are defined elsewhere in Appendix B.2.

App The term app is defined by Search Mobile Computing at http://

searchmobilecomputing.techtarget.com/definition/app as:

“an abbreviated form of the word “application.” An application is a software

program that’s designed to perform a specific function directly for the user or,

in some cases, for another application program.”

The term app is frequently used in conjunction with the mobile platform (Appendix B.2).

Aspect-oriented programming (AOP) According to Liu [232], in application soft-

ware “Tasks like logging, performance profiling, validation, error checking and handling,

transaction management and so on, are called crosscutting concerns, meaning that they

are often intermingled with the main business logic code.” AOP concerns the use of as-

pects to modularise crosscutting concerns which apply to more than once class, i.e. “an

aspect is essentially a class that can be applied to altering the behavior of base code by

applying advice (additional crosscutting behavior)”.

Association rules Association rules (Aggarwal and Yu [10]) concern strong links be-

tween apparently unrelated items in a dataset (Appendix B.2). Such information is useful

for organisations to decide customer targeting, shelving and sales promotions, e.g. ac-

cording to Martin [248], the “classic application is market basket analysis: find items that

are frequently purchased together by a customer.” Such a rule might take the form that

“customers who buy item A also often buy item B”, and can be “identified by checking

that the rule has some minimum confidence and support.”

http://www.thearling.com/glossary.htm
http://www.thearling.com/glossary.htm
http://searchmobilecomputing.techtarget.com/definition/app
http://searchmobilecomputing.techtarget.com/definition/app

B. Glossaries 311

The support of a rule X ⇒Y is defined by Aggarwal and Yu [10] as “the fraction of

transactions which contain both X and Y.” The confidence of a rule X ⇒Y is “the fraction

of transactions containing X, which also contain Y. Thus, if we say that a rule has 90%

confidence then it means that 90% of the tuples containing X also contain Y.”

Atom Atom is an XML-based medium for syndicating content which was written as an

alternative to Winer’s RSS 2.0 (Section 2.2.2). The IETF is currently responsible for the

Atom 1.0 standard which was defined in 2005 and is available at http://tools.ietf.

org/html/rfc4287.

Bag-of-words (BoW) The term bag-of-words was defined by Salton and McGill [344]

as an “orderless document representation”, where the frequencies of terms in a group of

documents are recorded in vectors irrespective of the position of each term in the original

document(s). Silić and Bas̆ić [358] described BoW as an instance of VSM (Appendix B.2).

To demonstrate BoW, with apologies to the traditional English folk song Greensleeves,

documents may be formed from the text of each line of the chorus:

“Greensleeves was all my joy,

Greensleeves was my delight,

Greensleeves was my heart of gold,

And who but my lady Greensleeves.”

Giving us a corpus of thirteen words (frequencies are listed in brackets): (1) greensleeves(4),

(2) was(3), (3) all (1), (4) my(4), (5) joy(1), (6) delight (1), (7) heart (1), (8) of (1), (9) gold (1),

(10) and (1), (11) who(1), (12) but (1) and (13) lady(1). The column vectors below represent

the word frequencies in each line of the chorus:

Document Word frequencies

L
in

e
n

o

G
re

en
sl

ee
ve

s

w
as

a
ll

m
y

jo
y

d
el

ig
h
t

h
ea

rt

o
f

g
ol

d

a
n

d

w
h

o

b
u

t

la
d

y

1 [1 1 1 1 1 0 0 0 0 0 0 0 0]

2 [1 1 0 1 0 1 0 0 0 0 0 0 0]

3 [1 1 0 1 0 0 1 1 1 0 0 0 0]

4 [1 0 0 1 0 0 0 0 0 1 1 1 1]

http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287

B. Glossaries 312

Ballpark Investopedia at http://www.investopedia.com/terms/b/ballpark-

figure.asp defines ballpark as:

“A rough numerical estimate or approximation. Ballpark figures are commonly

used by accountants, salespersons and other professionals to estimate current

or future results. A stockbroker could use a ballpark figure to estimate how

much money a client might have at some point in the future, given a certain

rate of growth.”

Big-data Frequently associated with NoSQL tools (Appendix B.2), big-data is defined

by Techopedia at https://www.techopedia.com/definition/27745/big-data as:

“a process that is used when traditional data mining and handling techniques

cannot uncover the insights and meaning of the underlying data. Data that

is unstructured or time sensitive or simply very large cannot be processed by

relational database engines. This type of data requires a different processing

approach called big data, which uses massive parallelism on readily-available

hardware.”

Boilerplate According to Techopedia at http://www.techopedia.com/definition/

1259/boilerplate, boilerplate “is any form of writing that can be or is reused multi-

ple times with minimal changes to the original content.” Thus, in terms of computer

programming:

“this term refers to boilerplate code, which is code that has proved to efficient

[sic] and can be extended to many applications. Code to produce standard

mathematical operations, template programs, and most notably, open-source

codes may all be considered boilerplate code.”

Bulletin board system (BBS) Defined by Techopedia at http://www.techopedia.

com/definition/2481/bulletin-board-system-bbs, the term BBS:

“refers to text-based online communities that users can log into over the Inter-

net using dedicated software. The bulletin board system predates the World

Wide Web and was a popular application for Telnet users. Bulletin board

systems were an early example of the Internet’s ability to foster large online

communities.”

http://www.investopedia.com/terms/b/ballpark-figure.asp
http://www.investopedia.com/terms/b/ballpark-figure.asp
https://www.techopedia.com/definition/27745/big-data
http://www.techopedia.com/definition/1259/boilerplate
http://www.techopedia.com/definition/1259/boilerplate
http://www.techopedia.com/definition/2481/bulletin-board-system-bbs
http://www.techopedia.com/definition/2481/bulletin-board-system-bbs

B. Glossaries 313

Chi-square (χ2) A chi-square test, often written as χ2, is designed to analyse categorical

data. Manning and Schütze [244] wrote that the “χ2 test is applied to 2-by-2 tables” where

“The essence of the test is to compare the observed frequencies in the table with the

frequencies expected for independence. If the difference between observed and expected

frequencies is large, then we can reject the null hypothesis of independence.”

Class diagram A class diagram provides a static view of an application. Tutorials

Point at http://www.tutorialspoint.com/uml/uml_class_diagram.htm describes class

diagrams for:

“visualizing, describing and documenting different aspects of a system but also

for constructing executable code of the software application.

The class diagram describes the attributes and operations of a class and

also the constraints imposed on the system. The class diagrams are widely

used in the modelling of object oriented systems because they are the only

UML diagrams which can be mapped directly with object oriented languages.

The class diagram shows a collection of classes, interfaces, associations,

collaborations and constraints. It is also known as a structural diagram.”

Controlled vocabulary Defined by the American Society for Indexing at http://www.

taxonomies-sig.org/about.htm, a controlled vocabulary is:

“an authoritative list of terms to be used in indexing (human or automated).

A controlled vocabulary for a project might actually include multiple authority

files for different kinds of terms.

Controlled vocabularies are used to ensure consistent indexing, particularly

when indexing multiple documents, periodical articles, web pages or sites, etc.

They may also be used when indexing a single work, such as a [sic] encyclope-

dia, by multiple indexers.

Controlled vocabularies do not necessarily have any structure or relation-

ships between terms within the list. Controlled vocabularies are often used for

name authorities (proper nouns), such as persons, organization names, com-

pany names, etc.”

Cosine similarity Defined by Huang [187] where if “documents are represented as term

vectors, the similarity of two documents corresponds to the correlation between the vectors.

http://www.tutorialspoint.com/uml/uml_class_diagram.htm
http://www.taxonomies-sig.org/about.htm
http://www.taxonomies-sig.org/about.htm

B. Glossaries 314

This is quantified as the cosine of the angle between vectors, that is, the so-called cosine

similarity. Cosine similarity is one of the most popular similarity measure applied to text

documents, such as in numerous information retrieval applications and clustering too.”

CRON CRON is described by Wikipedia (https://en.wikipedia.org/wiki/Cron) as a

“time-based job scheduler” found in the UNIX operating system.

Cross-validation Cross-validation is defined by the authors of Weka (Appendix B.1),

i.e. Witten and Eibe [447], as:

“In cross-validation, you decide upon a fixed number of folds, or partitions of

the data. Suppose we use three. Then the data is split into three approximately

equal partitions and each in turn is used for testing and the remainder is used

for training. That is, use two-thirds for training and one-third for testing and

repeat the procedure three times so that, in the end, every instance has been

used exactly once for testing.”

Witten and Eibe [447] describe ten-fold cross-validation as the convention:

“Why 10? Extensive tests on numerous datasets, with different learning tech-

niques, have shown that 10 is about the right number of folds to get the best

estimate of error, and there is also some theoretical evidence that backs this

up. Although these arguments are by no means conclusive, and debate con-

tinues to rage in machine leaning and data mining circles about what is the

best scheme for evaluation, 10-fold cross-validation has become the standard

method in practical terms.”

Data flow diagram (DFD) A DFD is defined by Pressman [309] as a “graphical

technique that depicts information flow and the transforms that are applied as data moves

from input to output.” We have employed Yourdon’s DFD notation [460] in this thesis,

illustrated in Figure B.1, to concisely depict the processes and data flows in our myDS

and vRSS software.

Dataset A dataset is a collection of related information made up of distinct elements

concerning a given subject. According to Renear et al. [323], “four basic features can be

identified as common to most definitions” of a dataset: (1) grouping refers to datasets as

being “data treated collectively, as a unit.” (2) content in terms of “the constituents of a

https://en.wikipedia.org/wiki/Cron

B. Glossaries 315

Figure B.1: Yourdon’s DFD notation [460].

dataset are things of some particular kind.” (3) relatednesss identifies “the grouped things

as all being of the same general kind of entity”, and (4) purpose where the dataset has an

“intended application”.

Entity relationship diagram (ERDM) An ERDM (Chen [66]) provides a visual

representation of the tables and relationships forming the data model of a database imple-

mented in an RDBMS. Although several alternative styles of notation exist for an ERDM,

in this thesis we use the crow’s feet and boxes notation by Martin [247]. Alternative

notations for ERDMs are discussed by Song and Froelich [367].

Extract, transform and load (ETL) ETL is a process used to migrate data between

data sources or application components, where the data from the source is often cleansed,

i.e. transformed, to make it compatible with the target before being loaded into the target.

F-measure The F-measure metric, originated by Rijsbergen [326], is defined in the

following form:

F-measure =
2 * (precision * recall)

precision + recall

Which combines precision and recall, both of which are frequently used in document

classification. Precision, recall, TP, TN, FP and FN are defined elsewhere in Appendix

B.2.

B. Glossaries 316

Feature selection At https://en.wikipedia.org/wiki/Feature_selection, feature

selection is defined as “the process of selecting a subset of relevant features (variables,

predictors) for use in model construction.”

Heat-map First used by Kinney (https://en.wikipedia.org/wiki/Cormac_Kinney)

in 1991, a heat-map is defined by the BusinessDictionary (http://www.

businessdictionary.com/definition/heatmap.html) as a “graphical representa-

tion of data using colors to indicate the level of activity, usually using darker colors to

indicate low activity, and brighter colors to indicate high activity. For example a heatmap

could indicate the number of foreclosures in a geographical area during a set period of

time.”

Infographic With reference to Mashable at http://mashable.com/category/

infographics/, infographics are:

“graphic visual representations of information, data or knowledge. These

graphics present complex information quickly and clearly such as in signs,

maps, journalism, technical writing, and education.”

Information gain (IG) Information gain is a method of feature selection (Appendix

B.2) which, according to Yang and Pederson [459], measures the “number of bits of infor-

mation obtained for category prediction by knowing the presence or absence of a term in

a document.”

Java database connectivity (JDBC) The JDBC API is defined by [286] as “the

industry standard for database-independent connectivity between the Java programming

language and a wide range of databases—SQL databases and other tabular data sources,

such as spreadsheets or flat files. The JDBC API provides a call-level API for SQL-based

database access.”

k-nearest neighbour (KNN) KNN, a supervised clustering algorithm, is defined

by Wikipedia at https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm,

wherein an object is classified “by a majority vote of its neighbors, with the object being

assigned to the class most common among its k nearest neighbors (k is a positive integer,

typically small). If k = 1, then the object is simply assigned to the class of that single

nearest neighbor.”

https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Cormac_Kinney
http://www.businessdictionary.com/definition/heatmap.html
http://www.businessdictionary.com/definition/heatmap.html
http://mashable.com/category/infographics/
http://mashable.com/category/infographics/
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

B. Glossaries 317

KNN is frequently used in statistical estimation and pattern recognition, but it is not

related to the k -means unsupervised clustering method.

Log-likelihood ratio test Defined by IBM at http://www-01.ibm.com/support/

knowledgecenter/SSLVMB_21.0.0/com.ibm.spss.statistics.cs/mixed_diet_intro_

04.htm, a log-likelihood ratio test is a “test of the sufficiency of a smaller model versus

a more complex model. The null hypothesis of the test states that the smaller model

provides as good a fit for the data as the larger model. If the null hypothesis is rejected,

then the alternative, larger model provides a significant improvement over the smaller

model.”

The resulting ratio can be used to calculate a p-value (Appendix B.2) to decide whether

to reject the null hypothesis in favour of the alternative hypothesis.

Mash-up A mash-up is defined by Pressman and Lowe [308] as:

“a hybrid Web application that integrates content from multiple (usually third-

party) sources in order to create a novel synergistic outcome. Mash-ups usu-

ally access the content-rich environment of major providers (such as Google,

Amazon, and eBay) using a simple public interface. Even when there is no

public interface, it is often possible to utilize third-party data through simple

“screen-scraping” of the data available on websites. The rich interactivity of

many mash-ups typifies the evolving direction of Web 2.0.”

Metadata According to Bretherton and Singley [53], metadata “typically describes the

structure of a data set or the interpretation to be placed on collections of similar items

within that data set, rather than focusing on the individual instances usually regarded as

primary data.” The authors distinguished between two types of metadata:

1. Control metadata: This is concerned with organisation “directly affecting database

or other computer system operations, though it is desirable that it be intelligible to

scientists and/or database managers.”

2. Guide metadata: This is “intended solely for use by humans and is expressed in

natural language.”

Bretherton and Singley also wrote that the “boundary between these two kinds of metadata

is not fixed.” These types broadly correspond with NISO [275] where: (1) administrative

http://www-01.ibm.com/support/knowledgecenter/SSLVMB_21.0.0/com.ibm.spss.statistics.cs/mixed_diet_intro_04.htm
http://www-01.ibm.com/support/knowledgecenter/SSLVMB_21.0.0/com.ibm.spss.statistics.cs/mixed_diet_intro_04.htm
http://www-01.ibm.com/support/knowledgecenter/SSLVMB_21.0.0/com.ibm.spss.statistics.cs/mixed_diet_intro_04.htm

B. Glossaries 318

metadata concerns resources and includes such properties as when and how an object was

created, authorities and other technical information, (2) descriptive metadata “describes

a resource for purposes such as discovery and identification.” This includes elements such

as a title, abstract, author, and keywords describing a periodical. (3) structural metadata

concerns structure, e.g. “how pages are ordered to form chapters.”

In our paradigms and their case studies, we are concerned with the semi-structured

format of RSS (Section 2.2.3). Therefore, the XML elements and attributes of RSS form

structural metadata because of the organisational role they perform. Use of guide meta-

data in our software is less clear with regard to the definition provided by Bretherton and

Singley [53]. For this reason we consider labels of user interface (UI) controls and About

pages in myDS and vRSS to be more readily described as descriptive metadata, as defined

by NISO. We also cite the word-cloud and tree-map visualisation types, illustrated in Fig-

ure B.2, as examples of descriptive metadata because both types employ the frequency of

each keyword displayed to represent its prominence in the dataset being visualised. An

example of administrative metadata in our work concerns the <channel> element in an

RSS feed, or the created by elements of datasets and visualisations in myDS and vRSS for

case studies one and two for our first paradigm.

Mobile platform Defined by Techopedia (https://www.techopedia.com/

definition/30688/mobile-application-platform):

“A mobile application platform supports mobile application development using

various tools for different programming languages and provides an application

programming interface to allow interactivity between software packages. These

tools include those used for testing applications, measuring mobile analytics

and creating interfaces for profiling application performance.

Vendors usually offer a mobile application platform to clients that want to

go mobile or enter the mobile market. The platform includes migration tools

and resources that support a mobile interface, or a development environment

that allows creating new apps aimed at the Apple and Android markets. A

platform approach to mobile application development helps provide a com-

prehensive model with tool suites that are accessible to developers and other

users.”

Mutual information (MI) Manning and Schütze [244] defined MI as “a symmetric,

non-negative measure of the common information” in two variables. Moreover, MI is a

https://www.techopedia.com/definition/30688/mobile-application-platform
https://www.techopedia.com/definition/30688/mobile-application-platform

B. Glossaries 319

measure of independence because: “It is 0 only when two variables are independent”,

but for “two dependent variables, mutual information grows not only with the degree of

dependence, but also according to the entropy of the variables.”

N-gram An n-gram is defined by Wikipedia at http://en.wikipedia.org/wiki/N-

gram as:

“In the fields of computational linguistics and probability, an n-gram is a

contiguous sequence of n items from a given sequence of text or speech. The

items can be phonemes, syllables, letters, words or base pairs according to the

application. The n-grams typically are collected from a text or speech corpus.

When the items are words, n-grams may also be called shingles.

An n-gram of size 1 is referred to as a “unigram”; size 2 is a “bigram” (or,

less commonly, a “digram”); size 3 is a “trigram”. Larger sizes are sometimes

referred to by the value of n, e.g., “four-gram”, “five-gram”, and so on.”

Table B.1 demonstrates the generation of n-grams from a simple piece of text to the level

of bigrams, i.e. RSS is a dialect of XML. In this example, stop words (Appendix B.2)

have been edited.

N-gram N-gram length Frequency

dialect 1 1

dialect xml 2 1

rss 1 1

rss dialect 2 1

xml 1 1

Table B.1: N-grams (to bigram level) generated from phrase RSS is a dialect of XML,
with stop words edited.

Named entity recognition (NER) According to the Stanford Natural Language Pro-

cessing Group [371], NER “labels sequences of words in a text which are the names of

things, such as person and company names, or gene and protein names.”

Natural language processing (NLP) Defined by Search Content Manage-

ment at http://searchcontentmanagement.techtarget.com/definition/natural-

language-processing-NLP, NLP is “the ability of a computer program to understand

http://en.wikipedia.org/wiki/N-gram
http://en.wikipedia.org/wiki/N-gram
http://searchcontentmanagement.techtarget.com/definition/natural-language-processing-NLP
http://searchcontentmanagement.techtarget.com/definition/natural-language-processing-NLP

B. Glossaries 320

human speech as it is spoken.” Furthermore, “computers traditionally require humans

to “speak” to them in a programming language that is precise, unambiguous and highly

structured or, perhaps through a limited number of clearly-enunciated voice commands.

Human speech, however, is not always precise -- it is often ambiguous and the linguistic

structure can depend on many complex variables, including slang, regional dialects and

social context.”

“Current NLP approaches are based upon machine learning” involving linguistic tasks

such as text mining (Section 2.6) and NER.

NoSQL The technologies used to analyse and persist big-data are generically known as

NoSQL, i.e. no SQL, not only SQL or not relational. This term refers to the non-use

of traditional relational data structures (Section 4.5.7), and as described by Cattell [61],

the use of key/value, document and extensible record stores, as well as “RDBMSs that

provide horizontal scaling”, as “categories” of data stores to deal with the volume of data

generated.

P-value A p-value is used to test the validity of a hypothesis in order to test the sig-

nificance of its results. The hypothesis to be validated is often known as the alternative

hypothesis, whereas the null hypothesis assumes no relationship between the two samples

being measured.

If a p-value is below 0.05 it means that the alternative hypothesis can be interpreted

to be substantially correct and the null hypothesis is rejected: a p-value above 0.05 means

that the alternative hypothesis is unreliable so the null hypothesis is accepted.

Part-of-speech (POS) POS is defined by the Stanford Natural Language Processing

Group [371] as the reading of text by software which “assigns parts of speech to each word

(and other token), such as noun, verb, adjective, etc., although generally computational

applications use more fine-grained POS tags like ‘noun-plural’.”

Pearson’s correlation coefficient Formulated by Pearson [294] in 1895, the product-

moment correlation coefficient measures the strength of the linear relationship between

two variables within a range between +1 (positive or strong) and -1 (negative or

weak). At https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_

coefficient, Wikipedia defines the calculation as being based upon the “covariance of

the two variables divided by the product of their standard deviations.” The formula is

given as:

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

B. Glossaries 321

Px,y =
cov(x,y)

σxσy

Where cov is the covariance, and σx gives the SD of x. When plotted on a typical x -

y chart, a higher positive coefficient value indicates that the value of y increases as the

value of x increases: similarly a lower negative value sees y decrease as x increases. A

coefficient of zero represents no correlation.

According to Lærd Statistics at https://statistics.laerd.com/statistical-

guides/pearson-correlation-coefficient-statistical-guide.php#linear, there

are five assumptions “that are made with respect to Pearson’s correlation”. These as-

sumptions concern: (1) variables being “either interval or ratio measurements”, (2) that

“the variables must be approximately normally distributed”, (3) the presence of a “linear

relationship between two variables”, (4) the minimisation or removal of outliers, and (5)

homoscedasticity where a typical x - y chart of a correlation demonstrates a substantial-

ly straight line because of a common variance amongst the variables.

Persistence In Driscoll et al. [97], a data structure is considered to be persistent :

“if it supports access to multiple versions. The structure is partially persistent

if all versions can be accessed but only the newest version can be modified,

and fully persistent if every version can be both accessed and modified.”

We define persistence to apply to the writing of the current state of a data structure or an

object, i.e. the current set of values of its defining attributes, to a platform’s file system

or to database storage. As defined by Date [88], persistence suggests “that database data

differs in kind from other, more ephemeral, data such as input data, output data, control

statements, work queues, software control blocks, intermediate results, and more generally

any data that is transient in nature.” We consider this partial persistence to be applicable

to our software, where only the current condition or state of an object can be readily

“accessed and modified” (Driscoll et al. [97]) following persistence.

Podcast Defined by the OED at http://www.oxforddictionaries.com/definition/

english/podcast, a podcast is “A digital audio file made available on the Internet for

downloading to a computer or mobile device, typically available as a series, new instalments

of which can be received by subscribers automatically.”

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php#linear
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php#linear
http://www.oxforddictionaries.com/definition/english/podcast
http://www.oxforddictionaries.com/definition/english/podcast

B. Glossaries 322

Precision In the documents relevant to a query, precision “is the proportion of the

predicted positive cases that were correct” (Bellaachia [31]). Precision is calculated by the

formula:

precision =
TP

TP + FP

TP and FP are defined elsewhere in Appendix B.2.

Proof of concept As defined by Techopedia at http://www.techopedia.com/

definition/4066/proof-of-concept-poc, a proof of concept is:

“a demonstration, the purpose of which is to verify that certain concepts or

theories have the potential for real-world application. POC is therefore a

prototype that is designed to determine feasibility, but does not represent

deliverables.

Proof of concept is also known as proof of principle.”

Query-expansion Manning et al. [243] wrote that “In query expansion, on the other

hand, users give additional input on query words or phrases, possibly suggesting additional

query terms. Some search engines (especially on the web) suggest related queries in

response to a query; the users then opt to use one of these alternative query suggestions.”

The authors further wrote that the “most common form of query expansion is global

analysis, using some form of thesaurus.”

Random forest A random forest is defined by Ho [178] as a “method for increasing

generalization accuracy through systematic creation and use of multiple trees.” This need

arises to prevent decision trees being too complex to overfit their training data.

Recall Recall concerns the documents relevant to a query that are successfully retrieved,

i.e. the “proportion of positive cases that were correctly identified” (Bellaachia [31]).

Recall is calculated using the formula:

recall =
TP

TP + FN

TP and FN are defined elsewhere in Appendix B.2.

http://www.techopedia.com/definition/4066/proof-of-concept-poc
http://www.techopedia.com/definition/4066/proof-of-concept-poc

B. Glossaries 323

Representational state transfer (REST) REST provides web services which em-

ploy HTTP, HTTPS or other TCP/IP application layer protocols. REST allows CRUD

operations to be executed on a server via simple HTTP requests, where a document is

dynamically exchanged between client and server using the request/response pattern im-

plemented in web applications (Section 4.5.5). REST is also stateless, i.e. no client

context is stored on the server between requests, and it is seen as an alternative to the

more-complex SOAP and WSDL-based web services. The acronym REST originates from

Fielding’s doctoral thesis Architectural Styles and the Design of Network-based Software

Architecture, from the University of California in 2000 [120].

Resource description framework (RDF) We summarise RDF, according to the

description given at http://www.w3schools.com/xml/xml_rdf.asp: RDF is written in

XML and is designed to “provide a common way to describe information so it can be read

and understood by computer applications.” RDF allows computers to use URIs to iden-

tify WWW-based “resources with properties and property values”: these resources may

describe “price and availability” of goods, schedules for events, metadata about HTML

pages, and “content for search engines” and on-line libraries. The RDF language is al-

so part of the W3C’s DATA ACTIVITY Building the Web of Data [422] vision where

WWW-based information has “exact meaning” and can be understood and processed by

computers. This is based upon the semantic web proposed by Berners-Lee et al. [35].

Serialisation/deserialisation A Java mechanism defined by Tutorials Point at http:

//www.tutorialspoint.com/java/java_serialization.htm:

“where an object can be represented as a sequence of bytes that includes the

object’s data as well as information about the object’s type and the types of

data stored in the object.

After a serialized object has been written into a file, it can be read from

the file and deserialized that is, the type information and bytes that represent

the object and its data can be used to recreate the object in memory.

Most impressive is that the entire process is JVM independent, meaning

an object can be serialized on one platform and deserialized on an entirely

different platform.”

http://www.w3schools.com/xml/xml_rdf.asp
http://www.tutorialspoint.com/java/java_serialization.htm
http://www.tutorialspoint.com/java/java_serialization.htm

B. Glossaries 324

Sharding Defined by Tee [389] where:

“Database sharding isn’t anything like clustering database servers, virtualizing

datastores or partitioning tables. It goes far beyond all of that. In the simplest

sense, sharding your database involves breaking up your big database into

many, much smaller databases that share nothing and can be spread across

multiple servers. These small databases are fast, easy to manage, and often

are much cheaper to use as they are often implemented by using open source

licensed databases.

And how do you do it? Well, there’s a variety of different approaches, but

essentially, it’s just a matter of taking a look at your database and essentially

‘horizontally partitioning’ your data into logically related rows, as opposed to

the types of columnizing of data that you do with a typical relational database.

The logical rows that you come up with get isolated and deployed into their

own database, and as a result, data interaction becomes much faster and more

responsive.”

Similarity measures We define similarity measures to be those properties of objects

or labour which can be compared, i.e. quantified, for similarity, e.g. competing software

products for the same business opportunity could be compared by methodology and tech-

nology used, performance, usability or outputs. Moreover, Boriah et al. [46], defined

similarity measures to:

“include clustering (k -means), distance-based outlier detection, classification

(knn, SVM), and several other data mining tasks. These algorithms typically

treat the similarity computation as an orthogonal step and can make use of

any measure.”

Stemming Stemming is defined by the Stanford Natural Language Processing Group

[371] as a means to “reduce inflectional forms and sometimes derivationally related forms

of a word to a common base form.”

In our second case study, keyword stemming was a mining rule available in vRSS but it

was not used (Section 7.4.2). For the classification component of case study three (Chapter

10), stemming was performed by Lucene’s (Appendix B.1) implementation of the Snowball,

or Porter2, algorithm described at http://tartarus.org/martin/PorterStemmer/, and

written by Martin Porter, instead of the original English-language Porter1 algorithm [304].

This was because:

http://tartarus.org/martin/PorterStemmer/

B. Glossaries 325

“The Porter stemmer should be regarded as ‘frozen’, that is, strictly defined,

and not amenable to further modification. As a stemmer, it is slightly inferior

to the Snowball English or Porter2 stemmer, which derives from it, and which

is subjected to occasional improvements. For practical work, therefore, the

new Snowball stemmer is recommended. The Porter stemmer is appropriate

to IR research work involving stemming where the experiments need to be

exactly repeatable.”

Two simple examples of stemming using the Snowball algorithm are: (1) consonant which

stems to conson, and (2) knocking which becomes knock.

Stop words Defined by Pederson at http://www.d.umn.edu/~tpederse/Group01/

WordNet/wordnet-stoplist.html, stop words are:

“words that are excluded from some language processing task, usually be-

cause they are viewed as non--informative or potentially misleading. Usually

they are non--content words like conjunctions, determiners, prepositions, etc.

These are often called function words.”

Our case studies made use of a list of 500+ stop words provided by MySQL (http:

//dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html). Examples of fre-

quently used stop words include: according, indeed, sure, the and whatever.

Suffix tree Introduced by Weiner [436], a suffix tree is a data structure that indexes

all the suffixes in a string of characters. Individual suffixes are used as keys and values

consist of positions in the text.

Term frequency - inverse document frequency (TF-IDF) Defined at http://

www.tfidf.com/, TF-IDF is “a weight often used in information retrieval and text mining.

This weight is a statistical measure used to evaluate how important a word is to a document

in a collection or corpus. The importance increases proportionally to the number of times

a word appears in the document but is offset by the frequency of the word in the corpus.”

IDF is attributed to Spärck Jones [369], and is frequently used in recommendation and

ranking applications. TF-IDF is calculated as follows:

wx,y = tfx,y ∗ log10

(
N

dfx

)
Where for keyword x in document y :

http://www.d.umn.edu/~tpederse/Group01/WordNet/wordnet-stoplist.html
http://www.d.umn.edu/~tpederse/Group01/WordNet/wordnet-stoplist.html
http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
http://www.tfidf.com/
http://www.tfidf.com/

B. Glossaries 326

• tf x,y is the frequency of x in y.

• df x is the number of documents containing x.

• N is the total number of documents.

Concept frequency - inverse document frequency (CF-IDF), has been proposed by Goossen

et al. [157] as a variation of TF-IDF “based upon TF-IDF and a domain ontology.”

Ticker-tape Defined by Investopedia (http://www.investopedia.com/terms/t/

tickertape.asp) as:

“A device that shows stock symbols and numbers to convey information about

trades. The ticker tape is electronic today, but gets its name from the ticking

sound the original mechanical machine made and from the long, narrow pieces

of paper that stock quotes were printed on.”

Topic modelling Topic models are defined by Mallet (http://mallet.cs.umass.edu/

topics.php) as providing:

“a simple way to analyze large volumes of unlabeled text. A “topic” consists of

a cluster of words that frequently occur together. Using contextual clues, topic

models can connect words with similar meanings and distinguish between uses

of words with multiple meanings.”

Tree-map Tree-maps, originally developed by Johnson and Shneiderman [207]:

“partition the display space into a collection of rectangular bounding boxes

representing the tree structure. The drawing of nodes within their bounding

boxes is entirely dependent on the content of the nodes, and can be interactively

controlled. Since the display size is user controlled, the drawing size of each

node varies inversely with the size of the tree (i.e., # of nodes).”

Johnson and Shneiderman listed four objectives for the tree-map visualisation type: (1)

efficient utilization of the display space, (2) interactivity, (3) comprehension, and (4)

aesthetics. Figure B.2a displays a tree-map produced by vRSS during our second case

study. The prominence of the rectangles for keywords crisis, debt, euro and eurozone

reflects their higher frequencies in the underlying data and corresponds with the increased

font size and darker colour of their equivalents in the word-cloud illustrated in Figure B.2b.

http://www.investopedia.com/terms/t/tickertape.asp
http://www.investopedia.com/terms/t/tickertape.asp
http://mallet.cs.umass.edu/topics.php
http://mallet.cs.umass.edu/topics.php

B. Glossaries 327

(a) Tree-map.

(b) Word-cloud.

Figure B.2: Tree-map and word-cloud visualisation types in visualRSS: cf. case study two.

Trend analysis This is defined by the BusinessDictionary at http://www.

businessdictionary.com/definition/trend-analysis.html as a:

“Method of time series data (information in sequence over time) analysis in-

volving comparison of the same item (such as monthly sales revenue figures)

over a significantly long period to (1) detect general patter [sic] of a relationship

between associated factors or variables, and (2) project the future direction of

this pattern.”

http://www.businessdictionary.com/definition/trend-analysis.html
http://www.businessdictionary.com/definition/trend-analysis.html

B. Glossaries 328

True positive (TP), true negative (TN), false positive (FP) and false negative

(FN) With reference to Bellaachia [31], the confusion matrix (Kohavi and Provost [212])

in Table B.2 illustrates the derivation of the TP, TN, FP and FN metrics.

Predicted

Positive Negative

Actual
Positive TP FN

Negative FP TN

Table B.2: Derivation of TP, TN, FP and FN metrics from a confusion matrix.

These metrics are explained in Table B.3. Moreover, in conjunction with the confusion

matrix in Figure B.3, Table B.3 lists the calculation for class, i.e. RSS feed category, News

and current affairs (NCA) during the sub-classification described in Section 10.6.2.

Metric Definition Result

True positive
(TP)

An item is correctly classi-
fied as positive.

25 items correctly classified as NCA.

True negative
(TN)

An item is correctly classi-
fied as negative.

106 items which are not TP, FP or FN,
i.e. 9 + 5 + 15 + 11 + 15 + 1 + 50.

False positive
(FP)

An item is incorrectly classi-
fied as positive.

8 items, i.e. 1 BFE, 4 SNT and 3 EA
have been misclassified.

False negative
(FN)

An item is incorrectly classi-
fied as negative.

11 items where 4 NCA have been mis-
classified as SNT, and 7 as EA.

Table B.3: Metrics and results for class NCA (Section 10.6.2): cf. case study three.

Figure B.3: Confusion matrix distribution and metrics for class NCA (Section 10.6.2): cf.
case study three.

B. Glossaries 329

Twitterbot Defined by WhatIs at http://whatis.techtarget.com/definition/

Twitterbot, a Twitterbot is a “software program that sends out automated posts on

Twitter.” A second use of a Twitterbot is to follow tweets made by users of Twitter [408].

Unified modelling language (UML) UML provides a series of graphical constructs

and document artefacts where the objective, according to the Object Management Group

(OMG [282]), is “to provide system architects, software engineers, and software developers

with tools for analysis, design, and implementation of software-based systems as well as

for modeling business and similar processes.”

Uniform resource identifier (URI), uniform resource locator (URL) and uni-

form resource name (URN) The definitions below are summarised from [34]:

• Uniform resource identifier: A URI is a “compact string of characters for iden-

tifying an abstract or physical resource.” A URI can be classified as “a locator, a

name or both.”

• Uniform resource locator: The term URL “refers to the subset of URI that

identify resources via a representation of their primary access mechanism (e.g., their

network “location”), rather than identifying the resource by name or by some other

attribute(s) of that resource.”

• Uniform resource name: URN refers to “the subset of URI that are required

to remain globally unique and persistent even when the resource ceases to exist or

becomes unavailable.”

In this thesis the use of abbreviations URI and URL is substantially interchangeable.

Vector space model (VSM) VSM, originated by Salton et al. [345], has been defined

by Manning et al. [243] as “The representation of a set of documents as vectors in a

common vector space is known as the vector space model and is fundamental to a host of

information retrieval (IR) operations including scoring documents on a query, document

classification, and document clustering.”

http://whatis.techtarget.com/definition/Twitterbot
http://whatis.techtarget.com/definition/Twitterbot

B. Glossaries 330

Waterfall model The classical Waterfall model of software development, attributed to

Bell and Thayer [30], and Royce [331], is illustrated in Figure B.4. The model has a linear

sequence of steps, each with its own set of goals, and development flows like a waterfall as

the steps progress.

Figure B.4: The classical Waterfall model of software development (adapted from Press-
man [309]).

Web 2.0 Web 2.0 refers to participatory web services that include social networking,

dynamic sharing of content or blogging, compared with older, static web site function-

ality. Web 2.0 is not a software architecture, development methodology or technology:

the term refers to a set of conventions originally defined by O’Reilly in 2005 at http:

//www.oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1. We sum-

marise these as: (1) the WWW as platform, (2) the use of collective intelligence, (3)

data as the next Intel Inside, (4) the end of the software release cycle, (5) lightweight and

innovative programming models, (6) software above the level of a single device, and (7) a

rich user experience. In the author’s opinion, the term Web 2.0 has become something of

a media buzzword given its contemporary usage.

Word-cloud The basic format of a word-cloud, otherwise known as a tag-cloud, is

described by Viégas and Wattenberg [415] as “a combination of many different type sizes

in a single view—goes back at least 90 years to Soviet Constructivism. Beyond the surface

style, however, a tag cloud usually has a particular purpose: to present a visual overview

of a collection of text.” A recent review of word-cloud generators is provided by Smitty

[362].

http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1

B. Glossaries 331

A word-cloud produced by vRSS during our second case study is displayed in Figure

B.2b. The increased font size and darker colour used to display keywords crisis, debt, euro

and eurozone is because of their higher frequencies (shown in brackets) in the underlying

data. These higher frequencies are also visible in the corresponding tree-map in Figure

B.2a which displays the same data.

Z -test A test for statistical significance, defined by Investopedia at http://www.

investopedia.com/terms/t/two-tailed-test.asp as:

“A statistical test in which the critical area of a distribution is two-sided and

tests whether a sample is either greater than or less than a certain range of

values. If the sample that is being tested falls into either of the critical areas,

the alternative hypothesis will be accepted instead of the null hypothesis. The

two-tailed test gets its name from testing the area under both of the tails

of a normal distribution, although the test can be used in other non-normal

distributions.”

A p-value (Appendix B.2) is used to measure the statistical significance of the test.

http://www.investopedia.com/terms/t/two-tailed-test.asp
http://www.investopedia.com/terms/t/two-tailed-test.asp

Appendix C

The Android OS client app for

visualRSS

C.1 Outline

In 2013, using the Android OS (Appendix B.1) for the mobile platform, Shema [354]

developed a client app for our vRSS software. Although the client was not used in any of

our case studies, the requirement was to:

“implement a mobile client for the vRSS application. The client can consist

of a user interface, application logic mainly to do web service calls on the

vRSS RESTful interface, and data visualisation functionality. The client user

interface should allow for three input modes mirroring vRSS three mining types

and present the results as instructed by the user using a custom visualisation

engine.”

Shema described the core of the client as:

“its data integration model. This layer enables the Android client to seamless-

ly interact with vRSS and exchange data without the client knowing anything

about vRSS’s underlying data model. The vRSS Android client works by ex-

changing XML objects with the main system, each of which corresponding to

vRSS concepts such as mining rules, recent visualizations and active (polling)

visualizations. These concepts gave rise to three main XML document struc-

tures (schema) which constitute the domain model of this application: the

mining rules schema, the recent visualizations schema and the visualization

schema.”

332

C. The Android OS client app for visualRSS 333

The remaining sections of this appendix describe the client’s implementation of the prin-

cipal components of vRSS (Section 7.3).

C.2 Defining mining rules

The three mining types in vRSS (Section 7.4.1) are supported by the client: Figure C.1

displays automatic and manual mining.

Figure C.1: Defining mining rules in visualRSS’s Android OS client app: the word-
cloud (Section 7.4.2) displaying keyword frequencies in automatic mining (left) and entry
of an RSS feed’s URL in manual mining (right).

C.3 Polling and data storage

No polling of RSS or database persistence of RSS-mined data is carried out by the client

because:

“The vRSS Android client has no persistent data storage. Moreover, it has no

direct access to the data objects that form the vRSS domain model. A web

service interface on vRSS allows the client to collect data from the user, send

C. The Android OS client app for visualRSS 334

it across to vRSS and retrieve processed results. Internally, the Android client

maintains its state using java objects mapped to the XML schemas by means

of an XML serialization framework called Simple. In this way, the Android

client is able to deliver the functionality of vRSS without requiring access to

vRSS [sic] underlying data store.”

Communication between client and server makes use of XML. This is enabled by a REST

(Appendix B.2) interface provided by SimpleXML (Appendix B.1) and implemented in

vRSS. A HTTP request from the client is received as an XML document by the interface

and serialised (Appendix B.2) into Java objects for vRSS to execute the request. The

response by vRSS is reciprocally deserialised from Java objects into XML before it is

returned to the client.

C.4 Visualising RSS-mined data

The client implements the five visualisation types in vRSS (Section 7.9). Figure C.2

displays the page to browse recent visualisations and a sample pie chart visualisation.

Figure C.2: Browsing recent visualisations (left) and a sample pie chart visualisation
(right) in visualRSS’s Android OS client.

Appendix D

Miscellaneous

D.1 Additional resources

The following list is made up of web sites that supplied advice or fragments of source code

during the development of our myDS and vRSS software, but which are not acknowledged

elsewhere in this thesis:

• Avilyne Technologies: http://avilyne.com.

• The BalusC Code: http://balusc.blogspot.com.

• DaniWeb: http://www.daniweb.com/.

• DevX: http://www.devx.com/.

• Dynamic Drive: http://www.dynamicdrive.com/.

• High Scalability: http://highscalability.com/.

• IBM Developer Works: http://www.ibm.com/developerworks/.

• Java Code Geeks: http://www.javacodegeeks.com/.

• JavaWorld: http://www.javaworld.com/.

• Java.net: https://today.java.net/.

• JavaScript Toolbox: http://www.javascripttoolbox.com/.

• Jenkov.com: http://jenkov.com/.

335

http://avilyne.com
http://balusc.blogspot.com
http://www.daniweb.com/
http://www.devx.com/
http://www.dynamicdrive.com/
http://highscalability.com/
http://www.ibm.com/developerworks/
http://www.javacodegeeks.com/
http://www.javaworld.com/
https://today.java.net/
http://www.javascripttoolbox.com/
http://jenkov.com/

D. Miscellaneous 336

• JavaScript Tricks, Samples, Tutorials & Howtos: http://www.jtricks.

com/.

• JodaTime: http://www.joda.org/joda-time/.

• Johann Burkard: http://johannburkard.de/.

• kaptcha: https://maven-repository.com/artifact/com.google.code.

kaptcha/kaptcha/2.3.

• KodeJava: http://kodejava.org/.

• LuceneTutorial.com: http://www.lucenetutorial.com/.

• Lucid Imagination: http://www.lucidimagination.com/.

• Pat’s Place: http://www.hunlock.com/.

• Pete Freitag: http://www.petefreitag.com/.

• Program Creek: http://www.programcreek.com.

• Real’s How To: http://www.rgagnon.com/.

• Rose India Technologies: http://www.roseindia.net/.

• Shining Star Services: http://www.shiningstar.net/.

• StackOverflow: http://www.stackoverflow.com/.

• Sun Corporation: http://forums.sun.com/.

• Texcount: http://app.uio.no/ifi/texcount/.

• Trent Richardson: http://trentrichardson.com/.

• Vikasing: http://www.vikasing.com/.

• Viral Patel: http://viralpatel.net/.

• Web Development Learnings: http://stevethomas.com.au/.

Microsoft Excel [259] was used to produce many of the graphs and time-series plots in this

thesis.

Lastly, the author apologises for any source of advice or code used in our software, but

not acknowledged in the list above.

http://www.jtricks.com/
http://www.jtricks.com/
http://www.joda.org/joda-time/
http://johannburkard.de/
https://maven-repository.com/artifact/com.google.code.kaptcha/kaptcha/2.3
https://maven-repository.com/artifact/com.google.code.kaptcha/kaptcha/2.3
http://kodejava.org/
http://www.lucenetutorial.com/
http://www.lucidimagination.com/
http://www.hunlock.com/
http://www.petefreitag.com/
http://www.programcreek.com
http://www.rgagnon.com/
http://www.roseindia.net/
http://www.shiningstar.net/
http://www.stackoverflow.com/
http://forums.sun.com/
http://app.uio.no/ifi/texcount/
http://trentrichardson.com/
http://www.vikasing.com/
http://viralpatel.net/
http://stevethomas.com.au/

D. Miscellaneous 337

D.2 Source code

D.2.1 myDataSharer and visualRSS

When applied to our myDS and vRSS software, CLOC (Appendix B.1) produced an in-

digenous count of approximately 172,000 lines of Java and other source code. Nevertheless,

the author believes that an exact count is not possible because of comments, disabled code,

open-source, third-party products written in JavaScript, e.g. TinyMCE, HTML or CSS,

as well as code for experimentation and testing. Furthermore, the Android OS client (Ap-

pendix C) written by Shema [354] for vRSS is not included. Thus, given these criteria,

the author considers an approximate figure of 100,000 lines to be more realistic.

D.2.2 Principal open-source, third-party products

Approximate counts of lines of source code for the principal open-source, third-party prod-

ucts used in our software are listed in Table D.1. Except where specifically stated, the

counts were provided by Black Duck Open Hub (Appendix B.1) on 30 Jan 2016. For the

case studies for our first RSS-mining paradigm, we employed Google Charts to visualise

data: to the best of our knowledge, no count of lines of code is available for that product.

Product Approximate Comments
line count

Apache Tomcat 1,129,200

Lucene 532,400 Excludes customisations used in case study three
(Section 11.6.1), and may also include components
of Lucene not used in myDS and vRSS.

MySQL 2,776,200 Includes MySQL database, MySQL Workbench
and other administrative tools.

Quartz Sched-
uler

53,400

Rome 18,300

SentiStrength 5,000 Provided by Professor M. Thelwall, i.e. Sen-
tiStrength’s (Appendix B.1) writer, on 30 Jan 2016
via email.

Weka 700,000 Count may not include all code of classifiers used
in case study three (Section 10.5).

Total 5,214,500 Excludes author’s own software.

Table D.1: Approximate counts of lines of source code of principal open-source, third-
party products used in myDataSharer and visualRSS: cf. all case studies.

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

[2] Academia. https://www.academia.edu/, 2015.

[3] G. Adam, C. Bouras, and V. Poulopoulos. Utilizing RSS Feeds for crawling the

Web. In Proceedings of the Fourth International Conference on Internet and Web

Applications and Services (ICIW 2009), pages 211–216, held in Venice/Mestre, Italy,

May 2009.

[4] B. Adams, D. Phung, and S. Venkatesh. Eventscapes: Visualizing Events over time

with Emotive Facets. In Proceedings of the 19th ACM International Conference on

Multimedia (MM’11), pages 1477–1480, held in Scottsdale, AZ, USA, 2011.

[5] D. A. Adeniyi, Z. Wei, and Y. Yongquan. Automated web usage data mining and

recommendation system using K-Nearest Neighbor (KNN) classification method.

Applied Computing and Informatics, 12(1):90–108, 2016.

[6] R. Adhikari and P. K. Agrawal. An Introductory Study on Time Series Modeling

and Forecasting. Computing Research Repository, abs/1302.6613, 2013.

[7] Adobe Acrobat Reader. https://get.adobe.com/uk/reader/, 2015.

[8] S. Agarwal, A. Singhal, and P. Bedi. Classification of RSS Feed News Items Using

Ontology. In Proceedings of the 12th International Conference on Intelligent Systems

Design and Applications (ISDA 2012), pages 491–496, held in Kochi, Kerala, India,

Nov 2012.

[9] C. C. Aggarwal, editor. Data Classification, Algorithms and Applications. Chapman

and Hall & CRC Press, Boca Raton, FL, USA, 2014.

338

https://www.academia.edu/
https://get.adobe.com/uk/reader/

BIBLIOGRAPHY 339

[10] C. C. Aggarwal and P. S. Yu. Mining Large Itemsets for Association Rules. IEEE

Data Engineering Bulletin, 21(1):23–31, 1998.

[11] C. C. Aggarwal and CX. Zhai. A SURVEY OF TEXT CLASSIFICATION AL-

GORITHMS. In C. C. Aggarwal and CX. Zhai, editors, Mining Text Data, pages

163–222. 2012.

[12] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski. Visualizing

Time-Oriented Data - A Systematic View. Computers & Graphics, 31(3):401–409,

Jun 2007.

[13] C. Albrecht-Buehler, B. Watson, and D. A. Shamma. TextPool: Visualizing

Live Text Streams. In Proceedings of the 10th IEEE Symposium on Information

Visualization (InfoVis 2004)), held in Austin, TX, USA, Oct 2004.

[14] M. S. Ali, M. P. Consens, and F. Rizzolo. Visualizing Structural Patterns in Web

Collections. In Proceedings of the 16th International Conference on World Wide

Web (WWW2007), pages 1333–1334, held in Banff, AB, Canada, Apr 2007.

[15] M. H. Alomari, H. Abusaimeh, S. Shahin, and R. Joudeh. Postat: A Cross-Platform,

RSS-based Advertising and Event Notification System for Educational Institutions.

Procedia - Social and Behavioral Sciences, 73:120–127, Aug - Sep 2012. Proceedings

of the 2nd International Conference on Integrated Information (IC-ININFO 2012).

[16] Amazon. http://www.amazon.co.uk/, 2015.

[17] Amazon Prime. https://www.amazon.co.uk/gp/prime/pipeline/landing, 2016.

[18] M. Anastopoulos and T. Romberg. Referenzarchitekturen für Web-Applikationen.

Fraunhofer IESE/FZI Karlsruhe, 2001. (German language).

[19] A. Anjomshoaa, A. Min Tjoa, and H. Rezaiee. A Lightweight Data Integration

Architecture Based on Semantic Annotated RSS Feeds. In R. Meersman, T. Dillon,

and P. Herrero, editors, Proceedings of On the Move to Meaningful Internet Systems:

OTM 2011 Workshops, pages 170–177, held in Hersonissos, Crete, Greece, Oct 2011.

[20] I. Antonellis, C. Bouras, and V. Poulopoulos. Personalized News Categorization

Through Scalable Text Classification. In X. Zhou, J. Li, H. T. Shen, M. Kitsure-

gawa, and Y. Zhang, editors, Proceedings of the 8th Asia-Pacific Web Conference

on Frontiers of WWW Research and Development, pages 391–401, held in Harbin,

Heilongjiang, China, 2006.

http://www.amazon.co.uk/
https://www.amazon.co.uk/gp/prime/pipeline/landing

BIBLIOGRAPHY 340

[21] L. Augustyniak, T. Kajdanowicz, P. Szymański, W. Tulig lowicz, P. Kazienko, R. Al-

hajj, and B. Szymanski. Simpler is Better? Lexicon-based Ensemble Sentiment

Classification Beats Supervised Methods. In Proceedings of the 2014 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM), pages 924–29, Aug 2014.

[22] D. Ayers and A. Watt. Beginning RSS and Atom Programming. Wiley Publishing,

Inc., Indianapolis, Indiana, USA, 2008.

[23] S. Baker. Why Do People Use Online Social Networking? loveto-

know. http://socialnetworking.lovetoknow.com/Why_Do_People_Use_Online_

Social_Networking, 2016.

[24] Bandcamp. https://bandcamp.com/, 2015.

[25] S. Banerjee, K. Ramanathan, and A. Gupta. Clustering short texts using

Wikipedia. In Proceedings of the 30th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’07), pages 787–788,

held in Amsterdam, The Netherlands, 2007.

[26] E. Banos, I. Katakis, N. Bassiliades, G. Tsoumakas, and I. Vlahavas. PersoNews: A

Personalized News Reader Enhanced by Machine Learning and Semantic Filtering.

In Proceedings of the 2006 Confederated International Conference on On the Move

to Meaningful Internet Systems: CoopIS, DOA, GADA, and ODBASE - Volume

Part I (ODBASE’06/OTM’06), pages 975–982, held in Montpellier, France, 2006.

[27] A. Barth. HTTP State Management Mechanism. http://tools.ietf.org/html/

rfc6265, 2011.

[28] BazQux. https://bazqux.com/, 2015.

[29] Bebo. http://www.bebo.com/, 2015.

[30] T. E. Bell and T. A. Thayer. Software Requirements: Are They Really a Problem?

In Proceedings of the 2nd International Conference on Software Engineering (ICSE

’76), pages 61–68, held in San Francisco, CA, USA, 1976.

[31] A. Bellaachia. Performance Evaluation, Data Mining. School of Engineering and Ap-

plied Science, Department of Computer Science, The George Washington Universi-

ty, Washington, DC, USA. http://www.seas.gwu.edu/~bell/csci243/lectures/

performance.pdf, 2015.

http://socialnetworking.lovetoknow.com/Why_Do_People_Use_Online_Social_Networking
http://socialnetworking.lovetoknow.com/Why_Do_People_Use_Online_Social_Networking
https://bandcamp.com/
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265
https://bazqux.com/
http://www.bebo.com/
http://www.seas.gwu.edu/~bell/csci243/lectures/performance.pdf
http://www.seas.gwu.edu/~bell/csci243/lectures/performance.pdf

BIBLIOGRAPHY 341

[32] J. Benson, D. Crist, and P. Lafleur. Agent-based Visualization of Streaming Text. In

Proceedings of the IEEE Information Visualization Conference, held in Columbus,

OH, USA, 2008.

[33] T. Berners-Lee. Information Management: A Proposal. Technical report, CERN,

Mar 1989.

[34] T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. Uniform Resource Iden-

tifiers (URI): Generic Syntax. https://www.ietf.org/rfc/rfc2396.txt, 1998.

[35] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

284(5):34–43, May 2001.

[36] S. V. Bharathi, J. Kalaimathi, and A. Geetha. Emotion Classification of RSS News

Feeds. https://www.academia.edu/6985862/Emotion_Classification_of_RSS_

News_feeds, 2015.

[37] BibSonomy. http://www.bibsonomy.org/, 2015.

[38] Bing Maps. http://microsoft.com/maps/, 2015.

[39] Blackboard. http://www.blackboard.com/, 2015.

[40] A. Blekas, J. Garofalakis, and V. Stefanis. Use of RSS feeds for Content Adaptation

in Mobile Web Browsing. In Proceedings of the 2006 International Cross-disciplinary

Workshop on Web Accessibility (W4A): Building the Mobile Web: Rediscovering

Accessibility, pages 79–85, held in Edinburgh, Scotland, UK, 2006.

[41] Blogger. http://www.blogger.com/, 2015.

[42] BlogLines. http://www.bloglines.com/, 2014.

[43] J. G. Blumler and E. Katz. The Uses of Mass Communications: Current Perspec-

tives on Gratifications Research (SAGE Series in Communication Research). Sage

Publications Inc., Beverly Hills, CA, USA, Feb 1975.

[44] S. Bolasco, A. Canzonetti, F. M. Capo, F. della Ratta-Rinaldi, and B. K. Singh.

Understanding Text Mining: A Pragmatic Approach. In S. Sirmakessis, editor,

Knowledge Mining, volume 185 of Studies in Fuzziness and Soft Computing, pages

31–50. 2005.

https://www.ietf.org/rfc/rfc2396.txt
https://www.academia.edu/6985862/Emotion_Classification_of_RSS_News_feeds
https://www.academia.edu/6985862/Emotion_Classification_of_RSS_News_feeds
http://www.bibsonomy.org/
http://microsoft.com/maps/
http://www.blackboard.com/
http://www.blogger.com/
http://www.bloglines.com/

BIBLIOGRAPHY 342

[45] L. C. Borges, V. M. Marques, and J. Bernardino. Comparison of Data Mining

Techniques and Tools for Data Classification. In Proceedings of the International

C* Conference on Computer Science and Software Engineering (C3S2E13), pages

113–116, held in Porto, Portugal, 2013.

[46] S. Boriah, V. Chandola, and V. Kumar. Similarity Measures for Categorical Data:

A Comparative Evaluation. In Proceedings of the SIAM International Conference

on Data Mining (SDM08), pages 243–254, held in Atlanta, GA, USA, Apr 2008.

[47] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A Training Algorithm for Optimal

Margin Classifiers. In Proceedings of the Fifth Annual Workshop on Computational

Learning Theory (COLT ’92), pages 144–152, held in Pittsburgh, PA, USA, 1992.

[48] S. Bossa, G. Fiumara, and A. Provetti. A Lightweight Architecture for RSS Polling

of Arbitrary Web sources. In Proceedings of the 7th WOA 2006 Workshop, From

Objects to Agents (Dagli Oggetti Agli Agenti), held in Catania, Italy, Sep 2006.

[49] C. Bouras, V. Poulopoulos, and V. Tsogkas. PeRSSonal’s core functionality

evaluation: Enhancing text labeling through personalized summaries. Data &

Knowledge Engineering, 64(1):330–345, Jan 2008.

[50] D. M. Boyd and N. B. Ellison. Social Network Sites: Definition, History, and Schol-

arship. Journal of Computer-Mediated Communication, 13(1):210–230, 2007.

[51] BrandRepublic. http://www.brandrepublic.com/, 2016.

[52] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yeargeau. Extensible

Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/REC-xml/,

2008.

[53] F. P. Bretherton and P. T. Singley. Metadata: a User’s View. In Proceedings of the

Seventh International Working Conference on Scientific and Statistical Database

Management, pages 166–174, Sep 1994.

[54] A. Buche, M. B. Chandak, and A. Zadgaonkar. Opinion Mining and Analysis: A

survey. Computing Research Repository, abs/1307.3336, 2013.

[55] BuiltWith. http://trends.builtwith.com/feeds/RSS/, 2016.

[56] BuySellAds. https://www.buysellads.com/, 2016.

[57] BuzzFeed. http://www.buzzfeed.com/, 2015.

http://www.brandrepublic.com/
http://www.w3.org/TR/REC-xml/
http://trends.builtwith.com/feeds/RSS/
https://www.buysellads.com/
http://www.buzzfeed.com/

BIBLIOGRAPHY 343

[58] E. Cambria, B. Schuller, Y. Xia, and C. Havasi. New Avenues in Opinion Mining

and Sentiment Analysis. IEEE Intelligent Systems, 28(2):15–21, Mar 2013.

[59] CanvasJS. http://www.canvasjs.com/, 2015.

[60] L. F. Capretz. A Brief History of the Object-oriented Approach. SIGSOFT Software

Engineering Notes, 28(2):6–15, Mar 2003.

[61] R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Record, 39(4):12–27,

2010.

[62] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing

Data-Intensive Web Applications. Morgan Kaufmann, San Francisco, CA, USA,

2002.

[63] D. D. Chamberlin and R. F. Boyce. SEQUEL: A Structured English Query Lan-

guage. In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on

Data Description, Access and Control (SIGFIDET ’74), pages 249–264, held in Ann

Arbor, MI, USA, 1974.

[64] S. W Chan and R. Mordani. Java Servlet Specification, Version 3.1. http://

download.oracle.com/otndocs/jcp/servlet-3_1-fr-eval-spec/index.html,

2013.

[65] C-C. Chang and C-J. Lin. LIBSVM: A Library for Support Vector Machines. ACM

Transactions on Interactive Intelligent Systems, 2(3):27:1–27:27, May 2011.

[66] P. P-S. Chen. The Entity-relationship Model–Toward a Unified View of Data. ACM

Transactions on Database Systems, 1(1):9–36, Mar 1976.

[67] T. Chen, W-L. Han, H-D. Wang, Y-X. Zhou, B. Xu, and B-Y. Zang. CONTENT

RECOMMENDATION SYSTEM BASED ON PRIVATE DYNAMIC USER PRO-

FILE. In Proceedings of the Sixth International Conference on Machine Learning

and Cybernetics, volume 4, pages 2112–2118, held in Hong Kong, China, Aug 2007.

[68] Y-F R. Chen, G. Di Fabbrizio, D. Gibbon, S. Jora, B. Renger, and B. Wei. Geo-

tracker: Geospatial and Temporal RSS Navigation. In Proceedings of the 16th Inter-

national Conference on World Wide Web (WWW2007), pages 41–50, held in Banff,

AB, Canada, Apr 2007.

http://www.canvasjs.com/
http://download.oracle.com/otndocs/jcp/servlet-3_1-fr-eval-spec/index.html
http://download.oracle.com/otndocs/jcp/servlet-3_1-fr-eval-spec/index.html

BIBLIOGRAPHY 344

[69] D. Chmielewski and G. Hu. A Distributed Platform for Archiving and Retrieving

RSS Feeds. In Proceedings of the 4th Annual ACIS International Conference on

Computer and Information Science (ICIS 2005), pages 215–220, held on Jeju Island,

South Korea, Jul 2005.

[70] K-M. Chung. JavaServer Pages Specification, Version 2.3 Maintenance Release 3.

http://download.oracle.com/otndocs/jcp/jsp-2_3-mrel2-spec/, 2013.

[71] J. Churchill. rss4j. http://sourceforge.net/projects/rss4j/, 2015.

[72] M. O. Cingiz and B. Diri. Content Mining of Microblogs. In Proceedings of the

2012 International Conference on Advances in Social Networks Analysis and Mining

(ASONAM 2012), pages 835–838, held at Kadir Has University, Istanbul, Turkey,

Aug 2012.

[73] CiteSeer. http://citeseerx.ist.psu.edu/, 2015.

[74] P. Coad and E. Yourdon. Object-oriented Analysis. Yourdon Press, Upper Saddle

River, NJ, USA, 2nd edition, 1991.

[75] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communi-

cations of the ACM, 13(6):377–387, Jun 1970.

[76] E. F. Codd. Extending the Database Relational Model to Capture More Meaning.

ACM Transactions on Database Systems, 4(4):397–434, Dec 1979.

[77] S. J. Cold. Using Really Simple Syndication (RSS) to Enhance Student Research.

ACM SIGITE Newsletter, 3(1):6–9, Jan 2006.

[78] A. Collomb, C. Costea, D. Joyeux, O. Hasan, and L. Brunie. A Study and Compari-

son of Sentiment Analysis Methods for Reputation Evaluation. Technical Report

RR-LIRIS-2014-002, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude

Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon, Mar 2014.

[79] Coursera. http://www.coursera.org, 2015.

[80] J. Creus, B. Amann, N. Travers, and D. Vodislav. RoSeS: A Continuous Query

Processor for Large-scale RSS Filtering and Aggregation. In Proceedings of the 20th

ACM International Conference on Information and Knowledge Management (CIKM

2011), pages 2549–2552, held in Glasgow, Scotland, UK, 2011.

http://download.oracle.com/otndocs/jcp/jsp-2_3-mrel2-spec/
http://sourceforge.net/projects/rss4j/
http://citeseerx.ist.psu.edu/
http://www.coursera.org

BIBLIOGRAPHY 345

[81] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods. Cambridge University Press, 2010.

[82] D. H. Crocker. RFC822: Standard for ARPA Internet Text Messages. http://www.

w3.org/Protocols/rfc822/, 1982.

[83] DabbleDB. http://dabbledb.com/, 2010.

[84] R. L. Daft and R. H. Lengel. Information Richness: A New Approach to Managerial

Behavior and Organizational Design. Research in Organizational Behaviour, 6:191–

233, 1984.

[85] M. Daiyan, S. K. Tiwari, M. Kumar, and M. Aftab Alam. A Literature Review

on Opinion Mining and Sentiment Analysis. International Journal of Emerging

Technology and Advanced Engineering, 5(4):262–280, 2015.

[86] M. Danani. Multi-format data upload and display components for myDataSharer

community platform. Master’s thesis, DCSIS, Birkbeck, University of London, 2008.

[87] M. Darabi, H. Adeli, and N. Tabrizi. Automatic multi-label categorization of news

feeds. In Proceedings of The 2012 World Congress in Computer Science, Computer

Engineering, and Applied Computing (DMIN’12), held in Las Vegas, NV, USA, Jul

2012.

[88] C. J. Date. An Introduction to Database Systems. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 6th edition, 1995.

[89] I. de la Torre-Dı́ez, S. Álvaro-Muñoz, M. López-Coronado, and J. Rodrigues. De-

velopment and performance evaluation of a new RSS tool for a Web-based system:

RSS PROYECT. Journal of Network and Computer Applications, 36(1):255–61, Jan

2013.

[90] C. De Maio, G. Fenza, M. Gaeta, V. Loia, F. Orciuoli, and S. Senatore. RSS-based

e-learning recommendations exploiting fuzzy FCA for Knowledge Modeling. Applied

Soft Computing, 12(1):113–124, Jan 2012.

[91] Delicious. https://delicious.com/, 2015.

[92] L. DeMichiel and W. Shannon. Java Platform, Enterprise Edition (Java EE) Specifi-

cation, v7. http://download.oracle.com/otn-pub/jcp/java_ee-7-mrel-eval-

spec/JavaEE_Platform_Spec.pdf, 2015.

http://www.w3.org/Protocols/rfc822/
http://www.w3.org/Protocols/rfc822/
http://dabbledb.com/
https://delicious.com/
http://download.oracle.com/otn-pub/jcp/java_ee-7-mrel-eval-spec/JavaEE_Platform_Spec.pdf
http://download.oracle.com/otn-pub/jcp/java_ee-7-mrel-eval-spec/JavaEE_Platform_Spec.pdf

BIBLIOGRAPHY 346

[93] Denmag. 10 Popular Java Machine Learning Tools & Libraries. Data Science Cen-

tral. http://www.datasciencecentral.com/profiles/blogs/10-popular-java-

machine-learning-tools-libraries, 2015.

[94] Y. Deshpande, S. Murugesan, A. Ginige, S. Hansen, D. Schwabe, M. Gaedke, and

B. White. WEB ENGINEERING. Journal of Web Engineering, 1(1):3–17, Oct

2002.

[95] Disqus. http://disqus.com/, 2015.

[96] S. Drazin and M. Montag. Decision Tree Analysis using Weka. Machine Learning

Project II, University of Miami, 2012.

[97] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making Data Structures

Persistent. Journal of Computer and System Sciences, 38(1):86–124, Feb 1989.

[98] Drop Box. https://www.dropbox.com, 2015.

[99] Drupal. https://www.drupal.com/, 2015.

[100] D. Duan, W. Qian, S. Pan, L. Shi, and C. Lin. VISA: A Visual Sentiment Analysis

System. In Proceedings of the 5th International Symposium on Visual Information

Communication and Interaction (VINCI ’12), pages 22–28, held in Hangzhou, Zhei-

jiang, China, 2012.

[101] Ebay. http://www.ebay.com/, 2015.

[102] E. Ellis. Social Data vs Social Media. Gnip. http://blog.gnip.com/social-data-

vs-social-media-2/, 2013.

[103] Encyclopædia Britannica. http://www.britannica.com/, 2015.

[104] Enron Corpus. http://www.cs.cmu.edu/~./enron/, 2016.

[105] European Media Monitor. http://emm.newsbrief.eu/, 2016.

[106] Facebook. http://www.facebook.com/, 2015.

[107] Facebook Messenger. https://www.messenger.com/, 2015.

[108] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge

Discovery in Databases. AI Magazine, 17(3):37, 1996.

http://www.datasciencecentral.com/profiles/blogs/10-popular-java-machine-learning-tools-libraries
http://www.datasciencecentral.com/profiles/blogs/10-popular-java-machine-learning-tools-libraries
http://disqus.com/
https://www.dropbox.com
https://www.drupal.com/
http://www.ebay.com/
http://blog.gnip.com/social-data-vs-social-media-2/
http://blog.gnip.com/social-data-vs-social-media-2/
http://www.britannica.com/
http://www.cs.cmu.edu/~./enron/
http://emm.newsbrief.eu/
http://www.facebook.com/
https://www.messenger.com/

BIBLIOGRAPHY 347

[109] Feedbin. https://feedbin.com/, 2015.

[110] FeedBlitz. http://www.feedblitz.com, 2015.

[111] FeedBurner.

https://accounts.google.com/servicelogin?service=feedburner, 2015.

[112] FeedForAll. http://www.feedforall.com/, 2015.

[113] Feedjira. http://feedjira.com/, 2015.

[114] Feedly. https://feedly.com, 2015.

[115] FeedsAPI. http://www.feedsapi.com/, 2015.

[116] R Feldman. Sentiment Analysis Tutorial. In TF4 Sentiment Mining from User

Generated Content, 23rd International Joint Conference on Artificial Intelligence,

held in Beijing, China, Aug 2013.

[117] R. Feldman. Techniques and Applications for Sentiment Analysis. Communications

of the ACM, 56(4):82–89, Apr 2013.

[118] R. Feldman and I. Dagan. Knowledge Discovery in Textual Databases (KDT). In

Proceedings of the First International Conference on Knowledge Discovery and Data

Mining (KDD-95), pages 112–117, held in Montreal, Québec, Canada, Aug 1995.

[119] Fever. http://feedafever.com/, 2015.

[120] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-

chitectures. PhD thesis, University of California, Irvine, CA, USA, 2000.

[121] Firefox. https://www.mozilla.org/firefox/, 2015.

[122] D. Fisher, A. Hoff, G. Robertson, and M. Hurst. Narratives: A Visualization to Track

Narrative Events as they Develop. In Proceedings of the 2008 IEEE Symposium on

Visual Analytics Science and Technology (VAST), pages 115–122, Oct 2008.

[123] R. A. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC

PROBLEMS. Annals of Eugenics, 7(7):179–188, 1936.

[124] G. Fiumara, M. La Rosa, and T. Pimpo. (X)querying RSS/Atom Feeds Extracted

from News Web Sites: a Cocoon-based Portal. In Proceedings of the Workshop

Between Ontologies and Folksonomies (BOF-2007), held in East Lansing, MI, USA,

Jun 2007.

https://feedbin.com/
http://www.feedblitz.com
https://accounts.google.com/servicelogin?service=feedburner
http://www.feedforall.com/
http://feedjira.com/
https://feedly.com
http://www.feedsapi.com/
http://feedafever.com/
https://www.mozilla.org/firefox/

BIBLIOGRAPHY 348

[125] FiveFilters. http://fivefilters.org/, 2015.

[126] Flickr. http://www.flickr.com, 2015.

[127] Flipboard. https://flipboard.com, 2015.

[128] FourSquare. http://foursquare.com/, 2015.

[129] E. Frank and R. R. Bouckaert. Naive Bayes for Text Classification with Unbalanced

Classes. In Proceedings of the 10th European Conference on Principles and Practice

of Knowledge Discovery in Databases (PKDD-2006), pages 503–510, held in Berlin,

Germany, 2006.

[130] FreshRSS. http://freshrss.org/, 2015.

[131] J. R. L. Froget, A. B. Baghestan, and Y. S. Asfaranjan. A Uses and Gratification

Perspective on Social Media Usage and Online Marketing. Middle-East Journal of

Scientific Research, 14(1):134–145, 2013.

[132] FusionCharts. http://www.fusioncharts.com/, 2015.

[133] A. Gallion. Applying the Uses and Gratifications Theory To Social Networking

Sites: A Review of Related Literature. https://www.academia.edu/1077670/

Applying_the_Uses_and_Gratifications_Theory_to_Social_Networking_

Sites_A_Review_of_Related_Literature, 2015.

[134] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1995.

[135] I. Garcia and Y-K. Ng. Eliminating Redundant and Less-Informative RSS News

Articles Based on Word Similarity and a Fuzzy Equivalence Relation. In Proceed-

ings of the 18th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI ’06), pages 465–473, 2006.

[136] GeoRSS. http://www.georss.org, 2015.

[137] F. Getahun and R. Chbeir. RSS query algebra: Towards a better news management.

Information Sciences, 237:313–342, Jul 2013.

[138] F. Getahun, J. Tekli, R. Chbeir, M. Viviani, and K. Yetongnon. Relating RSS

News/Items. In Proceedings of the 9th International Conference on Web Engineering

(ICWE 2009), pages 442–452, held in San Sebastián, Spain, Jun 2009.

http://fivefilters.org/
http://www.flickr.com
https://flipboard.com
http://foursquare.com/
http://freshrss.org/
http://www.fusioncharts.com/
https://www.academia.edu/1077670/Applying_the_Uses_and_Gratifications_Theory_to_Social_Networking_Sites_A_Review_of_Related_Literature
https://www.academia.edu/1077670/Applying_the_Uses_and_Gratifications_Theory_to_Social_Networking_Sites_A_Review_of_Related_Literature
https://www.academia.edu/1077670/Applying_the_Uses_and_Gratifications_Theory_to_Social_Networking_Sites_A_Review_of_Related_Literature
http://www.georss.org

BIBLIOGRAPHY 349

[139] G. Giannopoulos, I. Weber, A. Jaimes, and T. Sellis. Diversifying User Comments

on News Articles. In Proceedings of the 13th International Conference on Web

Information Systems Engineering (WISE2012), pages 100–113, 2012.

[140] K. E. Gill. Blogging, RSS and the Information Landscape: A Look At Online News.

In Proceedings of the 14th International World Wide Web Conference (WWW2005)

2nd Annual Workshop on the Weblogging Ecosystem: Aggregation, Analysis and

Dynamic, held in Chiba, Japan, 2005.

[141] A. Ginige and S. Murugesan. Web Engineering: A Methodology for Developing

Scalable, Maintainable Web Applications. Cutter IT Journal, 14(7):24–35, Jul 2001.

[142] F. Gioachin, R. Shankesi, M. J. May, C. A. Gunter, and W. Shin. Emergency

Alerts as RSS Feeds with Interdomain Authorization. In Proceedings of the Second

International Conference on Internet Monitoring and Protection (ICIMP 2007), held

in San Jose, Silicon Valley, CA, USA, Jul 2007.

[143] N. Glance, M. Hurst, and T. Tomokiyo. BlogPulse: Automated Trend Discovery

for Weblogs. In Proceedings of the 13th International World Wide Web Conference

(WWW2004): Workshop on Weblogging Ecosystem: Aggregation, Analysis and Dy-

namics, pages 1–8, held in New York, NY, USA, May 2004.

[144] R. J. Glotzbach, J. L. Mohler, and J. E. Radwan. RSS As a Course Informa-

tion Delivery Method. In Proceedings of the International Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH ’07) Educators Program, held in

San Diego, CA, USA, 2007.

[145] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[146] H. Gomes, M. de Castro Neto, and R. Henriques. Text Mining: Sentiment analysis on

news classification. In Proceedings of 8th Iberian Conference on Information Systems

and Technologies (CISTI 2013), pages 1–6, Jun 2013. (Portuguese language).

[147] P. Gonçalves, M. Araújo, F. Benevenuto, and M. Cha. Comparing and Combining

Sentiment Analysis Methods. In Proceedings of the First ACM Conference on Online

Social Networks (COSN’13), pages 27–38, held in Boston, MA, USA, 2013.

[148] Google. http://www.google.com, 2015.

[149] Google+. https://plus.google.com/, 2015.

http://www.google.com
https://plus.google.com/

BIBLIOGRAPHY 350

[150] Google AdSense. https://www.google.com/adsense/, 2016.

[151] Google Feed API. https://developers.google.com/feed/, 2015.

[152] Google Maps. http://maps.google.com/maps, 2015.

[153] Google News. http://news.google.com/, 2015.

[154] Google Reader. http://www.google.com/reader/, 2015.

[155] Google Scholar. https://scholar.google.com/, 2015.

[156] C. Goopta. Six of the Best Open Source Data Mining Tools. The New Stack. http:

//thenewstack.io/six-of-the-best-open-source-data-mining-tools/, 2014.

[157] F. Goossen, W. IJntema, F. Frasincar, F. Hogenboom, and U. Kaymak. News

Personalization Using the CF-IDF Semantic Recommender. In Proceedings of the

International Conference on Web Intelligence, Mining and Semantics (WIMS ’11),

pages 10:1–10:12, held in Sogndal, Norway, 2011.

[158] J. Gosling and H. McGilton. The Java Language Environment: A White Paper.

Technical report, Sun Microsystems Computer Company, Mountain View, CA, USA,

Oct 1995.

[159] M. Govindarajan and M. Romina. A Survey of Classification Methods and Appli-

cations for Sentiment Analysis. International Journal of Engineering & Science,

2(12):11–15, 2013.

[160] GraphViz. http://www.graphviz.org, 2009.

[161] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information Diffusion

Through Blogspace. In Proceedings of the 13th International Conference on World

Wide Web (WWW2004), pages 491–501, held in New York, NY, USA, May 2004.

[162] A. Gulli. AG’s corpus of news articles. Department of Computer Science, University

of Pisa, Italy. http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.

html, 2016.

[163] V. Gupta and G. S. Lehal. A Survey of Text Mining Techniques and Applications.

Journal of Emerging Technologies in Web Intelligence, 1(1):60–76, Aug 2009.

[164] T. Haerder and A. Reuter. Principles of Transaction-oriented Database Recovery.

ACM Computing Surveys, 15(4):287–317, Dec 1983.

https://www.google.com/adsense/
https://developers.google.com/feed/
http://maps.google.com/maps
http://news.google.com/
http://www.google.com/reader/
https://scholar.google.com/
http://thenewstack.io/six-of-the-best-open-source-data-mining-tools/
http://thenewstack.io/six-of-the-best-open-source-data-mining-tools/
http://www.graphviz.org
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

BIBLIOGRAPHY 351

[165] B. Hammersley. Developing Feeds with RSS and Atom. O’Reilly, 1st edition, 2005.

[166] H. Han, T. Noro, and T. Tokuda. An Automatic Web News Article Contents Ex-

traction System Based on RSS Feeds. Journal of Web Engineering, 8(3):268–284,

2009.

[167] D. Harriott. Query, Analysis & Visualisation interface for community-based, data-

sharing application myDataSharer. Master’s thesis, DCSIS, Birkbeck, University of

London, 2008.

[168] B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer. Programming by a Sample:

Rapidly Creating Web Applications with d.mix. In Proceedings of the 20th Annual

ACM Symposium on User Interface Software and Technology, pages 241–250, held

in Newport, RI, USA, Oct 2007.

[169] O. A-H. Hassan, T. Al-Rousan, A. A. Taleb, and A. Maaita. An efficient and scalable

ranking technique for mashups involving RSS data sources. Journal of Network and

Computer Applications, 39:179–190, 2014.

[170] S. Havre, B. Hetzler, and L. Nowell. ThemeRiver: Visualizing Theme Changes over

Time. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis

2000), pages 115–123, held in Salt Lake City, UT, USA, 2000.

[171] M. A. Hearst. Untangling Text Data Mining. In Proceedings of the 37th Annual

Meeting of the Association for Computational Linguistics on Computational Lin-

guistics (ACL’99), pages 3–10, held in College Park, University of Maryland, MD,

USA, 1999.

[172] M. A. Hearst. Search user interfaces. Cambridge University Press, Cambridge, NY,

USA, 2009.

[173] P. Hennig, P. Berger, C. Lehmann, A. Mascher, and C. Meinel. Accelerate the detec-

tion of trends by using sentiment analysis within the blogosphere. In Proceedings of

the IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining (ASONAM 2014), pages 503–508, held in Beijing, China, Aug 2014.

[174] R. Hiscott. How the Feed Changed the Way We Consume Content. Mashable.

http://mashable.com/2014/01/20/feed-history-infographic/, 2014.

[175] History of RSS. RSS Specifications. http://www.rss-specifications.com/

history-rss.htm, 2012.

http://mashable.com/2014/01/20/feed-history-infographic/
http://www.rss-specifications.com/history-rss.htm
http://www.rss-specifications.com/history-rss.htm

BIBLIOGRAPHY 352

[176] Z. Hmedeh, H. Kourdounakis, V. Christophides, C. Du Mouza, M. Scholl, and

N. Travers. Indexes Analysis for Matching Subscriptions in RSS feeds. In Proceedings

of Bases de Données Avancées, BDA 2012, pages 1–20, held in Clermont-Ferrand,

France, Oct 2012.

[177] Z. Hmedeh, N. Vouzoukidou, N. Travers, V. Christophides, C. du Mouza, and

M. Scholl. Characterizing Web Syndication Behavior and Content. In Proceed-

ings of the 12th International Conference on Web Information System Engineering

(WISE2011), pages 29–42, held in Sydney, NSW, Australia, Oct 2011.

[178] T. K. Ho. Random Decision Forests. In Proceedings of the Third International

Conference on Document Analysis and Recognition (ICDAR’95), pages 278–282,

held in Montreal, Québec, Canada, Aug 1995.

[179] G. Hochard, Z. Lacroix, J. Creus, and B. Amann. A Semantic Map of RSS Feeds to

Support Discovery. In Proceedings of the Third International Conference on Resource

Discovery (RED’10), pages 122–133, 2012.

[180] R. Horincar, B. Amann, and T. Artières. Best-Effort Refresh Strategies for Content-

Based RSS Feed Aggregation. In L. Chen, P. Triantafillou, and T. Suel, editors, Web

Information Systems Engineering (WISE2010), volume 6488, pages 262–270. 2010.

[181] A. Hotho, A. Nürnberger, and G. Paaß. A Brief Survey of Text Mining. LDV

Forum - GLDV Journal for Computational Linguistics and Language Technology,

20(1):19–62, May 2005.

[182] V. Hristidis, O. Valdivia, M. Vlachos, and P. S. Yu. Information Discovery Across

Multiple Streams. Information Sciences, 179(19):3268–3285, 2009.

[183] I-C. Hsu. Personalized web feeds based on ontology technologies. Information Sys-

tems Frontiers, 15(3):465–479, 2013.

[184] L-F. Hsu. Mining on Terms Extraction from Web News. In Proceedings of the Sec-

ond International Conference on Computational Collective Intelligence: Technolo-

gies and Applications (ICCCI 2010), pages 188–194, held in Kaohsiung, Taiwan,

2010.

[185] C-L. Hu and C-K. Chou. RSS Watchdog: An Instant Event Monitor on Real Online

News Streams. In Proceedings of the 18th ACM Conference on Information and

BIBLIOGRAPHY 353

Knowledge Management (CIKM 2009), pages 2097–2098, held in Hong Kong, China,

2009.

[186] Y. Hu, S. Lim, and C. Rizos. Delivering GNSS Data Over the Internet Using RSS

for Post-processing Applications. International Symposium on GPS/GNSS, held in

Hong Kong, China, Dec 2005.

[187] A. Huang. Similarity Measures for Text Document Clustering. In Proceedings

of the Sixth New Zealand Computer Science Research Student Conference (NZC-

SRSC2008), pages 49–56, held in Christchurch, New Zealand, Apr 2008.

[188] A. Hubmann-Haidvogel, A. Scharl, and A. Weichselbraun. Multiple coordinated

views for searching and navigating web content repositories. Information Sciences:

Special Section: Web Search, 179(12):1813–1821, 2009.

[189] Huffington Post. http://www.huffingtonpost.co.uk/, 2015.

[190] Huginn. https://github.com/cantino/huginn/, 2015.

[191] J. Hurtado. Automated System for Improving RSS Feeds Data Quality. Computing

Research Repository, abs/1504.01433, 2015.

[192] IBM Builders reference room. John Backus. http://www-03.ibm.com/ibm/

history/exhibits/builders/builders_backus.html, 2015.

[193] iCloud. https://www.icloud.com, 2015.

[194] iGooglePortal. http://www.igoogleportal.com/, 2015.

[195] ImageBam. https://www.imagebam.com/, 2015.

[196] IMDb. http://www.imdb.com/, 2015.

[197] Imgur. https://www.imgur.com/, 2015.

[198] InoReader. https://www.inoreader.com/, 2015.

[199] Instagram. http://www.instagram.com/, 2015.

[200] Instant RSS Search. http://ctrlq.org/rss/, 2015.

[201] Internet Archive. https://archive.org/, 2015.

http://www.huffingtonpost.co.uk/
https://github.com/cantino/huginn/
http://www-03.ibm.com/ibm/history/exhibits/builders/builders_backus.html
http://www-03.ibm.com/ibm/history/exhibits/builders/builders_backus.html
https://www.icloud.com
http://www.igoogleportal.com/
https://www.imagebam.com/
http://www.imdb.com/
https://www.imgur.com/
https://www.inoreader.com/
http://www.instagram.com/
http://ctrlq.org/rss/
https://archive.org/

BIBLIOGRAPHY 354

[202] ISO/IEC 14977:1996. Information technology -- Syntactic metalanguage -- Extend-

ed BNF. http://www.iso.org/iso/catalogue_detail.htm?csnumber=26153,

1996.

[203] ISO/IEC 9075-1:2011. Information technology -- Database languages -- SQL

-- Part 1: Framework (SQL/Framework). http://www.iso.org/iso/catalogue_

detail.htm?csnumber=53681, 2011.

[204] A. N. Jebaseeli and E. Kirubakaran. A Survey on Sentiment Analysis of (Product)

Reviews. International Journal of Computer Applications, 47(11):36–39, Jun 2012.

[205] C. Ji and J. Zhou. A Study on Recommendation Features for an RSS Reader.

In Proceedings of the 2010 International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), pages 193–198, held in Huangshan,

Anhui, China, Oct 2010.

[206] T. Joachims. Text Categorization with Support Vector Machines: Learning with

Many Relevant Features. In Proceedings of the 10th European Conference on Ma-

chine Learning (ECML ’98), pages 137–142, 1998.

[207] B. Johnson and B. Shneiderman. Tree-maps: A Space-Filling Approach to the

Visualization of Hierarchical Information Structures. In Proceedings of the 2nd Con-

ference on Visualization (VIS ’91), pages 284–291, held in San Diego, CA, USA,

1991.

[208] Joomla. http://www.joomla.org/, 2015.

[209] G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger. Web Engineering. John Wiley

and Sons, 2003.

[210] Kimono. https://www.kimonolabs.com/, 2015.

[211] N. Kittiphattanabawon and T. Theeramunkong. Relation Discovery from Thai News

Articles Using Association Rule Mining. In Proceedings of the Pacific Asia Work-

shop on Intelligence and Security Informatics (PAISI ’09), pages 118–129, held in

Bangkok, Thailand, 2009.

[212] R. Kohavi and F. Provost. Glossary of Terms. Machine Learning, 30(2-3):271–274,

Feb 1998.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26153
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53681
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53681
http://www.joomla.org/
https://www.kimonolabs.com/

BIBLIOGRAPHY 355

[213] M. Krstajić, F. Mansmann, A. Stoffel, M. Atkinson, and D.A. Keim. Processing

Online News Streams for Large-Scale Semantic Analysis. In 2010 IEEE 26th In-

ternational Conference on Data Engineering Workshops (ICDEW), pages 215–220,

Mar 2010.

[214] M. Krstajić, M. Najm-Araghi, F. Mansmann, and D. A. Keim. Incremental Visual

Text Analytics of News Story Development. In P. K. Wong, D. L. Kao, M. C. Hao,

C. Chen, R. Kosara, M. A. Livingston, Park. J, and I. Roberts, editors, Proceedings

of the Conference on Visualization and Data Analysis (VDA ’12), 2012.

[215] O. Kucuktunc, B. B. Cambazoglu, I. Weber, and H. Ferhatosmanoglu. A Large-

Scale Sentiment Analysis for Yahoo! Answers. In Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining (WSDM ’12), pages 633–

642, held in Seattle, WA, USA, 2012.

[216] P. Kuzniewicz. 21 Essential Data Visualization Tools. KDnuggets. http://www.

kdnuggets.com/2015/05/21-essential-data-visualization-tools.html/,

2015.

[217] R. Lambiotte, M. Ausloos, and M. Thelwall. Word statistics in Blogs and RSS feeds:

Towards empirical universal evidence. Journal of Informetrics, 1:277–286, 2007.

[218] Y-F. Lan and Y-S. Sie. Using RSS to support mobile learning based on media

richness theory. Computers & Education, 55(2):723–732, 2010.

[219] D. Lane. Mass Communications Context, Uses And Gratifications Theory. Univer-

sity of Kentucky, Lexington, KY, USA. http://www.uky.edu/~drlane/capstone/

mass/uses.htm, 2001.

[220] P. R. Leary, D. P. Remsen, C. N. Norton, D. J. Patterson, and I. N. Sarkar. uBioRSS:

Tracking taxonomic literature using RSS. Bioinformatics, 23(11):1434–1436, 2007.

[221] HK. Lee, H. Y. Kim, and H-K Lee. News package service based on TV-Anytime

metadata gathered from RSS. In Proceedings of the IEEE International Symposium

on Consumer Electronics (ISCE 2007), pages 1–6, held in Irving, TX, USA, Jun

2007.

[222] T. P. Lee, A. A. A. Ghani, H. Ibrahim, and R. Atan. Coalescence of XML-based

Really Simple Syndication (RSS) Aggregator for Blogosphere. In Proceedings of

http://www.kdnuggets.com/2015/05/21-essential-data-visualization-tools.html/
http://www.kdnuggets.com/2015/05/21-essential-data-visualization-tools.html/
http://www.uky.edu/~drlane/capstone/mass/uses.htm
http://www.uky.edu/~drlane/capstone/mass/uses.htm

BIBLIOGRAPHY 356

the 7th International Conference on Advances in Mobile Computing and Multimedia

(MoMM 2009), pages 530–534, held in Kuala Lumpur, Malaysia, 2009.

[223] T. P. Lee, A.A.A. Ghani, and C. Y. Huang. Survey on application tools of Really

Simple Syndication (RSS): A case study at Klang Valley. In Proceedings of the

International Symposium on Information Technology (ITSim 2008), volume 3, pages

1–8, Aug 2008.

[224] M. Levene. An Introduction to Search Engines and Web Navigation. Pearson Edu-

cation Limited, Harlow, Essex, England, UK, 1st edition, 2006.

[225] D. Lewis. Reuters-21578 Text Categorization Test Collection. http://www.

daviddlewis.com/resources/testcollections/reuters21578/, 2015.

[226] X. Li, J. Yan, Z. Deng, L. Ji, W. Fan, B. Zhang, and Z. Chen. A Novel Clustering-

based RSS Aggregator. In Proceedings of the 16th International Conference on World

Wide Web (WWW2007), pages 1309–1310, held in Banff, AB, Canada, 2007.

[227] LinkedIn. https://www.linkedin.com/, 2015.

[228] LinkedIn Pulse. https://www.pulse.me/, 2015.

[229] Listal. https://www.listal.com/, 2015.

[230] B. Liu. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human

Language Technologies. Morgan & Claypool Publishers, 2012.

[231] B. Liu, H. Han, T. Noro, and T. Tokuda. Personal News RSS Feeds Generation

Using Existing News Feeds. In Proceedings of the 9th International Conference on

Web Engineering (ICWE 2009), pages 419–433, held in San Sebastián, Spain, Jun

2009.

[232] H. Liu. Spring 4 for Developing Enterprise Applications: An End-to-End Approach.

CreateSpace Independent Publishing Platform, 2014.

[233] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client Behavior and Feed Character-

istics of RSS, a Publish-Subscribe System for Web Micronews. In Proceedings of the

5th ACM SIGCOMM Conference on Internet Measurement (IMC ’05), pages 3–3,

held in Berkeley, CA, USA, 2005.

[234] LiveJournal. http://www.livejournal.com/, 2015.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
https://www.linkedin.com/
https://www.pulse.me/
https://www.listal.com/
http://www.livejournal.com/

BIBLIOGRAPHY 357

[235] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text

Classification Using String Kernels. Journal of Machine Learning Research, 2:419–

444, Mar 2002.

[236] H. O. D. Longe and F. Salami. A Text Classifier Model for Categorizing Feed Con-

tents Consumed by a Web Aggregator. International Journal of Advanced Computer

Science and Application, 5(9):95–100, 2014.

[237] Lovestruck. http://www.lovestruck.com, 2016.

[238] M. Luenendonk. Top Programming Languages used in Web Develop-

ment. Cleverism. https://www.cleverism.com/programming-languages-web-

development/, 2015.

[239] D. Luo, J. Yang, M. Krstajić, W. Ribarsky, and D. A. Keim. EventRiver: Visu-

ally Exploring Text Collections with Temporal References. IEEE Transactions on

Visualization and Computer Graphics, 18(1):93–105, Jan 2012.

[240] D. Ma. Use of RSS feeds to push online content to users. Decision Support Systems,

54(1):740–749, 2012.

[241] S. Machlis. Chart and image gallery: 30+ free tools for data visualization and

analysis. Computerworld. http://www.computerworld.com/article/2506820/

business-intelligence/business-intelligence-chart-and-image-gallery-

30-free-tools-for-data-visualization-and-analysis.html, 2016.

[242] M. Makpangou, B. Ngom, and S. Ndiaye. Friticores: A RSS Feed Monitoring and

Dissemination System. In Proceedings of AFRICOMM 2012 - Fourth International

IEEE EAI Conference on e-Infrastructure and e-Services for Developing Countries,

held in Yaounde, Cameroon, Nov 2012.

[243] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

Cambridge University Press, New York, NY, USA, 2008.

[244] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-

cessing. MIT Press, Cambridge, MA, USA, 1999.

[245] Many Eyes. http://many-eyes.com, 2009.

[246] S. Maple. The Ultimate Java Web Frameworks Comparison: Spring MVC,

Grails, Vaadin, GWT, Wicket, Play, Struts and JSF. ZeroTurnaround.

http://www.lovestruck.com
https://www.cleverism.com/programming-languages-web-development/
https://www.cleverism.com/programming-languages-web-development/
http://www.computerworld.com/article/2506820/business-intelligence/business-intelligence-chart-and-image-gallery-30-free-tools-for-data-visualization-and-analysis.html
http://www.computerworld.com/article/2506820/business-intelligence/business-intelligence-chart-and-image-gallery-30-free-tools-for-data-visualization-and-analysis.html
http://www.computerworld.com/article/2506820/business-intelligence/business-intelligence-chart-and-image-gallery-30-free-tools-for-data-visualization-and-analysis.html
http://many-eyes.com

BIBLIOGRAPHY 358

http://zeroturnaround.com/rebellabs/the-curious-coders-java-web-

frameworks-comparison-spring-mvc-grails-vaadin-gwt-wicket-play-

struts-and-jsf/1/, 2013.

[247] J. Martin. Information Engineering, Planning & Analysis: Book 2. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1990.

[248] N. Martin. Data Mining - Overview, Data Warehousing and Data Mining. DC-

SIS, Birkbeck, University of London, England, UK. http://www.dcs.bbk.ac.uk/

study-with-us/modules/data-warehousing-and-data-mining, 2006.

[249] Mashable. http://mashable.com/category/web-apps/, 2015.

[250] Match. http://www.match.com/, 2015.

[251] H. Mayr. Web Engineering as a Specialization of Software Engineering : Differ-

ences in Project Management Education. Journal on Systemics, Cybernetics and

Informatics, 3(5):84–91, 2005.

[252] M. McCandless, E. Hatcher, and O. Gospodnetić. Lucene in Action, Second Edition:

Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA, 2010.

[253] W. Medhat, A. Hassan, and H. Korashy. Sentiment analysis algorithms and appli-

cations: A survey. Ain Shams Engineering Journal, 5(4):1093–1113, 2014.

[254] Media RSS. RSS Advisory Board. http://www.rssboard.org/media-rss, 2015.

[255] Medical Information System. http://medisys.newsbrief.eu/, 2016.

[256] Mendeley. https://www.mendeley.com/, 2015.

[257] A. Messina and M. Montagnuolo. Content-Based RSS and Broadcast News Streams

Aggregation and Retrieval. In Proceedings of the Third IEEE International Con-

ference on Digital Information Management (ICDIM 2008), pages 93–98, held in

London, England, UK, Nov 2008.

[258] R.S. Michalski and R.L. Chilausky. Learning by Being Told and Learning from Ex-

amples: An Experimental Comparison of the Two Methods of Knowledge Acquisi-

tion in the Context of Developing an Expert System for Soybean Disease Diagnosis.

International Journal of Policy Analysis and Information Systems, 4(2):125–161,

1980.

http://zeroturnaround.com/rebellabs/the-curious-coders-java-web-frameworks-comparison-spring-mvc-grails-vaadin-gwt-wicket-play-struts-and-jsf/1/
http://zeroturnaround.com/rebellabs/the-curious-coders-java-web-frameworks-comparison-spring-mvc-grails-vaadin-gwt-wicket-play-struts-and-jsf/1/
http://zeroturnaround.com/rebellabs/the-curious-coders-java-web-frameworks-comparison-spring-mvc-grails-vaadin-gwt-wicket-play-struts-and-jsf/1/
http://www.dcs.bbk.ac.uk/study-with-us/modules/data-warehousing-and-data-mining
http://www.dcs.bbk.ac.uk/study-with-us/modules/data-warehousing-and-data-mining
http://mashable.com/category/web-apps/
http://www.match.com/
http://www.rssboard.org/media-rss
http://medisys.newsbrief.eu/
https://www.mendeley.com/

BIBLIOGRAPHY 359

[259] Microsoft Excel. https://products.office.com/excel, 2015.

[260] Microsoft Office. https://www.office.com/start/default.aspx, 2015.

[261] Microsoft OneDrive. https://onedrive.live.com, 2015.

[262] Microsoft Outlook. https://products.office.com/outlook, 2015.

[263] Microsoft Windows. http://windows.microsoft.com/, 2015.

[264] Microsoft Windows RSS Platform. https://msdn.microsoft.com/en-us/

library/ms684701(v=vs.85).aspx, 2015.

[265] Microsoft Word. https://products.office.com/word, 2015.

[266] R. Mikut and M. Reischl. Data mining tools. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, 1(5):431–443, 2011.

[267] J. S. Modha, G. S. Pandi, and S. J. Modha. Automatic Sentiment Analysis for Un-

structured Data. International Journal of Advanced Research in Computer Science

and Software Engineering, 3(12):91–97, 2013.

[268] A. Møller and M. I. Schwartzbach. An Introduction to XML and Web Technologies.

Pearson Education Limited, Harlow, Essex, England, UK, 2006.

[269] Moodle. https://moodle.org/, 2015.

[270] S. Mukherjee and P. Bhattacharyya. Sentiment Analysis, A Literature Survey. Com-

puting Research Repository, abs/1304.4520, 2013.

[271] J. Murach and A. Steelman. Murach’s Java Servlets and JSPs. Mike Murach and

Associates Inc, 2nd edition, 2008.

[272] MySpace. http://www.myspace.com/, 2015.

[273] M. Naaman, J. Boase, and C-H. Lai. Is It Really About Me? Message Content in

Social Awareness Streams. In Proceedings of the 2010 ACM Conference on Computer

Supported Cooperative Work (CSCW ’10), pages 189–192, held in Savannah, GA,

USA, 2010.

[274] Z. Nanli, Z. Ping, L. Weiguo, and C. Meng. Sentiment analysis: A literature review.

In Proceedings of the 2012 IEEE International International Symposium on Man-

agement of Technology (ISMOT’2012), pages 572–576, held in Hangzhou, Zhejiang,

China, Nov 2012.

https://products.office.com/excel
https://www.office.com/start/default.aspx
https://onedrive.live.com
https://products.office.com/outlook
http://windows.microsoft.com/
https://msdn.microsoft.com/en-us/library/ms684701(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms684701(v=vs.85).aspx
https://products.office.com/word
https://moodle.org/
http://www.myspace.com/

BIBLIOGRAPHY 360

[275] National Information Standards Organization. Understanding Metadata. http:

//www.niso.org/standards/resources/UnderstandingMetadata.pdf, 2004.

[276] Netflix. https://www.netflix.com/, 2016.

[277] Netvibes. http://www.netvibes.com/, 2015.

[278] NewsBlur. https://www.newsblur.com/, 2015.

[279] NewzCrawler. http://www.newzcrawler.com/, 2015.

[280] F. A. Nielsen. A new ANEW: Evaluation of a word list for sentiment analysis in

microblogs. Computing Research Repository, abs/1103.2903, 2011.

[281] K. Nørmark. Programming Paradigms, Functional Programming in Scheme.

Department of Computer Science, Aalborg University, Aalborg, Denmark.

http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_

themes-paradigm-overview-section.html, 2013.

[282] Object Management Group. Documents Associated With OMG Unified Modeling

Language (OMG), Version 2.5. http://www.omg.org/spec/UML/2.5/, 2015.

[283] Office of Communications. The Communications Market Report: United Kingdom,

The UK is now a “smartphone society”. http://stakeholders.ofcom.org.

uk/market-data-research/market-data/communications-market-reports/

cmr15/uk/, 2015.

[284] Open Office. http://www.openoffice.org/, 2015.

[285] Open University. http://www.open.ac.uk/, 2015.

[286] Oracle JDBC FAQ. http://www.oracle.com/technetwork/database/

enterprise-edition/jdbc-faq-090281.html, 2014.

[287] O’Reilly Media. http://www.oreilly.com/, 2015.

[288] M. O’Shea and M. Levene. Mining and visualising information from RSS feeds: a

case study. International Journal of Web Information Systems, 7(2):105–129, 2011.

[289] M. O’Shea and M. Levene. visualRSS: a Platform to Mine and Visualise Social

Data from RSS Feeds. In Proceedings of the 12th International Conference on Web

Engineering (ICWE 2012) 4th International Workshop on Lightweight Integration

on the Web (ComposableWeb), pages 121–133, held in Berlin, Germany, Jul 2012.

http://www.niso.org/standards/resources/UnderstandingMetadata.pdf
http://www.niso.org/standards/resources/UnderstandingMetadata.pdf
https://www.netflix.com/
http://www.netvibes.com/
https://www.newsblur.com/
http://www.newzcrawler.com/
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html
http://www.omg.org/spec/UML/2.5/
http://stakeholders.ofcom.org.uk/market-data-research/market-data/communications-market-reports/cmr15/uk/
http://stakeholders.ofcom.org.uk/market-data-research/market-data/communications-market-reports/cmr15/uk/
http://stakeholders.ofcom.org.uk/market-data-research/market-data/communications-market-reports/cmr15/uk/
http://www.openoffice.org/
http://www.open.ac.uk/
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html
http://www.oreilly.com/

BIBLIOGRAPHY 361

[290] Page2RSS. http://page2rss.com/, 2015.

[291] I. Paik and H. Mizugai. Recommendation System Using Weighted TF-IDF and Näıve

Bayes Classifiers on RSS Contents. Journal of Advanced Computational Intelligence

and Intelligent Informatics, 14(6):631–637, 2010.

[292] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and

Trends in Information Retrieval, 2(1-2):1–135, 2008.

[293] P. Patel and S. G. Desai. A Comparative Study on Data Mining Tools. International

Journal of Advanced Trends in Computer Science and Engineering, 4(2), 2015.

[294] K. Pearson. Note on Regression and Inheritance in the Case of Two Parents. Pro-

ceedings of the Royal Society of London, 58(347-352):240–242, Jan 1895.

[295] M. S. Pera and Y-K. Ng. Synthesizing Correlated RSS News Articles Based on a

Fuzzy Equivalence Relation. International Journal of Web Information Systems,

5(1):77–109, 2009.

[296] M. S. Pera and Y-K. Ng. Using Maximal Spanning Trees and Word Similarity to

Generate Hierarchical Clusters of Non-Redundant RSS News Articles. Journal of

Intelligent Information Systems, 39(2):513–534, 2012.

[297] D. Petrova-Antonova and R. Simov. jQRSS: A jQuery plugin for RSS and Atom feeds

Parsing. In Proceedings of the 12th International Conference on Computer Systems

and Technologies (CompSysTech’11), pages 641–646, held in Vienna, Austria, 2011.

[298] X-H. Phan, L-M. Nguyen, and S. Horiguchi. Learning to Classify Short and Sparse

Text & Web with Hidden Topics from Large-scale Data Collections. In Proceedings of

the 17th International Conference on World Wide Web (WWW2008), pages 91–100,

held in Beijing, China, Apr 2008.

[299] M. Pilgrim. What is RSS. http://www.xml.com/pub/a/2002/12/18/dive-into-

xml.html, 2002.

[300] M. Pilgrim. The myth of RSS compatibility. http://web.archive.org/

web/20110726001954/http://diveintomark.org/archives/2004/02/04/

incompatible-rss, 2004.

[301] W. A. Pinheiro, T. de S. Rodrigues, M.A.R. da Silva, M. A. N. da Silva, M. C. O.

Silva, G. Xexéo, and J. M. de Souza. Autonomic RSS: Discarding Irrelevant News.

http://page2rss.com/
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://web.archive.org/web/20110726001954/http://diveintomark.org/archives/2004/02/04/incompatible-rss
http://web.archive.org/web/20110726001954/http://diveintomark.org/archives/2004/02/04/incompatible-rss
http://web.archive.org/web/20110726001954/http://diveintomark.org/archives/2004/02/04/incompatible-rss

BIBLIOGRAPHY 362

In Proceedings of the Fifth International Conference on Autonomic and Autonomous

Systems (ICAS 2009), pages 148–153, Apr 2009.

[302] Pinterest. http://www.pinterest.com, 2015.

[303] R. K. Pon, A. F. Cárdenas, D. Buttler, and T. Critchlow. Tracking Multiple Topics

for Finding Interesting Articles. In Proceedings of the 13th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD-07), pages

560–569, held in San Jose, CA, USA, 2007.

[304] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[305] R. Prabowo and M. Thelwall. A comparison of feature selection methods for an

evolving RSS feed corpus. Information Processing & Management, 42(6):1491–1512,

2006.

[306] R. Prabowo, M. Thelwall, and M. Alexandrov. Generating overview timelines for

major events in an RSS corpus. Journal of Informetrics, 1(2):131–144, 2007.

[307] L. Preechaveerakul and W. Kaewnopparat. A Novel Approach: Secure Informa-

tion Notifying System Using RSS Technology. In Proceedings of the International

Conference on Future Networks, pages 95–99, held in Bangkok, Thailand, Mar 2009.

[308] R. Pressman and D. Lowe. Web Engineering: A Practitioner’s Approach. McGraw-

Hill, New York, NY, USA, 1st edition, 2009.

[309] R. S. Pressman. Software Engineering: A Practitioner’s Approach, European Adap-

tation. McGraw-Hill, Europe, Maidenhead, Berkshire, England, UK, 3rd edition,

1992. Adapted by D. Ince.

[310] Python RSS Code. http://wiki.python.org/moin/RssLibraries, 2015.

[311] L. Qingcheng and L. Youmeng. Extracting Content from Web Pages Based on

RSS. In Proceedings of the 2008 International Conference on Computer Science and

Software Engineering (CSSE ’08), volume 5, pages 218–221, held in Wuhan, Hubei,

China, 2008.

[312] Quartz News. http://qz.com/, 2015.

[313] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Francisco, CA, USA, 1993.

http://www.pinterest.com
http://wiki.python.org/moin/RssLibraries
http://qz.com/

BIBLIOGRAPHY 363

[314] Quora. http://www.quora.com/, 2015.

[315] C. M. Rahman, F. A. Sohel, P. Naushad, and S. M. Kamruzzaman. Text Classifi-

cation using the Concept of Association Rule of Data Mining. Computing Research

Repository, abs/1009.4582, 2010.

[316] S. Rajput and A. Arora. Designing Spam Model - Classification Analysis using

Decision Trees. International Journal of Computer Applications, 75(10):6–12, Aug

2013.

[317] Y. Ramamohan, K. Vasantharao, C. K. Chakravarti, and A.S.K. Ratnam. A Study

of Data Mining Tools in Knowledge Discovery Process. International Journal of Soft

Computing and Engineering (IJSCE), 2(3):191–194, 2012.

[318] RDF Rich Site Summary (RSS). Cover Pages. http://xml.coverpages.org/rss.

html, 2007.

[319] Reddit. https://www.reddit.com, 2015.

[320] J. W. Reed, Yu Jiao, T. E. Potok, B. A. Klump, M. T. Elmore, and A. R. Hurson.

TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams. In

Proceedings of the 5th International Conference on Machine Learning and Applica-

tions (ICMLA ’06), ICMLA’06, pages 258–263, held in Orlando, FL, USA, 2006.

[321] Reedah. https://www.reedah.com/, 2015.

[322] T. Reenskaug. Models-views-controllers. Technical report, Xerox Palo Alto Research

Center, CA, USA, Dec 1979.

[323] A. H. Renear, S. Sacchi, and K. M. Wickett. Definitions of Dataset in the Scientific

and Technical Literature. In Proceedings of the 73rd ASIS&T Annual Meeting on

Navigating Streams in an Information Ecosystem (ASIS&T ’10), volume 47, pages

81:1–81:4, held in Pittsburgh, PA, USA, 2010.

[324] J. D. M. Rennie and R. Rifkin. Improving Multiclass Text Classification with the

Support Vector Machine. Technical report, Artificial Intelligence Laboratory, Mas-

sachussetts Institute of Technology, MA, USA, Oct 2001.

[325] ResearchGate. http://www.researchgate.net/, 2015.

[326] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,

MA, USA, 2nd edition, 1979.

http://www.quora.com/
http://xml.coverpages.org/rss.html
http://xml.coverpages.org/rss.html
https://www.reddit.com
https://www.reedah.com/
http://www.researchgate.net/

BIBLIOGRAPHY 364

[327] R. Roesler. Relational RSS Clustering Techniques, Machine Learning. Comput-

er Science, Stanford University, Stanford, CA, USA. http://www.stanford.edu/

class/cs229/proj2009/Roesler.pdf, 2009.

[328] C. Rohrdantz, M. C. Hao, U. Dayal, L-E. Haug, and D. A. Keim. Feature-Based

Visual Sentiment Analysis of Text Document Streams. ACM Transactions on In-

telligent Systems and Technology, Special Issue on Intelligent Visual Interfaces for

Text Analysis, 3(2):26:1–26:25, Feb 2012.

[329] L. Rokach and O. Maimon. Data Mining with Decision Trees: Theory and Applica-

tions. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2008.

[330] W. Romsaiyud. RSS Offline. https://www.researchgate.net/publication/

228418759_RSS_Offline, 2016.

[331] W. W. Royce. Managing the Development of Large Software Systems: Concepts

and Techniques. In Proceedings of the 9th International Conference on Software

Engineering (ICSE ’87), pages 328–338, Monterey, CA, USA, 1987.

[332] RSS 2.0 Specification. RSS Advisory Board. http://www.rssboard.org/rss-

specification, 2009.

[333] RSS 2.0 Specification Roadmap. RSS Advisory Board. http://www.rssboard.org/

rss-specification#roadmap, 2009.

[334] RSS Advisory Board. http://www.rssboard.org/, 2015.

[335] RSS Reader. http://www.rss-readers.org/, 2015.

[336] RSS Wizard. http://rss-wizard.en.softonic.com/, 2015.

[337] RSS4Medics. http://www.rss4medics.com, 2015.

[338] RSS4Twitter. http://rss4twitter.appspot.com/, 2016.

[339] RSSMicro. http://www.rssmicro.com/, 2015.

[340] RSSOwl. http://www.rssowl.org/, 2015.

[341] Sage. http://sagerss.com/, 2015.

http://www.stanford.edu/class/cs229/proj2009/Roesler.pdf
http://www.stanford.edu/class/cs229/proj2009/Roesler.pdf
https://www.researchgate.net/publication/228418759_RSS_Offline
https://www.researchgate.net/publication/228418759_RSS_Offline
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification#roadmap
http://www.rssboard.org/rss-specification#roadmap
http://www.rssboard.org/
http://www.rss-readers.org/
http://rss-wizard.en.softonic.com/
http://www.rss4medics.com
http://rss4twitter.appspot.com/
http://www.rssmicro.com/
http://www.rssowl.org/
http://sagerss.com/

BIBLIOGRAPHY 365

[342] S. Saha, A. Sajjanhar, G. Shang, R. Dew, and Y. Zhao. Delivering Categorized

News Items Using RSS Feeds and Web Services. In Proceedings of the IEEE 10th

International Conference on Computer and Information Technology (CIT 2010),

pages 698–702, Jun 2010.

[343] A. Sajjanhar and Y. Zhao. Web Service to Deliver Filtered RSS Items to a Mobile

Application. In Proceedings of the Seventh ChinaGrid Annual Conference (China-

Grid 2012), pages 128–133, 2012.

[344] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-

Hill, New York, NY, USA, 1983.

[345] G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.

Communications of the ACM, 18(11):613–620, Nov 1975.

[346] J. J. Samper, P. A. Castillo, L. Araujo, J. J. Merelo, Ó. Cordón, and F. Tricas.

NectaRSS, an intelligent RSS feed reader. Journal of Network and Computer Ap-

plications, 31(4):793–806, Nov 2008.

[347] A. Scharl, A. Hubmann-Haidvogel, M. Sabou, A. Weichselbraun, and H-P. Lang.

From Web Intelligence to Knowledge Co-Creation – A Platform to Analyze and

Support Stakeholder Communication. IEEE Internet Computing, 17(5):21–29, 2013.

[348] Scoop.It! http://www.scoop.it//, 2013.

[349] F. Sebastiani. Machine Learning in Automated Text Categorization. ACM Com-

puting Surveys, 34(1):1–47, Mar 2002.

[350] Selfoss. http://selfoss.aditu.de/, 2015.

[351] Semantria. https://semantria.com/, 2015.

[352] S. Sen, W. Geyer, M. Muller, M. Moore, B. Brownholtz, E. Wilcox, and D. R. Millen.

FeedMe: A Collaborative Alert Filtering System. In Proceedings of the 2006 20th

Anniversary Conference on Computer Supported Cooperative Work (CSCW ’06),

pages 89–98, held in Banff, AB, Canada, 2006.

[353] F. Shaikh and A. Rajawat. Approach for Developing Scientific News Aggregators

Using ATOM Feeds. International Journal of Electronics and Computer Science

Engineering, 1(4):2279–2284, 2012.

http://www.scoop.it//
http://selfoss.aditu.de/
https://semantria.com/

BIBLIOGRAPHY 366

[354] Y. R. Shema. visualRSS Android Client. Master’s thesis, DCSIS, Birkbeck, Univer-

sity of London, 2013.

[355] K. C. Sia, J. Cho, and H-K. Cho. Efficient Monitoring Algorithm for Fast News

Alerts. IEEE Transactions on Knowledge and Data Engineering, 19(7):950–961, Jul

2007.

[356] K.C. Sia, J. Cho, K. Hino, Y. Chi, S. Zhu, and B. L. Tseng. Monitoring RSS Feeds

based on User Browsing Pattern. In Proceedings of the International Conference on

Weblogs and Social Media (ICWSM-07), pages 161–168, held in Boulder, CO, USA,

Mar 2007.

[357] A. Silberstein, J. Terrace, B. F. Cooper, and R. Ramakrishnan. Feeding Fren-

zy: Selectively Materializing Users’ Event Feeds. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data (SIGMOD’10), pages

831–842, held in Indianapolis, IN, USA, 2010.

[358] A. S̆ilić and B. D. Bas̆ić. Visualization of Text Streams: A Survey. In Part II of

Proceedings of the Knowledge-Based and Intelligent Information and Engineering

Systems - 14th International Conference (KES 2010), pages 31–43, held in Cardiff,

Wales, UK, Sep 2010.

[359] S. J. Simoff, M. H. Böhlen, and A. Mazeika. Visual Data Mining: An Introduction

and Overview. In S. J. Simoff, M. H. Böhlen, and A. Mazeika, editors, Visual Data

Mining: Theory, Techniques and Tools for Visual Analytics, pages 1–12. 2008.

[360] G. Singh and S. Sahu. Review on “Really Simple Syndication (RSS) Technology

Tools”. In Proceedings of the IEEE International Conference on Computational

Intelligence Communication Technology (ICICT-2015), pages 757–761, held in

Ghaziabad, Uttar Pradesh, India, Feb 2015.

[361] Skype. http://www.skype.com/, 2015.

[362] K. Smitty. 9 Word Cloud Generators That Aren’t Wordle. Edudemic. http://www.

edudemic.com/9-word-cloud-generators-that-arent-wordle/, 2013.

[363] SnapChat. http://www.snapchat.com/, 2015.

[364] T. Snowsill, F. Nicart, M. Stefani, T. De Bie, and N. Cristianini. Finding surprising

patterns in textual data streams. In Proceedings of the 2nd International Workshop

http://www.skype.com/
http://www.edudemic.com/9-word-cloud-generators-that-arent-wordle/
http://www.edudemic.com/9-word-cloud-generators-that-arent-wordle/
http://www.snapchat.com/

BIBLIOGRAPHY 367

on Cognitive Information Processing (CIP), pages 405–410, held on Elba Island,

Italy, Jun 2010.

[365] Y. E. Soelistio and M. R. S. Surendra. Simple Text Mining for Sentiment Analy-

sis of Political Figure Using Näıve Bayes Classifier Method. Computing Research

Repository, abs/1508.05163, 2015.

[366] H. Solanki. Comparative Study of Data Mining Tools and Analysis with Unified Data

Mining Theory. International Journal of Computer Applications, 75(16):23–28, Aug

2013.

[367] I-Y. Song and K. Froehlich. Entity-relationship modeling. IEEE Potentials,

13(5):29–34, Dec 1994.

[368] SoundCloud. https://soundcloud.com/, 2015.

[369] K. Spärck Jones. A statistical interpretation of term specificity and its application

in retrieval. Journal of Documentation, 28(1):11–21, 1972.

[370] StackExchange. http://stackexchange.com/, 2015.

[371] Stanford Natural Language Processing Group. http://nlp.stanford.edu/

software/, 2015.

[372] A. Statnikov, C. F. Aliferis, D. P. Hardin, and I. Guyon. A Gentle Introduction to

Support Vector Machines in Biomedicine: Case Studies. World Scientific Publishing

Co., Inc., River Edge, NJ, USA, 1st edition, 2011.

[373] C. A. Steed, M. Drouhard, J. Beaver, J. Pyle, and P. L. Bogen. Matisse: A Visual

Analytics System for Exploring Emotion Trends in Social Media Text Streams. In

Proceedings of the IEEE International Conference on Big Data (Big Data), pages

807–814, held in Santa Clara, CA, USA, Oct 2015.

[374] C. A. Steed, T. E. Potok, R. M. Patton, J. R. Goodall, C. Maness, and J. Senter.

Interactive Visual Analysis of High Throughput Text Streams. In 2nd Workshop on

Interactive Visual Text Analytics, held in Seattle, WA, USA, Oct 2012.

[375] Storify. https://storify.com/, 2015.

[376] StumbleUpon. https://www.stumbleupon.com/, 2015.

https://soundcloud.com/
http://stackexchange.com/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/software/
https://storify.com/
https://www.stumbleupon.com/

BIBLIOGRAPHY 368

[377] B. Suda. The 38 best tools for data visualization. Creative Bloq. http://www.

creativebloq.com/design-tools/data-visualization-712402?page=1, 2016.

[378] Swivel. http://www.swivel.com, 2009.

[379] Syndic8. http://www.syndic8.com/, 2005.

[380] Tableau. http://www.tableausoftware.com/, 2011.

[381] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede. Lexicon-based Methods

for Sentiment Analysis. Computational Linguistics, 37(2):267–307, Jun 2011.

[382] F. G. Taddesse, J. Tekli, R. Chbeir, M. Viviani, and K. Yetongnon. Semantic-based

Merging of RSS Items. World Wide Web, 13(1-2):169–207, Mar 2010.

[383] TalkTalk TV Store. https://www.talktalktvstore.co.uk/, 2010.

[384] D. I. Tamir and J. P. Mitchell. Disclosing information about the self is intrinsically

rewarding. Proceedings of the National Academy of Sciences of the United States of

America, 109(21):8038–8043, 2012.

[385] Z. Tang and K. Ma. RSSCube: A Content Syndication and Recommendation Archi-

tecture. International Journal of Data Base Theory and Application, 7(4):237–248,

2014.

[386] TechCrunch. http://www.techcrunch.com/, 2015.

[387] Technorati. http://www.technorati.com, 2015.

[388] Techopedia. http://www.techopedia.com/definition/27745/big-data, 2015.

[389] J. Tee. Sharding in the Cloud. TheServerSide. http://www.theserverside.com/

feature/Sharding-in-the-Cloud, 2011.

[390] B. E. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan, H. Samet, and

J. Sperling. NewsStand: A New View on News. In Proceedings of the 16th ACM

SIGSPATIAL International Conference on Advances in Geographic Information Sys-

tems (GIS 2008), pages 18:1–18:10, held in Irvine, CA, USA, 2008.

[391] Z. Teng, Y. Liu, and F. Ren. Create Special Domain News Collections through

Summarization and Classification. IEEE Transactions on Electrical and Electronic

Engineering, 5:56–61, 2010.

http://www.creativebloq.com/design-tools/data-visualization-712402?page=1
http://www.creativebloq.com/design-tools/data-visualization-712402?page=1
http://www.swivel.com
http://www.syndic8.com/
http://www.tableausoftware.com/
https://www.talktalktvstore.co.uk/
http://www.techcrunch.com/
http://www.technorati.com
http://www.techopedia.com/definition/27745/big-data
http://www.theserverside.com/feature/Sharding-in-the-Cloud
http://www.theserverside.com/feature/Sharding-in-the-Cloud

BIBLIOGRAPHY 369

[392] The Old Reader. https://theoldreader.com/, 2015.

[393] The PhD Programme. DCSIS, Birkbeck, University of London, London,

UK. http://www.dcs.bbk.ac.uk/research/pursuing-a-research-degree/the-

phd-programme/, 2016.

[394] M. Thelwall. Heart and Soul: Sentiment Strength Detection in the Social

Web with SentiStrength. http://sentistrength.wlv.ac.uk/documentation/

SentiStrengthChapter.pdf, 2013.

[395] M. Thelwall. Sentiment strength detection for the Social Web. http://

sentistrength.wlv.ac.uk/documentation/course.html, 2013.

[396] M. Thelwall. SentiStrength User Manual. http://sentistrength.wlv.ac.uk/

documentation/SentiStrengthJavaManual.doc, 2014.

[397] M. Thelwall, K. Buckley, and G. Paltoglou. Sentiment Strength Detection for the

Social Web. Journal of the Association for Information Science and Technology,

63(1):163–173, 2012.

[398] M. Thelwall, R. Prabowo, and R. Fairclough. Are Raw RSS Feeds Suitable for

Broad Issue Scanning? A Science Concern Case Study. Journal of the Association

for Information Science and Technology, 57(12):1644–1654, 2006.

[399] Thunderbird. https://www.mozilla.org/thunderbird/, 2015.

[400] Tinder. http://www.gotinder.com/, 2015.

[401] Tiny Tiny RSS. https://tt-rss.org/forum/, 2015.

[402] W. H. Tok, S. Bressan, and M-L. Lee. Danäıdes: Continuous and Progressive Com-

plex Queries on RSS Feeds. In R. Kotagiri, P. R. Krishna, M. Mohania, and E. Nan-

tajeewarawat, editors, Advances in Databases: Concepts, Systems and Applications,

volume 4443, pages 1115–1118. 2007.

[403] C. Trabelsi and S. B. Yahia. A Probabilistic Approach for Events Identification

from Social Media RSS Feeds. In B. Hong, X. Meng, L. Chen, W. Winiwarter, and

W. Song, editors, Database Systems for Advanced Applications, volume 7827, pages

139–152. 2013.

[404] Trackur. http://www.trackur.com/, 2015.

https://theoldreader.com/
http://www.dcs.bbk.ac.uk/research/pursuing-a-research-degree/the-phd-programme/
http://www.dcs.bbk.ac.uk/research/pursuing-a-research-degree/the-phd-programme/
http://sentistrength.wlv.ac.uk/documentation/SentiStrengthChapter.pdf
http://sentistrength.wlv.ac.uk/documentation/SentiStrengthChapter.pdf
http://sentistrength.wlv.ac.uk/documentation/course.html
http://sentistrength.wlv.ac.uk/documentation/course.html
http://sentistrength.wlv.ac.uk/documentation/SentiStrengthJavaManual.doc
http://sentistrength.wlv.ac.uk/documentation/SentiStrengthJavaManual.doc
https://www.mozilla.org/thunderbird/
http://www.gotinder.com/
https://tt-rss.org/forum/
http://www.trackur.com/

BIBLIOGRAPHY 370

[405] Transport for London Corporate Archives Research Guides. Research Guide No 24:

Harry Beck. http://content.tfl.gov.uk/research-guide-no-24-harry-beck.

pdf, 2015.

[406] E. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,

CT, USA, 2nd edition, 2006.

[407] Tumblr. http://www.tumblr.com/, 2015.

[408] Twitter. http://www.twitter.com, 2015.

[409] Udacity. http://www.udacity.com, 2015.

[410] Udemy. http://www.udemy.com, 2015.

[411] Ukora News Search Service. http://www.rsssearchhub.com/, 2015.

[412] M. Van Kleek, P. André, D. Karger, and M. C. Schraefel. Personalized Experiences

for End-User Programming on the Web. In Proceedings of the End-User Program-

ming Workshop (EUP) at Conference on Human Factors in Computing Systems

(CHI’09), held in Boston, MA, USA, Apr 2009.

[413] M. Van Kleek, P. André, M. Perttunen, M. Bernstein, D. Karger, R. Miller, and

M. C Schraefel. AtomsMasher: Personalised Context-Sensitive Automation for the

Web. Technical report, MIT and University of Southampton, Mar 2008.

[414] M. Van Kleek, P. André, D. A. Smith, M. L. Wilson, M.l Bernstein, D. Karger,

and M. C Schraefel. AtomsMasher: PeRSSonalized Information Delivery and Man-

agement on the Web. Technical report, MIT and University of Southampton, Nov

2007.

[415] F. Viégas and M. Wattenberg. TIMELINES: - Tag Clouds and the Case for Vernac-

ular Visualization. Interactions, 15(4):49–52, 2008.

[416] F. M. Villoria, O. Dı́az, and S. F. Anzuola. Powering RSS Aggregators with On-

tologies: a case for the RSSOwl aggregator. In Y. Manolopoulos, J. Filipe, P. Con-

stantopoulos, and J. Cordeiro, editors, Proceedings of the Eighth International Con-

ference on Enterprise Information Systems, pages 197–200, held in Paphos, Cyprus,

May 2006.

[417] Vimeo. http://www.vimeo.com/, 2015.

http://content.tfl.gov.uk/research-guide-no-24-harry-beck.pdf
http://content.tfl.gov.uk/research-guide-no-24-harry-beck.pdf
http://www.tumblr.com/
http://www.twitter.com
http://www.udacity.com
http://www.udemy.com
http://www.rsssearchhub.com/
http://www.vimeo.com/

BIBLIOGRAPHY 371

[418] G. Vinodhini and R. M. Chandrasekaran. Sentiment Analysis and Opinion Mining:

A Survey. International Journal of Advanced Research in Computer Science and

Software Engineering, 2(6):282–292, Jun 2012.

[419] F. Vis. A critical reflection on Big Data: Considering APIs, researchers and tools

as data makers. First Monday, 18(10), 2013.

[420] Visual Complexity. http://www.visualcomplexity.com/, 2013.

[421] Voice RSS. http://www.voicerss.org/, 2015.

[422] W3C DATA ACTIVITY Building the Web of Data. https://www.w3.org/2013/

data/, 2016.

[423] W3Schools. http://www.w3schools.com/xml/xml_rss.asp, 2016.

[424] A. H. Wahbeh, Q. A. Al-Radaideh, M. N. Al-Kabi, and E. M. Al-Shawakfa. A

Comparison Study between Data Mining Tools over some Classification Methods.

International Journal of Advanced Computer Science and Applications, Special Issue

on Artificial Intelligence, 2(8):19–26, 2012.

[425] N. Walsh. A Technical Introduction to XML. http://www.xml.com/pub/a/98/10/

guide0.html?page=2, 1998.

[426] C. Wang, Z. Xiao, Y. Liu, Y. Xu, A. Zhou, and K. Zhang. SentiView: Sentiment

Analysis and Visualization for Internet Popular Topics. IEEE Transactions on

Human-Machine Systems, 43(6):620–630, Nov 2013.

[427] F. Wanner, C. Rohrdantz, F. Mansmann, D. Oelke, and D. A. Keim. Visual Senti-

ment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008.

In Proceedings of the IUI’09 Workshop on Visual Interfaces to the Social and the

Semantic Web (VISSW 2009), held on Sanibel Island, FL, USA, Feb 2009.

[428] F. Wanner, A. Stoffel, D. Jäckle, B. C. Kwon, A. Weiler, and D. A. Keim. State-

of-the-Art Report of Visual Analysis for Event Detection in Text Data Streams. In

Proceedings of the Eurographics Conference on Visualization (EuroVis 2014), pages

125–139, held in Swansea, Wales, UK, Jun 2014.

[429] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2nd edition, 2004.

[430] Web Master World RSS. http://www.webmasterworld.com/rss_atom/, 2015.

http://www.visualcomplexity.com/
http://www.voicerss.org/
https://www.w3.org/2013/data/
https://www.w3.org/2013/data/
http://www.w3schools.com/xml/xml_rss.asp
http://www.xml.com/pub/a/98/10/guide0.html?page=2
http://www.xml.com/pub/a/98/10/guide0.html?page=2
http://www.webmasterworld.com/rss_atom/

BIBLIOGRAPHY 372

[431] WebLyzard. https://www.weblyzard.com/, 2016.

[432] Webopedia. http://www.webopedia.com/, 2015.

[433] D. E. Webster, W. Huang, D. Mundy, and P. Warren. Context-Orientated News Fil-

tering for Web 2.0 and Beyond. In Proceedings of the 15th International Conference

on World Wide Web (WWW2006), pages 1001–1002, held in Edinburgh, Scotland,

UK, 2006.

[434] K. Wegrzyn-Wolska and P. S. Szczepaniak. Classification of RSS-Formatted Docu-

ments Using Full Text Similarity Measures. In Proceedings of the 5th International

Conference on Web Engineering (ICWE 2005), pages 400–405, held in Sydney,

NSW, Australia, Jul 2005.

[435] A. Weichselbraun, S. Gindl, and A. Scharl. Extracting and Grounding Context-

Aware Sentiment Lexicons. IEEE Intelligent Systems, 28(2):39–46, Mar 2013.

[436] P. Weiner. LINEAR PATTERN MATCHING ALGORITHMS. In Proceedings of

the 14th Annual Symposium on Switching and Automata Theory (SWAT ’73), pages

1–11, 1973.

[437] What is RSS? RSS Specifications. http://www.rss-specifications.com/what-

is-rss.htm, 2011.

[438] WhatsApp. http://www.whatsapp.com/, 2015.

[439] A. Whiting and D. Williams. Why people use social media: a uses and gratifications

approach. Qualitative Market Research: An International Journal, 16(4):362–369,

2013.

[440] Wikipedia. http://www.wikipedia.org/, 2015.

[441] Wikipedia. http://en.wikipedia.org/wiki/Comparison_of_feed_aggregators,

2015.

[442] M. Wilce. Mining Data Sets from Web Feeds. Master’s thesis, DCSIS, Birkbeck,

University of London, 2009.

[443] E. Wilde and M. Gaedke. Web Engineering Revisited. In Proceedings of the 2008

International Conference on Visions of Computer Science, VoCS’08: BCS Interna-

tional Academic Conference, pages 41–49, held in London, England, UK, Sep 2008.

https://www.weblyzard.com/
http://www.webopedia.com/
http://www.rss-specifications.com/what-is-rss.htm
http://www.rss-specifications.com/what-is-rss.htm
http://www.whatsapp.com/
http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Comparison_of_feed_aggregators

BIBLIOGRAPHY 373

[444] R. K. Wills. Efficient Sentiment Analysis of Feeds for Rapid User Informa-

tion Gain. https://www.cs.umd.edu/sites/default/files/scholarly_papers/

Wills.pdf, 2012.

[445] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing Contextual Polarity: An Explo-

ration of Features for Phrase-level Sentiment Analysis. Computational Linguistics,

35(3):399–433, Sep 2009.

[446] I. H. Witten. Text mining. In M. P. Singh, editor, The Practical Handbook of Internet

Computing, pages 14–1–14–22. Chapman and Hall & CRC Press, Boca Raton, FL,

USA, 2004.

[447] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan Kauf-

mann, San Francisco, CA, USA, 2nd edition, 2005.

[448] WizardRSS. http://www.fastcomet.com/wizardrss-demo, 2016.

[449] WordNet. http://wordnet.princeton.edu/, 2015.

[450] WordPress. http://www.wordpress.com/, 2015.

[451] W3Techs. Usage of server-side programming languages for websites. http://

w3techs.com/technologies/overview/programming_language/all, 2016.

[452] S. Wu. Click Prediction and Preference Ranking of RSS Feeds, Machine Learn-

ing. Computer Science, Stanford University, Stanford, CA, USA. http://cs229.

stanford.edu/proj2009/Wu.pdf, 2009.

[453] XML Applications and Initiatives. Cover Pages. http://xml.coverpages.org/

xmlApplications.html, 2005.

[454] XmlSlurper. http://docs.groovy-lang.org/latest/html/api/groovy/util/

XmlSlurper.html, 2015.

[455] Yahoo. http://www.yahoo.com, 2015.

[456] Yahoo Pipes. http://pipes.yahoo.com/pipes/, 2012.

[457] Yahoo News. https://uk.news.yahoo.com/world/, 2015.

https://www.cs.umd.edu/sites/default/files/scholarly_papers/Wills.pdf
https://www.cs.umd.edu/sites/default/files/scholarly_papers/Wills.pdf
http://www.fastcomet.com/wizardrss-demo
http://wordnet.princeton.edu/
http://www.wordpress.com/
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://cs229.stanford.edu/proj2009/Wu.pdf
http://cs229.stanford.edu/proj2009/Wu.pdf
http://xml.coverpages.org/xmlApplications.html
http://xml.coverpages.org/xmlApplications.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html
http://www.yahoo.com
http://pipes.yahoo.com/pipes/
https://uk.news.yahoo.com/world/

BIBLIOGRAPHY 374

[458] Y. Yang and X. Liu. A re-examination of text categorization methods. In Pro-

ceedings of the 22nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR ’99), pages 42–49, held in Berkeley,

CA, USA, 1999.

[459] Y. Yang and J. O. Pedersen. A Comparative Study on Feature Selection in Text Cat-

egorization. In Proceedings of the Fourteenth International Conference on Machine

Learning (ICML 1997), pages 412–420, held in Nashville, TN, USA, 1997.

[460] E. Yourdon. Modern Structured Analysis. Yourdon Press, Upper Saddle River, NJ,

USA, 1989.

[461] YouTube. http://www.youtube.com, 2015.

[462] B. Yu. An evaluation of text classification methods for literary study. Literary and

Linguistic Computing, 23(3):327–343, 2008.

[463] M. W. Yuan, P. Jiang, J. Zhu, and X. N. Wang. Sensing Semantics of RSS Feeds

by Fuzzy Matchmaking. Intelligent Information Management, 2(2):110–119, 2010.

[464] Zapier. https://zapier.com/, 2015.

[465] Y. Zhou, X. Chen, and C. Wang. A Self-Organizing Search Engine for RSS Syndi-

cated Web Contents. In Proceedings of the 22nd International Conference on Data

Engineering Workshops, pages 52–61, 2006.

[466] Z. Zhou, X. Zhang, and M. Sanderson. Sentiment Analysis on Twitter through Topic-

Based Lexicon Expansion. In H. Wang and M. A. Sharaf, editors, Proceedings of

Databases Theory and Applications - 25th Australasian Database Conference (ADC

2014), held in Brisbane, QLD, Australia, Jul 2014.

[467] X. Zhu, A. B. Goldberg, R. Brachman, and T. Dietterich. Introduction to Semi-

Supervised Learning. Morgan & Claypool Publishers, 2009.

[468] M. M. Zloof. Query-by-Example: a data base language. IBM Systems Journal,

16(4):324–343, Dec 1977.

http://www.youtube.com
https://zapier.com/

	Abstract
	Publications
	Acknowledgements
	List of Abbreviations
	List of Algorithms, Code and Pseudocode
	List of Figures
	List of Tables
	I Introduction and opening comments
	Introduction
	The phenomenon of feeds and RSS
	Motivation and application
	Hypothesis, objectives and contributions
	RSS-mining paradigms
	Definition
	Correspondence

	Case studies
	Software
	Keywords
	The relationship of RSS-mining paradigms, case studies and software
	Thesis structure
	Vocabulary
	Conventions

	Background
	Foreword
	RSS
	A definition
	History and versions
	Format
	RSS use and utility

	Social media
	Defining social media
	Applications
	Utility and use

	Data mining
	Classification
	Text mining
	Sentiment analysis
	The visual representation of data
	Principles
	Text streams
	Time-series plotting
	Software

	Actionable and effective data: a definition
	Afterword

	A review of RSS
	Foreword
	Applications
	Academic research
	The structure of this review
	Aggregation and classification
	Sentiment analysis

	Other RSS-related work
	Discussion: the format of RSS
	Versions
	Characteristics of data
	Extensions
	Push or pull?

	Afterword

	Web engineering and software architecture
	Foreword
	Web engineering
	Web applications
	What is a web application?
	Types of web applications

	Web application architecture
	The architecture of myDataSharer and visualRSS
	Software overview
	Choice of architecture
	Operating system
	Programming model
	Managing requests and responses
	Application and data layer correspondence
	Data model

	Keyword conventions and characteristics
	Paradigm one: software fundamentals
	Common software components
	Mining rules
	Polling
	Scheduling
	Mining data from RSS
	Persisting RSS-mined data to database storage
	Visualising data

	Paradigm two: software miscellany
	Extending visualRSS
	Batch processing
	Class hierarchy
	Interface design

	Development tools
	Afterword

	II Paradigm 1: Defining mining rules upon RSS to determine and visualise trends from textual and numeric data
	Case study one: The myDataSharer software
	Foreword
	Case study one
	The myDataSharer platform
	Defining mining rules
	Mining types
	The relationship of mining rules to columns of datasets
	Filters

	Polling and mining
	Database persistence
	The diary
	Visualising data
	Afterword

	Case study one: Mining and visualising textual and numeric data from RSS
	Foreword
	The assignment
	Synopsis
	Research questions
	The assignment
	Setting-up

	Results
	Order of presentation
	Categorising our results
	Is it possible to define mining rules to RSS to determine and visualise trends?
	Patterns of use
	Discussion: explaining the unreported results
	How efficient was the process to define mining rules upon RSS?
	Timing visualisations
	Can the diary be used to model user behaviour?

	A posteriori appraisal of case study one
	Comparing reported results and research questions
	Refining mining rules
	The question of a pilot study
	RSS feeds and student corpus demographics
	Loss of data
	Publication

	Afterword

	Case study two: The visualRSS application
	Foreword
	Case study two
	The concept of visualRSS
	Mining rules
	The definition process
	The role of the word-cloud
	Keywords

	The anatomy of a mining type
	Polling RSS feeds and mining keywords
	Calculating keyword frequencies from RSS-mined data
	Persisting RSS to database storage
	Visualising data mined from RSS
	Afterword

	Case study two: Mining and visualising data trends in RSS feeds
	Foreword
	Rationale and objectives
	The assignment
	Description
	RSS Feeds and categories

	Results
	Organisation
	Mining rules
	Visualisations

	Anatomy of a student submission: a demonstration of mining rules in visualRSS
	A posteriori appraisal of case study two
	Reception
	Students and RSS feeds
	Applications
	Publication
	Extensions to visualRSS

	Afterword

	Paradigm one and related work
	Foreword
	Paradigm one: a brief summary
	Related work
	AtomsMasher: Personalised Context-Sensitive Automation for the Web by Van Kleek et al.
	RoSeS : A Continuous Query Processor for Large-scale RSS Filtering and Aggregation by Creus et al.
	RSS query algebra: Towards a better news management by Geta-hun and Chbeir

	Review
	Application context and use of RSS
	Syntax

	Afterword

	III Paradigm 2: Classifying RSS according to the fluctuations in the frequencies of popular keywords and correlating this with sentiment
	Case study three: Category-based classification of RSS feeds
	Foreword
	The rationale for the keyword-based classification of RSS
	Setting-up
	Software
	RSS feeds and categories

	Training and testing data
	Pre-processing
	Tranches and parameter permutations
	Segmentation
	RSS feed elements
	Algorithm
	Keyword variations
	Database persistence

	Product and classifier selection
	Product choice
	Classifier choice
	The decision tree (DT)
	Multinomial naïve Bayes (MNB)
	The support vector machine (SVM)

	Classification
	Implementation
	Data formats
	Results

	A posteriori appraisal of the classification component of case study three
	The format of RSS
	Keyword miscellany
	Training and testing data segmentation

	Afterword

	Case study three: Correlating keyword frequencies with sentiment in RSS feeds
	Foreword
	Objectives
	Sentiment analysis and sentiment analyser
	Apparatus
	RSS feed and category corpus
	Tranche organisation
	RSS feed categories
	RSS feed elements
	Keywords and named entity recognition (NER)

	Algorithm
	Order of presentation
	Generating popular keywords
	Calculating keyword frequencies

	Third-party tools
	Customising Lucene
	Using SentiStrength

	Post-algorithm data processing
	Sentiment analysis 71
	Raw keyword frequency/sentiment data
	Aggregation
	Candidate keyword selection

	Results
	Perspective
	Expectations
	Plot criteria
	Keyword frequency/sentiment correlation plots

	A posteriori appraisal of the sentiment analysis component of case study three
	Patterns of correlation
	Keyword temporality
	Keyword relatedness
	Other issues

	Afterword

	Paradigm two and related work
	Foreword
	Paradigm two
	Summary
	Constraints

	Classification
	Paradigm 2
	Review

	Sentiment analysis
	Paradigm 2

	Related work
	Are Raw RSS Feeds Suitable for Broad Issue Scanning? A Science Concern Case Study by Thelwall et al.
	Visual Sentiment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008 by Wanner et al.
	Multiple coordinated views for searching and navigating Web content repositories by Hubmann-Haidvogel et al.
	Narratives: A Visualization to Track Narrative Events as they Develop by Fisher et al.

	Summary
	Afterword

	IV Conclusion and closing comments
	Conclusion
	Foreword
	Summary of research basis
	Definition
	Production
	Demonstration
	The relationship of RSS-mining paradigms, case studies and software
	Paradigm one
	Paradigm two
	Application

	Reflections
	The PhD programme
	Advice for a potential PhD student

	Directions for future work
	Research
	Facilities

	A beta-version of visualRSS

	V Appendices
	Case study reference materials
	Case study one
	RSS feed corpus
	Allocation of RSS feeds to students

	Case study two
	Original RSS feed and category corpus

	Case study three
	Withdrawals from RSS feed and category corpus
	Re-organised RSS feed and category corpus
	Corpus of candidate keywords (extract)
	Additional keyword frequency/sentiment correlation plots

	Glossaries
	Glossary of products
	Glossary of terminology

	The Android OS client app for visualRSS
	Outline
	Defining mining rules
	Polling and data storage
	Visualising RSS-mined data

	Miscellaneous
	Additional resources
	Source code
	myDataSharer and visualRSS
	Principal open-source, third-party products

	Bibliography

