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Abstract	
Up	until	now,	self-recognition	in	the	mirror,	achieved	at	around	18	months,	has	

been	used	to	assess	self-awareness	in	infancy.	Even	though	the	significance	of	

this	test	is	not	universally	accepted,	this	field	has	progressed	very	little	over	the	

last	decades,	 in	contrast	to	a	broad	volume	of	literature	on	the	self	 in	adults.	

However,	a	relationship	between	self-other	differentiation	and	social	cognitive	

abilities	has	been	recently	hypothesized,	renewing	the	interest	in	mechanisms	

underlying	emerging	self-awareness.		

Adult	studies	have	highlighted	that	brain	networks,	instead	of	isolated	

brain	 areas,	 support	 self-processing.	 Therefore,	 the	 first	 two	 studies	 of	 this	

thesis	validated	the	use	of	advanced	connectivity	analyses	on	infant	fNIRS	data.	

Making	 use	 of	 these	 methods,	 one	 study	 demonstrated	 that	 functional	

connectivity	between	regions	belonging	to	a	network	that	has	been	related	to	

abstract	self-processing	in	adults	gradually	increases	over	the	first	two	years	of	

life.	 The	 same	 network	 was	 found	 to	 characterise	 infants	 who	 recognise	

themselves	in	the	mirror.	In	another	study,	crucial	regions	of	this	network	were	

shown	to	be	engaged	during	self-recognition	in	18-month-olds.	

As	social	 interactions	have	been	suggested	 to	be	 fundamental	 for	the	

construction	 of	 the	 self,	 the	 last	 two	 studies	 of	 this	 thesis	 investigated	 the	

relationship	between	emerging	self-awareness	and	social	interactions.	To	test	

this,	I	focused	on	mimicry,	known	to	play	an	important	role	in	affiliation	and	in	

mediating	 relationships.	 One	 study	 demonstrated	 that	 emerging	 self-

awareness	may	affect	infants’	tendency	to	selectively	mimic	in-group	members,	

which	 may	 indicate	 a	 possible	 role	 of	 self-comparison	 and	 identification	

processes.	 The	 last	 study	 did	 not	 find	 evidence	 for	 a	 relationship	 between	

mothers’	 tendency	 to	 imitate	 their	 infants	 at	 4	 months	 and	 emerging	 self-

awareness.		

Taken	 together,	 these	 studies	 enrich	 our	 understanding	 of	 the	

mechanisms	 underlying	 emerging	 self-awareness	 and	 they	 represent	 a	

pioneering	starting	point	for	further	investigations	into	this	topic.
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channels	 belonging	 to	 the	 right	 STG	 are	 plotted	 in	 blue;	

functional	 connections	with	 channels	belonging	 to	 the	 right	

TPJ	are	plotted	in	green.	
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regions,	while	dotted	lines	the	connections	within	the	whole	
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brain.	

Table	5.1	
S-D	separation	and	number	of	participants	tested	with	each	

cap	size.	

Figure	5.1	

Mean	values	of	movements	during	the	Self	conditions	in	the	

task.	 A,	 Graph	 bars	 represent	 mean	 values	 of	 movements	

performed	 in	 Self-Live	 and	 Self-Recorded	 trials	 in	 Non-
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indicates	the	length	of	the	experimental	trial.	

Table	5.5	

Channels	 where	 Recognisers	 showed	 greater	 activation	 for	

Self-Live>Self-Recorded	 than	 Non-Recognisers.	 **,	 p<0.05	
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Live	and	Self-Recorded.	
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review).	

Table	6.1	
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Figure	6.3	

Graphical	representation	of	the	EMG	results.	A,	Mean	mimicry	

scores	for	the	eyebrow	and	mouth	actions	in	the	Native	and	

Foreign	Mimicry	 condition.	 B,	Mean	mimicry	 scores	 for	 the	

eyebrow	 and	 mouth	 actions	 in	 the	 Native	 and	 Foreign	

condition	displayed	by	Recognisers	and	Non-Recognisers	at	

the	MSR	 task.	 C,	 Average	mimicry	 scores	 in	 the	Native	 and	

Foreign	 condition	 in	Recognisers	 and	Non-Recognisers.	The	

grey	bars	represent	mimicry	scores	 in	 the	Native	condition,	

the	white	bars	represent	scores	in	the	Foreign	condition,	the	

dots	pattern	represent	mimicry	scores	of	the	mouth	actions,	

the	stripes	pattern	represent	mimicry	scores	of	the	eyebrow	

actions.	Error	bars	indicate	1	SEM,	*	p	<	.05.		

Table	6.2	

Channels	that	showed	a	significant	(p<0.05)	and	a	marginally	

significant	 (p<0.065)	 greater	 activation	 in	 Native	 Facial	

Action>Baseline	and	in	Foreign	Facial	Action>Baseline,	in	the	

whole	sample	and	in	the	subsamples	of	Recognisers	and	Non-

Recognisers.	**,	p<0.05	that	survived	the	FDR	correction	for	

multiple	comparisons;	*,	p<0.05,	†,	p<0.065.	

Figure	6.4	

A,	HRF	plot	of	channel	26	in	the	Recognisers	and	in	the	Non-

Recognisers.	 The	 grey	 square	 indicates	 the	 length	 of	 the	

experimental	 trial.	 B,	Mean	 betas	 values	 from	Native	 Facial	

Actions>Baseline	 and	 Foreign	 Facial	 Actions>Baseline	 in	

channel	26	in	the	Recognisers	and	in	the	Non-Recognisers.	

Table	6.3	

Channels	that	showed	a	significant	(p<0.05)	and	a	marginally	

significant	 (p<0.065)	 greater	 activation	 to	 Native	 Facial	

Action>Foreign	 Facial	 Action	 and	 Foreign	 Facial	

Action>Native	Facial	Action,	in	the	whole	sample	and	in	the	

subsets	 of	 Recognisers	 and	 Non-Recognisers.	 *,	 p<0.05;	 †,	

p<0.065.	
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Figure	6.5	

HRF	plots	of	the	channels	that	are	significantly	activated	at	the	

one-sample	 t-tests	 for	 the	 Native	 Facial	 Actions>Foreign	

Facial	 Actions	 contrast	 in	 the	 Recognisers	 and	 in	 the	 Non-

Recognisers.	 A,	 channels	 significantly	 activated	 for	 Native	

Facial	Actions>Foreign	Facial	Actions	in	the	Recognisers;	B,	

channels	 significantly	 activated	 for	 Foreign	 Facial	

Actions>Native	Facial	Actions	in	the	Recognisers;	C,	channels	

significantly	 activated	 for	 Foreign	 Facial	 Actions>Native	

Facial	 Actions	 in	 the	 Non-Recognisers.	 The	 grey	 square	

indicates	the	length	of	the	experimental	trial.	

Table	6.4	

Significant	and	marginally	significant	functional	connections	

for	Foreign	Facial	Actions	>	Native	Facial	Actions	in	the	whole	

sample.	*,	p<0.05;	†,	p<0.065.	

Figure	6.5	

Scatterplot	of	the	relationship	between	activation	in	channel	

27	 (A)	 and	 channel	4	 (B)	 in	Native	Facial	Actions>Foreign	

Facial	Actions	and	the	differential	mimicry	score.	*,	p<0.05.	

Figure	7.1	

Graphical	 representation	 of	 the	 relationship	 between	 the	

mothers’	 tendency	 to	 imitate	 their	 4	months’	 facial	 actions	

and	success	at	the	MSR	at	18	months.		

Table	8.1	 Summary	of	the	main	results	of	each	study	in	this	PhD	thesis.	
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1.1	Introduction:	Motivation	and	aims	 	

The	sense	of	self	is	a	person’s	essential	being	that	makes	them	different	from	

others.	It	is	our	‘inner	movie’	and	the	deepest	part	of	ourselves.	As	adults,	we	

tend	 to	 take	our	 self-concepts	 for	 granted,	 but	 the	mechanisms	behind	 their	

development	are	unknown.	Infants	come	into	the	world	highly	dependent	on	

their	caregivers,	but	they	can	also	interact	with	others	from	a	very	early	age,	

which	may	lead	one	to	think	that	infants	have	self	and	other	concepts	from	early	

in	life.	Does	this	mean	that	young	infants	have	self-awareness?	If	not,	when	do	

infants	become	aware	of	themselves?	

So	far,	there	has	been	a	little	systematic	investigation	into	the	topic	of	

the	 development	 of	 the	 sense	 of	 self	 and	 the	 abstract	 nature	 of	 this	 theme	

presents	a	challenge	for	scientific	investigation.	Some	might	think	that	a	science	

of	the	self	is	impossible	as	science	is,	by	definition,	objective,	while	the	self	is	

subjective.	With	this	PhD	thesis,	I	hope	to	take	a	step	towards	demonstrating	

that	a	science	of	the	self	and	a	science	of	the	development	of	the	self	is	possible,	

even	though	there	are	many	challenges	that	need	to	be	overcome.	One	of	the	

primary	 obstacles	 when	 facing	 this	 topic	 is	 the	 lack	 of	 agreement	 and	

inconsistency	 in	 the	 definition	 of	 what	 is	 the	 ‘self’,	 and	 the	 use	 of	 several	

different	 but	 related	 terms.	 Investigation	 into	 how	 a	 sense	 of	 self	 and	 self-

awareness	develops	is	hampered	by	the	numerous	definitions	and	multifaceted	

abilities	that	scientists	have	attributed	to	these	concepts.	Researchers	in	this	

field	have	to	disregard	the	idea	of	having	only	one	notion	of	selfhood,	as	there	

are	several	features	of	the	self	that	commonly	conflate	under	the	same	term.	

However,	they	also	recognise	the	need	for	consistency	between	the	different	

aspects	and	definitions.	A	glossary	of	the	self	is	the	focus	of	the	next	section,	so	

as	to	clarify	the	terms	used	in	this	thesis.		
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Until	 now,	 the	 assessment	 of	 the	 sense	 of	 self	 in	 infants	 has	 been	

performed	with	the	mirror	self-recognition	(MSR)	task,	a	test	developed	in	the	

early	‘70s,	where	infants	had	a	dot	of	red	lipstick	covertly	marked	on	their	face.	

Their	detection	(revealed	by	touching)	in	the	mirror	of	something	unusual	on	

their	face	is	thought	to	be	an	index	of	some	level	of	a	sense	of	self	(Amsterdam,	

1972;	Rochat,	2003).	Self-recognition	in	the	mirror	emerges	between	18	and	24	

months	of	age,	but	what	does	this	test	measure?	What	skills	are	required	to	pass	

the	test?	And	more	importantly,	which	aspects	of	the	self	does	this	test	assess?		

Some	 researchers	 have	 argued	 against	 an	 in-depth	 interpretation	 of	

visual	self-recognition,	suggesting	that	successful	self-recognition	is	an	index	of	

the	mere	 detection	 of	matching	 visual	 and	 kinaesthetic	 information	 (Heyes,	

1996;	Mitchell,	1993),	or	the	understanding	of	the	mirror’s	proprieties,	related	

to	cognitive	development	(Loveland,	1986).	Many	others	have	proposed	that	

visual	self-recognition	indicates	a	broader	sense	of	self,	which	goes	beyond	the	

recognition	 of	 physical	 features,	 encompassing	 a	 knowledge	 of	 self-other	

distinction	and	abstract	self-representations	(Brandl,	2016;	Rochat,	Broesch,	&	

Jayne,	2012;	Rochat	&	Zahavi,	2011).	Additionally,	it	has	been	hypothesized	that	

self-recognition	 in	 the	 mirror	 may	 highlight	 the	 ability	 to	 understand	 how	

others	 perceive	 us.	 This	 idea	 is	 consistent	 with	 a	 social	 construction	 of	 the	

development	of	the	sense	of	self,	where	others	play	the	role	of	social	mirrors	

(Prinz,	 2012;	 Rochat	 et	 al.,	 2012;	 Rochat	 &	 Zahavi,	 2011;	 Zahavi,	 2009).	

According	to	this	view,	emerging	self-awareness	is	highly	interconnected	with	

social	 cognitive	 abilities	 that	develop	during	 the	 first	 years	of	 life.	However,	

despite	the	universal	importance	of	the	sense	of	self,	the	mechanisms	behind	

its	 development	 and	 its	 relationship	 with	 social	 cognitive	 abilities	 are	 still	

unclear.		
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This	field	of	research	has	progressed	very	little	since	the	development	

of	the	MSR	task	in	1972.	Despite	the	controversy	surrounding	this	task,	no	real	

alternative	test	to	assess	self-awareness	in	infancy	has	been	developed,	and	our	

knowledge	of	this	topic	is	still	very	limited	to	what	has	been	studied	decades	

ago.	A	 lack	of	 tasks	to	assess	 the	 level	of	self-awareness	 in	 infancy,	a	 lack	of	

agreement	over	what	the	self	‘is’,	and	the	abstract	nature	of	the	topic	are	factors	

that	 have	 likely	 limited	 the	 progress	 on	 understanding	 the	 mechanisms	

underlying	the	development	of	the	self.	However,	this	is	in	contrast	to	a	broad	

volume	 of	 literature	 on	 the	 self	 in	 adults,	 mostly	 in	 terms	 of	 neuroimaging	

studies.	Work	 in	 adults	 has	 demonstrated	 that	 there	 are	 a	 variety	 of	 brain	

regions	(which	are	most	often	organised	in	brain	networks)	responding	to,	and	

associated	with,	physical	and	abstract	self-awareness.	Two	regions	in	particular	

seem	to	play	a	fundamental	role	in	self-processing	in	adulthood	as	part	of	more	

complex	 brain	 networks:	 the	 prefrontal	 cortex	 and	 the	 temporoparietal	

junction.	However,	whether	these	same	regions	are	engaged	in	emerging	self-

awareness	 is	 yet	 to	 be	 investigated.	 Nonetheless,	 tools	 to	 explore	 brain	

connectivity	development	in	infancy	are	limited.	

Some	researchers	have	recently	hypothesized	a	relationship	between	

self-other	 differentiation	 and	 social	 cognitive	 abilities	 (Santiesteban	 et	 al.,	

2012;	 Southgate,	 2018;	 Steinbeis,	 2016),	 which	 has	 renewed	 interest	 in	

exploring	mechanisms	underlying	emerging	self-awareness.	For	example,	it	has	

been	 shown	 that	 imitation–inhibition	 training,	 where	 participants	 were	

instructed	 to	 lift	 a	 different	 finger	 from	 the	 one	 displayed	 on	 the	 screen,	

enhances	self-other	processes	in	adults	(Santiesteban,	White,	et	al.,	2012).	In	

fact,	 the	 authors	 suggested	 that	 inhibition	 of	 imitation	 requires	 a	 clear	

distinction	between	self	and	other,	as	the	participants	must	perform	their	own	
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motor	 intention	rather	 than	the	one	of	 the	observed	person	(Brass	&	Heyes,	

2005;	Santiesteban,	White,	et	al.,	2012).	Moreover,	Santiesteban	suggested	that	

the	 same	 process	 of	 distinguishing	 between	 self	 and	 other	 intentions	 is	

necessary	for	higher	cognitive	processes,	such	as	theory	of	mind,	which	is	the	

ability	 to	 represent	others’	mental	 states	 (Santiesteban,	White,	 et	 al.,	 2012).	

Along	this	line,	it	has	been	hypothesized	that	a	lack	of	self-perspective	in	young	

infants,	 and	 therefore	 the	 absence	 of	 a	 conflict	 between	 self	 and	 other	

perspectives,	 may	 be	 a	 possible	 explanation	 for	 young	 infants’	 successful	

performance	 on	 tasks	 requiring	 them	 to	 take	 the	 others’	 perspective	

(Southgate,	2018).	Given	this,	a	deeper	understanding	of	the	development	of	

the	sense	of	self	is	needed,	and	this	PhD	work	aims	to	fill	some	of	this	gap.	The	

purpose	of	this	thesis	is	to	bring	the	topic	of	the	development	of	the	sense	of	

self	 into	 research	again,	providing	 evidence	 for	 the	 validity	of	 the	MSR	 task,	

exploring	 neural	 underpinnings	 of	 the	 emerging	 self-awareness,	 and	

understanding	 how	 the	 development	 of	 the	 sense	of	 self	 is	 related	 to	 social	

interactions	early	in	life.	

	

1.1.1	Glossary	of	the	self,	a	note	on	terminology	

The	disagreement	and	confusion	regarding	the	terminology	related	to	the	topic	

of	the	self	 is	one	of	the	biggest	issues	in	this	field	of	research.	Therefore,	the	

present	section	aims	 to	 clarify	 the	uses	and	meanings	of	 the	different	 terms	

commonly	associated	with	sense-of-self	research.	This	glossary	is	intended	as	

a	guide	for	the	terms	used	in	this	PhD	thesis.		

The	 term	 sense	 of	 self	 encompasses	 all	 the	 different	 aspects	 and	

features	of	the	self,	which	are	summarised	hereafter.	Sometimes	researchers	
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use	this	term	to	describe	only	a	particular	component	of	the	self-concept,	and	

generalise	this	single	aspect	to	the	entire	sense	of	self.	

Bodily	 self-perception	 (or	 bodily	 self-awareness)	 describes	 the	

perceptual	 feeling	 that	 one’s	 body	 belongs	 to	 oneself.	 As	 soon	 as	 we	 pay	

attention	to	our	own	body,	we	become	aware	of	our	own	physical	sensations,	

feelings,	and	pain.	This	term	also	refers	to	the	perception	of	one’s	own	body	in	

space	 (De	 Vignemont,	 2013).	 Bodily	 self-perception	 appears	 to	 be	 achieved	

early	in	development.	For	example,	it	has	been	shown	that	immediately	after	

birth,	 infants	are	able	 to	differentiate	between	self-touch	and	non-self	 touch	

(Rochat	 &	 Hespos,	 1997),	 and	 there	 is	 evidence	 for	 cortical	 activation	 in	

response	to	body-related	contingencies	similar	to	that	observed	in	adults,	also	

in	infants	as	young	as	5	months	of	age	(Filippetti,	Lloyd-Fox,	Longo,	Farroni,	&	

Johnson,	 2015).	Bodily	 self-awareness	overlaps	with	what	some	 researchers	

consider	 a	 core	 self,	which	has	been	hypothesized	 to	be	present	 from	birth,	

suggesting	an	early	differentiation	between	the	individual	and	the	environment	

(Gallagher,	2000;	Zahavi,	2003,	2010).	This	topic	is	the	focus	of	section	1.2.	

Self-recognition	has	been	originally	defined	as	the	recognition	of	one’s	

own	physical	features	(Brooks-Gunn	&	Lewis,	1984).	However,	self-recognition	

in	the	mirror,	which	emerges	at	around	18	months	(Amsterdam,	1972;	Rochat,	

2003)	has	been	argued	to	be	an	indicator	of	the	development	of	a	broader,	more	

abstract	 sense	 of	 self,	 so-called	 self-awareness	 (Prinz,	 2012;	 Rochat,	 2003;	

Rochat	 &	 Zahavi,	 2011)	 (the	 debate	 about	 the	 significance	 of	 visual	 self-

recognition	 is	broadly	discussed	 in	section	1.3).	Self-awareness	 is	defined	as	

conscious	knowledge	of	oneself	as	a	particular	individual	with	specific	physical	

and	mental	features	(Rochat,	2003).	One	may	wonder	whether	there	are	any	

stages	 where	 the	 infants	 are	 able	 to	 recognise	 themselves	 without	 having	
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necessarily	achieved	a	broader	level	of	self-awareness.	However,	to	date	there	

is	no	evidence	for	self-recognition	without	self-awareness.	

In	line	with	this,	the	term	self-representation	is	a	term	used	to	describe	

the	idea	of	‘me’,	which	is	achieved	with	self-awareness.	Having	a	form	of	self-

representation	means	 becoming	 the	 object	 of	 one’s	 own	attention	 (Lewis	&	

Carmody,	2008).	Consistent	with	a	richer	interpretation	of	the	MSR	task,	infants	

that	 exhibit	 self-recognition	 have	 self-representation	 as	 well,	 and	 therefore	

they	are	able	to	perceive	themselves	not	only	as	subjects,	but	also	as	objects	of	

observation	(Lewis	&	Carmody,	2008;	Rochat,	2003;	Rochat	&	Zahavi,	2011).		

The	 term	 self-consciousness	 is	 sometimes	 used	as	 synonymous	with	

self-awareness,	 meaning	 the	 abstract	 and	mental	 components	 of	 one’s	 own	

features,	 such	 as	 mental	 states,	 inner	 feelings,	 and	 thoughts	 (Mead,	 1934;	

Rochat	2009).	However,	others	have	used	self-consciousness	 to	describe	 the	

strong	first-person	phenomena,	where	one	is	able	to	think	of	and	reflect	about	

oneself	 (Baker,	2000,	p.68).	 In	 this	view,	self-consciousness	 is	achieved	only	

when	the	child	is	able	to	refer	to	oneself.	Therefore	linguistic	abilities	and	the	

use	 of	 the	 personal	 pronouns	 are	 necessary	 developmental	 steps	 for	 being	

considered	self-conscious	(Baker,	2000;	Zahavi,	Grünbaum,	&	Parnas,	2004).	

The	sense	of	agency	is	considered	to	be	the	perception	of	oneself	as	an	

executor	of	 actions,	 i.e.	 having	 a	 sense	of	 control	over	one’s	 actions	 (Moore,	

2016).	 There	 are	 different	 shades	 of	 the	 terms	 sense	 of	 agency,	 as	 some	

consider	 this	 to	 develop	 along	 with	 bodily	 self-perception,	 as	 it	 involves	 a	

feeling	 of	 control	 over	 one’s	 own	 body	 (Gallagher,	 2012;	 Tsakiris,	 Longo,	 &	

Haggard,	 2010).	 However,	 others	 consider	 the	 sense	 of	 agency	 as	 linked	 to	

higher-order	 cognitive	 processes,	with	 capacities	 of	 reflection	 on	 one’s	 own	



Chapter	1	
	

	 32	

actions	 (Stephens	 &	 Graham,	 1994),	 therefore	 achieved	 only	 later	 in	 the	

development.		

Table	1.1	summarises	the	research	terms	used	throughout	this	thesis.	
	
	

Aspects	of	the	sense	of	self	 Definition	

Bodily	self-perception	
The	perceptual	feeling	that	one’s	body	

belongs	to	oneself	

Self-recognition	 Recognition	of	one’s	own	physical	features	

Self-awareness	

Conscious	knowledge	of	oneself	as	a	

particular	individual	with	specific	physical	

and	mental	features	

Self-representation	
the	idea	of	‘me’,	being	an	object	of	one’s	

own	attention		

Self-consciousness	
Awareness	of	one’s	own	mental	states	/	the	

ability	to	refer	to	oneself	

Sense	of	agency	

Perception	of	oneself	as	an	executor	of	

actions	and	as	having	control	over	one’s	

own	actions	

	
Table	1.1.	Summary	of	the	terminology	used	in	this	PhD	thesis.	

	 	

1.1.2	Research	aims	

The	overall	aim	of	the	current	PhD	thesis	is	to	try	to	elucidate	the	mechanisms	

underlying	emerging	self-awareness.	To	do	this,	I	will	focus	on	the	exploration	

of	its	neural	underpinnings	in	the	first	years	of	life,	with	an	emphasis	on	brain	

networks	 to	 help	 describe	 the	 complexity	 of	 this	 phenomenon.	 This	 is	

motivated	by	the	fact	that	much	work	has	explored	the	neural	underpinnings	

of	self-awareness	in	adults,	and	thus	investigating	the	brain	regions	recruited	

during	tasks	proposed	to	measure	self-awareness	in	infants	has	the	potential	to	

shed	 light	on	both	 the	phenomenon	of	self-awareness	early	 in	development,		
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and	on	the	validity	of	the	tasks	that	are	believed	to	index	self-awareness.	To	

explore	brain	activation	and	networks	involved	in	emerging	self-awareness,	I	

used	functional	near-infrared	spectroscopy	(fNIRS),	a	neuroimaging	technique	

suitable	 for	 awake	 infants	 and	 toddlers.	 A	 background	 to	 this	 method	 is	

provided	 in	 Chapter	 2.	 The	 development	 of	 techniques	 for	 connectivity	

analyses,	 which	 were	 previously	 underdeveloped	 for	 this	 neuroimaging	

method	was	 an	 important	 aim	 of	 this	 PhD	 project,	with	 the	 ultimate	 aim	 of	

applying	them	to	understanding	the	development	of	self-awareness.	Chapter	3	

describes	 two	 preliminary	 studies	 aimed	 at	 developing	 techniques	 for	

investigating	functional	connectivity	with	fNIRS	data.	While	ultimately,	time	did	

not	permit	one	of	these	methodological	advancements	to	be	applied	to	our	own	

data,	 it	 is	hoped	that	such	 techniques	provide	a	valuable	contribution	 to	 the	

tools	available	to	the	field.	Nonetheless,	the	second	study	in	Chapter	3	presents	

a	longitudinal	investigation	into	the	development	of	the	spontaneous	functional	

connectivity,	providing	a	data	analysis	pipeline	that	is	used	in	Chapter	4.	

Chapter	 4	 is	 the	 first	 chapter	 aimed	 at	 investigating	 the	 neural	

underpinning	of	self-awareness.	The	previous	adult	 literature	has	revealed	a	

link	between	a	 functional	network	of	brain	regions	engaged	during	rest	and	

self-processing	(Davey,	Pujol,	&	Harrison,	2016;	Kelley	et	al.,	2002;	Kircher	et	

al.,	 2000;	 Uddin,	 Kaplan,	 Molnar-Szakacs,	 Zaidel,	 &	 Iacoboni,	 2005).	 fNIRS	

allowed	the	recording	of	spontaneous	blood	fluctuations	in	the	brain	in	awake	

infants	 at	 rest	 to	 investigate	 the	 relationship	 between	 self-awareness	 and	

connectivity	 between	 crucial	 areas	 of	 the	 functional	 network	 previously	

explored	in	adults.	Moreover,	there	is	substantial	adult	literature	showing	that	

core	brain	regions	of	 the	Default	Mode	Network	(DMN)	are	engaged	 in	self-

processing,	 for	 example,	 while	 subjects	 are	 looking	 at	 their	 own	 image	 or	
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listening	 to	 their	own	voice	(for	some	examples	see	Committeri	et	al.,	2007;	

Kampe,	 Frith,	 &	 Frith,	 2003;	 Mort	 et	 al.,	 2003;	 Platek	 et	 al.,	 2006;	 Staffen,	

Kronbichler,	 Aichhorn,	 Mair,	 &	 Ladurner,	 2006;	 Sugiura	 et	 al.,	 2008,	 2012).	

However,	what	is	happening	in	the	developing	brain	during	self-recognition	has	

yet	to	be	investigated.	During	the	first	years	of	life,	the	detection	of	temporal	

contingency	between	observed	and	performed	movements	has	been	suggested	

to	 be	 an	 important	 cue	 for	 self-recognition	 (Rochat,	 2003).	 Therefore,	 in	

Chapter	 5,	 I	 took	 advantage	 of	 fNIRS	 to	 acquire	 brain	 responses	 while	 18-

month-olds	were	looking	at	themselves.	This	was	one	of	the	first	investigations	

into	the	neural	correlates	of	self-processing	in	the	developing	brain.	

	 As	 already	 mentioned,	 some	 researchers	 have	 highlighted	 the	

fundamental	role	of	others	in	the	construction	of	the	self	and	how	they	act	as	

social	mirrors	(Prinz,	2012;	Rochat,	2003;	Rochat	&	Zahavi,	2011).	Based	on	

this	approach,	a	further	aim	of	this	work	was	to	explore	how	self-awareness	can	

influence	social	interactions.	To	test	this,	I	focused	on	mimicry,	the	spontaneous	

tendency	to	copy	others,	which	is	known	to	play	an	important	role	in	affiliation	

and	in	mediating	social	relationships.	In	Chapter	6,	I	explored	how	mimicry	of	

models	belonging	to	in-group	or	out-group	might	be	mediated	by	emerging	self-

awareness.	 Furthermore,	 I	 investigated	 whether	 the	 mothers’	 tendency	 to	

imitate	 their	 4-month-olds’	 facial	 actions	 is	 a	 predictor	 of	 emerging	 self-

awareness	at	18	months.	For	this	part	of	the	thesis,	I	integrated	the	use	of	fNIRS	

with	electromyography	(EMG)	to	record	subtle	muscle	activation.	

	 This	 PhD	 thesis	 can	 be	 divided	 into	 three	 main	 sections:	 i)	

methodological	 improvements	 of	 fNIRS	 analysis	 techniques	 to	 explore	 the	

brain	 networks	 supporting	 the	 emergence	 of	 self-awareness;	 ii)	 an	

investigation	 of	 the	 neuronal	 underpinnings	 of	 emerging	 self-awareness	 in	
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awake	 infants;	 iii)	 an	 investigation	 of	 how	 others	 interact	 with	 an	 infant’s	

emerging	self-awareness	and	their	possible	influence	on	its	development.	

In	summary,	this	PhD	thesis	addresses	the	following	questions:	

£ What	is	the	significance	of	visual	self-recognition	in	infancy?	

£ May	 functional	 connections	 in	 brain	 networks	 at	 rest	 be	 a	

marker	of	self-awareness	in	infants,	as	it	is	in	adults?	

£ Are	 the	 brain	 areas	 that	 are	 typically	 engaged	 in	 adult	 self-

processing	also	engaged	in	emerging	self-awareness?	

£ What	role	do	others	play	in	the	construction	of	our	sense	of	self?	

How	 does	 self-awareness	 influence	 how	 infants	 interact	with	

the	social	world?		

£ Which	is	the	relationship	between	emerging	self-awareness	and	

mimicry?	

	

The	 remainder	 of	 this	 chapter	 provides	 an	 overview	 of	 the	 psychological	

theories	concerning	the	development	of	the	sense	of	self,	and	of	the	different	

views	on	the	significance	of	visual	self-recognition.	 I	 summarise	the	 theories	

related	to	the	self-other	relationship	and	the	impact	of	self-awareness	on	the	

development	 of	 social	 cognitive	 abilities	 in	 the	 first	 years	 of	 life	 with	 an	

emphasis	on	mimicry.	Lastly,	a	literature	overview	of	the	neuronal	correlates	

of	the	sense	of	self	in	infancy	and	in	adulthood	is	presented.	
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1.2	Theories	on	the	development	of	the	sense	of	Self	

1.2.1	Hypotheses	regarding	a	minimal	self		

Do	we	have	a	sense	of	self	from	the	moment	we	are	born?	Or	do	we	instead	

gradually	develop	this	through	our	experiences	with	the	environment?	This	has	

been	one	of	the	burning	questions	since	the	origin	of	psychology	as	a	science.		

One	 of	 the	 first	 psychologists	 that	 described	 newborns’	 experiences	

with	the	environment	was	William	James	in	1890,	who	stated	that	“the	baby,	

assailed	by	eyes,	ears,	nose,	skin,	and	entrails	at	once,	feels	it	all	as	one	great	

blooming,	buzzing	confusion”	(James,	1890,	p.488).	This	‘confusion’	suggests	a	

disoriented	 infant,	 destitute	 of	 any	 sense	 of	 self,	 in	 an	 initial	 state	 of	 non-

differentiation	 between	 themselves	 and	 the	 environment.	 Along	 these	 same	

lines,	Jean	Piaget	spoke	of	newborns	as	“a	visually	perceiving	two-dimensional	

tableaux	that	is	completely	undifferentiated	as	to	components	due	to	activity	of	

self	 and	 components	due	 to	 independent	 events	 in	 external	 reality”	 (Piaget,	

1954).		

This	lack	of	differentiation	between	the	infant	and	the	environment	has	

not	 been	 proven	 by	 empirical	 evidence	 and	 is	 mainly	 based	 on	 the	 idea	 of	

underdeveloped	 visual	 space	 perception	 at	 birth.	 This	 general	 framework,	

taken	 for	 granted	 in	 developmental	 psychology	 for	 several	 years,	 was	

challenged	by	James	Gibson	(1966),	who	affirmed	that	perceptual	systems	are	

the	first	vehicle	for	infants	interacting	with	the	world	and	that	the	perception	

of	the	world	is	their	first	step	towards	the	perception	of	themselves	(Gibson,	

1966).	 This	 new	 proposal,	 extremely	 revolutionary	 for	 that	 time,	 helped	 to	

inspire	the	subsequent	theories	on	the	development	of	the	sense	of	self.	
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Consistent	 with	 Gibson’s	 (1996)	 theory,	 the	 past	 thirty	 years	 of	

neuroscientific	and	psychological	research	have	demonstrated	that	newborns	

and	 infants	 have	 a	 more	 developed	 self-concept	 than	 previously	 thought.	

Nowadays,	 researchers	 agree	 that	 we	 come	 into	 the	 world	 with	 at	 least	 a	

‘minimal’	 sense	 of	 self;	 a	 foundation	 that	 allows	 us	 to	 interact	 with	 the	

environment	 (Gallagher,	 2000;	 Zahavi,	 2017).	 Despite	 some	 differences	 in	

terminology,	the	presence	of	a	core	self	has	been	highlighted	by	many	during	

the	 last	 decades.	 The	 biologist	 Edelman	 (1990)	 spoke	 about	 primary	

consciousness,	 which	 allows	 us	 to	 be	 mentally	 aware	 of	 the	 stimuli	 in	 our	

environment,	and	distinguished	 this	 from	higher-order	consciousness,	which	

entails	 a	 more	 developed	 idea	 of	 our	 own	 self.	 Primary	 consciousness	 only	

provides	 a	 sense	 of	 ourselves	 in	 the	measurable	 present,	 not	 in	 the	 past	 or	

future	(Edelman,	1990,	2005;	Edelman,	Gally,	&	Baars,	2011).		

Similarly,	 Neisser	 (1988)	defined	 the	 core	 self	 as	 the	 ecological	 self,	

which	is	present	from	a	very	early	age	as	a	manifestation	of	our	interactions	

with	the	world.	This	is	the	first	of	five	self-related	domains	that	form	a	complete	

self-concept,	with	the	other	four	domains	being	the	interpersonal	self,	which	is	

engaged	in	social	interactions;	the	conceptual	self,	which	involves	the	mental	

representations	of	oneself;	the	temporally	extended	self,	which	comprehends	

one’s	own	life	story;	and	the	private	self,	which	provides	insight	into	one’s	own	

thoughts	(Neisser,	1988).		

Contemporary	philosophers	and	scientists	have	also	supported	the	idea	

of	a	core	self	and	many	of	them	agree	that	there	can	be	no	experience	without	

a	sense	of	self	(Gallagher,	2000;	Zahavi,	2003,	2010,	2017).	Gallagher	(2000)	

and	Zahavi	(2003,	2010)	argued	that	there	has	to	be	something,	even	if	it	is	very	

basic	 and	 immediate,	 from	 the	 very	 beginning	 of	 life.	 Blanke	 and	Metzinger	
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(2009)	 described	 the	 basic	 and	 pre-reflective	 experience	 of	 being	 a	 self	 as	

‘minimal	phenomenal	selfhood’,	but	mainly	related	this	to	aspects	of	bodily	self-

awareness.		

Recently	Zahavi	(2017,	p.689)	stated	that,	“it	is	a	self-awareness	rooted	

in	 the	 first-personal	 givenness	 of	 its	 experiences,	 in	 the	 intrinsic	 self-

manifesting	 character	of	 its	 experiential	 life”.	 This	precursor	 and	primordial	

self	might	be	 considered	 the	 foundational	part	 of	selfhood.	However,	 Zahavi	

does	 not	 intend	 this	 primordial	 self	 a	 fully-fledged	 sense	 of	 self,	 as	 the	

primordial	self	 is	still	 far	removed	 from	the	complex	components	of	the	self,	

such	 as	 self-awareness,	 self-consciousness,	 and	 a	 sense	 of	 agency,	 which	

emerge	 later	 in	 development	 (Zahavi,	 2017).	 Indeed,	 the	 label	 minimal	 is	

employed	by	Zahavi	to	highlight	how	limited	this	core	is	and	how	much	more	

has	to	develop	to	account	for	a	complete	and	multifaceted	idea	of	the	human	

self	(Zahavi,	2014).		

Infant	studies	showing	a	positive	relationship	between	proprioceptive	

skills	 from	 birth	 are	 considered	 an	 evidence	 for	 a	 minimal	 self	 from	 birth	

(Rochat,	1995;	Rochat	&	Striano,	1999,	2000;	Zahavi	et	al.,	2004).	In	this	view,	

infants	are	described	as	behaving	as	actors	in	a	meaningful	environment	from	

birth	 as	 opposed	 to	 being	 a	 mere	 collection	 of	 reflexes.	 Inter-sensory	

coordination	and	intermodal	perception	are	known	to	exist	right	after	birth	(for	

a	review	see	Lickliter,	2011),	suggesting	that	the	presence	of	a	core	self	allows	

us	to	efficiently	interact	with	the	environment	(Rochat,	1995).	This	theory	is	

based	on	studies	showing	visual-auditory	coordination	(for	some	examples	see	

Bremner	et	al.,	2011;	Castillo	&	Butterworth,	1981;	Fenwick	&	Barbara,	1998)	

and	visual-tactile	coordination	(for	some	examples	see	Bower,	Broughton,	&	

Moore,	1970;	Freier,	Mason,	&	Bremner,	2016;	Meltzoff	&	Borton,	1979;	Streri,	
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1993)	in	very	young	infants,	indicating	that	they	can	integrate	information	from	

different	 perceptual	 systems	 concerning	 the	 same	 external	 objects.	 Further	

evidence	to	support	the	existence	of	a	minimal	self	from	a	very	young	age	is	

based	on	their	ability	to	perform	and	their	preference	to	look	at	goal-oriented	

actions,	and	 the	active	exploration	of	 the	 environment,	which	rely	on	bodily	

self-awareness	and	the	perception	of	self-produced	movements	(Butterworth	

&	Hopkins,	1988;	Craighero,	Leo,	Umiltà,	&	Simion,	2011;	Rochat,	1995;	Rochat	

&	Striano,	2000).	Other	researchers	belonging	to	this	tradition	often	refer	to	

Meltzoff	and	Moore’s	(1977,	1983,	1989)	works,	which	argued	that	neonatal	

imitation	 provides	 evidence	 of	 innate	 self-awareness	 (Gallagher	 &	Meltzoff,	

1996;	Meltzoff,	1988;	Meltzoff	&	Moore,	1977,	1983,	1989).	However,	further	

studies	failed	to	replicate	these	findings,	suggesting	that	the	innate	nature	of	

imitation	 is	 controversial	 and	 questionable	 (Anisfeld,	 1996;	 Anisfeld	 et	 al.,	

2001;	Welsh,	2006;	for	a	recent	review	on	this	topic	see	Oostenbroek,	Slaughter,	

Nielsen,	&	Suddendorf,	2013).	

It	has	also	been	also	shown	that	 infants	are	able	 to	seek	and	explore	

contingent	stimulations,	argued	to	have	evolved	in	order	to	provide	input	for	a	

developing	 rudimentary	 representation	 of	 their	 bodily	 self	 (Gergely,	 2004).	

This	so-called	‘contingency	detection	module’,	aimed	to	analyse	the	temporal	

conditional	probabilities	 of	 stimuli	 and	 responses,	has	been	hypothesised	 as	

innate	and	it	would	give	raise	to	a	primary	subjectivity	in	the	infant	(Gergely	&	

Watson,	1996,	1999).	Empirical	research	seems	to	support	this	idea,	showing	

that	very	young	infants	are	able	to	appreciate	differences	between	contingent	

and	non-contingent	movements,	even	from	one	month	of	age	(van	der	Meer,	

van	der	Weel,	&	Lee,	1995).	By	two	months,	infants	seem	to	explore	the	auditory	

effects	 of	 their	 actions	 (Rochat	&	Striano,	 1999)	 and	 show	a	higher	 level	 of	
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interaction	 with	 a	 self-live	 video	 rather	 than	 a	 self-delayed	 one	 (Reddy,	

Chisholm,	Forrester,	Conforti,	&	Maniatopoulou,	2007).	These	findings	support	

the	idea	of	an	inborn	tendency	to	discriminate	temporally	contingent	and	non-

contingent	stimuli	and	might	support	the	presence	of	an	early	‘ecological	self’,	

a	term	from	Neisser’s	(1988)	theory,	that	suggests	a	perception	of	oneself	as	an	

entity	distinct	from	the	environment.	However,	despite	the	fact	that	the	ability	

to	 detect	 contingencies	 between	 performed	 and	 observed	 movements	 is	

present	from	early	on	(Reddy	et	al.,	2007;	Rochat	&	Striano,	1999),	children	do	

not	appear	to	use	this	information	for	self-awareness	until	around	18	months	

of	 age,	 as	 evidenced	 by	 the	mirror-self-recognition	 task	 (Amsterdam,	 1972;	

Rochat,	2003).	

This	first	section	provided	an	overview	of	the	evidence	for	a	minimal	

sense	of	self	from	very	early	in	life.	This	seems	to	be	the	crucial	core	of	one’s	

own	 selfhood	 that	 allows	 the	 interactions	 with	 others	 (Zahavi,	 2017).	With	

evidence	of	efficient	interactions	with	the	world	(Neisser,	1998;	Rochat,	1995),	

capabilities	 of	 integrating	 multisensory	 information	 (Lickliter,	 2011),	 and	

preference	for	self-contingence	stimuli	(Gergely,	2004;	Rochat	&	Striano,	1999)	

from	very	early	after	birth,	 James’s	(1980)	idea	of	an	infant	undifferentiated	

from	the	environment	has	been	 largely	rejected	during	the	 last	 few	decades.	

Although	 these	 results	 support	 a	minimal	 self	 in	 young	 infants,	 they	 do	 not	

explain	 the	mechanisms	 underlying	 a	more	 advanced	 sense	 of	 self	 and	 self-

awareness,	which	are	the	main	focus	of	this	PhD	project.		

In	fact,	with	this	thesis,	I	aimed	to	go	beyond	the	understanding	of	the	

development	 of	 this	 first	 core-self	 and	 explore	 the	 mechanisms	 that	 could	

contribute	to	self-awareness.	As	self-awareness	is	conceived	as	the	conscious	

knowledge	of	oneself	as	a	peculiar	individual	with	specific	physical	and	mental	
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features	(Rochat,	2003),	it	encompasses	but	is	not	limited	to	the	minimal	sense	

of	self.	This	suggests	that	to	speak	of	self-awareness,	evidence	of	abstract	self-

representation	and	knowledge	of	one’s	own	mental	features	is	needed.	As	the	

last	few	decades	of	research	on	the	development	of	the	sense	of	self	have	mostly	

focused	on	bodily	self-perception	and	rudimental	minimal	self,	there	is	a	clear	

need	 for	 a	 deeper	 understanding	 of	 the	 mechanisms	 underlying	 the	

development	of	awareness	of	one’s	own	person	and	features,	which	this	PhD	

work	aims	to	investigate.	

	

	

1.2.2	 How	 social	 interaction	 contributes	 to	 defining	 one’s	 own	

sense	of	self	

In	the	more	recent	updates	to	the	minimal	self	theories,	it	has	been	proposed	

that	 a	 social	 component	 of	 the	 self,	 i.e.	 interaction	 with	 others,	 plays	 a	

fundamental	role	in	the	emergence	of	the	self	from	very	early	in	life	(Kyselo,	

2016;	Zahavi,	2017).	This	is	supported	by	evidence	showing	that	self	and	other	

representations	 share	 neural	 correlates	 (Decety	 &	 Sommerville,	 2003)	 (see	

section	1.5.3	 for	more	details).	However,	 how	perceptions	of	 the	 self	and	of	

others	 are	 integrated,	 and	 which	 lead	 to	 the	 understanding	 of	 the	 other	

perspective,	is	still	unclear.	

The	relationship	between	self-	and	other-concepts,	and	which	of	these	

two	aspects	develops	 first	 has	been	a	much	debated	 topic	 in	developmental	

psychology.	The	idea	of	the	sense	of	self	as	a	social	construct	found	its	origins	

in	the	early	20th	century,	when	social	psychologists	advanced	the	idea	of	a	social	

genesis	of	the	self.	For	example,	Cooley	proposed	the	concept	of	the	looking-

glass	self	(Cooley,	1902),	where	interpersonal	interactions	are	fundamental	for	
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the	 formation	 of	 the	 self.	 Consistent	with	 this	 view,	 Mead	 talked	 about	 the	

importance	of	being	an	object	to	oneself	and	that	the	construction	of	the	self	

happens	only	when	 the	 subject	 adopts	 the	other’s	 attitude	 to	oneself	 (Mead	

1934;	Mead	&	Morris,	1962).	

Contrary	to	the	idea	of	a	socially	shaped	self	proposed	by	Cooley	and	

Mead,	some	other	more	recent	theories	have	proposed	that	the	understanding	

of	one’s	own	mental	states	and	access	 to	one’s	own	mind	were	 fundamental	

requirements	 for	 the	 understanding	 of,	 and	 interaction	 with,	 others.	 This	

approach	is	known	as	the	like-me	perspective,	where	knowledge	of	one’s	own	

inner	 states	 and	 feelings	 are	 considered	 to	 be	 fundamental	 tools	 to	 access	

perceptions	of	others	(Gallese,	2005;	Meltzoff,	2007;	Meltzoff	&	Moore,	1997).		

More	recently,	researchers	such	as	Zahavi,	Prinz,	and	Rochat	referred	

back	to	Cooley	and	Mead’s	approach	and,	in	contrast	to	the	like-me	perspective,	

they	remarked	the	importance	of	social	interactions	for	the	formation	of	the	self	

(Prinz,	2012;	Rochat	&	Zahavi,	2011).	In	this	approach,	minds	are	viewed	as	

open	 and	 interchangeable	 systems	 and	 the	 development	 of	 subjectivity	 is	

defined	through	communication	and	social	interactions.	Compared	to	the	view	

presented	 by	 the	 like-me	 perspective,	 where	 each	 mind	 is	 considered	 an	

isolated	and	closed	system,	the	open	minds	theory	supports	the	idea	of	a	self	

that	is	socially	shaped,	with	others	being	necessary	for	the	understanding	and	

development	of	our	inner	states	and	minds	(Hauf	&	Prinz,	2005;	Prinz,	2003,	

2012).	As	others’	minds	are	used	to	reflect	and	explore	our	own	subjectivity,	

proponents	 of	 this	 view	 consider	 others	 to	 be	 social	 mirrors	 (Prinz,	 2012;	

Rochat	&	Zahavi,	2011).	As	with	the	reflection	of	one’s	own	image	in	the	mirror	

individuals	 detect	 their	 own	movements	 and	 physical	 appearance,	 similarly	

through	 the	 relationships	 with	 others,	 individuals	 experience	 how	 others	
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perceive	themselves	in	terms	of	mental	and	inner	features.	In	fact,	while	acting	

in	the	social	environment,	infants	learn	from	others’	responses	how	their	own	

actions	and	inner	states	are	perceived	by	others	(Rochat,	1995).	This	process	is	

vital	to	the	formation	of	the	self	and	to	helping	us	perceive	ourselves	as	objects	

of	 observation,	 rather	 than	 simply	 subjects	 (Rochat,	 2003;	Rochat	&	Zahavi,	

2011).	Prinz	described	the	like-me	perspective	as	a	self-naturalism	approach,	

as	in	this	view	the	self	seems	‘an	organ	of	the	mind’	that	develops	with	the	brain	

(Prinz,	2012).	The	like-me	perspective	does	not	take	into	account	the	role	of	

others	in	shaping	the	self,	but	instead	the	interactions	with	others	are	actually	

a	product	of	the	development	of	the	self	(Prinz,	2012).	On	the	contrary,	the	open	

minds	paradigm	alternatively	suggests	a	like-you	perspective,	characterised	by	

a	constant	relationship	with	others,	which	acts	as	a	foundation	for	the	gradual	

construction	of	one’s	own	self	(self-constructivism)	(Hauf	&	Prinz,	2005).		

The	 first	 fundamental	other	 interacting	with	ourselves	 in	early	 life	 is	

our	mother	or	carer,	who	has	a	particular	influence	on	shaping	our	sense	of	self.	

Early	 social	 exchanges,	 such	 as	 proto-conversations,	 taking	 turns,	 early	

imitations,	 and	 action	 understanding	 are	 the	 foundations	 of	 the	 dynamic	

interchanges	 between	 open	 minds	 (Prinz,	 2012).	 It	 is	 worth	 mentioning,	

however,	that	both	the	like-me	and	the	like-you	perspectives	consider	active	

interactions	with	the	mother	as	empirical	support	for	their	approaches.	While	

the	 like-me	perspective	considers	early	social	exchanges	as	evidence	of	self-

awareness	 that	 has	 already	 been	 shaped,	 the	 like-you	 perspective	 thinks	 of	

these	exchanges	as	evidence	of	an	on-going	process	that	indicates	the	gradual	

development	of	self-awareness	(Meltzoff	&	Moore,	1997;	Prinz,	2012).		

More	research	 is	needed	to	clarify	whether	relationships	with	others	

are	causes	or	consequences	of	emerging	self-awareness	and	to	provide	further	
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empirical	evidence	for	the	social	nature	of	the	self.	Table	1.2	summarises	the	

main	characteristics	of	the	like-me	and	the	like-you	perspectives	discussed	in	

this	section.		

	

	 Like-me	perspective	
(Meltzoff,	Gallese)	

Like-you	perspective	
(Rochat,	Prinz,	Zahavi)	

Development	of		
one’s	own	mind	

Self-naturalism:	
the	self	develops	first	
and	it	is	based	on	self-
knowledge	that	one	can	
understand	others	

Self-constructivism:	
through	interactions	with	
others,	one	can	construct	

the	self	

Relationship	
between	own	mind		
and	other	minds		

Closed	minds:	
individuals	develop	
subjectivity	by	

themselves	and	each	
mind	is	an	isolated	

system	

Open	minds:	
social	shaping	of	the	

mind,	others	act	as	social	
mirrors	

	
Table	1.2.	Summary	of	the	two	main	views	of	self-other	interactions.	

	

1.3	 Visual	 self-recognition	 and	 the	 mirror-self-

recognition	task	

1.3.1	 The	 mirror	 self-recognition	 task,	 its	 development	 and	

procedure		

Visual	self-recognition	has	been	proposed	by	many	as	a	possible	indicator	of	

self-awareness	(for	a	review	see	Suddendorf	&	Butler,	2013),	and	thus	the	so-

called	Mirror	Self-Recognition	test	has	become	the	primary	 indicator	of	self-

awareness	 in	 early	 life.	 In	 a	 landmark	 paper	 in	 1970,	 Gallup	 showed	 self-

recognition	 in	non-human	primates	 for	 the	 first	 time	 (Gallup,	 1970).	 In	 this	

original	 experiment,	 Gallup	 tested	 four	 chimpanzees	 who	 had	 never	 been	
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exposed	to	a	mirror.	After	some	days	of	habituation	with	the	mirror,	mirror-

aided	 self-directed	 behaviours	 were	 observed,	 which	 were	 interpreted	 by	

Gallup	 as	 evidence	 for	 self-recognition	 in	 chimpanzees	 (Gallup,	 1970).	 In	 a	

second	version	of	this	experiment,	Gallup	(1977)	introduced	a	new	procedure	

where	 the	 faces	 of	 the	 chimpanzees	 were	 marked	 while	 they	 were	 under	

anaesthesia	and	their	reactions	in	front	of	the	mirror	were	tested	again.	Mark-

directed	responses	were	observed,	such	as	attempts	to	touch	the	marked	area	

on	 their	 faces	 through	 visually	 guided	mirror	 feedback	 (Gallup,	 1977).	 Self-

recognition	using	this	task	has	been	demonstrated	in	several	other	great	apes	

(Anderson	&	Gallup,	2011;	Hauser,	Kralik,	Botto-Mahan,	Garrett,	&	Oser,	1995;	

Rajala,	Reininger,	Lancaster,	&	Populin,	2010;	Schilhab,	2004;	Suarez	&	Gallup,	

1981).	 Evidence	 for	 self-recognition	 has	 been	 observed	 also	 in	 dolphins	

(Marino,	Reiss,	&	Gallup,	1994;	Reiss	&	Marino,	2001),	birds	(Prior,	Schwarz,	&	

Güntürkün,	2008),	and	elephants	(Plotnik,	de	Waal,	&	Reiss,	2006).	However,	

while	the	findings	on	great	apes	have	been	widely	replicated,	there	is	very	little	

evidence	 for	 replication	 on	 dolphins,	 birds	 and	 elephants,	 therefore	 these	

results	 must	 be	 interpreted	 with	 caution.	 Interestingly,	 it	 is	 those	 species	

closest	 to	 humans	 (i.e.	 gorillas,	 chimpanzees,	 and	orangutans)	 that	pass	 the	

MSR	task,	while	the	 less	related	groups	(e.g.	gibbons	and	monkeys)	 failed	to	

pass.	This	 finding	 suggests	 that	 self-recognition	may	have	 evolved	 relatively	

recently	(Schilhab,	2004;	Suddendorf	&	Butler,	2013).		

Scepticism	 as	 to	 whether	 non-human	 primates	 can	 really	 recognise	

themselves	 has	 been	 shown	 by	 Heyes	 (1994,	 1995),	 who	 argued	 that	 self-

recognition	 depends	 only	 on	 artefacts	 related	 to	 the	 anaesthetic	 recovery.	

Heyes	 interpreted	 self-directed	 and	 mark-directed	 behaviours	 as	 mirror-

independent	behaviours	 rather	 than	 signs	of	 self-recognition	 (Heyes,	 1994a,	
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1995).	However,	further	analyses	of	the	temporal	patterning	of	mark-directed	

and	 non-mark-directed	 behaviours	 showed	 an	 increase	 of	 mark-directed	

touches	 (Gallup	 et	 al.,	 1995;	 Povinelli	 et	 al.,	 1997.	 For	 critical	 reviews	 on	

methodology	and	interpretation	of	self-recognition	in	non-human	primates	see	

De	Veer	&	Van	Den	Bos,	1999;	van	den	Bos,	1999;	Schilhab,	2004).	

Using	a	similar	procedure	to	the	one	used	with	animals,	the	MSR	task	

(also	known	as	 the	rouge	 test)	was	adapted	 for	use	with	 infants	 in	1972	by	

Amsterdam	(Amsterdam,	1972).	In	this	first	study,	88	children	aged	between	3	

and	24	months	were	 tested	 to	assess	 their	self-image	reactions	 in	 front	of	a	

mirror.	 During	 the	 first	 year	 of	 life,	 the	 image	 in	 the	mirror	 is	 likely	 to	 be	

perceived	 as	 another	 infant,	 and	 it	 is	 only	 after	 the	 second	 year	 of	 life,	

particularly	between	18	and	24	months	of	age,	that	toddlers	start	to	show	signs	

of	self-recognition.	While	half	of	18-month-olds	tend	to	recognise	themselves	

in	 the	 mirror,	 by	 24	 months,	 most	 of	 the	 children	 ‘pass’	 the	 MSR	 task	

(Amsterdam,	1972;	Rochat,	2003).	For	the	MSR	procedure	used	nowadays,	the	

experimenter	 covertly	 marks	 the	 child’s	 cheek	 or	 nose,	 usually	 using	 red	

lipstick.	The	children’s	reactions	in	front	of	the	mirror	after	the	mark	has	been	

placed	are	 the	 focus	of	 the	 test,	as	children	with	self-recognition	capabilities	

should	 identify	 something	 unusual	 on	 their	 faces.	 The	 toddlers	 that	 exhibit	

mark-directed	 behaviours	 are	 categorised	 as	 ‘recognisers’,	 though	 the	

definition	 of	 mark-directed	 behaviour	 differs	 across	 studies	 (e.g.	 whether	

toddlers	have	to	touch	the	mark	exactly,	touch	in	the	vicinity	of	the	mark,	or	

simply	 touch	 their	 face)	(for	a	review	on	different	criteria	for	mark-directed	

behaviours	 Kärtner,	 Keller,	 Chaudhary,	 &	 Yovsi,	 2012).	 It	 is	 also	 unclear	

whether	toddlers	should	be	classed	as	‘recognisers’	if	they	show	self-referential	

pointing	gestures,	if	they	stare	at	the	marked	face,	or	if	they	say	their	own	name.		
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More	commonly,	toddlers	that	exhibit	behaviours	at	the	edge	of	self-recognition	

are	categorised	as	‘ambiguous’	(Kärtner,	Keller,	Chaudhary,	&	Yovsi,	2012).	All	

other	 behaviours	 fell	 in	 the	 Non-Recognisers	 category.	 ‘Non-recognisers’	

usually	bang	on	the	surface	of	the	mirror,	kiss	or	point	at	their	mirror	image,	

and	laugh	and	interact	with	the	reflected	image.	It	is	likely	that	looking	behind	

the	mirror	 indicates	 that	 the	 infant	 believes	 the	 reflected	 image	 belongs	 to	

another	infant.		

	

1.3.2	 What	 does	 the	 mirror	 self-recognition	 task	 measure?	

Evidence	for	and	against	a	measure	of	self-awareness	

As	previously	mentioned,	the	MSR	task	provides	an	index	of	self-recognition	in	

a	mirror,	but	many	researchers	have	suggested	that	successfully	passing	this	

test	is	an	indicator	of	a	broader	sense	of	self	(e.g.	Suddendorf	&	Butler,	2013).	

Gallup	(1998)	was	 the	 first	 to	claim	that	self-recognition	 in	 the	mirror	 is	an	

index	of	self-awareness,	because	to	recognise	yourself	you	need	to	become	the	

object	 of	 one’s	 own	 attention.	 In	 both	 developmental	 and	 comparative	

psychology,	however,	there	is	an	ongoing	debate	about	the	real	significance	of	

this	task.	What	type	of	sense	of	self	do	we	measure	with	this	test?	What	are	the	

cognitive	 skills	 necessary	 to	 pass	 this	 task?	 How	 does	 the	 participants’	

motivation	change	the	outcomes	of	this	task?	Are	there	any	cultural	differences	

affecting	 the	 successful	 outcomes	 of	 this	 task	 that	 suggest	 that	 exposure	 to	

mirrors	can	influence	self-recognition?		

These	are	some	of	the	open	questions	and	criticisms	regarding	the	use	

of	this	task	that	mean	that	visual	self-recognition	is	not	universally	accepted	as	

an	indicator	of	self-awareness.	Arguing	against	any	richer	interpretation	of	the	

MSR	 task	 than	 simple	 visual	 self-recognition,	Mitchell	 (1993)	proposed	 two	
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hypotheses	 to	 explain	 what	 drives	 mirror	 self-recognition.	 One	 hypothesis	

argues	that	a	successful	outcome	on	the	MSR	task	might	indicate	nothing	more	

than	 the	 detection	 of	matching	 visual	 and	 kinaesthetic	 information,	 and	 the	

understanding	of	 the	mirror	 correspondence	 (inductive	 theory).	The	 second	

hypothesis	 argues	 that	 mirror	 self-recognition	 might	 be	 driven	 by	 object	

permanence,	 which	 relates	 self-recognition	 in	 the	 mirror	 merely	 to	 the	

identification	of	one’s	own	body-parts	in	the	mirror.	In	fact,		if	the	infants	see	

one	part	of	the	body	reflected	and	they	know	it	belongs	to	the	entire	body,	than	

they	understand	that	the	mirror	reflects	both	the	body	part	and	the	entire	body	

(deductive	theory).	Neither	the	inductive	nor	the	deductive	theory	links	mirror	

self-recognition	 to	 anything	 beyond	 basic	 physical	 self-recognition.	 Indeed,	

Mitchell	 claimed	 that	 some	 individuals	 may	 pass	 the	 MSR	 task	 without	

necessarily	having	recognised	their	own	image.	The	possible	emergence	of	self-

awareness	 is	 not	 even	 debated	 in	 Mitchell’s	 theory.	 Self-awareness	 can	 be	

achieved	either	before	or	after	the	recognition	of	one’s	own	image	in	the	mirror,	

but	according	to	Mitchell	this	is	an	aspect	not	assessed	by	the	MSR	task	in	any	

way	(Mitchell,	1993).	Loveland	(1986)	argued	that	 the	understanding	of	 the	

proprieties	of	the	reflective	surface	is	a	necessary	skill	to	pass	the	MSR	task,	via	

“a	continuous	process	through	which	information	about	different	properties	of	

the	mirror	is	picked	up	and	its	significance	gradually	appreciated”(Loveland,	

1986,	 p.20).	 According	 to	 this	 view,	 self-recognition	 is	 driven	 by	 cognitive	

development	 and	 requires	 the	 child	 to	 have	mastered	 perceptual	 problems	

related	to	the	reflective	surface,	and	is	therefore	not	related	to	emerging	self-

awareness.	The	overcoming	of	perceptual	challenges,	such	as	the	symmetry	of	

the	 mirror	 and	 perceiving	 parts	 of	 one’s	 own	 body	 that	 are	 not	 usually	

accessible	(e.g.	the	face)	might	more	accurately	define	the	outcome	of	the	MSR	
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task	(Loveland,	1986).	The	 criticisms	of	 the	MSR	task	appeared	 in	 the	years	

immediately	following	its	development.	However,	most	of	the	recent	empirical	

evidence	seems	to	support	the	very	first	meaning	attributed	to	the	MSR	task	

proposed	by	Gallup	(1982),	and	suggests	that	a	successful	performance	in	self-

recognition	 draws	 on	 the	 broader	 capacity	 to	 collate	 self-representations.	

(Brandl,	2016;	Gallup,	1982;	Kärtner	et	al.,	2012).		

Indeed,	 consistent	 with	 this	 more	 conceptually	 rich	 interpretation,	

several	studies	aimed	to	explore	an	association	between	self-recognition	in	the	

mirror	and	other	indexes	of	self-awareness.	For	example,	success	in	the	MSR	

task	 has	 been	 associated	 with	 empathy	 (Bischof-Köhler,	 2012),	 personal	

pronoun	use	and	pretended	play	(Lewis	&	Ramsay,	2004),	which	have	been	

argued	 to	 reflect	 awareness	 of	 a	 psychological	 self	 (Brandl,	 2016).	 Self-

recognition	in	the	mirror	has	also	been	associated	with	a	capacity	for	‘symbol-

mindedness’,	with	 the	mirror	 considered	a	 symbol	 of	 the	 representations	of	

one’s	 own	 body	 (Savanah,	 2013).	 It	 has	 been	 shown	 that	 self-recognition	

between	18	and	24	months	of	age	is	related	to	other	body	parts,	not	just	the	

face	 (Nielsen,	 Suddendorf,	 &	 Slaughter,	 2006).	 This	 suggests	 that	 self-

recognition	might	be	based	on	expectations	about	physical	appearance	that	are	

not	 restricted	 to	 the	 face,	 raising	doubt	 about	 those	 that	 suggested	 that	 the	

special	 status	 of	 the	 face	 may	 be	 the	 reason	 for	 success	 in	 the	 MSR	 task	

(Mitchell,	1993;	Parker,	Mitchell,	&	Boccia,	1995).		

Recently,	 some	 authors	 inferred	 an	 even	 more	 multifaceted	

interpretation	of	the	MSR	task	than	the	one	initially	proposed	by	Gallup	(1982).	

According	to	 this	new	theory,	passing	the	MSR	task	might	 indicate	that,	 “the	

mental	state	or	the	idea	of	‘me’	is	that	part	of	the	self	that	makes	reference	to	

itself”	(Lewis,	2011,	p.	127),	i.e.	the	ability	to	understand	how	others	see	you	
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and	that	you	are	not	only	a	subject	but	also	an	object	of	observation	(Lewis,	

2011;	Rochat,	1995,	2003;	Rochat	&	Zahavi,	2011).	Lewis	(2011)	and	Rochat	

(1995,	2003)	are	two	of	the	main	researchers	who	subscribed	to	this	view	and	

there	is	a	strong	link	between	their	interpretation	of	the	MSR	task	and	the	idea	

of	others	as	fundamental	scaffolds	for	the	emerging	sense	of	self	(as	mentioned	

in	the	previous	section).	Rochat	(2011)	described	how	in	one	of	Gallup’s	studies	

(1977),	the	chimpanzees	who	grew	up	in	isolation	failed	to	exhibit	self-directed	

behaviours	in	front	of	the	mirror	(even	after	extensive	exposures).	After	three	

months	of	group	experience,	however,	these	same	chimpanzees	showed	signs	

of	self-recognition	(Gallup,	1977).	This	finding	is	consistent	with	the	idea	of	a	

fundamental	role	of	social	interactions	in	the	emergence	of	a	sense	of	self,	and	

highlights	 the	 social	 nature	 of	 emerging	 self-awareness	 (Rochat	 &	 Zahavi,	

2011).		

It	has	recently	been	proposed	that	the	MSR	task	also	assesses	the	ability	

to	 experience	 social	 emotions	 and	 that	 it	 provides	 evidence	 for	 the	 social	

connotations	associated	with	success	in	this	test	(Rochat	et	al.,	2012).	In	fact,	

while	a	large	amount	of	 literature	argues	 for	 the	presence	of	basic	emotions	

(such	as	happiness,	sadness,	fear,	or	surprise)	from	very	early	in	life	(Ekman,	

1992),	social	emotions	(such	as	pride,	guilt,	or	shame)	require	interactions	with	

others	 to	 be	 experienced	 (Rochat	 et	 al.,	 2012).	 In	 the	 MSR	 task,	 shame	 or	

puzzlement	are	sometimes	observed	in	some	of	the	toddlers	that	exhibit	self-

recognition	 as	 soon	as	 something	unusual	 is	 detected	on	 their	 faces.	This	 is	

consistent	with	 the	 idea	of	 the	MSR	 task	as	a	 test	 for	understanding	others’	

perceptions	of	oneself.	To	support	this,	Rochat	et	al.	(2012)	demonstrated	the	

influence	of	the	social	environment	on	self-recognition	by	placing	a	sticker	on	

the	 toddlers’	 face	during	 the	MSR	task,	with	a	similar	sticker	being	worn	by	
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everyone	 else	 in	 the	 room.	 Under	 this	 condition,	 participants	 were	 more	

hesitant	to	remove	the	sticker,	whereas	this	hesitation	was	not	exhibited	when	

self-recognition	was	tested	in	a	set-up	in	which	the	other	people	in	the	room	

did	not	wear	the	sticker	(Rochat	et	al.,	2012).	Interestingly,	children	who	have	

social	impairments,	such	as	autistic	children,	have	also	been	shown	to	pass	the	

mirror	 self-recognition	 task.	 However,	 these	 children	 show	 self-recognition	

with	 a	 flat	 affect	 and	neutral	 expression,	 and	do	not	display	 any	 sign	of	 the	

embarrassment	or	perplexity	often	associated	with	a	successful	outcome	of	this	

test	(Dawson	&	McKissick,	1984;	Neuman	&	Hill,	1978;	Rochat	&	Zahavi,	2011;	

Spiker	&	Ricks,	1984).	However,	Rochat’s	hypothesis	about	the	development	of	

social	emotions	associated	with	emerging	self-awareness	 leaves	unexplained	

why	 autistic	 children,	 who	 notoriously	 have	 deficits	 in	 recognizing	 other’s	

perspectives	(Frith	&	Happe,	1999),	have	no	difficulties	in	passing	the	mirror	

test.	 To	my	knowledge,	 a	 systematic	 and	objective	 assessment	of	 the	 shame	

reaction	during	the	MSR	task	has	not	been	performed	yet,	therefore	empirical	

evidence	 supporting	 the	 association	 between	 social	 emotions	 and	 emerging	

self-awareness	are	still	needed,	both	in	typical	and	in	atypical	development.	

The	MSR	has	been	so	influential	within	this	field	that	Rochat’s	(2003)	

theory	of	the	development	of	the	sense	of	self	is	almost	entirely	based	on	his	

observations	of	behaviour	in	this	context.	His	theory	identified	five	stages,	each	

of	which	is	characterised	by	different	reactions	when	in	front	of	the	mirror.	At	

birth,	the	mirror	is	conceived	as	an	extension	of	the	environment	(confusion,	

level	 0),	 but	 the	 infant	 soon	 starts	 to	 perceive	 the	 peculiarity	 of	 this	 object	

(differentiation,	level	1).	During	the	first	year	of	life,	there	is	exploration	of	seen	

and	felt	movements	(situation,	level	2),	culminating	in	self-recognition	between	

18	and	24	months	of	age	(identification,	level	3).	The	self	then	moves	beyond	
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the	 here	 and	 now	 of	 mirror	 experience	 after	 the	 second	 year	 of	 life	

(permanence,	level	4)	and	a	completely	abstract	sense	of	self	develops	around	

4-5	years	of	age	(self-consciousness,	level	5)	(Rochat,	2003).	

	

1.3.3	Cultural	differences	in	the	mirror	self-recognition	task	

Despite	 some	 researchers	 suggesting	 that	 familiarity	 with	mirrors	 does	 not	

correlate	with	the	age	at	which	children	pass	the	MSR	task	(Priel	&	de	Schonen,	

1986),	more	recent	cross-cultural	studies	have	highlighted	significant	variation	

in	 the	 age	 at	which	visual	 self-recognition	 in	 the	mirror	 is	 achieved.	 Infants	

between	18	and	20	months	of	age	from	urban	Greece,	Costa	Rica,	and	Germany	

were	compared	to	infants	of	the	same	age	in	a	rural	community	in	Cameroon	

(Keller	 et	 al.,	 2004).	 A	 greater	 proportion	 of	 urban	 children	passed	 the	 test	

(more	 than	 50%)	 compared	 to	 the	 rural	 children	 (less	 than	4%).	 However,	

these	differences	have	been	attributed	to	different	parenting	styles	present	in	

different	 cultures.	 In	 fact,	 a	 distal	 parenting	 style	 typical	 of	 urban	 societies,	

characterised	 by	 a	 high	 level	 of	 face-to-face	 interactions,	 emphasising	

autonomy	and	separateness,	 is	more	 likely	 to	 lead	 to	 self-recognition	 rather	

than	a	proximal	parenting	style	typical	of	rural	societies,	characterised	by	a	high	

level	 of	 body	 contact,	 which	 promotes	 bodily	 closeness	 and	 interpersonal	

fusion	(Keller	et	al.,	2004,	2005).	In	line	with	this	finding,	a	more	recent	study	

compared	 the	 level	 of	 self-awareness	 of	 infants	 from	 Scotland,	 who	 were	

exposed	 to	 distal	 parental	 style,	 Zambia,	 who	 were	 exposed	 to	 proximal	

parental	style,	and	Turkey,	who	were	 exposed	 to	a	mixture	of	both.	Scottish	

infants	exhibited	a	higher	success	rate	at	the	MSR	task	than	infants	from	other	

cultures	(Ross	et	al.,	2017).	Consistent	with	the	findings	of	Keller	and	Ross,	a	

study	performed	by	Broesch,	Callaghan,	Henrich,	Murphy	and	Rochat	(2011)	
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showed	absent	or	delayed	signs	of	self-recognition	in	infants	from	Kenya,	Fiji,	

Saint	 Lucia,	Grenada,	 and	Peru	 compared	 to	urban	and	 rural	Canadians	 and	

Americans	 (Broesch,	 Callaghan,	 Henrich,	 Murphy,	 &	 Rochat,	 2011).	 These	

finding	seem	to	suggest	that	there	are	environmental	factors	that	influence	the	

emergence	of	self-awareness,	which	might	not	depend	on	cultural	differences	

per	se,	but	more	on	different	parental	styles	related	to	the	difference	cultures.	

Therefore,	 it	might	be	 interesting	 to	explore	which	other	 factors	of	 the	early	

parental-child	relationship	can	influence	the	emergence	of	self-awareness.		

However,	a	similar	study	performed	with	infants	from	urban	German	

middle-class,	rural	Indian,	rural	Cameroonian,	and	urban	Indian	middle-class	

families	suggested	that	success	on	the	MSR	task	increased	with	age	in	all	the	

sociocultural	 contexts,	 but	 that	 success	 rates	 were	 higher	 in	 urban	 families	

compared	 to	 rural	 ones	 (Kärtner	 et	 al.,	 2012).	 Contrary	 to	 the	 studies	 from	

Keller	 (2004,	2005)	and	Broesch	 (2011),	Kartner	et	 al.	 (2012)	 inferred	 that	

sociocultural	differences	do	not	explain	variations	in	onset	on	the	MSR	task,	but	

it	is	familiarity	with	the	mirror	or	cultural	norms	that	account	for	success	on	

the	task.	As	the	interpretation	of	how	cultural	differences	affect	performance	

on	 the	MSR	 task	 is	 quite	 controversial,	 further	 research	 is	needed	 to	 clarify	

which	 other	 variables	 affect	 MSR	 task	 outcomes	 in	 different	 sociocultural	

contexts.	

	

1.3.4	 The	 role	 of	 different	 media	 and	 temporal	 contingency	 on	

visual	self-recognition		

Some	studies	have	aimed	to	explore	whether	findings	from	the	MSR	task	can	be	

generalised	to	other	methods	of	presenting	one’s	own	image,	e.g.	pictures	and	

videos.	Self-recognition	in	videos	has	been	found	to	be	more	difficult	than	self-
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recognition	 in	mirrors	 (Suddendorf,	 Simcock,	 &	 Nielsen,	 2007).	 It	 has	 been	

shown	 that	 self-recognition	 in	 videos	 delayed	 in	 time,	 or	 pictures,	 does	 not	

occur	 until	 around	 four	 years	 of	 age,	 suggesting	 children	 master	 the	

understanding	of	the	self's	endurance	across	time	later	on	in	their	development	

(Povinelli,	 Landau,	 Perilloux,	 Landau,	 &	 Perilloux,	 1996;	 Povinelli	 &	 Simon,	

1998).	 A	more	 recent	 study	 showed	 that	 self-recognition	 in	 delayed	 videos	

occurred	at	around	2.5	years	of	age	(Skouteris,	Boscaglia,	&	Searl,	2009).		

These	findings	could	suggest	that	successful	visual	self-recognition	in	

the	mirror	indicates	a	present	self,	whereas	passing	the	delayed	video	version	

of	 the	 test	 could	 demonstrate	 the	 presence	 of	 a	 temporally	 extended	 self	

(Suddendorf	&	Butler,	2013).	The	lack	of	eye-contact	in	the	delayed	videos	has	

been	proposed	as	a	reason	for	the	failure	to	self-recognise.	Indeed,	other	non-

human	 species	 who	 generally	 avoid	 eye-contact,	 such	 as	 monkeys,	 fail	 the	

classic	mirror	 version	of	 the	 self-recognition	 task	 (Hauser	 et	 al.,	 1995).	The	

same	asynchrony	between	the	mirror	and	video	versions	of	the	MSR	task	has	

been	replicated	in	infants	tested	on	a	video	of	their	own	leg,	even	though	no	

eye-contact	was	required	to	succeed	at	the	task	(Suddendorf	et	al.,	2007).	

Moreover,	 a	 study	 in	 adults	 showed	 that	 there	 are	 different	 brain	

responses	to	self-live	and	self-delayed	videos,	supporting	the	peculiarity	of	the	

detection	of	temporal	contingency	when	processing	information	about	oneself	

(Sugiura	et	al.,	2015).		

	

1.3.5	An	attempt	at	an	alternative	to	the	MSR	task	

To	 my	 knowledge,	 only	 one	 other	 task	 has	 been	 developed	 to	 assess	 self-	

awareness	 in	 infancy,	 known	 as	 the	 trolley	 task	 (Moore,	 Mealiea,	 Garon,	 &	

Povinelli,	2007).	The	idea	came	from	Piaget’s	(1954)	early	observation	of	his	
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daughter	sitting	on	a	rag.	She	was	trying	to	pick	it	up	but	was	prevented	from	

doing	so	by	her	own	weight.	Piaget	suggested	that	objectification	of	the	bodily	

self	 is	 reached	when	the	 infant	develops	 the	 ability	 “to	 represent	 the	body’s	

spatial	and	causal	relations	with	the	external	world”	(Piaget,	1954).	Similar	to	

the	challenge	experienced	by	Piaget’s	daughter,	in	the	trolley	task,	the	child	is	

required	to	push	a	toy	shopping	cart	with	a	mat	attached	at	the	back	of	the	cart.	

If	the	child	steps	on	the	mat	to	grasp	the	handle,	the	child’s	weight	will	impede	

the	forward	motion	of	the	cart.	Passing	the	task	involves	folding	or	moving	the	

mat	to	the	side	and	avoiding	stepping	on	it	so	the	trolley	can	be	pushed.		

	 The	findings	of	the	trolley	task	are	consistent	with	those	shown	by	the	

literature	on	the	MSR	task,	with	infants	around	18	months	of	age	successfully	

pushing	 the	 trolley,	 requiring	 the	 infants	 to	 master	 the	 contingent	 motion	

relationships	 between	 themselves	 and	 world	 (Moore,	 Mealiea,	 Garon,	 &	

Povinelli,	2007).	Even	though	Moore	et	al.	(2007)	suggested	that	success	at	this	

task	might	underlie	the	presence	of	a	broader	self-concept	than	just	bodily	self-

perception,	no	association	between	success	at	the	trolley	task	and	other	more	

abstract	 self-awareness	 indicators	 has	 been	 tested	 for.	 Moreover,	 not	many	

other	studies	have	used	the	trolley	task	to	assess	emerging-self-awareness.	A	

recent	 study	 found	an	 association	between	a	successful	 performance	on	 the	

trolley	task	and	a	parenting	style	characterized	by	proximal	contact	(Ross	et	al.,	

2017).	However,	as	mentioned	in	the	previous	section,	this	style	of	parenting	

has	also	been	associated	with	a	lower	successful	rate	on	the	MSR	task	compared	

to	other	parenting	styles	(Ross	et	al.,	2017).	This	might	be	consistent	with	the	

idea	that	this	test	assesses	bodily	self-awareness,	with	little	implications	for	a	

broader	sense	of	self.		
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1.4	 The	 relationship	 between	 self-awareness	 and	

social	interaction	during	the	first	years	of	life		

1.4.1	Self-other	distinction	and	self-other	integration:	two	sides	of	

the	same	coin	

As	described	in	section	1.2,	recent	theories	in	developmental	psychology	have	

suggested	 the	 importance	of	 social	 interactions	 in	relation	 to	 emerging	 self-

awareness.	Many	 social	 processes	 require	 human	 beings	 to	 understand	and	

share	others’	perspective	and	feelings	(i.e.	self-other	integration),	while	some	

other	 contexts	necessitate	 a	more	 clear	 separation	between	 self	 and	others’	

perspective	 in	 order	 to	 achieve	 an	 efficient	 social	 interaction	 (i.e.	 self-other	

distinction)	 (Decety	&	 Sommerville,	 2003;	 Sowden	&	 Shah,	 2014;	 Steinbeis,	

2016)	.	Therefore,	self-other	distinction	and	integration	are	often	conceived	as	

two	sides	of	the	same	coin	(Santiesteban,	2014).		

	 A	 shared	 representation	 between	 self	 and	 other	 is	 supported	 by	 a	

variety	 of	 empirical	 evidence.	 For	 example,	 it	 has	 been	 shown	 that	 people	

confuse	 their	 own	 traits	 with	 those	 of	 in-group	 members	 (Coats,	 Smith,	

Claypool,	&	Banner,	2000)	and	that	others’	performances	might	influence	one’s	

self-evaluation	 (Buckingham	 &	 Alicke,	 2002).	 More	 importantly,	 shared	

representation	between	self	and	other	seems	to	be	the	foundation	of	empathy,	

i.e.	 the	ability	 to	share	others’	affective	experience	(Decety	&	 Jackson,	2006;	

Shamay-Tsoory,	 2011;	 Singer	 &	 Lamm,	 2009).	 However,	 having	 a	 shared	

representation	 does	 not	 imply	 a	 complete	 overlap,	 which	 would	 lead	 to	

confusion	and	emotional	contagion	(Decety	&	Sommerville,	2003).	Therefore	a	

distinction	between	self	and	other	perspectives	is	also	necessary,	and	there	are	
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recent	 studies	 that	 provide	 evidence	 for	 this	 process,	 as	 well	 during	 social	

interactions.	

Self-other	 distinction	 has	 been	 proposed	 to	 be	 the	 mechanism	 that	

underlies	both	processes	at	the	perceptual-motor	level,	such	as	imitation,	and	

also	higher	cognitive	processes,	such	as	theory	of	mind	(Santiesteban,	White,	et	

al.,	2012).	Santiesteban	exploited	the	inhibition	of	imitation,	where	participants	

were	instructed	to	lift	a	different	finger	from	the	one	displayed	on	the	screen,	

to	explore	the	relationship	between	self-	and	other-	perspectives.	It	has	been	

shown	that	training	the	inhibition	of	imitation	facilitates	a	distinction	between	

one’s	own	actions	and	other’	actions,	where	the	ability	to	adopt	the	perspective	

of	others	was	enhanced	(Brass,	Derrfuss,	&	Von	Cramon,	2005;	Santiesteban,	

2014;	Santiesteban,	White,	et	al.,	2012).	Recently	Tomova	et	al.	investigated	the	

role	of	oxytocin,	a	peptide	known	to	increase	salience	of	social	signals	(Bartz,	

Zaki,	 Bolger,	 &	 Ochsner,	 2011),	 and	 therefore	 possibly	 implicated	 in	 social	

processes	 (Domes,	 Heinrichs,	 Michel,	 Berger,	 &	 Herpertz,	 2007;	 Shamay-

Tsoory	 &	 Abu-Akel,	 2016).	 In	 Tomova’s	 study,	 oxytocin	 has	 been	 found	 to	

improve	self-other	distinction	in	higher	cognitive	processes,	i.e.	a	perspective	

taking	task,	but	it	had	no	effect	on	a	perceptual-motor	level,	i.e.	an	inhibition-

imitation	task	(Tomova,	Heinrichs,	&	Lamm,	2018).	However,	a	previous	study	

that	has	been	able	 to	show	an	effect	of	oxytocin	even	on	a	perceptual-motor	

level	(De	Coster,	Mueller,	T’Sjoen,	De	Saedeleer,	&	Brass,	2014),	therefore	this	

topic	would	benefit	of	more	research	to	clarify	the	role	of	oxytocin	in	self-other	

distinction.	

While	 self-other	 integration	 and	 distinction	 in	 relation	 to	 social	

interactions	have	been	widely	explored	in	adults,	we	know	very	little	about	how	

these	aspects	are	intertwined	during	ontogeny.	However,	as	suggested	by	the	



Chapter	1	
	

	 58	

like-you	 perspective,	 one	 may	 think	 that	 others	 play	 a	 fundamental	 role	 in	

constructing	one’s	own	self-concept	by	acting	as	social	mirrors	(Prinz,	2012;	

Rochat,	2003;	Rochat	&	Zahavi,	2011).	This	social	construction	of	the	sense	of	

self	is	consistent	with	the	rich	interpretation	of	visual	self-recognition	(Rochat	

&	Zahavi,	2011),	as	described	in	the	previous	paragraph.	Therefore,	 it	seems	

artificial	to	disentangle	emerging	self-awareness	from	interactions	with	others	

and	the	social	environment.	In	fact,	it	is	likely	that	the	emerging	sense	of	self	

might	 have	 implications	 for	 other	 social	 cognitive	 abilities,	 which	 are	

interactive	by	definition,	and	vice	versa.	Perspective	taking,	imitation,	empathy,	

and	emotional	recognition	are	some	of	the	important	social	cognitive	abilities	

known	to	develop	during	the	first	years	of	life	(Carpendale	&	Lewis,	2006).	For	

example,	 evidence	 of	 young	 infants	 passing	 preverbal	 versions	 of	 the	 false-

belief	task,	may	be	explained	by	the	absence	of	a	conflict	between	self	and	other	

perspectives,	 characterizing	 infants	 who	 have	 not	 yet	 developed	 self-

awareness.	 Therefore,	 these	 infants	 may	 not	 be	 required	 to	 inhibit	 a	 self-

perspective	in	order	to	focus	on	the	other’s	perspective,	as	children	with	a	clear	

self-other	distinction	should	need	to	be	able	to	do	(Southgate,	2018).	This	is	

consistent	with	 the	 idea	that	successful	performance	on	a	 false-belief	 task	 in	

childhood	 might	 be	 related	 to	 a	 continuous	 balancing	 of	 mechanisms	

underlying	 self–other	 distinction,	more	 than	 the	 child	 representing	 only	 the	

other’s	 mental	 state	 (Steinbeis,	 2016).	 The	 link	 between	 emerging	 self-

awareness	and	the	development	of	social	cognitive	abilities	in	the	first	years	of	

life	is	still	poorly	understood,	but	studying	how	these	two	processes	are	related	

from	early	in	life	could	elucidate	how	mechanisms	of	self-other	integration	and	

distinction	interact	in	social	interaction	from	the	first	years	of	life.	
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1.4.2	Emerging	self-awareness	and	the	development	of	mimicry	

In	this	PhD	thesis,	I	explore	the	relationship	between	emerging	self-awareness	

and	social	interactions	by	focusing	on	mimicry,	a	form	of	imitation.	Mimicry	is	

the	spontaneous	tendency	to	copy	others’	actions	and	has	been	suggested	to	

play	a	pivotal	role	in	shaping	social	interactions	and	building	relational	bonds	

in	everyday	life	(Lakin	&	Chartrand,	2003;	Lakin,	Jefferis,	Cheng,	&	Chartrand,	

2003).	Mimicry	has	been	extensively	recognised	as	 increasing	affiliation	and	

cooperation	 (Chartrand,	 Maddux,	 &	 Lakin,	 2012;	 Cheng	 &	 Chartrand,	 2003;	

Fischer	 et	 al.,	 2013;	 Stel	 et	 al.,	 2010)	 and	 as	 a	 modality	 of	 non-verbal	

communication	(Bavelas,	Black,	Lemery,	&	Mullett,	1986).	Therefore,	although	

mimicry	by	definition	constitutes	the	reproduction	of	others’	actions,	it	has	also	

been	shown	to	serve	important	social	functions	(Trevarthen	&	Aitken,	2001).		

While	several	studies	have	explored	the	social	modulation	of	mimicry	

in	 adulthood	 (for	 some	examples	 see	Downing,	Dodds,	&	Bray,	2004;	 Janina	

Neufeld,	Ioannou,	Korb,	Schilbach,	&	Chakrabarti,	2015;	Likowski,	Mühlberger,	

Seibt,	 Pauli,	 &	 Weyers,	 2008;	 Neufeld	 &	 Chakrabarti,	 2016;	 Rauchbauer,	

Majdandžic,	Stieger,	&	Lamm,	2016;	Tramacere,	Ferrari,	Gentilucci,	Giuffrida,	&	

De	Marco,	 2018),	 research	has	only	 recently	 started	 to	 elucidate	how	social	

factors	influence	mimicry	throughout	the	first	years	of	life	(de	Klerk,	Hamilton,	

&	Southgate,	2018).		

The	 link	 between	 emerging-self-awareness	 and	 imitation	 has	 been	

investigated	 by	 some.	 It	 has	 been	 demonstrated	 that	 there	 is	 a	 positive	

association	between	testing	behaviours	in	front	of	the	mirror	during	the	MSR	

task	and	the	tendency	to	imitate	salient	parts	of	observed	actions	at	14	months	

(Zmyj,	 Prinz,	 &	 Daum,	 2013).	 Similarly,	 18-month-olds	 that	 exhibited	 self-

recognition	in	the	mirror	imitated	more	salient	parts	of	the	observed	actions	
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than	 infants	 that	 did	not	 exhibit	 self-recognition	 (Zmyj	 et	 al.,	 2013).	 In	 this	

study,	 the	 relationship	 between	 imitation	 and	 the	 detection	 of	 matching	

movements	in	the	mirror	is	thought	to	be	mediated	by	the	detection	of	visual-

motor	contingencies.	Moreover,	it	has	been	shown	that	the	18-month-olds	that	

recognised	 themselves	 in	 the	 mirror	 imitated	 peers	 and	 models	 more	

synchronically	than	infants	with	a	less	developed	sense	of	self,	suggesting	that	

emerging	self-awareness	allows	the	child	to	master	self	and	other	perspectives	

(Asendorpf	&	Baudonnière,	1994;	Asendorpf,	Warkentin,	&	Baudonni,	1996).	

However,	 an	 alternative	 account	 proposed	 a	 negative	 association	 between	

imitation	 and	 self-other	processing,	where	 the	 boundaries	 between	 self	 and	

other	become	blurred	during	mimicry	 (Georgieff	&	 Jeannerod,	 1998;	Hale	&	

Hamilton,	 2016).	 Moreover,	 being	 mimicked	 might	 increase	 the	 overlap	

between	 self	 and	 other,	 where	 the	 other	 is	 perceived	 with	more	 proximity	

(Ashton–James,	van	Baaren,	Chartrand,	Decety,	&	Karremans,	2007).	From	a	

developmental	perspective,	this	hypothesis	would	predict	that	infants	with	a	

less	advanced	sense	of	self	show	a	greater	tendency	to	mimic	others,	as	their	

self-other	boundaries	are	weaker	compared	with	infants	with	a	more	advanced	

sense	 of	 self.	 However,	 this	 would	 be	 in	 contrast	 with	 Zmyj	 (2013)	 and	

Asendorpf	 (1994,	1996)	studies	 that	 showed	a	positive	association	between	

emerging	self-awareness	and	imitation1.	Therefore,	more	studies	are	needed	to	

expand	our	knowledge	of	the	relationship	between	self-awareness	and	social	

interactions,	 such	 as	 imitation	 and	mimicry.	 On	 this	 respect,	 developmental	

																																																													
1	It	is	worth	acknowledging	that	imitation	and	mimicry	are	not	completely	overlapping.	
Imitation	 is	 not	 only	 the	 mirroring	 of	 the	 other’s	 actions,	 but	 it	 requires	 cognitive	
processes,	 such	as	 the	 representation	of	action	goals,	which	are	not	associated	with	
mimicry,	which	is	a	spontaneous	phenomenon	(Southgate	&	Hamilton,	2008).	
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studies	 can	 inform	 our	 understanding	 of	 how	 these	 two	 processes	 are	

entangled	from	the	first	years	of	life.		

	

1.5	Imaging	the	Self	

The	study	of	the	neural	correlates	of	self-awareness	has	been	a	target	of	interest	

for	recent	adult	neuroimaging	research.	Studying	the	neural	underpinnings	of	

emerging	 self-awareness	might	 shed	 light	 on	 the	mechanisms	underlying	 its	

development,	 and	 its	 link	 with	 social	 interactions.	 Moreover,	 as	 studies	 in	

adults	 have	 been	 able	 to	 identify	 different	 neural	 substrates	 in	 relation	 to	

different	component	of	the	self,	investigating	whether	the	same	brain	regions	

are	 engaged	 in	 the	 development	 of	 the	 sense	 of	 self	 might	 elucidate	 which	

components	of	the	self	are	emerging	in	the	first	years	of	life.		

While	neuroimaging	studies	aimed	to	investigate	neural	underpinnings	

of	 self-awareness	 in	 development	 are	 limited,	 research	 with	 adults	 has	

progressed	in	identifying	several	areas	of	our	brain	 that	are	engaged	 in	self-

processing.	 However,	 as	 discussed	 in	 the	 first	 paragraph,	 the	 existence	 of	

multiple	definitions	and	the	multifaceted	nature	of	the	sense	of	self	complicates	

the	operationalisation	of	the	variable	of	interest.	Our	knowledge	of	the	neuronal	

substrates	of	 self-awareness	 is	 still	 limited	 compared	 to	other	psychological	

domains,	and	not	always	consistent.	The	next	section	provides	an	overview	of	

the	few	developmental	studies	performed	in	infancy	and	a	literature	review	of	

the	neural	underpinnings	of	self-awareness	based	on	adult	research.		

It	 is	 worth	 noting	 that	 a	 review	 of	 the	 adult	 studies	 on	 the	 neural	

underpinnings	 of	 the	 sense	 of	 self	 is	 not	 performed	 here	with	 the	 intent	 of	

equating	the	infant	brain	to	the	adult	brain.	There	is	evidence	of	some	infant	
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brain	networks	that	are	highly	specialised	from	very	early	in	life	and	that	have	

similar	 functions	 and	 connections	 to	 adult	 brain	 networks	 (although	 not	

without	 further	 changes	 related	 to	 age	 and	 experience),	 such	 as	 the	 brain	

regions	related	to	auditory	and	visual	networks	(Gao,	Alcauter,	Smith,	Gilmore,	

&	Lin,	2015;	Lin	et	al.,	2008;	Liu,	Flax,	Guise,	Sukul,	&	Benasich,	2008),	language	

(Dehaene-Lambertz,	 Dehaene,	 &	 Hertz-Pannier,	 2002;	 May,	 Byers-Heinlein,	

Gervain,	&	Werker,	2011),	and	social	perception	(Blasi	et	al.,	2011;	Sarah	Lloyd-

Fox	et	al.,	2009).		

Many	 more	 networks	 gradually	 develop	 with	 the	 progressive	

specialisation	 of	 their	 brain	 regions’	 roles,	 however,	 and	 each	 network	

component	 adjusts	 its	 response	 to	optimise	 the	overall	network	 functioning	

(Johnson,	 2011),	 e.g.	 the	 brain	 regions	 supporting	 executive	 and	 cognitive	

functions	(Diamond,	2009;	Durston	et	al.,	2006).	Moreover,	when	approaching	

the	 study	 of	 brain	 function	 in	 developmental	 neuroscience,	 one	 has	 to	

acknowledge	 that	 the	 infant	 brain	 undergoes	 several	 changes	 in	 shape	 and	

morphology	 that	 are	 likely	 to	 affect	 its	 function	 (Johnson,	 1997).	Therefore,	

when	planning	developmental	studies,	an	accurate	literature	review	should	not	

be	based	only	on	previous	adult	findings.		

Due	to	the	very	limited	number	of	studies	that	investigate	the	neural	

underpinnings	of	self-awareness	in	infancy,	however,	it	was	necessary	to	look	

at	the	adult	research	and	this	constituted	a	valuable	starting	point	for	this	PhD	

work.	 Research	 investigating	 the	 neural	 correlates	 of	 the	 self	 in	 infancy	 is	

limited	to	three	studies	and	it	is	summarised	hereafter.	
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1.5.1	Neuroimaging	research	in	infancy	

To	my	knowledge,	 little	research	has	been	done	into	the	neural	correlates	of	

self-recognition	in	the	developing	brain.	Therefore,	one	of	the	aims	of	this	PhD	

project	was	to	shed	light	on	the	brain	areas	engaged	in	the	developing	sense	of	

self.		

The	first	study	that	aimed	to	define	the	neural	markers	of	the	emerging	

sense	of	self	was	performed	by	Lewis	et	al.	(2008).	Infants	between	15	and	30	

months	 of	 age	were	 tested	 for	 grey	matter	maturation	 in	 the	 brain	 regions	

associated	with	 the	development	of	 the	sense	of	self	and	self-representation	

using	MRI.	The	MSR	task,	a	measure	of	personal	pronouns	use,	 and	pretend	

play,	 assessed	 the	participants’	 levels	 of	 self-representation,	 intended	as	 the	

idea	of	‘me’,	as	object	of	observation	in	others’	minds	(Lewis	&	Carmody,	2008).	

Left	 TPJ	 maturation	 was	 significantly	 correlated	 with	 self-representation,	

particularly	the	results	of	the	MSR	task,	and	with	other-directed	pretend	play.	

This	was	 the	 first	 study	 to	 confirm	 the	 fundamental	 role	 of	 the	 TPJ	 in	 self-

processing	 in	 infancy.	 Interestingly,	 this	 effect	 is	 not	 age-dependent	 as	 self-

representation	still	accounts	for	most	of	the	variance	in	TPJ	maturation	even	

when	age	is	placed	as	a	covariate	in	the	model	(Lewis	&	Carmody,	2008).	Lewis	

and	Carmody	(2008)	did	not	 find	any	effect	of	self-representation	related	 to	

maturation	of	other	brain	regions,	highlighting	the	specificity	of	the	TPJ	in	self-

related	processing.	The	non-significant	relationship	between	brain	maturation	

and	 self-processing	 was	 expected	 for	 regions	 outside	 the	 ‘social	 brain’;	

however,	 frontal	 lobe	maturation	was	 reasonably	 expected	 to	 be	 associated	

with	 the	development	of	 the	sense	of	self,	as	suggested	by	most	of	 the	adult	

studies	 (for	 some	 examples	 see	 D’Argembeau,	 2013;	 Gusnard,	 Akbudak,	

Shulman,	 &	 Raichle,	 2001;	 Heatherton	 et	 al.,	 2006;	 Qin	 &	 Northoff,	 2011).	
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Despite	this,	Lewis	and	Carmody’s	study	represented	the	first	investigation	into	

the	neural	correlates	of	the	emergent	sense	of	self	and	provided	evidence	for	

the	TPJ	as	a	key	brain	region	in	this	process.		

A	second	study	investigated	the	neural	correlates	of	self-processing	in	

infancy	 with	 a	 focus	 on	 bodily	 self-representation.	 Using	 fNIRS,	 Filippetti	

(2015)	showed	the	engagement	of	the	STS	and	the	TPJ	when	infants	saw	their	

own	bodies	in	a	live	video	compared	to	a	delayed	video.	These	results	suggests	

the	possible	presence	of	precursors	to	bodily	representation	even	in	very	young	

infants	(Filippetti	et	al.,	2015).		

A	recent	study	investigated	the	brain	responses	of	18-month-olds	when	

they	were	looking	at	their	own	faces	(Stapel,	van	Wijk,	Bekkering,	&	Hunnius,	

2016).	Thirteen	infants	were	presented	with	a	picture	of	their	own	face,	their	

caregiver’s	face,	another	participant’s	face,	and	the	face	of	another	participant’s	

caregiver	and	their	ERP	responses	were	measured	using	EEG.	The	classic	MSR	

task	was	also	used	to	assess	self-recognition	in	the	mirror.	The	results	showed	

that	the	N290	component,	known	to	be	related	to	face	processing	in	infancy,	

was	significantly	different	when	the	infants	observed	their	own	face	compared	

to	another	infant’s	face.	This	result	suggests	that	there	are	different	patterns	of	

response	related	to	self	and	other-processing	in	infanthood,	as	highlighted	by	

differences	 in	 the	ERP	components	(Stapel,	van	Wijk,	Bekkering,	&	Hunnius,	

2016).	 In	 this	 study,	 no	significant	 interaction	between	brain	 responses	and	

MSR	task	outcomes	was	found.	Stapel	et	al.	(2016)	argued	that	this	was	due	to	

the	 inaccuracy	 of	 the	 MSR	 test	 in	 assessing	 self-recognition.	 However,	 it	 is	

possible	 that	 because	 the	 comparison	 between	 infants	 who	 recognised	

themselves	and	infants	who	did	not	was	performed	on	a	very	restricted	sample	
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of	just	11	children,	there	might	not	have	been	sufficient	power	for	a	statistically	

meaningful	comparison.		

Although	 these	 findings	 suggest	 an	 early	 specialisation	 of	 the	 infant	

cortex	for	self-processing	stimuli,	our	knowledge	of	the	neural	underpinnings	

of	the	sense	of	self	in	the	developing	brain	is	still	very	limited.	To	investigate	

the	validity	of	our	behavioural	indicators	of	early	self-awareness,	it	would	be	

fruitful	to	explore	whether	the	same	brain	regions	related	to	self-processing	in	

adults	 are	 engaged	 also	 in	 emerging	 self-awareness.	 Moreover,	 the	

investigation	 into	 the	 neural	 underpinnings	 shared	 between	 emerging	 self-

processing	and	social	cognitive	abilities	may	inform	the	link	between	these	two	

processes	during	the	first	years	of	life.	Given	the	limited	research	performed	so	

far	 on	 the	 developing	 brain,	 a	 look	 into	 the	 adult	 neuroimaging	 research	 is	

necessary.	 The	 next	 three	 sections	 present	 a	 literature	 review	 of	 the	 adult	

neuroimaging	 studies,	 focusing	 on	 physical	 self-awareness,	 self-other	

distinction	and	integration,	and	abstract	self-processing.		

	

1.5.2	Physical	self-recognition	

Several	studies	have	explored	the	neural	correlates	of	the	self	by	investigating	

brain	activation	in	response	to	one’s	own	physical	features,	e.g.	face	or	voice.	

An	 early	 study	 testing	 the	 brain’s	 responses	 to	 self-processing	 found	 that	

participants’	 own	 faces	 elicited	 the	 P300	 event	 related	 potential	 (ERP)	

component	 (Ninomiya,	 Onitsuka,	 Chen,	 Sato,	 &	 Tashiro,	 1998).	 Previous	

findings	 have	 shown	 that	 the	 P300	 component	 is	 enhanced	 for	 salient	 and	

motivationally	 relevant	 stimuli	 (Polich	 &	 Kok,	 1995),	 suggesting	 the	 high	

relevance	 attributed	 by	 our	 brain	 to	 our	 own	 face.	 Several	 studies	 further	

replicated	 this	 finding,	 showing	 a	 higher	 P300	 in	 response	 to	 both	 the	
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participants’	 own	 faces	 (Scott,	 Luciana,	 &	Wewerka,	 2005;	 Sui,	 Zhu,	 &	 Han,	

2006)	and	to	their	names	(Holeckova,	Fischer,	Giard,	Delpuech,	&	Morlet,	2006;	

Müller	 &	 Kutas,	 1996).	 This	 means	 that	 the	 P300	 characterises	 the	 brain’s	

response	to	general	self-processing	and	is	not	dependent	on	the	modality	of	the	

stimulus.	 Similarly,	 in	 a	 combined	 ERP	 and	 positron-emission	 tomography	

(PET)2	study,	the	P300	amplitude	in	response	to	the	participants’	own	names	

was	shown	to	be	highly	correlated	to	the	blood	flow	in	the	core	regions	of	the	

DMN	(Perrin	et	al.,	2005),	which	is	a	network	that	has	been	associated	with	self-

processing	(Raichle	et	al.,	2015).	

Activation	 of	 the	 medial	 prefrontal	 cortex	 (mPFC)	 and	 the	

precuneus/posterior	cingulate	cortex	(PCC)	has	been	shown	in	self-recognition	

tasks	 (Kampe,	 Frith,	 &	 Frith,	 2003;	 Platek	 et	 al.,	 2006;	 Staffen,	 Kronbichler,	

Aichhorn,	 Mair,	 &	 Ladurner,	 2006;	 Sugiura	 et	 al.,	 2008,	 2012),	 while	 the	

temporoparietal	junction	(TPJ)	has	been	found	to	be	engaged	mainly	in	bodily	

self-perception	(Arzy,	Thut,	Mohr,	Michel,	&	Blanke,	2006;	Blanke,	2005;	Chen	

&	Huang,	2017).	TPJ	activation	has	also	been	shown	during	the	integration	of	

multisensory	events	attributed	 to	our	body	and	as	part	of	 the	building	of	an	

internal	 model	 of	 body	 awareness	 (for	 some	 examples	 see	 Bottini,	 Bisiach,	

Sterzi,	 &	 Vallar,	 2002;	 Committeri	 et	 al.,	 2007;	 Mort	 et	 al.,	 2003;	 Tsakiris,	

Costantin,	&	Haggard,	2008).	

There	 is	 an	 ongoing	 debate	 in	 the	 literature	 regarding	 the	 neural	

correlates	of	the	self	and	their	possible	hemispheric	specialisation,	especially	

for	self-face	recognition	(Gillihan	&	Farah,	2005).	The	results	are	inconsistent,	

with	 some	 studies	 showing	 that	 self-recognition	 is	 supported	 by	 both	

																																																													
2	 Positron-emission	 tomography	 (PET)	 is	a	 nuclear	 functional	 imaging	 technique.	 It	
detects	brain	activation	based	on	the	assumption	that	areas	of	high	radioactivity	are	
associated	with	brain	activity	(Kim	et	al.,	2006).		



Chapter	1	
	

	 67	

hemispheres	(Sperry,	Zaidel,	&	Zaidel,	1979;	Sugiura	et	al.,	2005),	while	others	

suggest	 it	 is	 supported	 predominantly	 by	 the	 right	 hemisphere	 (Keenan,	

Wheeler,	 Platek,	 Lardi,	 &	 Lassonde,	 2003;	 Preilowski,	 1979)	 or	 the	 left	

hemisphere	 (Turk	 et	 al.,	 2002).	Most	 of	 the	 recent	 adult	 research	 seems	 to	

confirm	the	superiority	of	the	right	hemisphere	in	self-recognition	tasks,	but	

with	an	engagement	of	complex	bilateral	networks	as	well	(Devue	&	Brédart,	

2011;	 Keenan,	 Nelson,	 O’Connor,	 &	 Pascual-Leone,	 2001;	 Keenan,	 Wheeler,	

Gallup,	&	Pascual-Leone,	2000;	Levine,	Banich,	&	Koch-Weser,	1988;	Uddin	et	

al.,	2005).		

	

1.5.3	Self	other-integration	 and	distinction:	 the	 role	of	 the	mPFC	

and	the	TPJ,	and	of	the	Mirror	Neuron	System		

As	highlighted	in	section	1.4,	self	and	other	perspectives	are	likely	to	be	highly	

interconnected	due	to	our	constant	interaction	with	others.	Social	exchanges	

can	 be	 considered	 as	 a	 consequent	 chain	 of	 switch	 between	 self-other	

distinction	 and	 self-other	 integration	 (Decety	 &	 Sommerville,	 2003;	

Santiesteban,	2014).	

From	a	neural	perspective,	one	of	the	systems	that	has	been	related	to	

self-other	 integration	 is	 the	 Mirror	 Neuron	 System	 (MNS).	 The	 MNS	 is	

composed	 of	 the	 inferior	 frontal	 gyrus	 (IFG),	 the	 superior	 temporal	 sulcus	

(STS),	the	inferior	parietal	lobe	(IPL),	and	the	primary	motor	cortex	(Rizzolatti	

&	Craighero,	 2004),	 and	 it	 responds	when	we	perform	and	when	we	 see	 an	

action	 (Iacoboni,	 2005;	 Rizzolatti	 &	 Craighero,	 2004).	 As	 this	 has	 been	

considered	 the	 functional	 link	 between	 other	 perspective	 (i.e.	 action	

understanding)	and	self-perspective	(i.e.	reproduction	of	action),	the	MNS	has	

been	 thought	 to	 support	not	 only	 behaviours	 at	 the	 perceptual-motor	 level,	
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such	 as	 imitation,	 but	 also	 other	 social	 cognitive	 abilities	 that	 require	 an	

interplay	 between	 self	 and	 other	 representations,	 such	 as	 theory	 of	 mind	

(Gallese	&	Goldman,	1998)	and	empathy	(Baird,	Scheffer,	&	Wilson,	2011)3.	As	

an	evidence	to	support	this,	areas	belonging	to	the	MNS	have	been	found	to	be	

engaged	 in	 self-processing	 tasks,	 for	 example	 when	 participants	 hear	 their	

voice	or	they	look	at	their	face	(Kaplan	et	al.,	2008;	Uddin,	Iacoboni,	Lange,	&	

Keenan,	 2007;	 Uddin	 et	 al.,	 2005).	 It	 has	 been	 shown	 that	 individuals	 with	

alexithymic	traits,	which	appear	to	have	some	kind	of	deficit	in	self-awareness	

(Taylor	&	Bagby,	2004),	displayed	a	greater	activation	of	regions	belonging	to	

the	MNS	in	a	goal	directed	task	(Moriguchi	et	al.,	2009).	This	might	appear	at	

odds	with	the	hypothesis	of	a	relationship	between	self-other	integration	and	

the	MNS	activation.	However,	the	author	interpreted	the	greater	activation	of	

the	MNS	as	a	reflection	of	the	low	self-other	discrimination	abilities,	which	may	

lead	individuals	with	alexithymic	traits	to	overlap	others’	action	onto	their	own	

(Moriguchi	et	al.,	2009).	According	to	the	hypothesis	of	the	MNS	as	a	possible	

neural	 substrate	 of	 self-processing,	 given	 the	 link	 between	 imitation	 and	

emerging	 self-awareness	 (Asendorpf	&	Baudonnière,	 1994;	Asendorpf	 et	 al.,	

1996;	Zmyj	et	al.,	2013),	and	the	functional	activation	of	areas	belonging	to	the	

MNS	for	self-related	stimuli	(Kaplan	et	al.,	2008;	Uddin	et	al.,	2007,	2005),	it	has	

been	proposed	that	the	MNS	may	be	the	functional	link	between	imitation	and	

the	sense	of	self	even	during	the	first	years	of	life	(Iacoboni	&	Dapretto,	2006;	

Iacoboni,	 2009).	 However,	 to	 date	 there	 is	 no	 empirical	 evidence	 from	

developmental	neuroscience	to	support	this	theory.	

																																																													
3	However,	it	is	worth	acknowledging	that	the	role	of	the	MNS	in	imitation	and	social	
cognitive	abilities	is	not	universally	accepted	(For	a	critical	review	of	this	see	Hickok,	
2009;	Kosonogov,	2012;	Southgate,	2013).		
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The	MNS	is	not	the	only	neural	substrates	which	has	been	hypothesized	

to	be	related	to	self-other	integration.	Saxe	et	al.	(2006)	showed	that	reasoning	

about	others’	beliefs	recruits	the	mPFC,	the	precuneus,	and	the	TPJ,	which	are	

also	core	regions	 for	self-processing	(Saxe,	Moran,	Scholz,	&	Gabrieli,	2006).	

Other	studies	have	supported	this	finding	by	showing	that	the	ventral	part	of	

the	 PFC	 is	 engaged	 both	 by	 introspections	 about	 the	 self	 and	 about	 others’	

minds	 that	 are	 perceived	 as	 similar	 to	 the	 self	 (Jenkins,	Macrae,	 &	Mitchell,	

2008).	Again,	it	has	been	shown	that	a	network	involving	the	mPFC	and	the	TPJ	

is	 activated	when	 inferring	 representations	 on	 self	 and	 other	 during	 a	 task	

designed	to	measure	empathy	(Zaki,	Weber,	Bolger,	&	Ochsner,	2009)	

Interestingly,	while	 I	have	 just	discussed	evidence	 for	 the	role	of	 the	

mPFC	and	the	TPJ	in	shared	representation	between	self	and	others,	there	are	

a	 variety	 of	 other	 works	 suggesting	 that	 these	 two	 brain	 regions	 are	

fundamental	also	in	the	self-other	distinction	process.	Using	transcranial	direct	

current	stimulation	(tDCS)4	of	the	right	TPJ,	Santiesteban	showed	that	the	right	

TPJ	 stimulation	 inhibited	 other-representations	 and	 enhanced	 self-

representations	 during	 an	 imitation-inhibition	 task,	 where	 the	 participants	

were	asked	to	perform	a	different	finger	movement	from	the	one	observed.	On	

the	 contrary,	 the	 right	 TPJ	 stimulation	 inhibited	 self-representations	 but	

enhanced	 other-representations	 during	 a	 perspective-taking	 task,	 where	

participants	were	asked	to	adopt	the	viewpoint	of	a	“director”,	instructing	them	

on	how	to	move	objects	on	a	shelf.	Surprisingly,	the	stimulation	of	the	right	TPJ	

did	not	have	any	effect	on	the	performance	during	a	self-referential	task,	where	

																																																													
4	The	tDCS	is	a	method	that	can	selectively	neurostimulate	brain	regions	by	sending	
constant	 low	 direct	 current.	 This	 increases	 the	 neuronal	 excitability	 in	 the	 area	
stimulated,	which	leads	to	alterations	of	brain	functions	(Walsh	&	Cowey,	2000).	
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participants	were	 asked	 to	make	 judgements	 about	 themselves	 or	 other.	 As	

judgment	on	 the	 self	 and	on	 the	other	were	presented	one	 at	 the	 time,	 this	

condition	 did	 not	 require	 any	 conflict	 between	 self	 and	 other	 perspectives.	

These	 results	 taken	 together	 suggested	 that	 the	 right	 TPJ	 has	 a	 crucial	 role	

when	 self	 and	 other	 perspectives	 conflict	 and	 individuals	 are	 required	 to	

control	 such	 conflict	 in	 order	 to	 achieve	 successful	 social	 interactions	

(Santiesteban,	Banissy,	et	al.,	2012).	Consistent	with	this,	the	mPFC	and	the	TPJ	

have	been	extensively	related	to	the	control	of	imitation,	suggesting	that	these	

areas	are	crucial	for	distinguishing	self	and	other	representation	(Brass	et	al.,	

2005;	Brass,	Zysset,	&	von	Cramon,	2001;	Sowden	&	Catmur,	2015;	Spengler,	

von	Cramon,	&	Brass,	2010).	In	line	with	the	role	of	TPJ	in	self-other	distinction,	

the	 IPL,	a	portion	of	 the	TPJ,	plays	a	 fundamental	role	 in	avoiding	confusion	

between	 the	 self	 and	 others,	 contributing	 especially	 to	 the	 sense	 of	 agency	

(Farrer,	Franck,	Georgieff,	et	al.,	2003;	Ruby	&	Decety,	2001).		

This	literature	overview	discussed	evidence	for	the	involvement	of	the	

mPFC	 and	 the	 TPJ	 in	 both	 self-other	 integration	 and	 self-other	 distinction,	

which	 might	 suggest	 an	 important	 role	 of	 these	 two	 regions	 in	 efficiently	

switching	between	self	and	other	perspectives.	

	 	

1.5.4	The	abstract	self-processing:	 the	default	mode	network	and	

cortical	midline	structures		

Adult	 research	 has	 shown	 extensively	 that	 there	 is	 a	 positive	 association	

between	 self-processing	 and	 the	 DMN,	 which	 is	 a	 network	 of	 brain	 regions	

engaged	during	quiet	rest	(Davey	et	al.,	2016;	Kaplan	et	al.,	2008;	Kelley	et	al.,	

2002;	Kircher	et	al.,	2000;	Uddin	et	al.,	2005).	This	so-called	‘resting	state’	is	the	

acquisition	of	spontaneous	fluctuations	in	the	low-frequency	range	(<0.1	Hz)	
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in	the	absence	of	any	cognitive,	sensory,	or	social	stimulation	(Biswal,	Zerrin	

Yetkin,	Haughton,	&	Hyde,	1995;	Damoiseaux	et	al.,	2006;	van	den	Heuvel	&	Pol,	

2010).	The	DMN	is	composed	of	the	mPFC,	the	precuneus,	the	anterior	cingulate	

cortex	(ACC),	the	PCC,	the	medial	temporal	lobe,	and	the	TPJ	(Raichle,	2015).	

These	brain	regions	have	also	been	documented	as	involved	in	social	cognitive	

processes	(Greicius,	Krasnow,	Reiss,	&	Menon,	2003;	Harrison	et	al.,	2008;	Mars	

et	al.,	2012;	Molnar-Szakacs	&	Uddin,	2013;	Raichle,	2015;	Schilbach,	Eickhoff,	

Rotarska-Jagiela,	Fink,	&	Vogeley,	2008).		

The	DMN	has	been	suggested	to	be	our	‘intrinsic	system’	that	deals	with	

inner-oriented	and	self-related	signals.	In	fact,	activity	in	these	regions	has	been	

found	 to	 be	 ‘internally	 driven’	 and	 present	 even	 without	 any	 external	

stimulation	(Golland,	Golland,	Bentin,	&	Malach,	2008).	The	fact	that	activity	in	

the	DMN	is	remarkably	similar	to	that	shown	in	self-processing	tasks,	led	to	the	

hypothesis	that	during	quiet	rest,	there	is	a	shift	from	perceiving	the	external	

world	to	internal	modes	of	cognition	(Buckner	&	Carroll,	2007).	This	has	been	

empirically	supported	by	imaging	studies	that	demonstrate	that	DMN	activity	

at	rest	is	positively	correlated	with	participant	reports	of	mind	wandering	and	

self-related	 thoughts	 (Mason	 et	 al.,	 2007;	McKiernan,	 D’Angelo,	 Kaufman,	 &	

Binder,	2006).	Consistent	with	this	idea,	recent	fMRI	studies	have	explored	the	

engagement	 of	 the	 core	 areas	 of	 the	 DMN	 in	 self-processing	 tasks.	 In	 these	

studies,	while	TPJ	activation	is	especially	related	to	physical	bodily	awareness	

(Arzy,	Thut,	Mohr,	Michel,	&	Blanke,	2006;	Blanke,	2005;	Chen	&	Huang,	2017),	

the	mPFC	is	the	main	component	of	the	DMN	that	has	been	demonstrated	to	be	

related	to	several	forms	of	self-reflection	(Jenkins	&	Mitchell,	2011).	The	PFC	

has	high	metabolic	activity	during	rest	and	during	self-referential	tasks,	which	
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is	 possibly	 further	 evidence	 of	 its	 importance	 in	 self-referential	 processes	

(Gusnard	et	al.,	2001;	Raichle	et	al.,	2001;	Yaoi,	Osaka,	&	Osaka,	2009).	

The	central	portion	of	the	DMN	is	the	cortical	midline	structure	(CMS),	

which	is	composed	of	the	mPFC,	the	ACC,	and	the	PCC.	This	part	of	the	DMN	has	

been	argued	to	be	the	nucleus	of	the	neuronal	substrates	of	the	sense	of	self,	

processing	 abstract	 information	 about	 the	 self	 (Northoff	&	Bermpohl,	 2004;	

Northoff	 et	 al.,	 2006;	Uddin,	 Iacoboni,	 Lange,	&	Keenan,	 2007).	 Several	 self-

related	processes,	such	as	self-representation,	self-evaluation,	self-monitoring,	

and	self-integration	have	been	associated	with	the	CMS	(Northoff	&	Bermpohl,	

2004).	This	has	been	confirmed	by	evidence	showing	an	increase	in	activation	

in	 regions	 of	 the	 CMS	 during	 self-processing	 tasks,	 such	 as	 self-appraisal	

(Ochsner	et	al.,	2005),	self-referential	judgments	(Gusnard	et	al.,	2001;	Kelley	

et	 al.,	 2002),	 and	 self-reflection	 (Johnson,	 Baxter,	 Wilder,	 Pipe,	 Heiserman,	

Prigtano,	2002;	Kjaer,	Nowak,	&	Lou,	2002).	This	overlap	between	the	regions	

of	 the	 CMS	 that	 respond	 to	 self-related	 stimuli	 and	 those	 that	 are	 engaged	

during	resting-state	supports	the	idea	of	the	CMS	as	the	internal	origin	of	the	

self	(Qin	&	Northoff,	2011).	The	strong	link	between	the	self	and	others	in	the	

brain	has	been	highlighted	in	the	previous	section	and	consistent	with	this,	it	is	

worth	mentioning	that	the	CMS	has	been	found	to	be	activated	not	only	when	

representing	 self-related	 mental	 states,	 but	 also	 when	 representing	 other-

related	states	(Araujo,	Kaplan,	&	Damasio,	2013;	Frith,	1999;	 Iacoboni	et	al.,	

2004;	Van	Buuren,	Gladwin,	Zandbelt,	Kahn,	&	Vink,	2010).	Therefore,	 it	has	

been	suggested	that	the	CMS	is	also	involved	in	what	is	defined	as	the	social	self	

(Mitchell	et	al.,	2005;	Uddin	et	al.,	2007).	

Furthermore,	alpha	oscillations	(8-12	Hz)	recorded	by	EEG	have	been	

shown	to	reflect	the	activity	of	the	DMN	(Goldman,	Stern,	Engel,	&	Cohen,	2002)	



Chapter	1	
	

	 73	

and	 several	 studies	 have	 shown	 the	 relationship	 between	 self-referential	

thoughts	 and	 alpha	 oscillations	 (Cannon	 &	 Baldwin,	 2012;	 Gonçalves	 et	 al.,	

2006;	Jann	et	al.,	2009;	Knyazev,	2013;	Knyazev,	Slobodskoj-Plusnin,	Bocharov,	

&	Pylkova,	2011;	Laufs	et	al.,	2003),	confirming	the	previous	findings	regarding	

the	DMN.	

Researchers	 belonging	 to	 the	 MNS	 tradition	 proposed	 a	 distinction	

between	 abstract	 cognitive	 processes	 related	 to	 the	 self,	 and	 physical	 self-

recognition,	which	may	be	supported	by	two	different	brain	networks	(Molnar-

Szakacs	&	Uddin,	2013).	According	to	this	idea,	while	the	DMN	is	engaged	in	

abstract	and	evaluative	self-processing	(i.e.	reflecting	about	oneself),	areas	of	

the	MNS	are	activated	when	physical	self-processing	is	required,	both	for	self-

face	 recognition	 and	self-voice	 recognition	 (Kaplan	 et	al.,	 2008;	Uddin	 et	 al.,	

2007,	2005).	Therefore,	a	complete	representation	of	the	neural	substrate	of	

the	 sense	of	 self	 conflates	 together	 the	DMN	and	the	MNS,	with	overlapping	

hubs	 and	a	high	degree	of	 functional	 connections	(Molnar-Szakacs	&	Uddin,	

2013).		

	

The	 literature	review	on	the	neuronal	correlates	of	self-awareness	in	

adults	 has	 shown	 the	 implication	 of	 several	 brain	 regions,	 with	 some	 hubs	

consistently	found	to	be	crucial	keys	for	different	aspects	of	the	self,	such	as	the	

mPFC	and	the	TPJ	(see	Figure	1.1.	for	a	graphical	representation	of	the	main	

regions	 described	 as	 the	 neural	 correlates	 of	 the	 sense	 of	 self).	 Due	 to	 the	

complexity	and	multifaceted	nature	of	this	topic	of	research,	it	is	likely	that	the	

engaged	regions	interact	in	sophisticated	functional	networks	to	support	the	

emergence	of	self-awareness.	Indeed,	the	adult	literature	widely	documented	

networks	such	as	the	MNS,	the	DMN,	and	the	CMS	as	the	neural	correlates	of	
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physical	and	abstract	self-awareness	(Gusnard	et	al.,	2001;	Molnar-Szakacs	&	

Uddin,	2013;	Raichle	et	al.,	2001;	Yaoi	et	al.,	2009).	The	recent	approach	of	brain	

network	 adopted	 in	 neuroscience	 offers	 a	 new	 framework	 for	 approaching	

brain	structures	and	functions	as	a	multi-scale	system,	where	cortical	areas	are	

integrated	 to	 create	 a	 network	 supporting	 complex	 psychological	 functions	

(Petersen	 &	 Sporns,	 2015).	 Therefore,	 one	 may	 think	 that	 tracking	 the	

developmental	trajectories	of	brain	networks	could	provide	information	about	

the	mechanisms	underlying	emerging	self-awareness	during	the	first	years	of	

life.	 In	 fact,	 the	 gradual	 emergence	 of	 self-awareness	 may	 reflect	 the	 early	

immaturity	of	brain	networks	which	support	neuronal	processes	related	to	self-

processing	and	 social	 interactions	 (Raichle	 et	 al.,	 2001).	 In	 this	PhD	work,	 I	

applied	this	novel	approach	to	the	investigation	of	the	neural	underpinnings	of	

the	development	of	self-awareness	in	infancy.		
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Figure	1.1	Graphical	representation	of	the	main	brain	areas	related	to	the	sense	of	self.		
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1.6	Summary	
Recent	theories	on	the	development	of	the	sense	of	self	suggest	that	i)	infants	

are	 born	 with	 a	 core	 sense	 of	 self	 that	 allows	 them	 to	 interact	 with	 the	

environment;	ii)	the	sense	of	self	 is	socially	constructed	through	interactions	

with	others	who	serve	as	social	mirrors.	Self-recognition	in	the	mirror,	achieved	

at	 around	 18	 months,	 has	 been	 used	 to	 assess	 emerging	 self-awareness	 in	

infancy,	even	though	the	significance	of	this	test	is	still	not	universally	accepted.	

The	reviewed	evidence	suggests	that	self-recognition	may	be	an	indicator	not	

only	of	physical	awareness,	but	of	a	broader	sense	of	self,	 i.e.	self-awareness.	

Consistent	with	theories	that	suggest	a	social	shaping	of	the	self,	it	is	likely	that	

the	emergence	of	self-awareness	is	highly	connected	with	some	fundamental	

social	 cognitive	 abilities	 that	develop	 early	 in	 life.	Mimicry,	 the	 spontaneous	

tendency	to	copy	others,	might	be	influenced	by	emerging	self-awareness	and	

being	 mimicked	 early	 in	 life	 might	 affect	 self-awareness	 later	 on	 in	

development.	

	 Knowledge	 of	 the	 neural	 correlates	 supporting	 self-awareness	 has	

come	mainly	from	adult	studies	and	suggests	that	i)	the	MNS,	which	is	engaged	

when	we	see	and	perform	actions,	is	activated	in	self-recognition	tasks	and	in	

self-other	integration;	ii)	the	DMN	is	associated	with	abstract	self-processing;	

iii)	the	TPJ	and	the	mPFC,	two	core	regions	of	the	aforementioned	networks,	

respond	to	self-processing	 tasks	and	 to	shared	representations	between	self	

and	other.	The	literature	review	highlighted	several	brain	regions	associated	

with	self-awareness	and	the	brain	networks	that	have	been	found	to	support	

this	 complex	 phenomenon	 in	 adulthood.	 Therefore,	 connectivity	 analyses	

applied	 to	 infant	 brain	 data	 might	 provide	 a	 detailed	 picture	 of	 the	 neural	

underpinnings	of	emerging	self-awareness.	 	
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1.7	Overview	of	the	present	work	
This	 PhD	 thesis	 addresses	 the	 outstanding	 questions	 outlined	 above	 by	

investigating	the	neural	correlates	of	emerging	self-awareness	using	fNIRS	and	

places	an	emphasis	on	the	analyses	of	brain	networks	to	help	investigate	this	

complex	phenomenon.	Moreover,	this	work	explores	how	the	development	of	

self-awareness	 is	 related	to	other	social	cognitive	abilities,	and	 in	particular,	

mimicry.	

Chapter	2	summarises	the	advantages	and	disadvantages	of	using	fNIRS	

in	infancy.	It	highlights	the	pros	and	cons	of	this	neuroimaging	technique	and	

describes	 the	methodological	 approach	 to	 obtaining	 fNIRS	 data	 from	 young	

infants	that	was	employed.	This	chapter	also	briefly	describes	the	data	analyses	

approach	used	in	the	following	chapters.	

The	adult	literature	consistently	highlights	a	wide	set	of	brain	regions	

and	some	networks	as	the	neural	correlates	of	the	sense	of	self.	Moreover,	the	

complexity	and	the	multifaceted	nature	of	this	topic	of	research	requires	more	

sophisticated	analyses	than	a	focus	on	the	activation	of	single	areas.	Chapter	3	

is	 therefore	 dedicated	 to	 elucidating	 how	 fNIRS	 can	 be	 employed	 to	 assess	

functional	 connectivity	 in	 awake	 infants.	 This	 chapter	 also	 illustrates	 two	

connectivity	techniques	that	were	adapted	to	be	used	on	the	fNIRS	infant	data	

to	enrich	the	description	of	the	developing	brain.	

Taking	 advantage	 of	 one	 of	 the	 connectivity	 techniques	 explained	 in	

Chapter	3,	Chapter	4	presents	an	 investigation	of	how	the	brain	regions	 in	a	

known	 network	 that	 is	 consistently	 described	 as	 being	 related	 to	 self-

processing	might	be	considered	markers	of	emerging	self-awareness	in	infancy	

as	well.	fNIRS	has	been	employed	here	to	record	the	brain	activation	in	awake	

infants	at	rest,	creating	similar	testing	conditions	to	those	used	with	adults.	
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Chapter	 5	 explores	 which	 brain	 areas	 are	 engaged	 during	 self-

recognition	in	infancy	and	investigates	whether	the	areas	that	may	be	related	

to	self-processing	at	rest	are	also	engaged	in	this	task.	This	study	manipulates	

the	temporal	contingency	between	observed	and	performed	movements	while	

brain	responses	are	recorded	with	fNIRS.	

Chapter	 6	 investigates	 how	 emerging	 self-awareness	 can	 influence	

infants’	 interactions	 with	 the	 social	 environment.	 Here,	 the	 focus	 is	 on	 the	

selective	mimicry	of	 in-group	and	out-group	members,	which	was	measured	

with	EMG	and	fNIRS.	

Chapter	 7	 tests	 the	 hypothesis	 of	 the	 important	 role	 of	 others	 in	

constructing	the	self,	investigating	the	social	nature	of	the	self.	It	explores	how	

the	mothers’	 tendency	 to	 imitate	 their	4-month-olds’	 facial	actions	may	be	a	

predictor	of	self-awareness	at	18-month-old.		

Chapter	8	discusses	how	the	work	of	this	thesis	provides	insight	into	

the	 mechanisms	 underlying	 developing	 self-awareness.	 This	 chapter	 also	

highlights	how	this	work	relates	to	and	extends	the	previous	work	in	this	field.	

It	 acknowledges	 the	 limitations	of	 the	 studies	presented	and	gives	potential	

directions	for	future	research.	

	

Figure	1.2	relates	each	chapter	of	this	PhD	work	to	the	aims	described	

at	the	beginning	of	the	Introduction.	
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Figure	1.2	Graphical	representation	of	the	aims	of	this	PhD	work	and	each	chapter.	
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2.1	 General	 principals	 of	 functional	 near-infrared	

spectroscopy		

2.1.1	Introduction	to	the	fNIRS	method		

fNIRS	is	a	relatively	new	non-invasive	neuroimaging	method,	widely	used	in	the	

developmental	 neuroscience	 field	 (Ferrari	 &	Quaresima,	 2012;	 S.	 Lloyd-Fox,	

Blasi,	 &	 Elwell,	 2010).	 This	 method	 uses	 light	 to	measure	 brain	 activation,	

taking	advantages	of	the	different	optical	proprieties	of	blood	with	and	without	

oxygen	(Villringer	&	Chance,	1997).	The	discovery	of	light	as	a	possible	way	to	

study	the	brain	is	dated	back	in	1976,	when	the	German	biologist	Frans	Jobsis-

vander	Vliet	realised	that	the	light	path	was	visible	through	a	steak	bone.	Thus,	

he	reasoned	that	if	light	in	the	visible	spectrum	could	travel	through	the	bone,	

light	with	a	longer	wavelength	–	i.e.	the	near-infrared	light	–	should	be	able	to	

travel	 through	 longer	 distances,	 providing	 access	 to	 the	 brain.	 After	 this	

discovery,	it	took	another	20	years	before	the	first	studies	using	near-infrared	

light	to	explore	brain	responses	in	humans	were	published	(Hoshi	&	Tamura,	

1993a,	 1993b;	 Villringer,	 Planck,	 Hock,	 Schleinkofer,	 &	 Dirnagl,	 1993).	

However,	in	the	past	decades	this	method	has	been	remarkably	improved	and	

its	use	is	rapidly	growing	in	several	fields,	and	in	particular,	in	the	study	of	the	

developing	brain	(Hoshi,	2007;	S.	Lloyd-Fox	et	al.,	2010).	

The	 main	 principle	 underlying	 the	 use	 of	 fNIRS	 to	 detect	 brain	

activations	relies	on	the	fact	that	skin,	biological	tissues	and	bones	are	relatively	

transparent	to	light	in	the	near-infrared	band	of	the	electromagnetic	spectrum,	

while	blood	is	a	strong	absorber	(Jacques,	2013).	In	particular,	oxygenated	and	

deoxygenated	 blood	present	different	 proprieties	 of	 absorption	 in	 the	 near-

infrared	 wavelength	 spectrum	 (700-1000	 nm).	 When	 a	 brain	 region	 is	
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activated,	 a	 localised	 increase	 of	 oxygenation	 occurs	 in	 that	 tissue.	 This	

produces	a	change	in	the	amount	of	light	absorbed	by	this	tissue	which	can	be	

measured	by	near	infrared	spectroscopy	systems,	using	it	as	an	index	of	brain	

activation.	Therefore,	measuring	differences	in	the	absorption	and	scattering	of	

the	oxygenated	and	deoxygenated	blood	allow	us	to	measure	the	difference	in	

the	haemoglobin	concentration	(Elwell,	1995;	Hoshi,	2016).	 In	 the	 following	

paragraph,	I	describe	the	neural	origins	of	the	fNIRS	signal	and	how	the	NIRS	

technology	works	to	study	it.	

	

2.1.2	Neural	origins	of	the	fNIRS	signal	

With	 fNIRS,	 changes	 in	 the	 level	 of	 oxygenation	 associated	 with	 functional	

activation	are	measured	by	light	injection	and	detection	on	the	surface	of	the	

head.	Brain	activity	and	cognitive	processes	are	associated	with	an	increase	in	

neuronal	firing	and	consequently	an	increase	in	oxygen	consumption.	Because	

of	 the	 coupling	 with	 the	 vascular	 system,	 this	 leads	 to	 an	 increase	 in	 the	

transportation	of	oxygenated	blood	to	this	area	(Hoge	et	al.,	1999;	Magistretti	

&	 Pellerin,	 1999).	 Whereas	 neuronal	 activity	 might	 last	 milliseconds,	 the	

increase	in	blood	flow	in	brain	tissues	takes	from	5	to	10	seconds	to	reach	its	

maximum	(Poldrack	&	Nichols,	2011).	This	increase	in	blood	flow	to	brain	areas	

that	 are	 activated	 is	 commonly	 known	 as	 the	 ‘haemodynamic	 response’	

(Attwell	&	Iadecola,	2002;	Clarke	&	Sokoloff,	1999;	Roy	&	Sherrington,	1890;	

Zheng	et	al.,	2002).		

Similar	to	fMRI,	fNIRS	measures	the	supply	of	oxygen	in	the	brain.	fMRI	

detects	 the	 Blood	 Oxygen	 Level	 Dependent	 (BOLD)	 signal,	 which	 primarily	

corresponds	 to	the	concentration	of	deoxyhaemoglobin	(Arthurs	&	Boniface,	

2002;	Logothetis	&	Pfeuffer,	2004).	fMRI	takes	advantages	of	the	paramagnetic	
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proprieties	 of	 the	 deoxygenated	 blood,	 as	 an	 increase	 in	 the	 BOLD	 signal	

corresponds	to	a	decrease	in	the	concentration	of	deoxygenated	blood,	based	

on	which	an	increase	in	the	oxygenated	blood	is	inferred	(Heeger	&	Ress,	2002).	

In	a	similar	way,	fNIRS	relies	on	the	different	proprieties	of	oxygenated	(HbO2)	

and	 deoxygenated	 (HHb)	 blood,	 but	 regarding	 their	 different	 absorption	

characteristics	 (Zhang,	Brooks,	&	Boas,	 2005).	Both	 fMRI	and	 fNIRS	provide	

access	 to	 the	 haemodynamic	 response,	 but	 fNIRS	 informs	 about	 both	

chromophores	of	interest	(i.e.	HbO2	and	HHb).	In	fact,	the	vast	majority	of	the	

NIRS	 systems	acquire	measurements	 using	 two	wavelengths,	 each	 of	which	

selectively	 sensitive	 to	 one	 chromophore	 (although	 both	 contribute	 to	 the	

measure	of	both	signals).	The	two	wavelengths	can	slightly	vary	across	systems,	

but	one	is	commonly	above	and	one	below	the	haemoglobin	isobestic	point	at	

805nm,	 where	 HbO2	 and	 HHb	 haemoglobin	 present	 the	 same	 absorption	

coefficient.	In	fact,	HHb	absorbs	considerably	more	light	at	wavelengths	below	

the	isobestic	point,	while	HbO2	absorbs	considerably	more	light	at	wavelengths	

above	the	isobestic	point	(see	Figure	2.1)	(Boas,	Dale,	&	Franceschini,	2004).	

	

Figure	2.1	Absorption	spectra	of	the	oxygenated	and	deoxygenated	haemoglobin.	The	
red	 line	 represents	 the	 oxygenated	 haemoglobin	 and	 the	 blue	 line	 represents	 the	
deoxygenated	 haemoglobin	 (image	 reproduced	 with	 permission	 from	
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www.gowerlabs.co.uk).	780	and	850	nm	are	two	wavelengths	used	by	NIRS	systems	to	
detect	HbO2	and	HHb	signal.	
	

The	 signal	 obtained	with	 fNIRS	 contains	more	 than	 just	 information	

about	neuronal	activation,	as	 it	also	 includes	noise	and	physiological	 factors.	

Vasomotor	 waves,	 respiration	 signal,	 cardiac	measures,	 experimental	 noise,	

and	 motion	 artefacts	 ‘hide’	 the	 haemodynamic	 response	 (Bauernfeind,	

Wriessnegger,	Daly,	&	Müller-Putz,	2014;	Brigadoi	et	al.,	2014).	Therefore,	pre-

processing	 of	 the	 fNIRS	 signal	 is	 needed	 to	 measure	 the	 haemodynamic	

response,	 removing	 the	 noise	 caused	 by	 physiological	 factors	 (for	 more	

information	about	pre-processing	and	motion	artefacts	see	paragraph	2.3.2).	A	

typical	 haemodynamic	 response	 has	 a	 pattern	 of	 increasing	 HbO2	 and	

decreasing	HHb,	due	to	changes	in	the	level	of	oxygen	in	the	brain	tissue	(see	

Figure	2.2)	 (Cui,	Bray,	&	Reiss,	 2010;	Kleinschmidt	 et	 al.,	 1996;	Villringer	&	

Chance,	 1997).	 However,	 this	 canonical	 response	 is	 not	 always	 present	 in	

infants	and	young	children	(Issard	&	Gervain,	2018)	 ,	and	studies	 in	 infancy	

often	rely	on	the	oxygenated	signal	only	(for	some	examples	see:	Grossmann,	

Cross,	Ticini,	&	Daum,	2013;	Lloyd-Fox	et	al.,	2010;	Lloyd-Fox,	Széplaki-Köllod,	

Yin,	&	Csibra,	2015;	Southgate,	Begus,	Lloyd-Fox,	di	Gangi,	&	Hamilton,	2014).	

Understanding	 the	 pattern	 of	 oxygenated/deoxygenated	 blood	 coupling	 is	 a	

topic	 of	 ongoing	 research	 in	 developmental	 neuroscience	 (for	 example	 see	

Issard	&	Gervain,	2018).	

	



Chapter	2	
	

	 85	

	

	

Figure	2.2	Typical	haemodynamic	response	to	cortical	activation	recorded	with	fNIRS.	
Red	 line	 represents	 HbO2	 and	 blue	 line	 represents	 Hbb	 (image	 reproduced	 with	
permission	from	Coutts	et	al.,	2009).	
	

Sources	and	detectors	of	near-infrared	light	are	the	main	components	

of	the	NIRS	system.	When	the	near-infrared	light	is	shone	into	the	brain,	only	a	

portion	 of	 it	 reaches	 the	 detector,	 while	 the	 rest	 is	 scattered	 and	 diffused	

through	the	brain	tissues	(Elwell,	1995;	Hoshi,	2016).	The	light	attenuation	is	

converted	into	relative	concentrations	of	HbO2	and	HHb	by	the	modified	Beer	

Lambert	Law:		

	

OD=-log10(I/I0)=	eDc.B.L+G	
	

where	 OD	 is	 optical	 density	 (or	 attenuation	 of	 the	 light	 radiation),	 I	 is	 the	

intensity	of	the	signal	transmitted,	I0	is	 intensity	of	the	incident	light,	ε	is	the	

molar	 extinction	 coefficient,	 Dc	 is	 the	 change	 in	 the	 concentration	 of	 the	

chromophore,	and	L	is	the	optical	pathlength	(Boas	et	al.,	2001).		

The	modified	version	of	the	Beer	Lambert	Law	introduced	two	terms,	B	

and	G	in	the	formula.	The	factor	known	as	differential	pathlength	factor	(DPF)	
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corrects	 for	 the	 increased	 optical	 pathlength	 due	 to	 scattering	 (B	 in	 the	

formula).	As	the	estimation	of	the	DPF	value	depend	on	both	the	scattering	and	

the	 absorption	 proprieties	 of	 the	 tissue,	 this	 value	 is	 wavelength	 and	 age	

dependent,	 so	 it	needs	 to	be	 specified	by	 the	 experimenter.	There	 are	 some	

papers	that	researchers	can	take	as	a	reference,	suggesting	age	and	wavelength	

dependent	 formula	 to	 calculate	 the	 DPF	 value	 (Duncan	 et	 al.,	 1995,	 1996;	

Scholkmann	&	Wolf,	2013).	In	particular,	the	study	performed	by	Duncan	and	

colleagues	 provides	 valuable	 information	 on	 how	 absorbing	 and	 scattering	

proprieties	of	brain	tissues	change	as	the	brain	develops:	i)	the	DPF	values	in	

newborns	are	generally	lower	than	those	in	adults,	suggesting	that	there	is	less	

scattering	 of	 the	 light	 at	 younger	 ages,	 due	 to	 a	 thinner	 skull	 and	 scalp	

compared	to	adults;	ii)	the	standard	deviations	of	the	DPF	values	estimated	in	

newborns	 are	 lower	 than	 those	 in	 adults,	 suggesting	 less	 variability	 in	 the	

optical	proprieties	of	the	various	brain	tissues	in	the	developing	brain	than	in	

the	adult	one5	(Duncan	et	al.,	1995).		

The	 second	 term	 introduced	 in	 the	 modified	 version	 of	 the	 Beer	

Lambert	Law	accounts	for	the	scattering	losses	due	to	photons	never	reaching	

the	detector	(G	in	the	formula)	(Arridge,	Cope,	&	Delpy,	1992;	Delpy,	Cope,	Van	

Der	Zee,	 et	al.,	1988;	Hiraoka	et	al.,	1993).	Note	 that	G	 is	unknown	and	 it	 is	

dependent	upon	the	scattering	coefficient	of	the	tissue	interrogated.	Therefore,	

this	equation	cannot	provide	a	measure	of	 the	absolute	concentration	of	 the	

chromophore.	 However,	 if	 we	 assume	 G	 does	 not	 change	 during	 the	

measurement	period,	it	is	possible	to	determine	a	change	in	the	concentration	

of	the	chromophore	from	a	measured	change	in	attenuation	(Elwell,	1995).	This	

																																																													
5	This	is	consistent	with	the	less	differentiation	of	white	and	grey	matter	in	the	first	
year	of	life	(Weisenfeld	&	Warfield,	2009).	
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term	 in	 the	 formula	 highlights	 the	 importance	 of	 taking	 into	 account	 both	

absorption	 and	 scattering	 of	 the	 light	 when	 measuring	 light	 transportation	

through	the	brain.	In	fact,	it	is	estimated	that	around	80%	of	the	light	emitted	

will	be	scattered,	and	only	the	remaining	20%	will	be	absorbed	(Elwell,	1995).		

fNIRS	 measures	 changes	 in	 oxygenation	 levels	 in	 the	 cortical	 area	

between	the	sources	and	the	detectors,	so-called	channel	(Everdell	et	al.,	2005).	

The	light	path	between	a	source-detector	pair	is	typically	described	as	‘banana-

shaped’,	 based	on	 the	 curved	 shape	of	 the	 light	 sensitivity	between	 the	 two	

optodes.	The	light	cannot	travel	very	deep	into	the	brain,	therefore	fNIRS	allows	

the	access	only	to	the	superficial	layers	of	the	cortex.	The	profile	of	the	spatial	

sensitivity,	which	 indicates	 the	 volume	 of	 the	 tissue	 reached	 by	 the	 light,	 is	

characterized	by	the	optical	heterogeneity	of	the	brain	layers	which	the	light	

goes	 through	 (Okada,	 Firbank,	&	Delpy,	 1995).	 Several	 studies	 assessed	 the	

shape	and	the	depth	of	this	curve,	and	most	important,	which	factors	affect	it,	

such	as	properties	of	 the	 tissue	or	age	(for	some	example	see	Arridge	et	al.,	

1992;	Boas,	Dale,	&	Franceschini,	2004;	Hiraoka	et	al.,	1993;	Okada,	Firbank,	&	

Delpy,	 1995;	Okada	&	Delpy,	2003).	As	biological	 tissues	absorb	and	 scatter	

light	 differently,	 sensitivity	 maps	 of	 photon	 migration	 can	 be	 employed	 by	

fNIRS	researchers	to	estimate	the	amount	of	light	that	each	detector	gets,	given	

the	 light	 dispersion	 in	 different	 tissues	 and	 the	 possible	 contamination	 by	

hemodynamic	 processes	 in	 the	 extracerebral	 vasculature.	 The	 Monte	 Carlo	

simulation	is	often	used	to	model	light	migration	in	human	tissue,	computing	

individual	photon	paths	(Fang,	2010;	Hasegawa,	Yamada,	Tamura,	&	Nomura,	

1991;	Wilson	&	Adam,	1983).	An	interesting	study	compared	light	propagation	

in	 adult	 and	 newborns	 head	 models.	 It	 showed	 that	 the	 photon	 migration	

changes	in	relation	with	age,	with	the	neonatal	brain	absorbing	more	light	than	
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the	adult	one,	due	to	the	difference	in	skull	thickness	and	the	optical	proprieties	

of	white	and	grey	matter	(Fukui,	Ajichi,	&	Okada,	2003).	

Although	 calculating	 a	 sensitivity	 map	 of	 photon	 migration	 is	 not	

commonly	part	of	 fNIRS	data	analysis	pipelines	 in	developmental	science,	 in	

this	 PhD	work	 an	 estimation	 of	 light	propagation	was	 necessary	 to	 validate	

effective	 connectivity	 methods	 on	 infant	 fNIRS	 data	 presented	 in	 the	 next	

chapter	(section	3.2).	

	

2.1.3	 Advantages	 and	 disadvantages	 of	 fNIRS	 and	 comparisons	

with	 other	 neuroimaging	 techniques	 used	 in	 developmental	

neuroscience	

The	 increased	 use	 of	 fNIRS	 in	 experiments	 studying	 the	 developing	 human	

brain	 is	 due	 to	 certain	 characteristics	 that	 make	 it	 an	 ideal	 neuroimaging	

method	to	be	used	with	developmental	populations	(S.	Lloyd-Fox	et	al.,	2010;	

Wilcox	 &	 Biondi,	 2015).	 First,	 infants	 present	 less	 hair	 and	 a	 thinner	 scalp	

compared	to	adults	(aspects	that	could	affect	the	absorption	and	the	scattering	

of	the	light),	enabling	the	near-infrared	light	to	more	effectively	reach	the	grey	

matter.	Secondly,	the	fact	that	fNIRS	is	relatively	robust	to	motion	allows	infants	

and	toddlers	to	be	tested	while	they	are	awake	and	relatively	free	to	move.	In	

fact,	as	long	as	the	fNIRS	headgear	is	securely	positioned	on	the	infant’s	head,	

the	 infant	 is	 relatively	 free	 to	 move.	 This	 allows	 researchers	 to	 investigate	

functional	brain	activation	in	a	much	wider	range	of	experimental	situations,	

for	example	during	live	interactions	(Canning	&	Scheutz,	2013;	Holtzer	et	al.,	

2011;	Pan,	Cheng,	Zhang,	Li,	&	Hu,	2017;	Pinti	et	al.,	2015,	2018;	Solovey	et	al.,	

2009),	 and	 on	 multiple	 participants	 simultaneous	 recorded	 (i.e.	
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hyperscanning)	(Cui,	Bryant,	&	Reiss,	2012;	Pan	et	al.,	2017).	Thirdly,	testing	

protocols	with	fNIRS	are	not	restricted	to	a	lying	down	posture,	making	it	more	

participant	 friendly,	as	infants	and	children	can	sit	on	or	close	 to	 their	carer	

throughout	the	study.	Lastly,	the	low	cost,	the	portability	and	of	this	equipment	

has	helped	 increase	 the	use	 of	 fNIRS	 for	neuroimaging	over	 the	 last	decade	

(Hoshi,	2007;	Piper	et	al.,	2014),	allowing	for	it	to	be	used	in	a	wide	variety	of	

settings,	including	developing	countries	and	hospitals	(for	examples	see	Lloyd-

Fox	et	al.,	2017;	Meek	et	al.,	1999)	

However,	fNIRS	also	has	some	disadvantages	that	need	to	be	taken	into	

account.	First	of	all,	as	mentioned,	the	near-infrared	light	cannot	penetrate	very	

deep	 into	 the	 brain,	 preventing	 any	 measurements	 of	 change	 in	 blood	

oxygenation	 in	 subcortical	 structures.	 Therefore,	 neuroimaging	 studies	 can	

benefit	from	the	use	of	fNIRS	only	if	the	brain	areas	of	interest	are	on	the	outer	

layer	of	the	cerebral	cortex	(Ferrari,	Mottola,	&	Quaresima,	2004;	Hoshi,	2003).	

Secondly,	accuracy	of	the	spatial	localisation	of	the	fNIRS	signal	is	dependent	

on	i)	the	positioning	and	stability	of	the	fNIRS	cap	on	the	participants’	head;	ii)	

the	shape	and	size	of	the	participants’	head;	iii)	an	accurate	co-registration	with	

MRI	templates	in	order	to	define	the	structure	and	the	positioning	of	the	fNIRS	

array	(for	some	example	see	Lloyd-Fox	et	al.,	2014;	Tsuzuki	&	Dan,	2014).	A	

third	disadvantage	is	that	the	temporal	resolution	of	fNIRS	-	allowing	for	data	

acquisition	up	to	100	hertz	-	is	much	lower	than	the	resolution	provided	by	EEG,	

usually	reaching	up	 to	a	 thousand	hertz	(Luck,	2005).	However,	 it	has	 to	be	

acknowledged	that	temporal	resolution	of	fNIRS	is	faster	than	the	resolution	

provided	by	fMRI,	which	typically	reaches	only	1	hertz	or	less	(Kim,	Richter,	&	

Uǧurbil,	 1997;	 Huettel,	 Song,	 McCarthy	 et	 al.,	 2004;	 Weishaupt,	 Kochli,	

Marincek,	 &	 Kim,	 2007).	 This	 enables	 fNIRS	 to	 provide	more	 time-accurate	
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recordings	of	the	blood	fluctuations	in	the	brain,	which	connectivity	analyses	

can	benefit	 from	(see	Chapter	3	 for	more	details	on	 this).	Figure	2.3	gives	a	

graphic	summary	of	benefits	and	disadvantages	of	the	various	neuroimaging	

techniques	used	in	developmental	neuroscience	(S.	Lloyd-Fox	et	al.,	2010).	

	

	

Figure	2.3.	Graphical	representation	of	the	proprieties	of	the	neuroimaging	techniques	
used	 with	 infants.	 Degree	 of	 tolerance	 is	 ranked	 from	 a	 low	 (yellow),	 to	 medium	
(orange),	till	a	high	level	(red).	Spatial	resolution	and	temporal	resolution	are	plotted	
on	 the	 other	 axes.	 EEG,	 electroencephalography;	 ERP,	 event-related	potential;	MEG,	
magnetoencephalography;	NIRS,	near	infrared	spectroscopy;	fMRI,	functional	magnetic	
resonance	imaging;	DTI,	diffusion	tensor	imaging;	PET,	positron	emission	tomography	
(image	reproduced	with	permission	from	Lloyd-Fox	et	al.,	2010,	p.271).	

	

In	 this	 PhD	 work,	 particular	 attention	 was	 dedicated	 to	 limit	 the	

consequences	of	some	of	the	disadvantages	of	fNIRS.	In	particular,	participants’	

head	measurements	were	acquired	in	order	to	choose	a	size	of	the	fNIRS	cap	as	

close	as	possible	to	the	head	size	of	the	participant	(see	next	sections	for	more	

information	 about	 the	 fNIRS	 cap	 sizes	 and	 experimental	 procedures).	

Moreover,	a	study	in	collaboration	with	Dr.	John	Richards	at	the	University	of	
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South	Carolina	registered	the	fNIRS	array	structure	used	for	this	project	on	MRI	

scans	 of	 infants	 of	 a	 similar	 age	 and	with	 a	 similar	 head	 shape	 and	 size,	 to	

estimate	which	brain	areas	were	being	measured	(see	section	2.2.2).	Finally,	I	

took	advantage	of	the	relatively	good	temporal	resolution	of	fNIRS	to	adapt	and	

validate	some	connectivity	techniques	to	study	developing	brain	networks	(see	

the	studies	presented	in	sections	3.2	and	3.3).	

	

2.2	The	NIRS	instrumentation	and	the	NTS2	system		

The	 NIRS	 system	 used	 at	 the	 Centre	 for	 Brain	 and	 Cognitive	 Development	

(CBCD)	at	Birkbeck	College	is	called	NTS2	optical	imaging	system.	It	has	been	

developed	 at	 University	 College	 London	 (UCL)	 since	 2005	 (Everdell	 et	 al.,	

2005),	 and	 it	 is	 currently	 used	 in	 several	 European	 and	 international	

laboratories	(see	Figure	2.4).	The	NTS2	 is	a	continuous	wave	system,	which	

uses	a	continuous	emission	of	light	from	the	sources,	measuring	changes	over	

time,	not	absolute	values	of	attenuation.	It	enables	the	data	acquisition	with	a	

high	sampling	rate	and	it	can	record	from	several	channels	simultaneously.	The	

NTS2	is	composed	of	32	laser	diodes	sources	(16	at	780	nm	and	16	at	850	nm)	

and	 16	 detectors.	 The	 source-detector	 pairs	 allow	 for	 a	 maximum	 of	 44	

channels.	In	a	multichannel	system,	such	as	the	NTS2,	each	source	can	be	paired	

with	 several	 detectors,	 therefore	 it	 is	 important	 to	 correctly	 identify	which	

source	the	detected	light	has	come	from.	One	possible	approach	would	be	to	

shine	the	light	from	one	source	at	the	time	(time	multiplexing),	but	this	method	

is	very	slow	and	not	feasible	for	functional	task-related	studies.	An	alternative	

approach,	employed	by	the	NTS2	system	 is	 frequency	multiplexing,	 in	which	

each	 source	 is	 modulated	 at	 a	 slightly	 different	 frequency	 but	 in	 the	 same	
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wavelength	 spectrum.	 By	 using	 the	 Fourier	 transformation	 on	 the	 detected	

signal,	the	specific	frequency	of	each	source	can	be	calculated.	The	header	file	

of	the	software	provides	information	about	the	different	frequencies	at	which	

the	sources	emit	the	light,	and	based	on	this,	the	possible	source-detector	pairs.	

Once	 the	 experimenter	has	 created	 the	 array	design,	 the	optodes	position	 is	

digitised	in	a	 ‘SD	file’.	This	file,	which	contains	also	the	wavelengths	used	for	

data	acquisition,	 is	 then	used	 to	acquire	data	with	 the	NTS2	software	and	to	

convert	the	light	attenuation	into	concentrations	by	the	modified	Beer-Lambert	

Law.	

	

	

Figure	2.4.	The	NTS2	system	used	for	acquiring	fNIRS	data	in	this	PhD	work	(image	
reproduced	with	permission	from	www.gowerlabs.co.uk).	
	

Light	is	delivered	and	detected	by	relatively	light	weight	glass	optical	

fibres,	 allowing	 the	 near-infrared	 light	 to	 travel	 from	 the	 system	 to	 the	

participant’s	 head,	 with	 little	 signal	 loss.	 The	 tip	 of	 the	 glass	 fibres	 are	 90	

degrees	bent	to	be	positioned	on	the	participant’s	head	and	different	optode	

extremities	can	be	designed	depending	on	the	subject’s	age.	Adult	fibers	have	

NTS near infrared spectroscopy system, Gower Labs 
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an	extended	 fibre	 tip	 that	can	comb	through	the	hair	to	 increase	 the	contact	

with	the	scalp	and	hereby	the	fNIRS	signal	quality.	The	absence	of	hair	in	young	

infants	 means	 that	 flat	 tipped	 fibers	 can	 be	 used,	 which	 are	 designed	 to	

minimise	the	pressure	applied	to	the	infants’	scalp.	In	the	studies	reported	in	

this	 PhD	 thesis,	 flat-tipped	 fibers	 were	 used	 with	 infants	 younger	 than	 18-

month-old,	while	adult	fibers	were	employed	with	older	ones,	where	hair	could	

impede	the	contact	between	the	fibre	end	and	the	scalp.	

Optodes	 at	 the	 fiber	 end	 are	 embedded	 in	 arrays	 depending	 on	 the	

design	 of	 the	 channels,	 covering	 brain	 areas	 of	 interest.	 In	 infant	 studies,	

optodes	are	usually	embedded	in	foam	arrays	and	then	placed	on	the	subject’s	

head	with	a	custom-made	silicon	band.	This	method	is	widely	used	with	young	

infants	as	the	absence	of	hair	allows	the	silicon	band	to	be	securely	positioned	

on	the	infant’s	head	without	slipping	during	the	experiment	(S.	Lloyd-Fox	et	al.,	

2010).	However,	this	is	more	likely	to	happen	when	children	have	hair,	thus	

using	an	EasyCap	 instead	of	a	silicon	band	can	be	preferable	when	studying	

older	children	with	more	hair.	EasyCaps	come	in	different	sizes	allowing	for	the	

appropriate	size	to	be	selected	for	each	participant’s	head	size.	The	array	design	

and	the	choice	of	the	cap	are	dependent	on	several	factors,	such	as	number	of	

channels	available,	brain	regions	of	interest,	age	of	participants	and	head	size,	

stability	 on	 the	 head,	 and	 whether	 the	 participant	 will	 be	 awake	 or	 asleep	

during	the	experiment.	The	source-detector	separation	(S-D)	is	dependent	on	

age	 and	 brain	 region,	 and	 studies	 based	 on	 anatomical	 features	 of	 an	

appropriate	age	brain	template	should	be	performed	prior	to	every	new	design.	

Researchers	often	consider	a	‘rule	of	thumb’	when	defining	the	source-detector	

separation,	estimating	that	the	light	path	roughly	travels	as	deep	as	half	of	the	

source-detector	 separation.	 However,	 this	 heuristic	 approach	 does	 not	
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overcome	the	need	for	relying	on	brain	anatomy	to	estimate	which	areas	the	

array	measures.	

After	this	general	overview	of	the	fNIRS	technology,	in	the	next	sections	

I	discuss	specific	features	of	the	fNIRS	arrays,	experimental	set-up	and	testing	

procedure	used	in	the	studies	performed	in	this	PhD	project.	

	

2.2.1	fNIRS	cap	and	arrays	in	this	thesis		

fNIRS	optodes	were	embedded	in	a	flexible	EasyCap.	The	cap	was	made	of	soft	

black	fabric,	with	a	chinstrap	and	cut	outs	for	the	ears	on	the	side	to	allow	a	

secure	 but	 comfortable	 positioning	 on	 the	 participant’s	 head.	 In	 fact,	 the	

chinstrap	and	the	ear	cut	outs	guaranteed	a	 fixed	position	of	 the	 cap	on	 the	

head,	preventing	any	lateral	shifting	encountered	sometimes	with	the	silicon	

band	used	with	younger	infants.	A	range	of	several	cap	sizes	was	available,	in	

order	 to	adjust	 the	 cap	size	 to	 the	participant’s	 head	 circumference.	 Source-

detector	separation	increased	slightly	due	to	the	stretch	of	the	cap	on	the	head	

and	also	due	to	re-scaling	based	on	the	cap	size.	Adult	fibers	were	clicked	into	

black	plastic	holders	that	secured	them	to	the	cap.	This	headgear	was	used	for	

all	the	participants	tested	within	this	PhD	project,	except	for	the	11-month-olds	

that	were	part	of	the	study	presented	in	next	chapter,	section	3.3.	This	sample	

was	tested	with	a	custom-made	silicon	band	and	with	flat-tipped	fibers	because	

at	this	age	most	of	the	participants	did	not	have	too	much	hair	yet.		

Two	array	design	were	used	during	this	PhD	project.	The	first	array	

design	included	12	sources	and	12	detectors	to	create	a	total	of	30	channels.	

The	second	design	included	16	sources	and	16	detectors	to	create	a	total	of	44	

channels.	 The	 44-channel	 configuration	was	 an	 extension	 of	 the	 30-channel	

configuration	 and	 included	 two	 additional	 rows	 of	 optodes	 that	 added	 7	
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channels	 per	 hemisphere,	 in	 a	 superior	 location	 to	 the	 two	 existing	 lateral	

arrays	(see	Figure	2.5).	This	allowed	us	to	improve	detection	of	TPJ	activation,	

a	core	region	of	interest	for	this	thesis.	Each	study	in	this	thesis	specifies	which	

design	was	used	and	if	both	were	used,	how	many	subjects	were	tested	with	

each	design.	

	

	

Figure	2.5	Representation	of	the	fNIRS	arrays.	Sources	are	marked	with	stars,	detectors	
are	marked	with	circles,	channels	are	marked	with	black	dotted	lines	and	numbered	
with	blue	circles.	The	red	dotted	 lines	highlight	 the	additional	 rows	of	optodes	 that	
added	7	channels	per	hemisphere.	
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Figure	 2.6	 shows	 an	 example	 of	 infants	 wearing	 the	 two	 headgear	

configurations.	

	

Figure	2.6	Infants	wearing	the	two	headgear	configurations	(Parents	provided	consent	

for	these	images	to	be	used).	

	

Source-detector	separation	was	about	30	mm	over	the	frontal	lobe	and	

25	mm	over	the	temporoparietal	lobe.	Given	that	the	cortex	is	approximately	

0.75	 cm	 from	 the	 skin	 surface	 (Glenn,	 2010)	 and	 based	 on	 studies	 on	 the	

transportation	 of	 near-infrared	 light	 through	 brain	 tissue,	 these	 selected	

source-detector	 separations	 were	 predicted	 to	 penetrate	 up	 to	 a	 depth	 of	

approximately	 12.5-15	mm	 from	 the	 skin	 surface,	 allowing	measurement	 of	

both	the	gyri	and	parts	of	the	sulci	near	the	surface	of	the	cortex	(S.	Lloyd-Fox	

et	 al.,	 2010).	 As	 mentioned,	 considering	 that	 source-detector	 have	 been	
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rescaled	based	on	the	cap	size,	each	study	in	this	PhD	thesis	reports	the	correct	

source-detector	separation	in	relation	to	the	cap	size	used	and	the	number	of	

participants	tested	with	each	cap	size.	

	

2.2.2	Co-registration	of	the	fNIRS	arrays	used	in	this	PhD	work	on	

age-appropriate	MRI	scans	

fNIRS	 has	 been	 described	 as	 a	 great	 tool	 to	 investigate	 brain	 activation	 in	

developmental	populations,	offering	several	strengths	that	other	neuroimaging	

methods	cannot	provide.	As	mentioned	before,	although	the	spatial	resolution	

of	fNIRS	is	better	than	the	one	provided	by	EEG,	it	is	not	as	accurate	as	the	one	

provided	by	 fMRI	(S.	Lloyd-Fox	et	al.,	2010).	For	studies	 that	aim	to	explore	

functional	activations,	this	aspect	is	not	trivial.	Every	participant’s	head	shape	

and	size	are	slightly	different,	and	this	can	affect	where	the	optodes	are	placed	

on	the	scalp.	For	this	reason,	the	support	of	MRI	images	to	co-register	fNIRS	

data	to	structural	templates	is	necessary	to	precisely	infer	the	location	of	brain	

activations.	This	is	even	more	important	if	the	focus	is	on	brain	connectivity	as	

in	 this	PhD	thesis,	 considering	 that	poor	spatial	 resolution	may	result	 in	 the	

incorrect	inference	that	some	brain	regions	belong	to	the	same	brain	network	

(Satterthwaite	 et	 al.,	 2017).	 An	 ideal	 co-registration	would	 be	 based	 on	 the	

infant’s	structural	scan,	but	as	an	alternative	it	is	possible	to	use	high-resolution	

age-appropriate	 templates	 available	 (for	 example	 see	 Richards,	 Sanchez,	

Phillips-Meek,	&	Xie,	2016;	Sanchez,	Richards,	&	Almli,	2012a,	2012b).	

	 Just	a	few	developmental	studies	have	localised	fNIRS	channels	onto	a	

MRI	template	(Emberson,	Cannon,	Palmeri,	Richards,	&	Aslin,	2017;	Emberson,	

Crosswhite,	 Richards,	 &	 Aslin,	 2017;	 S.	 Lloyd-Fox,	 Richards,	 et	 al.,	 2014;	 S.	

Lloyd-Fox,	Wu,	Richards,	Elwell,	&	Johnson,	2015).	These	studies	used	pictures	
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of	the	placement	of	the	fNIRS	array	on	the	infant’s	head	or	digitised	optodes	

location	 to	 log	 the	 position	 of	 the	 fNIRS	 arrays	 onto	 the	 infant’s	 head.	 This	

allows	an	estimation	of	which	areas	of	the	brain	the	fNIRS	arrays	cover.		

In	 the	process	of	co-registering	 fNIRS	data	on	MRI,	 it	 is	 important	 to	

make	 sure	 that	 the	 brain	 template	 that	 is	 used	 is	 based	 on	 an	 average	 of	

structural	scans	from	infants	within	a	relatively	narrow	age-range.	The	first	two	

years	of	life	are	a	period	of	fundamental	growth	of	the	brain	during	which	the	

entire	nervous	system	undergoes	large	changes	(Johnson,	2001).	Therefore,	it	

would	 be	 inaccurate	 to	 infer	which	 brain	 regions	underlie	 the	 fNIRS	 arrays	

based	 on	 previous	 co-registration	 studies	 based	 on	 a	different	 age	 range	 or	

using	structural	brain	templates	that	are	averaged	using	several	different	age	

points.	 Moreover,	 as	 the	 co-registration	 process	 is	 highly	 dependent	 on	 the	

array	design	used,	co-registration	studies	tend	to	be	quite	specific	and	difficult	

to	generalise	to	different	array	designs.	

Given	these	peculiarities	of	the	fNIRS	co-registration	process	and	given	

the	lack	of	information	on	localisation	in	participants	older	than	1	year	of	age	

with	the	regions	of	interest	I	am	interested	in,	I	decided	to	co-register	the	fNIRS	

arrays	 used	 for	 the	 studies	 in	 this	 thesis	 on	 age-appropriate	 structural	MRI	

scans.	This	allowed	for	conclusions	on	the	localisation	of	the	activity	to	be	more	

precise	throughout	this	PhD	thesis.	To	achieve	this,	I	collaborated	with	Dr.	John	

Richards,	 Department	 of	 Psychology,	 at	 University	 of	 South	 Carolina,	 who	

provided	a	pool	of	high-quality	MRI	images	of	24-month-olds.		

In	 this	 thesis,	 the	 Polhemus	 Digitising	 System	

(http://polhemus.com/scanning-digitizing/digitizing-products/)	was	used	 to	

register	 i)	five	reference	points	(nasion,	 inion,	 right	ear,	 left	ear,	Cz6)	and	ii)	

																																																													
6	Based	on	the	International	10-20	EEG	placement	system.	
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optodes	location	of	the	 fNIRS	optodes	used	 in	 this	PhD	work.	This	was	done	

only	if	the	participant	was	still	compliant	after	the	testing	session.	The	in-house	

custom	 scripts	 for	 the	 acquisition	 of	 the	 reference	 points	 and	 the	 optodes	

location	 (written	 by	 my	 supervisor	 Professor	 Antonia	 Hamilton)	 took	 into	

account	infant’s	movements	during	the	recording,	measured	with	a	reference	

attached	to	the	back	of	the	participant’s	head.	The	Polhemus	Digitising	System	

comes	with	 a	 transmitter	 box	 that,	 placed	 next	 to	 the	 participant,	 creates	 a	

magnetic	 field	 which	 allows	 the	 log	 of	 the	 selected	 points	 into	 a	 3D	 space.	

During	 the	 recording,	 while	 one	 experimenter	 touched	 each	 point	 on	 the	

participant’s	 head	 with	 the	 Polhemus	 stylus,	 making	 sure	 that	 the	 stylus	 is	

perpendicular	to	the	point	of	interest,	the	other	one	logged	each	point	location	

using	 the	 Matlab	 scripts.	 During	 this	 procedure,	 the	 infants	 watched	 an	

engaging	video	to	minimise	the	movements.	The	outputs	of	the	in-house	scripts	

are	two	excel	files,	one	with	the	location	of	the	reference	points	and	the	other	

one	with	the	optode	locations	in	the	3D	space	related	to	the	transmitter	box,	

corrected	for	the	participant’s	movements.	

We	selected	the	10	best	digitized	recordings,	based	on	the	accuracy	of	

the	points	marked	in	space	compared	to	the	optode	locations	in	three	pictures	

of	the	participant	wearing	the	fNIRS	cap	(one	from	the	front	and	two	from	the	

sides).	For	each	of	these	recordings,	Dr.	Richards	selected	a	structural	MRI	of	

an	 infant	 close	 in	 age,	 with	 a	 similar	 head	 shape	 and	 size,	 based	 on	 head	

measurements	 taken	 before	 the	 testing	 session.	 Despite	 the	 movement	

correction	applied	during	the	acquisition	of	the	optode	locations,	for	some	of	

the	 recordings	 the	 two	 sets	 of	 points	 (reference	 points	 and	 fNIRS	 optode	

locations)	were	logged	in	a	different	space.	However,	within	the	set	of	points	

there	was	consistency	and	accuracy	in	the	recording.	Using	MriCron	toolbox,	I	
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manually	 marked	 a	 third	 set	 of	 additional	 points	 (the	 two	 lower	 optodes	

belonging	 to	 the	 frontal	 array	 and	 the	 third	 lower	 optode	 belonging	 to	 the	

lateral	 arrays)	 on	 the	 structural	 MRI	 for	 each	 subject	 based	 on	 the	 three	

pictures	of	the	participant.	This	third	set	of	markers	was	used	by	Dr.	Richards	

to	re-register	the	two	main	sets	of	points,	and	thus	to	log	the	optode	locations	

on	the	structural	scan	for	each	infant.	Finally,	the	10	fNIRS-MRI	co-registrations	

were	averaged	together	in	order	to	estimate	the	location	of	the	brain	regions	

covered	by	the	fNIRS	arrays	used	in	this	PhD	project.	Table	2.1	lists	the	lobes	

and	 the	 anatomical	 labels	 based	 on	 the	 LPBA40	 atlas	 associated	 with	 each	

channel	referring	to	the	array	design	described	in	the	previous	section.		
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Channel	 Lobar	Atlas	 LPBA40	atlas	

1	 Frontal,	Temporal	 Inferior	frontal	gyrus,	Superior	temporal	gyrus	

2	 Frontal	 Inferior	frontal	gyrus	

3	 Frontal	 Inferior	frontal	gyrus,	Precentral	gyrus	

4	 Frontal,	Temporal	 Inferior	frontal	gyrus,	Superior	temporal	gyrus	

5	 Temporal	 Middle	temporal	gyrus,	Superior	temporal	gyrus	

6	 Parietal	 Postcentral	gyrus	

7	 Parietal,	Temporal	 Middle	temporal	gyrus,	Superior	temporal	gyrus	

8	 Temporal	 Inferior	temporal	gyrus,	Middle	temporal	gyrus	

9	 Parietal,	Temporal	 Angular	gyrus,	Supramarginal	gyrus	

10	 Parietal,	Temporal	 Middle	temporal	gyrus	

11	 Parietal,	Temporal	 Middle	occipital	gyrus	

12	 Parietal	 Angular	gyrus,	Middle	occipital	gyrus	

13	 Parietal	 Middle	occipital	gyrus	

14	 Frontal,	Temporal	 Inferior	frontal	gyrus,	Superior	temporal	gyrus	

15	 Frontal	 Inferior	frontal	gyrus	

16	 Frontal	 Inferior	frontal	gyrus,	Middle	frontal	gyrus	

17	 Frontal,	Temporal	 Precentral	gyrus	

18	 Temporal	 Middle	temporal	gyrus,	Superior	temporal	gyrus	

19	 Frontal,	Parietal	 Postcentral	gyrus,	Precentral	gyrus	

20	 Parietal,	Temporal	 Superior	temporal	gyrus	

21	 Temporal	 Middle	temporal	gyrus	

22	 Parietal	 Supramarginal	gyrus	

23	 Parietal,	Temporal	 Middle	temporal	gyrus	

24	 Parietal,	Temporal	 Middle	temporal	gyrus	

25	 Parietal	 Angular	gyrus	

26	 Parietal	 Angular	gyrus,	Middle	occipital	gyrus	
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27	 Frontal	 Middle	frontal	gyrus,	Superior	frontal	gyrus	

28	 Frontal	 Middle	frontal	gyrus	

29	 Frontal	 Middle	frontal	gyrus,	Superior	frontal	gyrus	

30	 Frontal	 Superior	frontal	gyrus	

31	 Frontal,	Parietal	 Postcentral	gyrus,	Precentral	gyrus	

32	 Frontal,	Parietal	
Postcentral	gyrus,	Precentral	gyrus,	

Supramarginal	gyrus	

33	 Parietal	 Supramarginal	gyrus	

34	 Parietal	 Angular	gyrus,	Supramarginal	gyrus	

35	 Parietal	 Angular	gyrus	

36	 Parietal	 Angular	gyrus	

37	 Parietal	 Angular	gyrus,	Middle	occipital	gyrus	

38	 Frontal	 Middle	frontal	gyrus,	Precentral	gyrus	

39	 Frontal,	Parietal	 Precentral	gyrus	,Postcentral	gyrus	

40	 Parietal	 Postcentral	gyrus,	Supramarginal	gyrus	

41	 Parietal	 Postcentral	gyrus,	Supramarginal	gyrus	

42	 Parietal	 Angular	gyrus,	Supramarginal	gyrus	

43	 Parietal	 Angular	gyrus	

44	 Parietal	 Angular	gyrus	

	

Table	2.1.	Lobes	and	anatomical	labels	based	on	the	LPBA40	atlas	associated	to	each	

channel	 (work	 performed	 in	 collaboration	 with	 Dr.	 Richards,	 Department	 of	

Psychology,	University	of	South	Carolina).	

	

Table	2.2	lists	channels	belonging	to	regions	of	interest	(ROI)	as	some	of	the	

analyses	presented	in	the	following	chapters	focus	on	these	regions	of	interest.	

Figure	2.7	provides	a	graphical	representation	of	the	brain	areas	covered	by	the	

channels	of	the	fNIRS	array.	
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ROI	 channels	

mPFC	 27,	28,	29,	30	

Left	IFG	 1,2,3,4	

Right	IFG	 14,	15,	16,	17	

Left	STG	 5,	6,	7	

Right	STG	 18,	19,	20	

Left	middle/posterior	temporal	

gyrus	
8,10,11,13	

Right	middle/posterior	temporal	

gyrus	
21,	23,	24,	26	

Left	TPJ	 9,	12,	34,	35,	36	

Right	TPJ	 22,	25,	41,	42,	43	
	

Table	2.2	Regions	of	interest	and	corresponding	channels	defined	by	the	co-registration	
study.	
	

	

	
Figure	 2.7	Representation	 of	 the	 channels	 on	 a	 2-year-old	 structural	 template	with	
regions	 of	 interest	 highlighted.	 Red	 represents	mPFC,	 yellow	 represents	 IFG,	 green	
represents	STG,	purple	represents	middle/posterior	temporal	gyrus,	blue	represents	
TPJ.	
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2.2.3	 Experimental	 set-up,	 fNIRS	 cap	 application,	 and	 testing	

procedure	

In	each	testing	session,	after	welcoming	the	family	into	the	lab,	the	first	minutes	

were	dedicated	 to	 familiarise	with	 the	 infant	 and	 to	 explain	 the	 aims	of	 the	

studies	and	testing	procedure	to	the	parent.	Before	the	beginning	of	the	study,	

participant’s	 head	measurements	 (circumference,	 the	distance	between	ears	

over	 the	 forehead,	 distance	 between	 nasion	 to	 inion,	 distance	 between	 ears	

measured	over	the	top	of	the	head)	were	taken	to	select	the	right	cap	size	for	

the	testing	session	and	to	align	the	fNIRS	cap	with	the	10–20	coordinates	(Klem,	

Luders,	Jasper,	&	Elger,	1958).	

All	the	fNIRS	studies	presented	in	this	PhD	thesis	took	place	in	a	dimly	

lit	and	sound	attenuated	room,	with	the	infant	sitting	on	their	parent’s	lap	at	

approximately	90	cm	from	a	117	cm	plasma	screen.	The	only	exception	on	this	

set-up	 is	 the	 study	 in	 Chapter	 5,	where	 participants	 sat	 on	 a	 high	 chair	 for	

experimental	purposes.	The	parent	was	asked	not	to	talk	during	the	experiment	

to	avoid	eliciting	brain	activation	not	associated	with	the	task.	I	excluded	the	

trials	where	the	parent	or	the	experimenter	talked	to	redirect	the	participant’s	

attention	on	the	screen	(see	paragraph	2.3.1	for	more	details	on	videocoding).	

Once	the	mother	and	infant	had	entered	the	testing	room,	the	experimenters	

took	some	time	to	ensure	that	the	infant	was	in	a	quiet	state,	then	the	fNIRS	cap	

was	placed	on	the	infant’s	head.	While	one	experimenter	blew	bubbles	and/or	

held	a	novel	and	attractive	 toy	 in	 front	of	 the	child	 for	distraction,	 the	other	

experimenter	positioned	the	hat	on	the	infant’s	head.	While	applying	the	hat	on	

the	 participant’s	 head,	 the	 experimenter	 made	 sure	 the	 frontal	 array	 was	

centred	on	 top	of	the	participant’s	nose.	After	 the	application	of	 the	cap,	 the	

chinstraps	were	adjusted	underneath	the	participant’s	chin	to	keep	the	cap	in	
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place	and	adjustments	were	made	to	the	positioning	of	the	cap	so	that	the	ears	

were	comfortably	fitted	through	the	cut	outs	on	the	side.	Hereafter,	a	silicon	

band	was	placed	on	top	of	the	optodes	to	keep	the	fibres	in	place	and	to	keep	

them	 ‘safe’	 from	 the	 child’s	 reach.	 The	 experiment	 did	 not	 start	 until	 the	

participant	 was	 calm	 and	 relaxed.	 The	 experimenter	 then	 started	 the	

presentation	 of	 the	 stimuli	 using	 Psych-Toolbox	 and	 custom-made	 Matlab	

scripts.		

Experimental	 studies	 in	 the	 current	 thesis	 involved	 paradigms	

structured	 in	block	designs,	with	 experimental	 trials	presented	 in	a	 random	

order,	interspersed	with	baseline	trials,	with	the	only	exception	of	the	second	

experiment	 of	 Chapter	 3	 and	 the	 study	 presented	 in	 Chapter	 4,	 which	 are	

resting-state	studies.	The	length	of	trials	and	baseline	differed	among	studies,	

as	well	as	the	type	of	baseline	chosen,	therefore	this	information	is	specified	in	

each	 study.	 The	 experimenter	 triggered	 the	 presentation	 of	 brief	 attention-

getting	sounds	at	random	intervals	to	attract	or	maintain	the	infants’	attention	

to	 the	 screen	 if	 needed.	 The	 presentation	 of	 sounds	 was	 constant	 during	

baselines	and	experimental	trials	in	order	to	not	differently	affect	infants’	brain	

responses.	The	experimental	sessions	lasted	until	the	participant	was	no	longer	

paying	attention	to	the	stimuli	or	the	video,	or	until	he/she	was	getting	fussy.	

Participants’	 behaviour	was	monitored	and	 recorded	 for	 offline-coding	via	 a	

remote-controlled	video	camera	below	the	monitor	showing	the	stimuli	to	the	

infant.	

	

2.2.4	fNIRS	recording	

Oxygenated	 and	 deoxygenated	 blood	 changes	 were	 recorded	 using	 the	 NTS	

system	 introduced	 above.	 This	 system	 is	 provided	 with	 two	 continuous	
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wavelengths	of	source	light	at	770	and	850	nm,	and	the	recording	sampling	rate	

was	10	Hz.	The	system	was	directly	connected	to	the	data	acquisition	computer	

where	the	NTS-Gowerlabs	software	displayed	and	stored	the	data.	During	the	

recording,	 the	 software	 interface	 showed	 patterns	 of	 raw	 intensity	 for	 each	

channel	 (both	 wavelengths)	 and	 a	 schematic	 representation	 of	 the	 fNIRS	

channels.	Here,	each	channel	was	marked	 in	green,	blue	or	red	to	advise	 the	

experimenter	on	the	optical	coupling	between	the	fiber	and	the	scalp	during	the	

acquisition.	

	

2.3	fNIRS	data	analysis	

Despite	the	recent	increased	use	of	fNIRS	in	studies	exploring	functional	brain	

development,	 data	 analysis	 pipelines	 still	 vary	 considerably	 among	

laboratories	 and	 teams.	While	 other	neuroimaging	methods	benefit	 of	 some	

defined	standard	‘golden	rules’,	consensus	on	signal	processing	methods	is	still	

lacking	among	fNIRS	research	groups.	In	the	fNIRS	data	processing,	particular	
attention	needs	to	be	dedicated	to	motion	artefact	detection,	as	this	is	likely	to	

create	false	positives	in	the	estimation	of	brain	activation	(Pfeifer,	Scholkmann,	

&	 Labruyère,	 2018).	 Motion	 artefacts	 are	 particularly	 influential	 in	 the	

estimation	 of	 brain	 connectivity,	 as	 they	 likely	 lead	 to	 false	 positive	

(Satterthwaite	et	al.,	2017).		

	 After	each	testing	session,	videos	were	first	coded	for	looking	behaviour	

and	 other	 possible	 factors	 unrelated	 to	 the	 task	 that	 could	 affect	 brain	

activation.	 Data	 were	 pre-processed,	 corrected	 for	 motion	 artefacts,	 and	

filtered	 using	 Homer2	 (Huppert,	 Diamond,	 Franceschini,	 &	 Boas,	 2009).	

Thereafter,	data	were	analysed	using	a	combination	of	custom	Matlab	scripts	
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and	the	SPM-NIRS	toolbox	(Ye,	Tak,	Jang,	Jung,	&	Jang,	2009).	The	rest	of	this	

section	provides	a	more	detailed	account	of	each	of	these	steps.	Moreover,	as	

stated	in	the	introduction	of	this	thesis,	one	of	the	aims	of	this	PhD	project	was	

to	apply	advanced	connectivity	techniques	on	infant	fNIRS	data.	A	description	

of	different	types	of	brain	connectivity	and	advantages	of	fNIRS	that	make	it	a	

valid	 method	 to	 investigate	 brain	 connectivity	 is	 described	 in	 Chapter	 3,	

followed	by	validations	studies	of	two	connectivity	techniques	in	sections	3.3	

and	3.4.		

	

2.3.1	Videocoding	and	minimum	number	of	trials	

Throughout	 the	 testing	 sessions,	 participants’	 behaviour	 was	 recorded	 for	

offline	 coding.	 Trials	 in	 which	 participants	 were	 not	 paying	 attention	 were	

excluded	from	analyses.	Additionally,	because	the	studies	in	the	present	thesis	

work	aimed	to	investigate	the	activation	of	brain	regions	notably	engaged	in	

social	 situations,	 trials	 in	 which	 the	 participants	 looked	 at	 the	 parent	 or	

anything	 social,	 or	 in	 which	 the	 experimenter	 or	 the	 parent	 talked	 were	

excluded.		

As	a	practice	employed	by	several	infants	fNIRS	studies	(S.	Lloyd-Fox	et	

al.,	2010),	only	participants	with	at	least	three	valid	trials	per	condition	were	

included	in	the	analyses.	As	the	hemodynamic	response	is	likely	to	be	highly	

variable	 in	 infancy	 (Issard	 &	 Gervain,	 2018),	 the	 averaged	 haemodynamic	

response	based	on	three	trials	made	the	estimation	more	accurate.	

	 As	 the	 second	 experiment	 of	 Chapter	 3	 and	 the	 study	 presented	 in	

Chapter	4	are	 resting-state	 studies,	 a	different	method	of	 videocoding	and	a	

specific	requirement	for	a	minimum	amount	of	valid	data	to	be	included	in	the	



Chapter	2	
	

	 108	

analysis	 is	considered	(more	details	are	described	 in	 the	method	sections	of	

these	studies).	

	

2.3.2	Pre-processing	and	motion	artefacts	detection	

The	pre-processing	was	performed	using	Homer2	(MGH-Martinos	Center	for	

Biomedical	Imaging,	Boston,	MA,	USA)	(Huppert	et	al.,	2009),	a	Matlab	based	

program	widely	used	for	the	analysis	of	fNIRS	data.	This	program	required	the	

conversion	 of	 the	 raw	 file	 from	 a	 .txt	 format	 to	 a	 .nirs	 format,	 which	 was	

performed	with	an	in-house	custom	script	written	by	my	colleague	Dr.	Anna	

Blasi.	The	general	pre-processing	pipeline	on	each	participant	was	composed	

of:	

- conversion	of	 the	data	 from	raw	 intensity	 to	optical	density,	using	 the	

normalized	 changes	 of	 light	 incident	 on	 a	 detector	 (function	

hmrIntensity2OD);	

- pruning	of	channels	with	a	low	intensity	level	or	a	low	signal	to	noise	ratio	

(<10-03	µmol)	(function	enPruneChannels);	

- corrected	 for	motion,	 either	 with	 wavelet	 or	 with	 the	 combination	 of	

spline	interpolation	(function	hmrMotionCorrectionSpline)	and	wavelet	

filtering	(function	hmrMotionCorrect_Wavelet)	(see	below	for	details);	

- checked	for	motion	artefacts	still	in	the	data	channel	by	channel	(defined	

by	 signal	 change	 greater	 than	 1	micromolar	 deviating	 from	 the	mean	

value	 of	 the	 optical	 density	 of	 each	 channel	 within	 2	 seconds)	 and	

consequent	 exclusion	 of	 the	 trials	 with	 motion	 (function	

hmrMotionArtifactByChannels);	

- filtered	with	bandpass	filter	to	remove	physiological	noise	(0.010-0.80)	

(function	hmrBandpassFilt);	
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- conversion	of	 the	data	 from	optical	 density	 to	 concentration	 (function	

hmrOD2Conc).	

During	 the	 pre-processing,	 I	 dedicated	 particular	 attention	 to	 the	

motion	artefacts	detection.	 In	 fact,	although	the	 fNIRS	technique	 is	relatively	

robust	 to	motion	 compared	 to	other	methods	 like	EEG,	movements	 can	 still	

have	a	considerable	effect	on	the	NIRS	signal,	especially	in	developmental	data	

(Brigadoi	et	al.,	2014).	A	general	advice	 for	 the	detection	of	artefacts	due	 to	

movement	 in	 the	 signal,	 is	 to	 pay	 attention	 to	 any	 change	 that	 is	 rapid	 and	

sudden,	as	the	haemodynamic	response	usually	is	characterized	by	slow	and	

smooth	 features.	 Several	 causes	 can	 be	 linked	 to	 motion,	 most	 commonly	

attributed	to	alteration	in	optical	coupling	between	the	fiber	and	the	scalp	(i.e.	

the	cap	shifted	on	the	participant’s	head	or	the	fiber	no	longer	properly	touches	

the	scalp).		

	 Chapter	5	describes	a	study	where	participants	sat	in	a	high-chair,	not	

on	the	parent’s	lap.	This	led	to	a	greater	amount	and	more	frequent	movements	

of	the	infants,	resulting	in	a	greater	amount	of	very	spikey	movement	artefacts.	

These	artefacts	are	usually	corrected	using	interpolation,	a	channel-by-channel	

approach	 proposed	 by	 Scholkmann	 (2010).	 This	method	works	 only	 on	 the	

motion	 artefacts	 detected	 (with	 the	 mentioned	 function	

hmrMotionArtifactByChannels),	leaving	the	rest	of	the	signal	unmodified.	The	

motion	artefact	is	modelled	via	a	cubic	spline	interpolation	and	then	subtracted	

from	the	original	signal	(Brigadoi	et	al.,	2014).	In	all	the	other	datasets	in	this	

PhD	 project	 motion	 artefacts	 were	 corrected	 using	 the	 wavelet	 filtering,	

proposed	by	Molavi	and	Dumont	(2012).	The	wavelet	transform	is	applied	to	

every	channel,	decomposing	each	time	series	by	the	duration	of	the	recording.	

The	wavelet	 filtering	 technique	assumes	 that	 the	haemodynamic	response	 is	
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slower	 and	 smoother	 than	 motion	 artefacts.	 Thus,	 for	 every	 level	 of	

decomposition,	 this	 technique	 estimates	 approximation	 coefficients	 of	 the	

signal	 assuming	 a	 normal	 distribution.	 In	 this	 Gaussian,	 the	 haemodynamic	

response	is	centred	(with	values	around	0),	while	motion	artefacts	characterize	

the	outliers	of	 the	distribution.	Therefore,	 the	coefficients	accounting	 for	the	

tails	of	the	distribution	are	removed	for	the	signal	(Brigadoi	et	al.,	2014).		

Figure	2.8	summarises	the	described	pre-processing	steps.	

	

Figure	2.8	Diagram	of	the	pre-processing	steps.	
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2.3.3	SPM-NIRS	toolbox	

After	 the	pre-processing,	data	were	analysed	using	a	combination	of	custom	

Matlab	scripts	and	the	SPM-NIRS	toolbox	(Ye	et	al.,	2009).	SPM,	which	stands	

for	 Statistical	 Parametric	 Mapping,	 is	 a	 tool	 widely	 used	 for	 fMRI	 analysis	

(Friston,	2007),	and	has	been	adapted	for	fNIRS	(Ye	et	al.,	2009).	SPM	takes	as	

input	the	time	series	(i.e.	the	fNIRS	signal	in	each	channel	over	the	time	of	the	

experiment	 –	 and	 models	 them	 within	 the	 General	 Linear	 Model	 (GLM)	

approach	(Friston	et	al.,	1995).		

The	GLM	applied	to	neuroimaging	data	analysis	is	a	valuable	tool,	as	it	

allows	the	researcher	to	perform	many	different	statistical	analyses	(e.g.	one	

sample	 t-tests,	 two	 sample	 t-tests,	 paired	 t-tests,	 correlations,	 analysis	 of	

variance	 -	 ANOVA)	 (Poldrack	 &	 Nichols,	 2011).	 The	 GLM	 estimates	 the	

likelihood	 that	 the	 haemodynamic	 response	 (or	 haemodynamic	 response	

function,	HRF)	 fits	 the	 function	provided	by	 the	model,	which	 is	a	 canonical	

Gaussian	shape	by	default	(Lindquist,	Meng	Loh,	Atlas,	&	Wager,	2009).	SPM	

offers	also	the	possibility	to	expand	the	canonical	HRF	for	two	parameters,	the	

temporal	derivative	(modelling	small	differences	in	latency)	and	the	dispersion	

derivative	 (modelling	 small	 differences	 in	duration).	 It	 is	worth	mentioning	

that	several	studies	showed	high	variability	in	peak	height,	time	to	peak	and	

width	of	the	HRF.	This	might	be	due	to	difference	in	age	of	the	population	of	

interest,	type	of	stimulation,	brain	areas	(D’Esposito,	Deouell,	&	Gazzaley,	2003;	

Handwerker,	 Ollinger,	 &	 D’Esposito,	 2004;	 Kruggel	 &	 Von	 Cramon,	 1999;	

Poldrack	&	Nichols,	2011).		

The	GLM	for	a	dependent	variable,	i.e.	the	brain	response,	is:		

y	=	G1b1	+	G2b2	+	...	Gkbk	+	e	
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where	 i	 =	 1,....,I	 indicates	 the	 observation,	 G	 is	 the	 design	 matrix	 (i.e.	 the	

experimental	 conditions,	 but	 it	 can	 also	 be	 covariates	 added	 to	 the	model),	

while	b	are	the	unknown	parameters	(i.e.	how	much	each	factor	contributes).	e	

are	 the	errors,	which	 the	GLM	assumes	 to	be	normally	distributed.	The	GLM	

relates	a	single	continuous	dependent	variable,	i.e.	the	brain	response,	to	one	

(or	more)	other	variables	(continuous	or	categorical	predictor,	covariates	of	

interest	and	no	interest).	In	the	model,	the	dependent	variable	is	described	by	

the	linear	combination	of	a	certain	number	of	regressors,	in	a	weighted	sum	up	

to	the	level	of	error.	If	the	regressors	accurately	describe	the	brain	response,	it	

is	more	likely	that	the	error	presents	a	normal	distribution.	(Monti,	2011)	

The	estimation	of	the	GLM	is	based	on	the	ordinary	least	square	(OSL)	

method,	which	minimizes	the	residuals	(the	distance	between	each	data	point	

and	the	predicted	line	by	the	model).	The	smaller	the	difference,	the	better	the	

model	fits	the	data.	The	outputs	are	beta	parameters,	representing	how	far	the	

real	data	are	from	the	predicted	shape	of	the	HRF,	therefore	the	estimate	of	the	

amount	of	 activation	 in	a	 certain	 condition	 (Poldrack	&	Nichols,	 2011).	The	

simplest	model	proposed	in	the	context	of	the	GLM	relies	on	the	simple	linear	

regression,	where	only	one	single	independent	variable	is	related	to	the	brain	

response,	written	as:	

	y	=	b0	+	G1b1	+	e	

More	 frequently,	 researchers	 build	 models	 based	 on	 multiple	 linear	

regression,	 considering	 the	 effect	 of	 multiple	 independent	 variables	 in	 the	

model,	written	as:		

y	=	b0	+	G1b1	+	G2b2	+	G3b3	+	G4b4	+	…	+	Gpbp	+	e	
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or	as	a	design	matrix	as:	

	

y1										x1,1					x1,2					x1,3															x1,p								bp											e1	

y2										x2,1					x2,2					x2,3															x2,p								bp											e2	

y3										x3,1					x3,2					x3,3																x3,p								bp											e3	

	 	 																		=	 	 	 																																							x																	+	 	

	

yn										xn,1					xn,2					xn,3																xn,p								bp											en	

	

The	GLM	in	SPM	is	represented	as	a	matrix	where	every	row	is	a	time	

point	in	the	observation	and	every	column	is	an	effect	in	the	model	(i.e.	testing	

conditions	 of	 the	 experimental	 design	 or	 covariate).	 The	 last	 column	 is	

composed	 of	 the	 error	 estimated	 in	 the	 model	 (Monti,	 2011).	 For	 each	

participant,	a	GLM	design	matrix	is	constructed,	obtaining	beta	parameters	for	

each	condition	modelled.	The	betas	are	then	used	to	calculate	a	contrast,	based	

on	 the	 condition	of	 interest	and	on	 the	 effect	hypothesised	 in	 the	 study	 (i.e.	

betas	 in	 condition	 2	 -	 betas	 in	 condition	 1).	 The	 calculated	 contrast	 is	 then	

submitted	to	statistical	tests	analyses.		

In	this	PhD	work,	the	only	exceptions	to	the	GLM	approach	to	analyse	

fNIRS	data	are	the	second	study	presented	in	Chapter	3	and	the	study	in	Chapter	

4.	 These	 two	 studies	measured	 spontaneous	 brain	 fluctuations	during	 quiet	

waking,	in	the	absence	of	any	cognitive,	sensory	or	social	stimulation	(Raichle,	

2015).		

One	of	the	unique	features	of	the	SPM	approach,	is	the	possibility	to	use	

the	GLM	design	matrix	as	a	foundation	for	connectivity	analyses,	such	as	the	

Dynamic	Causal	Modelling	and	the	Psychophysiological	Interaction,	used	in	this	
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PhD	work	as	well.	As	I	explained	in	the	introduction	of	this	thesis,	the	study	of	

the	 developing	 brain	 can	 benefit	 from	 the	 use	 of	 network	 analyses,	 which	

provide	a	deeper	understanding	of	and	a	more	realistic	approach	to	processes	

in	 the	brain.	The	next	 chapter	provides	 an	overview	of	 the	use	 of	 fNIRS	 for	

connectivity	 analyses,	 and	 it	 shows	 two	 studies	 in	 which	 two	 connectivity	

techniques	 that	are	widely	used	 in	 fMRI,	have	been	adapted	to	be	employed	

with	infant	fNIRS	data.	

	

2.3.3.1	Correction	for	multiple	comparisons		

The	more	statistical	inferences	are	made,	the	more	likely	significant	results	may	

be	 obtained	 by	 chance	 (Field,	 Miles,	 &	 Field,	 2013).	 Therefore,	 taking	 into	

account	that	the	several	comparisons	are	performed	when	considering	a	set	of	

statistical	tests	simultaneously	is	necessary	in	order	to	avoid	type	I	errors,	i.e.	

incorrect	 rejections	 of	 the	 null	 hypothesis	 (Simmons,	 Nelson,	 &	 Simonsohn,	

2011).	To	ensure	statistical	reliability,	throughout	this	thesis,	significant	results	

are	corrected	for	multiple	comparisons	using	the	False	Discovery	Rate	(FDR)	

method	(Benjamini	&	Hochberg,	1995).	The	FDR	approach	is	a	method	widely	

used	in	functional	neuroimaging	(Chumbley,	Worsley,	Flandin,	&	Friston,	2010;	

Genovese,	 Lazar,	 &	 Nichols,	 2002),	 and	 especially	 in	 multichannel	 NIRS	

analysis,	 defined	 as	 the	 expected	 proportion	 of	 false	 detections	 among	 the	

declared	 active	 channels	 (Singh	&	Dan,	 2006).	 Compared	with	 the	 FDR,	 the	

Bonferroni	 correction,	 which	 is	 the	 other	 method	 typically	 used	 in	 several	

neuroimaging	 studies,	 has	 been	 considered	 too	 conservative,	 reducing	 the	

power	of	 the	 statistical	 tests	and	 increasing	 the	 chance	of	 type	 II	 errors,	 i.e.	

incorrect	rejections	of	the	experimental	hypothesis	(Bennett,	Wolford,	&	Miller,	

2009;	Singh	&	Dan,	2006).	While	with	the	Bonferroni	approach	the	power	is	
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inversely	 proportional	 to	 the	 number	 of	 tests,	 therefore	 depending	 on	 the	

number	 of	 channels	 used	 to	 acquire	 data,	 the	 FDR	 approach	 estimates	 the	

proportion	of	false	rejections	among	all	the	declared	rejections,	which	should	

provide	a	more	robust	and	consistent	measure	of	the	type	I	error	(Singh	&	Dan,	

2006).	The	FDR	approach	has	been	previously	used	by	 several	 infant	 fNIRS	

studies	(for	some	examples	see	Blasi	et	al.,	2015;	Blasi,	Lloyd-Fox,	Johnson,	&	

Elwell,	2014;	Filippetti,	Lloyd-Fox,	Longo,	Farroni,	&	Johnson,	2015;	Lloyd-Fox,	

Papademetriou,	 et	 al.,	 2014;	May,	 Byers-Heinlein,	 Gervain,	 &	Werker,	 2011;	

Watanabe,	Homae,	&	Taga,	2010).	 	
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A	measure	for	the	complexity	of	the	brain:		

connectivity	analyses	on	infant	fNIRS	data
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3.1	 From	 functional	 segregation	 to	 functional	

integration	
Exploring	 the	 patterns	 of	 neural	 connectivity	 associated	 with	 complex	

psychological	 domains,	 such	 as	 self-awareness,	 can	 provide	 a	 richer	 picture	

than	 the	 investigation	 of	 activation	 of	 single	 brain	 areas.	 The	 phrenology	

formulated	by	Gall	in	the	19th	century	can	be	considered	the	first	attempt	that	

defined	 brain	 regions	 as	 biological	 substrates	 to	 mental	 and	 psychological	

function	(Gall	&	Spurzheim,	1835).	This	framework	was	later	rejected	for	its	

aim	to	identify	personality	traits	based	on	protrusion	on	individuals’	head,	but	

its	merit	was	 to	 acknowledge	 that	 different	parts	 of	 the	 brain	 contribute	 to	

mental	 processes.	 In	 line	 with	 this	 view,	 decades	 later,	 clinical	 studies	

demonstrated	that	a	specific	mental	ability	or	a	psychological	characteristic	is	

represented	by	a	particular	brain	region	(Brodmann	&	Garey,	2006;	Phillips,	

Zeki,	 &	 Barlow,	 1984;	 Simpson,	 2005).	 Consequently,	 the	 main	 aim	 of	

neuroscience	has	been	to	map	the	human	brain	and	define	the	functions	of	each	

specific	area	(Friston,	2011).	This	approach	has	been	extremely	informative	for	

our	fundamental	understanding	of	brain	function.	In	particular,	lesion	studies	

have	 contributed	 to	 the	 understanding	 of	 brain	 area	 specialisation	 by	

highlighting	 how	 an	 injured	 brain	 region	 leads	 to	 a	 lack	 of	 or	 impaired	

behaviours	(for	example	see	the	pioneering	works	by	Broca,	1861).	Ironically,	

it	was	 the	 cortical	 reorganisation	 that	 can	 sometimes	 be	 observed	 in	 lesion	

patients	 that	 led	 researchers	 to	 start	 thinking	 about	 the	 brain	 in	 terms	 of	

connectionism,	i.e.	representing	mental	functions	with	brain	networks,	rather	

than	localisationism	and	specialisation,	i.e.	representing	mental	functions	with	

the	 activation	 of	 brain	 regions	 (Absher	&	 Benson,	 1993;	 Friston,	 2011;	 Lee,	
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Harrison,	 &	 Mechelli,	 2003).	 In	 1991,	 Felleman	 and	 Van	 Essen	 created	 a	

connectional	map	of	the	macaque	monkey	brain	(Felleman	&	Van	Essen,	1991)	

and	Crick,	 the	 famous	molecular	biologist,	 commented	 that,	 “it	 is	 intolerable	

that	we	do	not	have	this	information	for	the	human	brain.	Without	it,	there	is	

little	hope	of	understanding	how	our	brains	work	except	in	the	crudest	way”	

(Crick	&	Jones,	1993,	p.	110).		

The	beginning	of	brain	connectivity	science	in	non-human	species,	the	

achievement	of	a	good	understanding	of	brain	regions	 in	 terms	of	 functional	

specialisation,	and	the	improvement	in	techniques	and	tools	for	data	analysis	

are	some	of	the	main	factors	that	set	the	scene	for	a	new	significant	stream	in	

neuroscience,	 i.e.	the	functional	integration	of	brain	regions	and	the	study	of	

networks.	The	growing	interest	in	brain	connectivity	has	opened	new	avenues	

of	research	 in	several	 fields	of	neuroscience,	such	 as	basic	cognitive	science,	

brain	 diseases	 and	 lesions,	 psychopathology,	 neuroanatomy,	 and	

neurodevelopment.	 It	 is	worth	mentioning	 that	 functional	 specialisation	 and	

functional	 integration	 should	 not	 be	 considered	 mutually	 exclusive	 when	

studying	the	human	brain.	 Instead,	 they	are	 two	 fundamental	principles	that	

combine	to	contribute	to	the	full	picture	of	brain	organisation.	The	concepts	of	

integration	and	networks	can	be	applied	to	several	levels	of	the	brain,	from	cells	

and	neurons	to	circuits	and	more	complex	systems.		

Recent	 neuroimaging	 research	 aims	 to	 define	 how	 brain	 areas	 are	

related	within	networks	 and	 has	 highlighted	 that	 it	 is	 necessary	 to	 think	 in	

terms	of	dynamic	interactions	between	large	populations	of	neurons	to	explain	

complicated	 cognitive	 processes	 and	 behaviours	 (Sporns,	 2015).	 Embracing	

the	concept	of	brain	networks	means	conceiving	neuronal	activity	as	a	whole,	

where	one	area	is	likely	to	affect	or	mediate	the	activity	of	another,	and	a	pure	
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independence	of	neuronal	events	is	barely	observed	(Friston,	1994).	Network	

analyses	are	more	likely	to	offer	a	realistic	idea	of	the	brain	by	describing	the	

integration	of	different	brain	regions	as	the	neural	underpinnings	supporting	

multifaceted	psychological	domains,	such	as	the	sense	of	self.		

The	next	section	provides	an	overview	of	the	different	types	of	brain	

connectivity	 that	 is	 necessary	 to	 correctly	 interpret	 the	 results	 in	 this	 PhD	

thesis.	The	following	section	describes	why	fNIRS,	which	is	the	neuroimaging	

technique	 used	 in	 this	 thesis,	 is	 a	 reliable	 tool	 for	 studying	 functional	

connectivity,	 as	 well	 as	 the	 validation	 of	 two	 connectivity	 techniques	 that	

allowed	me	to	perform	network	analyses	on	infant	fNIRS	data.	

	

3.1.2	Different	types	of	brain	connectivity	

The	 term	 ‘brain	 connectivity’	 refers	 to	 patterns	 of	 both	 anatomical	 and	

functional	 connections	 between	 brain	 regions	 (Sporns,	 2013).	 Structural	

connectivity	describes	the	anatomical	connections	between	brain	regions,	e.g.	

synapses	 and	 axonal	 projections.	 These	 are	 edges	 that	 link	 together	 nodes,	

which	are	cortical	and	subcortical	structures	in	the	brain	(Bullmore	&	Sporns,	

2009;	 Laughlin	&	Sejnowski,	 2003;	 Sporns,	 2013).	 Structural	 connectivity	 is	

commonly	considered	to	be	state-independent,	i.e.	it	cannot	be	manipulated	by	

experimental	conditions	or	stimulations.	However,	structural	connections	are	

relatively	 plastic,	 and	 go	 through	 significant	 changes	 over	 the	 course	 of		

development	 (Barnea-Goraly	 et	 al.,	 2005;	 Gunning-Dixon	 &	 Raz,	 2000;	

Guttmann	et	al.,	1998)	and	as	a	result	of	learning	processes	(Schlegel,	Rudelson,	

&	Tse,	2012;	Zatorre,	Fields,	&	Johansen-Berg,	2012).	For	example,	it	has	been	

shown	 that	 children	 with	 Autism	 Spectrum	 Disorders	 (ASD)	 showed	

disruptions	 in	 white	 matter	 tracts	 (Barnea-Goraly	 et	 al.,	 2004).	 Markers	 of	



Chapter	3	

	 120	

impaired	white	matter	projections	have	been	found	even	in	6	month-old	infants	

at	 high-risk	 of	ASD	 (Wolff	 et	 al.,	 2012).	 Structural	 connectivity	 analyses	 are	

commonly	performed	using	diffusion	tensor	imaging	(DTI),	which	enables	to	

map	the	diffusion	process	of	water	molecules	in	biological	tissues	in	vivo	and	

non-invasively	(Le	Bihan	et	al.,	2001;	Merboldt,	Hanicke,	&	Frahm,	1985;	D.	G.	

Taylor	&	Bushell,	1985).	As	the	water	tends	to	diffuse	along	a	preferential	axis,	

the	 axonal	 tracts	 follow	 the	 orientation	 of	 the	 water	 molecules,	 enabling	

researchers	to	infer	the	integrity	and	direction	of	the	tracts	(Mori,	Oishi,	&	Faria,	

2009;	Mori,	Wakana,	Nagae-Poetscher,	&	Van	Zijl,	2005).	Since	the	introduction	

of	 this	 technique	 in	 1994,	 the	 research	 aiming	 to	 map	 the	 white	 matter	

projections	 in	 healthy	 adult	 brains	 and	 the	 brains	 of	 people	with	 abnormal	

conditions	has	advanced	(Catani	&	de	Schotten,	2012).	The	relative	stability	of	

the	tracts’	structures	makes	the	acquisition	of	this	type	of	data	feasible	with	no	

constraints.	In	fact,	DTI	analyses	are	performed	on	T1-weighted	MRI	images	of	

the	 participant’s	 brain,	 which	 can	 be	 acquired	 while	 they	 are	 asleep,	 thus	

reducing	 any	 movement	 that	 can	 affect	 the	 quality	 of	 the	 data	 (Assaf	 &	

Pasternak,	2008;	Hagmann	et	al.,	2006).	While	studying	structural	connectivity	

is	not	the	focus	of	this	PhD	thesis,	its	strong	link	with	the	functional	connections	

(which	is	described	afterwards)	requires	an	overview	on	it.	

	 Functional	 connectivity	 is	 defined	 as	 the	 statistical	 association	 or	

dependency	between	 two	or	more	 anatomically	distinct	 time	 series	 of	 brain	

activity	 (Friston,	 1994).	 Functional	 connectivity	 is	 usually	 explored	 through	

pairwise	interactions,	using	correlations	or	the	corresponding	measure	in	the	

frequency	domain	 (i.e.	 coherence),	which	 indicate	which	 time	 series	display	

similar	 fluctuation	 or	 activation	 patterns	 to	 another,	 even	 if	 they	 are	 not	

spatially	 close	 (McIntosh,	 2010).	The	 coupling	between	 two	brain	 regions	 is	
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described	in	terms	of	‘statistical	dependencies’,	abstaining	from	any	notion	of	

causality	 or	 directionality	 (Friston,	 2011).	 Functional	 connectivity	 can	 be	

estimated	 in	 the	 absence	 of	 any	 cognitive	 and	 social	 stimulation,	 so-called	

resting-state	 (Biswal,	 2012).	 Resting-state	 functional	 connectivity	 estimates	

correlations	 among	 spontaneous	 fluctuations,	 therefore	 it	 is	 considered	 the	

intrinsic	 brain	 activity	 during	 quiet	 wakefulness	 (Biswal,	 Zerrin	 Yetkin,	

Haughton,	&	Hyde,	1995;	Damoiseaux	et	al.,	2006;	van	den	Heuvel	&	Pol,	2010).	

An	 estimation	 of	 functional	 connectivity	 during	 resting-state	 is	 the	 focus	 of	

section	3.4	and	Chapter	4.		

Functional	 connectivity	 can	 also	 be	 estimated	 during	 a	 task.	 As	

alternative	to	correlational	approaches,	Psychophysiological	Interaction	(PPI)	

is	 an	 advanced	 functional	 connectivity	 method	 that	 investigates	 how	 the	

relationship	 between	 areas	 changes	 during	 the	 task	 (Friston	 et	 al.,	 1997).	

Developed	in	the	context	of	SPM	for	fMRI	data,	during	this	PhD	project,	I	have	

adapted	 this	 method	 for	 infant	 fNIRS	 data	 with	 the	 support	 of	 one	 of	 my	

supervisors,	 Professor	 Antonia	 Hamilton.	 While	 classical	 functional	

connectivity	 methods	 only	 perform	 correlations	 among	 time	 series,	 PPI	

explores	how	connections	between	brain	regions	are	modulated	by	 the	 task.	

More	specifically,	PPI	analysis	allows	the	identification	of	brain	regions	whose	

activity	depends	on	 an	 interaction	between	psychological	 context	 (the	 task)	

and	 physiological	 state	 (brain	 activity	 time	 courses)	 of	 the	 seed	 region	

(O’Reilly,	Woolrich,	Behrens,	Smith,	&	Johansen-Berg,	2012).	PPI	cannot	infer	

any	directionality	or	causality	among	the	connections	(Goldenberg	&	Galván,	

2015).	In	this	thesis,	functional	connectivity	was	estimated	using	PPI	in	Chapter	

5	and	Chapter	6.		
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Further	 investigation	 of	 the	 relationship	 between	 brain	 regions	 is	

provided	 by	 effective	 connectivity,	 which	 infers	 the	 “influence	 that	 one	

neuronal	 system	 exerts	 over	 another”	 and	 the	 possible	 causal	 relationship	

between	 hidden	 neuronal	 states	 (Friston,	 1994,	 2011).	 Researchers	 tend	 to	

agree	 that	 taking	 effective	 connectivity	 into	 consideration	 leads	 to	 a	 more	

advanced	 description	 of	 the	 relationships	 between	 brain	 regions	 and	 it	

provides	more	specific	information	than	the	one	obtained	by	the	correlational	

approach	 (Friston,	 2011;	 Horwitz,	 2003;	 Lee	 et	 al.,	 2003).	 One	 of	 the	 few	

limitations	of	the	effective	connectivity	approach	compared	with	the	functional	

connectivity	one	is	that	effective	connectivity	methods	handle	fewer	nodes	than	

the	functional	connectivity	ones	(Smith,	2012).	Therefore	researchers	are	not	

advised	to	use	effective	connectivity	analysis	at	an	exploratory	stage,	but	only	

when	 they	 have	 clear	 hypotheses	 of	 a	 limited	 number	 of	 brain	 regions	

integrated	 in	 a	 network	 (Friston,	 Harrison,	 &	 Penny,	 2003;	 Garrido,	 Kilner,	

Kiebel,	 Stephan,	 &	 Friston,	 2007).	 A	 validation	 study	 of	 the	 an	 effective	

connectivity	technique	on	infant	fNIRS	data	is	the	focus	of	section	3.3	

Figure	 3.1	 shows	 a	 graphical	 representation	 of	 the	 three	 types	 of	

connectivity	mentioned	in	this	paragraph.	
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Figure	 3.1	 Graphical	 representation	 of	 the	 different	 types	 of	 brain	 connectivity.	
Structural	connectivity	is	represented	in	red,	functional	connectivity	in	yellow,	effective	
connectivity	in	green.	

	

After	reading	this	overview	of	the	different	types	of	brain	connectivity,	

one	may	wonder	about	the	relationship	between	structural	and	functional	(and	

effective)	connectivity.	The	first	study	to	investigate	the	relationship	between	

structural	 and	 functional	 connections	 was	 performed	 by	 Koch,	 Norris	 and	

Hund-Georgiadis	 in	 2002.	 It	 was	 found	 that	 the	 areas	 that	 showed	 strong	

structural	 connections	 also	 had	 high	 functional	 connections.	 Interestingly,	

strong	functional	connections	were	also	found	in	regions	not	necessarily	linked	

by	strong	white	matter	 tracts	(Koch,	Norris,	&	Hund-Georgiadis,	2002).	This	

suggests	that	two	brain	areas	can	be	activated	together	even	in	the	absence	of	

a	 direct	 anatomical	 link	 or	 even	 if	 they	 are	 physically	 connected	 by	 a	 long,	

indirect	path	(Honey	et	al.,	2009;	Sporns,	2015).	This	means	that	we	can	infer	

functional	connectivity	from	structural	connectivity,	but	not	vice	versa	(Honey	

et	al.,	2009;	Sporns,	2015).	Knowledge	of	the	structural-functional	connectivity	

relationship	has	been	increased	by	several	other	studies	that	have	attempted	to	

map	the	human	connectome	in	typical	adult	brains	(for	some	examples	see	Fjell	

et	 al.,	 2016;	 Fukushima	et	al.,	 2017;	Greicius,	 Supekar,	Menon,	&	Dougherty,	

A
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tracts	between	brain	regions
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2009;	Meier	et	al.,	2016;	Park	&	Friston,	2013;	Stam	et	al.,	2016),	in	developing	

brains	(for	some	examples	see	Betzel	et	al.,	2014;	Marusak	et	al.,	2017;	Uddin,	

Supekar,	Ryali,	&	Menon,	2011),	and	in	psychopathological	or	diseased	brains	

(for	 some	 examples	 see	 Damoiseaux	 &	 Greicius,	 2009;	 Jalbrzikowski	 et	 al.,	

2017;	Ray	et	al.,	2014).		

In	 this	 thesis,	 the	 focus	 was	 on	 estimating	 functional	 and	 effective	

connectivity	in	the	developing	brain.	As	I	was	interested	in	exploring	the	neural	

underpinnings	 of	 self-awareness,	 my	 interest	 was	 how	 brain	 regions	 which	

have	been	typically	associated	with	self-processing,	such	as	the	mPFC	and	the	

TPJ,	are	activated	together.	For	this	purpose	fNIRS	was	a	suitable	method,	and	

the	next	section	provides	more	details	about	the	methodological	advantages	of	

fNIRS	when	exploring	brain	connectivity.	

	

3.2	 fNIRS	 as	 a	 suitable	 method	 to	 explore	 brain	

connectivity		

Tracking	functional	connectivity	of	the	developing	brain	is	an	area	of	increasing	

research	 interest,	 and	 fNIRS	 is	 a	 valid	method	 for	 studying	 the	 infant	brain.	

However,	several	other	methods	have	also	been	used	to	explore	connectivity	in	

infancy	and	childhood.	For	example,	some	researchers	have	used	EEG	in	awake	

infants	(for	some	examples	see	Grieve	et	al.,	2008;	Meijer	et	al.,	2016;	Orekhova	

et	al.,	2014;	Righi,	Tierney,	Tager-Flusberg,	&	Nelson,	2014;	Tóth	et	al.,	2017),	

while	most	of	the	fMRI	studies	focused	on	resting-state	connectivity	in	sleeping	

infants	(Damaraju,	Caprihan,	&	Lowe,	2014;	Emberson,	Richards,	&	Aslin,	2015;	

Fransson,	Åden,	Blennow,	&	Lagercrantz,	2011;	Gao,	Lin,	Grewen,	&	Gilmore,	

2016;	Kwon	et	al.,	2016;	Lin	et	al.,	2008;	Lu	et	al.,	2010;	Marrus	et	al.,	2017).	
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These	studies	have	started	to	shed	light	on	how	connectivity	develops	over	the	

first	years	of	life,	although	there	still	is	a	lot	unknown	about	how	different	brain	

areas	 are	 functionally	 linked	 to	 each	 other,	 considering	 that	 the	 brain	 is	

constantly	 changing,	 maturing	 over	 the	 first	 years	 of	 life	 (Johnson,	 2001;	

Knickmeyer	et	al.,	2008).	

Using	 fNIRS	 to	 investigate	 functional	 connectivity	 can	 provide	 some	

advantages	that	have	the	potential	to	further	advance	our	understanding	of	the	

development	 of	 functional	 networks	 in	 the	 brain.	 Firstly,	 fMRI	 studies	 on	

sleeping	participants	should	consider	that	connectivity	measured	during	sleep	

does	 not	 display	 the	 same	 patterns	 of	 co-activation	 as	 connectivity	 during	

wakefulness.	Additionally,	 sleep	 stages	have	been	shown	 to	affect	 functional	

networks	 (Tagliazucchi	 &	 Laufs,	 2014).	 Secondly,	 fNIRS	 is	 quite	 robust	 to	

motion	compared	to	fMRI	(Friston,	Williams,	Howard,	Frackowiak,	&	Turner,	

1996).	 Head	motion	 is	 a	 big	 limitation	 for	 fMRI-based	 connectivity	 studies,	

because	even	very	small	movements	(smaller	than	1	mm),	that	typically	occur	

during	 natural	 sleep,	 will	 affect	 functional	 connectivity	 estimations.	 In	

particular,	 head	 movements	 decrease	 long-range	 connectivity	 and	 increase	

short-range	 connectivity	 (Deen	 &	 Pelphrey,	 2012;	 Power,	 Barnes,	 Snyder,	

Schlaggar,	&	Petersen,	2012;	van	Dijk,	Sabuncu,	&	Buckner,	2012).	Given	this,	it	

is	 obvious	 that	 acquiring	 reliable	 connectivity	 data	 from	 awake	 infants	 and	

toddlers	 in	 the	MRI	 scanner	 is	 exceptionally	difficult.	 Thirdly,	 as	mentioned	

before,	 fNIRS	 has	 a	 higher	 temporal	 resolution	 compared	 to	 fMRI,	 which	

reaches	only	1	hertz,	allowing	for	rapid	data	acquisition	up	to	100	hertz7	(Kim,	

Richter,	 &	 Uǧurbil,	 1997;	 Huettel;	 Song;	 Gregory	 McCarthy	 et	 al.,	 2004;	

																																																													
7	The	sampling	rate	of	acquisition	of	the	fNIRS	studies	presented	in	this	PhD	thesis	is	10	
Hz,	but	this	is	still	higher	than	the	one	provided	by	fMRI.	
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Weishaupt,	Kochli,	Marincek,	&	Kim,	2007).	This	enables	researchers	to	obtain	

more	time-accurate	recordings	of	the	hemodynamic	fluctuations	of	the	brain,	

therefore	 contributing	 with	 higher	 resolution	 information	 to	 studies	 using	

connectivity	analyses,	and	those	examining	the	correlations	between	the	time-

series	 and	 relations	 between	 brain	 areas	 (Lee,	 Zahneisen,	 Hugger,	 LeVan,	 &	

Hennig,	2013).	

Connectivity	methods	for	fNIRS	are	still	underdeveloped	compared	to	

those	available	for	fMRI.	During	this	PhD	project,	I	focused	on	validating	some	

connectivity	techniques	-	previously	developed	only	for	fMRI	or	for	adult	fNIRS	

data	 -	 for	 the	 use	 on	 infant	 fNIRS	 data.	 The	 aim	was	 to	 enhance	 the	 fNIRS	

method	for	connectivity	analyses	on	infant	data,	in	order	to	open	new	avenues	

of	studies	for	researchers	interested	in	describing	the	developing	brain	with	a	

focus	 on	 network	 analyses.	 Moreover,	 this	 could	 help	 to	 elucidate	 neural	

correlates	 of	 self-awareness	 in	 infancy,	 by	 providing	 a	 richer	 picture	 than	

simple	analyses	on	brain	activation.	

The	 next	 section	 presents	 a	 validation	 study	 of	 Dynamic	 Causal	

Modelling	(DCM)	on	infant	fNIRS	data	(section	3.3).	DCM	is	considered	by	many	

the	most	accurate	technique	that	can	estimate	directionality	of	the	connections,	

and	 how	 experimental	 conditions	 can	 affect	 them	 (Friston	 et	 al.,	 2003).	 By	

developing	 data	 analysis	 pipelines	 and	 guidance	 for	 their	 application,	 I	 am	

confident	 that	this	study	will	be	a	good	reference	 for	a	new	 line	of	research.	

Section	 3.4	 presents	 a	 longitudinal	 investigation	 of	 the	 developmental	

trajectory	of	functional	connectivity	acquired	in	awake	infants	at	rest.	Intrinsic	

functional	connectivity	is	thought	to	gradually	increase	during	the	first	years	of	

the	development,	but	knowledge	of	 this	relies	on	 fMRI	studies	with	sleeping	

participants.	 Taken	 together,	 these	 two	 studies	 provide	 a	 validation	 of	 two	
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techniques	to	explore	brain	connectivity	in	the	developing	brain,	enriching	the	

understanding	of	how	neural	networks	changes	over	the	first	years	of	life.	
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3.3	Dynamic	Causal	Modelling	on	infant	fNIRS	data:	a	

validation	study	on	a	simultaneously	recorded	fNIRS-

fMRI	dataset	
	
Section	3.3	is	based	on	the	following	article:	

Bulgarelli,	C.,	Blasi,	A.,	Arridge,	S.R.,	Powell,	S.,	de	Klerk,	C.	C.	J.	M.,	Southgate,	V.,	

Brigadoi,	S.,	Penny,	W.,	Tak,	S.,	Hamilton,	A.	(2018).	Dynamic	causal	modelling	

on	infant	fNIRS	data:	A	validation	study	on	a	simultaneously	recorded	fNIRS-

fMRI	dataset.	NeuroImage.		

	

3.3.1	Abstract	

DCM	is	an	advanced	connectivity	technique	developed	for	fMRI	data,	that	aims	

to	 estimate	 the	 coupling	 between	 brain	 regions	 and	 how	 this	 might	 be	

modulated	 by	 changes	 in	 experimental	 conditions.	 DCM	 has	 recently	 been	

applied	 to	adult	 fNIRS,	but	has	never	been	applied	 to	 infant	 fNIRS	data.	The	

present	study	provides	a	proof-of-principle	for	the	application	of	this	method	

to	infant	fNIRS	data	and	a	demonstration	of	the	robustness	of	this	method	using	

a	simultaneously	recorded	fMRI-fNIRS	single	case	study,	thereby	allowing	the	

use	 of	 this	 technique	 in	 future	 infant	 studies.	 fMRI	 and	 fNIRS	 were	

simultaneously	 recorded	 from	 a	 6-month-old	 sleeping	 infant,	 who	 was	

presented	with	auditory	stimuli	 in	a	block	design.	Both	 fMRI	and	 fNIRS	data	

were	 pre-processed	 using	 SPM,	 and	 analysed	 using	 a	 general	 linear	 model	

approach.	The	main	challenges	that	adapting	DCM	for	fNIRS	infant	data	posed	

included:	(i)	the	import	of	the	structural	image	of	the	participant	for	spatial	pre-

processing,	(ii)	the	spatial	registration	of	the	optodes	on	the	structural	image	

of	 the	 infant,	 (iii)	 calculation	 of	 an	 accurate	 3-layer	 segmentation	 of	 the	
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structural	 image,	 (iv)	 creation	 of	 a	 high-density	 mesh	 as	 well	 as	 (v)	 the	

estimation	of	the	NIRS	optical	sensitivity	functions.	To	assess	our	results,	values	

obtained	for	variational	Free	Energy	(F),	Bayesian	Model	Selection	(BMS)	and	

Bayesian	Model	 Average	 (BMA)	with	 the	 same	 set	 of	 possible	models	were	

compared	 between	 the	 fMRI	 and	 fNIRS	 datasets.	 High	 correspondence	 in	 F,	

BMS,	and	BMA	between	fMRI	and	fNIRS	data	was	found,	therefore	showing	for	

the	 first	 time	high	reliability	of	DCM	applied	 to	 infant	 fNIRS	data.	This	work	

opens	new	avenues	for	future	research	on	effective	connectivity	in	infancy	by	

contributing	a	data	analysis	pipeline	and	guidance	for	applying	DCM	to	infant	

fNIRS	data.	
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3.3.2	Introduction		

DCM	is	an	advanced	connectivity	technique	developed	for	fMRI	data,	that	aims	

to	 not	 only	 evaluates	 the	 couplings	 between	 brain	 regions,	 but	 also	 the	

directionality	of	the	connections	and	how	these	are	influenced	by	changes	in	

the	experimental	context	(Friston,	2011).		

The	 alternative	 method	 to	 explore	 effective	 connectivity	 is	 Granger	

Causality	(GC),	which	has	been	developed	in	the	context	of	economic	science	

and	 then	 applied	 to	 neuroscience	 (Granger,	 1969;	 Seth,	 Barrett,	 &	 Barnett,	

2015).	This	method	uses	linear	regression	modelling	of	stochastic	processes	to	

infer	causality	(Granger,	1969;	Seth	et	al.,	2015).	However,	GC	is	limited	as	it	

bases	the	inference	of	causality	only	on	temporal	precedence	of	one	time	series	

over	 another,	 inferring	 that	 earlier	 responses	 in	 a	 region	 predicts	 later	

responses	in	another	one.	This	might	reflect	some	imprecision	in	the	estimation	

of	causality	if	we	consider	data	with	low	sampling	rate	(order	of	seconds)	and	

at	 the	convolution	with	 the	HRF	process,	which	usually	requires	 long	delays	

between	peaks.	Moreover,	GC	hardly	takes	into	account	inter-region	variability	

in	 the	brain	and	 it	cannot	 inform	us	about	the	nature	of	 the	connections,	 i.e.	

whether	they	are	excitatory	or	inhibitory	(Anzellotti,	Kliemann,	Jacoby,	&	Saxe,	

2017;	Handwerker,	Gonzalez-Castillo,	D’Esposito,	&	Bandettini,	2012).	On	the	

contrary,	the	DCM	approach	proposes	a	more	realistic	and	precise	models	of	

human	 brain	 networks,	 supporting	 the	 nonlinear	 and	 dynamic	 nature	 of	

interaction	between	neuronal	populations.	DCM	provides	a	generative	model	

of	neuronal	and	biophysical	states	underlying	specific	brain	networks,	building	

up	 a	model	 of	 the	 neural	 patterns	 in	 different	 brain	 regions	 and	 how	 they	

interact	with	each	other.	The	novelty	and	the	strength	of	this	technique	in	the	

estimation	 of	 effective	 connectivity	 relies	 on	 the	 exploration	 of	 how	
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connections	can	be	perturbed	by	experimental	context,	which	goes	beyond	the	

evaluation	of	the	couplings	between	brain	regions	(Friston,	2011).	This	makes	

this	 advanced	 method	 the	 first	 technique	 that	 can	 estimate	 changes	 in	

connectivity	not	only	 from	endogenous	noise,	but	also	 from	external	factors.	

Additionally,	two	different	options	in	which	experimental	conditions	can	enter	

the	 model	 are	 considered	 by	 the	 DCM	 approach;	 either	 through	 direct	

influences	on	specific	anatomical	brain	areas,	or	through	a	modulation	of	the	

coupling	among	brain	areas,	so	on	the	functional	connections	between	regions	

(Friston,	 Harrison,	 &	 Penny,	 2003).	 Typically	 researchers	 build	 a	 family	 of	

models	with	slightly	different	connections	or	experimental	contexts.	Bayesian	

statistic	is	then	used	to	determine	which	model	gives	the	closest	description	of	

the	data	(Bayesian	Model	Selection,	inference	on	model	space)	and	to	estimate	

the	 strength	 and	 the	 nature	 of	 the	 connections,	 excitatory	 or	 inhibitory	

(Bayesian	 Model	 Average	 inference	 on	 parameter	 space)	 (Penny,	 Stephan,	

Mechelli,	&	Friston,	2004).	From	the	comparison	detailed	in	the	last	paragraph	

with	other	connectivity	techniques	often	used	in	neuroimaging	research,	 it	is	

understandable	why	DCM	is	so	ground-breaking	and	innovative	(Friston,	2011;	

Friston,	Moran,	&	Seth,	2013;	Stephan	et	al.,	2010)	

DCM	has	 been	 developed	 and	widely	 applied	 in	 the	 context	 of	 fMRI	

(Friston,	Li,	Daunizeau,	&	Stephan,	2011;	Schuyler,	Ollinger,	Oakes,	Johnstone,	

&	Davidson,	2010),	and	it	has	been	adapted	for	use	on	adult	fNIRS	data	(Tak,	

Kempny,	 Friston,	 Leff,	&	Penny,	 2015).	The	 aim	of	 the	 current	 study	was	 to	

determine	if	DCM	can	be	used	on	infant	data	as	well.	In	order	to	validate	the	use	

of	DCM	on	infant	data,	fMRI	and	fNIRS	were	simultaneously	recorded	from	a	6-

month-old	sleeping	infant,	who	was	presented	with	auditory	stimuli	in	a	block	

design.	MRI	scans	of	the	participant	structural	images	were	acquired	as	well	to	
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allow	for	the	coregistration	of	the	fMRI	and	fNIRS	data.	The	application	of	DCM	

on	infant	fNIRS	data	required	several	technical	challenges	to	be	solved.	Firstly,	

the	participant	structural	image	had	to	be	imported	in	the	SPM-NIRS	toolbox	in	

order	to	get	a	precise	spatial	registration	of	the	fNIRS	optodes	on	the	infant’s	

brain.	In	order	to	correctly	estimate	the	light	path	throughout	the	brain	layers,	

the	 NIRS	 optical	 sensitivity	 functions	was	 then	 evaluated	 on	 a	 high-density	

mesh	based	on	the	segmented	structural	image	of	the	participant.	Finally,	the	

specification	of	DCM	models	had	to	be	adapted	for	infant	brain	features.		

This	 study	 aims	 to	 describe	 the	 solutions	 provided	 to	 the	 problems	

encountered	 when	 applying	 DCM	 to	 infant	 data,	 and	 therefore	 test	 if	 this	

analysis	tool,	initially	developed	for	adult	fNIRS	only,	can	also	be	applied	in	the	

developmental	 context.	 The	 simultaneous	 fMRI-fNIRS	 recording	 allows	 the	

validation	of	this	advanced	connectivity	technique,	favouring	its	application	to	

other	fNIRS	datasets,	obviating	the	need	for	MRI.	I	hope	that	this	project	will	

provide	 a	 step	 toward	 better	 studies	 of	 functional	 connectivity	 with	 fNIRS,	

opening	doors	to	new	lines	of	research.		

	

3.3.2	Material	and	Methods		

Figure	3.2	displays	the	outline	of	the	analysis	conducted	in	this	study	for	fNIRS,	

MRI	and	fMRI.	
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Figure	3.2	Outline	of	the	analyses	conducted	in	this	study	for	fNIRS,	MRI	and	fMRI.	
	

3.3.2.1	Data	acquisition	

fMRI	and	 fNIRS	data	were	simultaneously	acquired	 from	a	single	participant	

(183	days-old)	during	natural	sleep.	The	infant	listened	to	vocal	(e.g.	coughing)	

and	environmental	(non-vocal)	sounds	(e.g.	running	water)	interleaved	with	

silence	in	a	protocol	previously	tested	with	fNIRS	and	fMRI	separately	(Blasi	et	

al.,	2011,	2015;	Lloyd-Fox,	Blasi,	Mercure,	Elwell,	&	Johnson,	2012).	The	stimuli	

were	organized	in	a	block	design,	with	a	presentation	time	of	9	seconds	and	a	

rest	period	of	at	least	13	seconds	between	conditions.	The	recording	session	
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lasted	11.5	minute,	and	we	acquired	24	trials	in	total,	12	for	the	voices	condition	

(V)	and	12	for	the	non-voices	condition	(NV).	

	

3.3.2.1.1	fMRI	

MRI	data	were	acquired	using	a	GE	1.5	Tesla	Twinspeed	MRI	scanner	(General	

Electric,	Milwaukee,	WI,	USA).	320	T2*	weighted	gradient	echo	planar	multi-

slice	datasets	depicting	BOLD	(Blood	Oxygenation	Level	Dependent)	contrast	

were	acquired	 in	each	of	24	non-contiguous	near-axial	planes	(4.0	mm	thick	

with	1.0	mm	spacing,	3.5	x	3.5mm	in-plane	resolution)	parallel	to	the	Anterior	

Commissure-Posterior	Commissure	line	(TE	57	ms,	TR	3000	ms,	flip	angle	90°,	

16:04	minutes).	At	the	same	session,	a	T2	weighted	fast	spin	echo	(FSE)	dataset	

was	 acquired	 (256x168	 rectangular	matrix,	 2mm	slice	 thickness,	 0mm	 slice	

gap,	 field	of	view=18cm,	TR=4500,	TE=113ms,	echo	 train	length=17).	Data	

quality	 assurance	was	 carried	 out	 to	 ensure	 high	 signal	 to	 ghost	 ratio,	 high	

signal	to	noise	ratio	and	excellent	temporal	stability	using	an	automated	quality	

control	 procedure.	 (Simmons,	Moore,	 &	Williams,	 1999).	 The	 body	 coil	was	

used	 for	 RF	 transmission	 and	 an	 8-channel	 head	 coil	 for	 RF	 reception	 (	 a	

Simmons	et	al.,	1999).	The	whole	scanning	procedure	was	stopped	immediately	

if	 the	 infant	 awoke	 and/or	 expressed	 discomfort.	 An	 experimenter	 and	 the	

parent	stood	in	the	scanner	room	to	observe	the	infant’s	behaviour	at	all	times.		

	

3.3.2.1.2	fNIRS	

The	 fNIRS	 array	 (UCL	 Optical	 Imaging	 System	 (Everdell	 et	 al.,	 2005))	 was	

placed	 over	 the	 right	 temporal	 lobe,	 and	 included	 9	 source-detector	 pairs	

(channels),	defined	by	4	sources	and	4	detectors,	with	a	2	cm	source-detector	

separation.	The	sources	in	the	NIRS	system	provided	light	at	770	nm	and	850	
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nm,	 and	 the	 sampling	 rate	 of	 acquisition	 was	 10	 Hz.	 MRI	 fiducial	 markers	

(vitamin	E	caplets)	were	attached	to	the	inter-optode	spaces	of	the	NIRS	array	

to	guide	the	co-registration	of	the	NIRS	data	onto	the	MRI	image.		Figure	3.3-A	

shows	a	design	of	the	array.		

Brain	activations	and	connectivity	analyses	were	restricted	to	the	right	

hemisphere,	 because	 the	 fNIRS	 array	was	 placed	over	 the	 right	 hemisphere	

only,	in	order	to	optimise	the	number	of	sources	and	detectors	available	from	

the	system,	the	difficulty	of	fitting	the	NIRS	headgear	within	the	restricted	space	

in	the	MRI	coil,	and	also	considering	the	wide	literature	that	suggests	the	main	

role	 of	 the	 right	 hemisphere	 in	 social	 auditory	 processing	 (Belin,	 Zatorre,	

Lafaille,	Ahad,	&	Pike,	2000;	Blasi	et	al.,	2011;	Grossmann,	Oberecker,	Koch,	&	

Friederici,	2010;	Lloyd-Fox	et	al.,	2012).	

	

3.3.2.2	Data	pre-processing		

3.3.2.2.1	fMRI	

All	fMRI	images	were	analysed	using	Statistical	Parametric	Mapping	software	

(SPM12)	(Friston	&	Ashburner,	1994).	Scans	were	corrected	 for	slice	 timing	

and	 realigned	 for	head	movements.	 Images	were	 then	normalized	 to	 the	T2	

image	 of	 the	 participant,	 and	 smoothed	 using	 a	 7-mm	 full-width	 at	 half-

maximum	isotropic	Gaussian	kernel.		

	

3.3.2.2.2	fNIRS	

The	 fNIRS	data	were	 analysed	using	 the	 SPM-fNIRS	 toolbox,	 a	 SPM12	based	

software	for	statistical	analysis	of	fNIRS	signal	(Tak,	Uga,	Flandin,	Dan,	&	Penny,	

2016;	Ye,	Tak,	Jang,	Jung,	&	Jang,	2009).	The	raw	intensity	data	were	converted	

to	haemoglobin	 changes	using	 the	modified	Beer-Lambert	Law	 (DPF	=	5.13	
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(Duncan	 et	 al.,	 1995)).	 The	 spatial	 pre-processing	 registering	 the	 fNIRS	

channels	over	the	native	space	of	the	participant	was	performed	(see	specific	

paragraph	 below).	 The	 temporal	 pre-processing	 included	 the	 removal	 of	

physiological	noise	(5th	order	Butterworth	high-pass	filter:	0.008	Hz;	band-stop	

filter:	0.06-0.16	–	0.8-1.8	Hz),	and	the	reduction	of	motion	artefacts	with	spline	

interpolation.	Artefacts	were	detected	as	changes	in	moving	standard	deviation	

larger	 than	 3	 µM	 using	 a	 1	 second	 sliding	 window	 (Scholkmann,	 Spichtig,	

Muehlemann,	&	Wolf,	2010).	Our	analysis	of	fNIRS	data	is	based	on	changes	in	

HbO2,	following	the	only	study	to	date	that	has	applied	DCM	to	fNIRS	data	(Tak,	

Kempny,	 Friston,	 Leff,	 &	 Penny,	 2015).	 Additionally,	 previous	 fNIRS	 studies	

with	infants	typically	do	not	find	any	statistically	significant	HHb	changes	(for	

some	examples	see:	Grossmann,	Cross,	Ticini,	&	Daum,	2013;	Lloyd-Fox	et	al.,	

2010;	Sarah	Lloyd-Fox,	Széplaki-Köllod,	Yin,	&	Csibra,	2015;	Southgate,	Begus,	

Lloyd-Fox,	di	Gangi,	&	Hamilton,	2014).	

	

3.3.2.2.3	Spatial	registration	

A	 precise	 estimation	 of	 optode	 positions	 and	 reference	 points	 is	 crucial	 for	

calculating	connectivity,	therefore,	particular	attention	needs	to	be	dedicated	

to	the	fNIRS	spatial	registration	to	the	MRI	images.	Location	of	the	reference	

points	and	of	the	optode	positions	are	required	as	an	input	of	the	fNIRS	spatial	

processing	to	calculate	the	brain	area	covered	by	the	NIRS	channels.	One	option	

would	be	to	use	readily	available	adult	MRI	templates.	However,	this	is	not	an	

ideal	solution	as	the	infant	brain	is	not	a	reduced-size	version	of	an	adult	brain	

(Sanchez	et	al.,	2012b).	Instead,	we	used	the	participant’s	own	structural	image	

for	spatial	co-registration	of	the	NIRS	data.	
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Optode	 positions	 on	 the	 head	 were	 manually	 estimated	 from	 the	

fiducial	markers	on	the	T2	structural	image	of	the	participant.	In	particular,	we	

defined	projection	points	 from	each	 fiducial	onto	 the	scalp	as	 the	location	of	

each	NIRS	channel	(Figure	3.3-B).	We	estimated	the	centre	of	the	fiducial	as	the	

middle	point	between	each	source	and	detector,	therefore	they	mark	the	centre	

of	the	channel.	From	here,	we	calculated	the	exact	coordinates	of	each	optodes	

on	the	infant’s	head.	

The	 structural	 image	 of	 the	 infant	 was	 imported	 in	 the	 SPM-fNIRS	

toolbox,	using	custom	modified	code	 from	the	NFRI	 toolbox	(Okamoto	et	al.,	

2004).	 On	 this	 structural	 image,	 the	 reference	 points	 and	 the	 optodes	were	

plotted	(see	figure	3.3-C).		

	

3.3.2.3	Segmentation	and	creation	of	the	mesh		

Two	 structural	 scans	 were	 recorded	 from	 the	 participant:	 one	 immediately	

before	 and	 another	 one	 immediately	 after	 functional	 data	 collection.	

Superimposition	 of	 both	 images	 revealed	 that	 the	 infant	 had	 barely	moved	

between	 the	 two	 time	 points,	 therefore	 the	 two	 images	were	 averaged	 and	

upsampled	to	improve	their	quality	(Manjn	et	al.,	2010).	After	that,	the	image	

was	 flattened	 to	 remove	 intensity	 level	 inhomogeneities	 caused	 by	 the	

magnetic	 field,	 and	 then,	 using	 in	 house	 scripts	 written	 in	 Matlab,	 its	

background	was	 removed.	 The	 structural	 scan	 was	 skull	 stripped	with	 FSL	

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL)	 using	 the	 BET	 (Brain	 Extraction	

Tool)	routine	including	the	functions	BET2	(to	isolate	the	brain)	and	BETSURF	

(to	separate	the	scalp	and	inner	skull	surfaces)	(Jenkinson,	Beckmann,	Behrens,	

Woolrich,	&	Smith,	2012).	The	brain	 image	was	then	 further	processed	with	

SPM’s	SEGMENT	option,	using	tissue	probability	maps	from	an	age	appropriate	
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segmented	 template	 (from	 the	 Neurodevelopmental	 MRI	 Database	 of	 the	

University	 of	 South	 Carolina),	 very	 light	 bias	 regularisation	 (0.0001),	 and	

FWHM	Gaussian	 smoothness	 of	 bias	with	 30	mm	 cut-off.	 At	 the	 end	 of	 this	

process,	the	infant	structural	scan	was	segmented	in	3	layers:	skin	and	skull	and	

extra-cerebral	tissue,	CSF,	and	brain	(grey	plus	white	matter).	Using	another	

set	of	Matlab	scripts,	the	3	layers	were	post-processed	to	fill	in	gaps	and	ensure	

that	all	voxels	were	assigned	the	correct	labels.	As	explained	in	the	previous	

section,	 the	 segmented	 images	 were	 then	 used	 to	 provide	 the	 necessary	

anatomical	information	to	the	fNIRS	data	reconstruction	step	(see	Figure	3.3-

D)	

From	 the	 3-layers	 segmentation	 image,	 a	 high-density	 volumetric	

tetrahedral	mesh	was	created	using	iso2mesh	toolbox	(Fang	&	Boas,	2009)	(see	

figure	 3.3-E).	 Using	 in-house	 custom	 code,	 the	 optodes	 coordinates	 were	

converted	from	the	MRI	structural	image	context	to	mesh-based	context.	(For	

the	estimation	of	the	optode	positions,	the	reader	is	referred	back	to	the	section	

on	Spatial	registration	paragraph).		The	optode	locations	on	the	mesh	and	the	

mesh	 itself	 created	 from	 the	 structural	 scan	 were	 used	 as	 inputs	 for	 the	

estimation	of	the	NIRS	optical	sensitivity	functions.		

	

3.3.2.4	NIRS	optical	sensitivity	functions8		

Application	of	the	DCM	technique	requires	estimates	of	the	sensitivity	of	the	

optical	measurements	at	different	wavelengths	to	changes	in	the	chromophore	

																																																													
8	This	paragraph	was	jointly	written	with	Professor	Simon	Arridge	(Centre	for	Medical	
Image	Computing,	University	College	London,	United	Kingdom)	and	Dr.	Samuel	Powell	
from	 the	 Department	 of	 Medical	 Physics	 (Department	 of	 Medical	 Physics	 and	
Biomedical	Engineering,	University	College	London,	United	Kingdom),	developers	of	
the	TOAST++	toolbox.	
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concentrations	 of	 interest.	 In	 the	 context	 of	 diffuse	 optical	 imaging,	 these	

sensitivity	functions	are	referred	to	as	photon	measurement	density	functions	

(Arridge	&	Schweiger,	1995;	Arridge,	1995).	The	requisite	sensitivity	functions	

are	calculated	from	products	of	the	forward	field	generated	by	a	given	optical	

source,	and	the	adjoint	field	generated	by	placing	an	equivalent	optical	source	

at	 the	 location	of	 a	detector.	To	 compute	 the	 forward	and	adjoint	 fields	 the	

diffusion	equation	was	employed	with	a	Robin	boundary	condition	

	

(∇ ∙ κ∇ + µ�)ϕ(r) = 0									(r ∈ Ω),	

ϕ(r) + 2Aκn ∙ ∇ϕ(r) = q					(r ∈ ∂Ω),	

	

where	‘r’	is	a	point	in	space,	Ω	is	the	computational	domain	with	boundary	∂Ω, ϕ	

is	the	fluence	rate	resulting	from	application	of	the	physical	or	adjoint	source	q,	

κ = (3(µ� + µ�))��	 is	 the	diffusion	 coefficient,	µ�	 and	µ�	 are	 the	wavelength	

dependent	 baseline	 absorption	 and	 scattering	 coefficients,	 A	 is	 a	 term	

accounting	for	the	index	of	refraction	mismatch	at	the	boundary,	and	n	is	the	

outward	normal	to	the	boundary	(Arridge,	Schweiger,	Hiraoka,	&	Delpy,	1993).	

The	TOAST++	toolbox	was	used	to	solve	the	diffusion	approximation	

numerically	 via	 the	 Finite	 Element	Method	 (Schweiger	&	 Arridge,	 2014).	 In	

each	case	the	properties	of	the	source	and	detector	were	specified	according	to	

physical	measurements,	 and	 the	wavelength	 dependent	 baseline	 absorption	

and	scattering	coefficients	were	derived	from	a	previous	study	performed	on	

neonates	(Singh	et	al.,	2014).	
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Figure	3.3	Representation	of	the	main	methodological	steps.	A,	Representation	of	the	
array.	Sources	are	marked	in	red,	detectors	are	marked	in	blue.	Channels	are	marked	
with	grey	dotted	lines	and	the	channel	number	is	indicated.	B,	T2	structural	image	of	
the	 participant	with	 fiducials	 for	 the	 fNIRS	 channels.	 C,	 Output	 from	 the	 NIRS-SPM	
toolbox,	spatial	registration	of	the	optodes	over	the	T2	of	the	infant	imported	with	the	
NFRI	 toolbox.	 Green	 ‘x’	 are	 the	 sources,	 blue	 ‘o’	 are	 the	 detectors	and	 channels	 are	
labelled	with	red	numbers.	D,	3-layers	segmentation	from	the	T2	structural	image	of	
the	infant.	E,	High-density	volumetric	tetrahedral	mesh	created	with	iso2mesh	toolbox	
from	the	segmented	structural	image	of	the	infant.	
	

3.3.2.5	General	Linear	Model	for	fMRI	and	fNIRS	

For	 both	 fMRI	 and	 fNIRS	 data,	 the	 evoked	 hemodynamic	 responses	 were	

modelled	as	a	delta	function	convolved	with	a	hemodynamic	response	and	its	
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spatial	and	temporal	derivatives	within	the	context	of	the	GLM.	Onsets	of	voice	

(V)	and	non-voice	(NV)	trials	were	specified	in	seconds.	

	

3.2.2.6	Selection	of	ROIs/cortical	source	regions	and	definition	of	the	

DCM	models		

In	 order	 to	 estimate	 effective	 connectivity	 with	 DCM,	 we	 selected	 a	 priori	

volumes	of	 interest	 in	 IFG,	 STS	and	TPJ.	The	 selection	of	 the	 fMRI	ROIs	was	

based	 on	 maximum	 activation	 peaks	 showed	 from	 GLMs	 and	 considering	

previous	literature	on	auditory	processing	(Belin	et	al.,	2000;	Blasi	et	al.,	2011;	

Grossmann	et	al.,	2010;	Lloyd-Fox,	Blasi,	Mercure,	Elwell,	&	Johnson,	2012).	The	

fNIRS	cortical	source	regions	were	defined	based	on	previous	coregistration	

works	(S.	Lloyd-Fox,	Richards,	et	al.,	2014),	considering	the	coordinates	of	the	

closest	 channel	 to	 the	 region	 of	 interest	 (fNIRS	 source	 regions	 need	 to	 be	

specified	on	the	surface	of	the	participant’s	head).	Both	in	the	fMRI	and	in	the	

fNIRS	 contexts,	 principal	 eigenvariates	 in	 4	 mm	 spheres	 centred	 in	

ROIs/cortical	source	regions	were	extracted.	See	 the	specific	coordinates	 for	

both	fMRI	and	fNIRS	in	figure	3.4.		

	

	
	

Figure	3.4	Coordinates	and	plots	of	fMRI	ROIs	and	fNIRS	cortical	source	regions	on	the	
T2	structural	image.	The	red	sphere	corresponds	to	the	fMRI	ROIs	and	the	blue	circle	
to	the	fNIRS	cortical	source	regions.	

IFG
fMRI:	49.5,	16.21,	0.4
fNIRS:	65.8,	10.7,	14.3

STS
fMRI:	53.23,	-6.8,	-2.4	
fNIRS:	67,	-18.8,	-7.3	

TPJ
fMRI:	45.64,	-37.94,	-0.01	
fNIRS:	66,	-31.2,	17.7	

IFG	 STS	 TPJ	
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DCM	analyses	were	restricted	to	the	right	hemisphere,	to	the	volume	

covered	by	our	fNIRS	array	layout.	We	modelled	the	differential	state	equations	

on	different	seed	regions	of	 interest	(IFG,	STS,	TPJ	 in	 the	right	hemisphere),	

with	 fMRI	 and	 fNIRS.	 Each	DCM	model	was	 defined	 by	 (i)	 a	 set	 of	 intrinsic	

connections	(A)	that	specify	the	present	state	of	one	neuronal	population,	(ii)	a	

set	of	modulatory	connections	(B)	that	indicate	which	intrinsic	connections	are	

dependent	on	experimental	manipulations,	(iii)	driving	inputs	(C),	considered	

as	direct	influences	of	the	stimuli	on	the	neural	activity	of	involved	regions	of	

input	connections	(Friston	et	al.,	2003).	

Thirteen	alternative	models	with	different	modulatory	effects	of	V	and	

NV	were	constructed	with	DCM-SPM	toolbox	for	the	fMRI	data	(Friston	et	al.,	

2003)	and	with	DCM-fNIRS	toolbox	 for	 the	 fNIRS	data	(Tak	et	al.,	2015).	All	

models	were	defined	as	bilinear	and	deterministic.	Auditory	input	for	both	V	

and	NV	entered	the	network	by	directly	activating	STS	across	all	models.	In	all	

the	hypothesized	models,	we	fixed	bidirectional	intrinsic	connection	between	

STS	and	TPJ	and	STS	and	IFG.	The	models	varied	for	the	presence	or	absence	of	

modulatory	effects	of	auditory	processing	of	V	and	NV	on	the	connections.	See	

all	the	possible	models	in	figure	3.5.	
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Figure	3.5	Models	representation	of	the	13	hypotheses.	Grey	arrows	represent	the	fixed	
intrinsic	 connections	 between	 the	 IFG,	 STS	 and	 TPJ;	 black	 arrows	 pointing	 at	 STS	
represent	the	input;	blue	lines	represent	the	modulatory	effect	of	NV	and	red	lines	the	
modulatory	effect	of	V.	
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3.3.2.7	Specification	and	estimation	of	the	DCM	models	9		

The	DCM	models	were	fitted	to	the	optical	density	signal	averaged	across	trials.	

Specifically,	 the	 generative	model	 of	 fNIRS	 data	was	 created	 by	 linking	 the	

optics	 equation	 to	 the	 hemodynamic	 and	 neurodynamic	 equations	 (Arridge,	

1999;	Buxton	et	al.,	2004;	Cui	et	al.,	2010;	Delpy,	Cope,	van	der	Zee,	et	al.,	1988;	

Friston	et	al.,	2003).	The	DCM	parameters	were	then	estimated	from	fNIRS	data	

using	an	established	Bayesian	framework	(variational	Laplace),	which	enabled	

inference	 about	 changes	 in	directed	 connectivity	 at	 the	 neuronal	 level	 (K.	 J.	

Friston,	Mattout,	Trujillo-Barreto,	Ashburner,	&	Penny,	2007;	Penny,	2012).	In	

this	study,	we	augmented	the	optics	model	used	for	DCM-fNIRS	analysis	(Tak	

et	al.,	2015)	by	adding	a	scaling	factor	to	a	sensitivity	matrix:	

	

�𝑦(𝜆�)𝑦(𝜆�)
� = �

𝜖�(𝜆�)𝑊�𝑆(𝜆�) 𝜖�(𝜆�)𝑊�𝑆(𝜆�)
𝜖�(𝜆�)𝑊�𝑆(𝜆�) 𝜖�(𝜆�)𝑊�𝑆(𝜆�)

� �∆𝐻�∆𝑄�
�,	

	

where	𝑦	is	measurements	of	optical	density	changes;	𝜖�	and	𝜖�	are	extinction	

coefficients	for	oxy-Hb	and	deoxy-Hb;	𝑊�	and	𝑊�	are	factors	for	correcting	pial	

vein	 contamination	 of	 fNIRS	 measurements;	 ∆𝐻�	 and	 ∆𝑄�	 are	 oxy-Hb	 and	

deoxy-Hb	in	the	cortical	source	regions	of	interest;	and	𝑆 = 𝑘 ∙ 𝑆¢	where	𝑆¢	is	

the	sensitivity	function	calculated	from	products	of	the	forward	field	and	the	

adjoint	 field,	 and	 k	 is	 a	 scaling	 term.	We	 treated	 this	 scaling	 term	 k	 as	 free	

parameters	 with	 informed	 priors,	 to	 accommodate	 a	 variation	 in	 source	

strength	(and	detection	efficiency).	This	enabled	us	to	calculate	a	matrix	of	the	

																																																													
9	This	paragraph	was	jointly	written	with	Dr.	Sungho	Tak	(Bioimaging	Research	Team,	
Korea	Basic	Science	Institute,	South	Korea),	developer	of	the	DCM-fNIRS	version	for	
adult	data.		
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sensitivity,	S,	to	the	absorption	coefficient	changes,	using	outputs	of	the	Toast	

software	(Schweiger	&	Arridge,	2014).		

	

3.3.2.8	fMRI-fNIRS	DCM	model	comparisons	

After	 the	 statistical	 estimation	 of	 each	model	 for	 both	 fMRI	 and	 fNIRS	 data,	

comparisons	 of	 the	 DCM	 models	 estimated	 with	 fNIRS	 and	 fMRI	 were	

performed	to	evaluate	effective	connectivity	correspondence	between	the	two	

methodologies.	The	comparison	of	the	DCM	models	was	mainly	based	on	the	

variational	Free	Energy	(F),	which	is	thought	to	have	the	best	model	selection	

ability	and	is	highly	recommended	for	comparisons,	mostly	in	high	signal-to-

noise	 ratio	 conditions,	 as	 with	 infant	 data	 (Penny,	 2012).	 Bayesian	 model	

selection	(BMS)	was	applied	in	order	to	estimate	the	best	model	on	the	fMRI	

and	fNIRS	data	(Friston	et	al.,	2016;	Stephan,	Weiskopf,	Drysdale,	Robinson,	&	

Friston,	2007).	The	aim	in	this	study	was	not	to	investigate	why	a	specific	model	

wins	 in	 the	 BMS	 comparison,	 but	 to	 see	 whether	 there	 is	 any	 convergence	

between	fMRI	and	fNIRS	data,	thus	answering	a	methodological	rather	than	a	

cognitive	question.	I	then	estimated	the	strength	of	connections	for	each	model	

(Bayesian	Model	Average,	BMA)	for	both	fMRI	and	fNIRS	to	investigate	whether	

there	is	any	correspondence	between	the	two	methodologies.		

	

3.3.3	Results	

3.3.3.1	Activation	Results	

Prior	 to	 DCM	 analyses,	 brain	 regions	 activated	 by	 the	 two	 experimental	

conditions	with	fMRI	and	fNIRS	were	explored.	As	previously	shown,	IFG,	STS,	

and	TPJ	were	involved	in	the	auditory	processing	in	both	fMRI	and	fNIRS	(Blasi	

et	al.,	2011,	2015;	Lloyd-Fox	et	al.,	2012).	The	detailed	comparison	between	
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fMRI	and	fNIRS	activations	simultaneously	recorded	is	object	of	another	study	

in	preparation	(Blasi,	A.,	Manini,	B.,	Brigadoi,	S.,	Cooper,	R.,	Barker,	T.,	Wastling,	

S.,	Lloyd-Fox,	S.,	Johnson	M.H.,	Elwell,	C.E.	Simultaneous	fMRI	and	fNIRS	analysis	

in	young	infants,	Poster	presentation	at	2016	Biennial	Meeting	of	the	Society	of	

functional	near-infrared	spectroscopy,	Paris).	

	

3.3.3.2	DCM	results	

Figure	 3.6	 shows	 the	 correspondence	 of	 F	 values	 and	 the	 BMS	 comparison	

between	fMRI	and	fNIRS,	and	the	correlation	between	BMA	values	estimated	

with	fMRI	and	fNIRS.	
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Figure	 3.6	 A,	 Bayesian	Model	 Selection	 estimated	with	 fMRI	 and	 fNIRS.	 B,	 Pearson	
correlation	plot	between	fMRI	and	fNIRS	log	evidence	of	the	13	DCM	models.		
	

High	correspondence	between	fMRI	and	fNIRS	DCM	models	was	found	

(Figure	3.6-A).	Moreover,	BMS	showed	model	8	as	the	best	model	for	both	fMRI	

and	 fNIRS,	 which	 presented	 modulatory	 effect	 of	 NV	 in	 the	 STSàIFG	

connection.	Pearson	correlation	confirmed	a	strong	relationship	between	fMRI	

and	fNIRS	BMS	log	evidence,	r=0.718,	p	=	0.006	(Figure	3.6-B).	

To	assess	the	strength	of	the	correspondence	between	the	fMRI-DCM	

and	 the	 fNIRS-DCM	 results,	 a	 robust-regression	 method	 to	 compare	 the	
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parameters	estimates	obtained	for	all	of	the	models	across	the	two	datasets	was	

used.	 The	 strength	 of	 the	 connections	 (BMA	 values)	 estimated	 for	 the	 13	

models	 with	 the	 two	 methodologies	 are	 highly	 related	 for	 the	 endogenous	

connections	 (Figure	 3.7-A),	 F(1,89)=	 5.55,	 p	 =0.020,	 R2	 =0.058,	 the	 inputs	

(Figure	3.	7-B),	F(1,24)=	4.35,	p	=0.047,	R2	=0.153,	and	the	modulatory	effects	

(Figure	3.	7-C	and	3.	7-D)	on	V,	F(1,6)=	16.4,	p	=0.006,	R2	=0.732,	and	on	NV,	

F(1,6)=	6.65,	p	=0.041,	R2	=0.526.	

	

	
	

Figure	3.7	Robust	regressions	between	BMA	values	estimated	with	fMRI	and	fNIRS.	A,	
Scatterplot	of	the	robust	regression	on	the	91	endogenous	connections	BMA	values	(4	
fixed	connections	+	3	connections	within	the	area	for	each	model).	B,	Scatterplot	of	the	
robust	regression	on	the	26	inputs	(one	input	for	each	model	for	the	two	conditions).	
C,	Scatterplot	of	the	robust	regression	on	the	8	modulatory	effects	on	V.	D,	Scatterplot	
of	the	robust	regression	on	the	8	modulatory	effects	on	NV.	
	

In	addition,	I	repeated	the	regression	analysis	with	a	bootstrap	method	

for	 the	 endogenous	 connections	 (Figure	3.8-A),	 F(1,89)=	5.63,	 p	=0.019,	R2	

=0.059,	C.I.=0.114,	0.855,	the	Inputs	(Figure	3.8-B),	F(1,24)=	4.67,	p	=0.040,	
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R2	=0.163,	C.I.=	-1.712,	-0.353),	the	modulatory	effects	(Figure	3.8-C	and	3.8-

D)	on	V,	F(1,6)=	20.2,	p	=0.004,	R2	=0.771,	C.I	=	0.17,	0.43,	and	on	NV,	F(1,6)=	

7.6,	p	=0.033,	R2	=0.559,	C.I	=	2.67,	3.7.	

	

	
	

Figure	 3.8	Regressions	with	bootstrap	method	between	BMA	values	 estimated	with	
fMRI	 and	 fNIRS.	 A,	 Scatterplot	 of	 the	 robust	 regression	 on	 the	 91	 endogenous	
connections	BMA	values	(4	fixed	connections	+	3	connections	within	the	area	for	each	
model).	B,	Scatterplot	of	 the	 robust	 regression	on	 the	26	 inputs	 (one	 input	 for	each	
model	 for	 the	 two	 conditions).	 C,	 Scatterplot	 of	 the	 robust	 regression	 on	 the	 8	
modulatory	effects	on	V.	D,	Scatterplot	of	the	robust	regression	on	the	8	modulatory	
effects	on	NV.	
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Modulatory.Effects.– Non.Voices
fM
RI

fM
RI

fM
RI

fNIRS

A

C DModulatory.Effects.– Voices

fNIRS

fM
RI

fNIRS

0.15

0.14

0.13

0.12

0.11

0.1

0.09

0.08

0.07

0.06

1.5

1

0.5

0

-0.5

-1

-1.5

-2

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.4 -0.3	 -0.2																							-0.1																												0																											0.1							 0.2																				-0.8	 -0.6	 -0.4																			-0.2																		0																							0.2																				0.4											 0.6

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.5												-0.4												-0.3															-0.2														-0.1															0																	0.1														0.2		 0.3														0.4 -0.4															-0.2															0																	0.2														0.4															0.6															0.8																1																1.2														1.4
fNIRS

B InputsEndogenous.Connections



Chapter	3	

	 150	

application	of	DCM	to	infant	fNIRS	data	has	been	provided.	I	had	the	chance	to	

work	on	unique	dataset,	comprising	a	simultaneous	fMRI-fNIRS	recording	on	a	

single	infant	listening	to	different	sounds	during	sleep.	The	same	GLM	approach	

followed	by	the	same	DCM	analyses	was	applied	to	both	fMRI	and	fNIRS	data,	

overcoming	 a	 number	 of	 challenges	 in	 the	 development	 of	 the	 fNIRS-DCM	

analysis	 stream.	 Converging	 results	 between	 the	 fMRI	 and	 fNIRS	 methods	

demonstrated	the	validity	of	applying	DCM	to	infant	fNIRS	data.	Although	our	

results	refer	to	a	single	case	study,	 this	study	shows	that	DCM	for	 fNIRS	 is	a	

reliable	method	to	explore	effective	connectivity	in	infant	data.	

This	 methodological	 study	 focused	 on	 the	 technical	 challenges	

encountered	and	then	overcome	 in	applying	DCM	on	 fNIRS	 infant	data,	here	

discussed:	

- the	T2	of	the	participant	in	the	NIRS	toolbox	was	successfully	implemented	

in	order	to	obtain	an	accurate	estimation	of	the	connectivity	results;		

- segmentation	of	 the	T2	of	 the	participant,	 the	creation	of	a	high-density	

mesh	and	the	estimation	of	the	optodes	location;	

- in	collaboration	with	the	Department	of	Medical	Physics	at	UCL,	the	NIRS	

optical	sensitivity	functions	was	estimated.	

Solving	these	technical	challenges	will	allow	the	use	DCM	on	fNIRS	data	without	

the	need	for	MRI	in	the	future.	

DCM	is	a	complete	and	detailed	technique	for	the	exploration	of	human	

brain	networks,	allowing	the	inference	of	causality	between	temporal	events,	

the	inference	of	the	nature	of	the	connection	(i.e.	excitatory	or	inhibitory)	and	

information	 about	 how	 experimental	 perturbation	 can	 modify	 the	 network	

(Friston,	1994).	For	this	reason,	DCM	is	unique	and	goes	beyond	most	of	the	

other	 functional	 connectivity	 techniques,	which	 ask	 ‘does	 signal	 A	 correlate	
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with	 signal	 B’	 without	 enquiring	 about	 where	 the	 signals	 come	 from.	 In	

contrast,	DCM	builds	a	full	model	of	the	neural	origins	of	the	signals	and	models	

connectivity	 at	 the	 neural	 level.	 For	 this	 reason,	 DCM	 requires	 detailed	

information	as	inputs	about	the	origin	of	the	signals.	Thus,	estimating	the	NIRS	

optical	 sensitivity	 function	 and	 a	 precise	 spatial	 localisation	 was	 necessary.	

However,	the	use	of	an	age-specific	template	for	both	spatial	registration	and	

for	 the	 estimation	 of	 the	NIRS	 optical	 sensitivity	 functions	will	 allow	 future	

researchers	 to	 apply	 DCM	 to	 every	 infant	 dataset	 and	 follow	 our	 pipeline,	

avoiding	the	need	for	the	acquisition	of	the	MRI	for	each	participant	tested.	

	

3.3.4.1	Advice	for	future	studies	and	limitations	of	this	work	

Starting	from	this	validation	work	of	DCM	in	infants,	future	studies	may	benefit	

from	some	advice,	to	foster	the	application	of	this	technique	with	infant	fNIRS	

data.	 Here	 there	 are	 summarised	 some	 fundamental	 suggestions	 for	 future	

studies	and	possible	limitations	of	this	validation	work,	which	should	be	taken	

into	account	for	future	research.	

1.		Although	in	this	study	an	anatomical	MRI	scan	of	the	participant	was	used,	

this	 is	 not	 essential	 if	 high-resolution	 age-appropriate	 templates	 are	

available.	As	mentioned	in	paragraph	2.2.2,	in	this	PhD	project	I	have	already	

taken	advantage	of	the	‘Neurodevelopmental	MRI	Database’	in	collaboration	

with	 Dr.	 Richards	 for	 a	 co-registration	 of	 the	 fNIRS	 arrays.	 Future	

researchers	interested	in	applying	DCM	on	infant	fNIRS	data	are	advised	to	

use	this	database	as	this	is	the	most	accurate	MRI	database	available	in	the	

developmental	neuroscience	field,	both	for	quality	of	images	and	precision	

of	the	age	range	(Richards	et	al.,	2016;	Sanchez	et	al.,	2012b,	2012a).	The	

NIRS	optical	sensitivity	functions	can	be	estimated	on	the	same	age-range	
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specific	structural	template	as	used	 for	 the	spatial	registration,	 instead	of	

using	the	T2	scan	of	the	participant	as	in	this	study.	It	is	worth	to	point	out	

that	in	this	specific	study,	both	the	spatial	registration	and	the	NIRS	optical	

function	 estimation	 were	 performed	 on	 the	 structural	 scan	 of	 the	

participant,	 while	 for	 future	 studies	 the	 support	 of	 a	 template	 of	 the	

appropriate	age	was	suggested.	However,	while	it	is	established	for	adults	

that	 template-based	 methods	 work	 more	 precisely	 than	 registration	

performed	on	a	single	structural	scan,	there	is	no	evidence	that	is	still	the	

case	 in	 the	developmental	 field.	 Considering	 that,	 in	 this	 study,	 the	 same	

processing	and	connectivity	analyses	was	not	performed	on	an	age-range	

specific	 structural	 template	 as	 suggested	 for	 the	 future,	 whether	

connectivity	results	could	benefit	from	the	choice	of	one	or	another	method	

cannot	be	inferred.	

2.		For	the	accurate	location	of	the	optodes	required	in	fNIRS	data	analysis,	most	

of	the	researchers	use	pictures	of	the	fNIRS	hat	on	the	participant’s	head	to	

mark	 reference	 points	 and	 optodes	 location	 on	 an	 MRI	 template.	 This	

method	might	result	in	location	inaccuracies,	due	for	example	to	warping	of	

the	 pictures	 -	 which	might	 lead	 to	 erroneous	 estimation	 of	 the	 distance	

between	points	-	or	human	mistakes	in	positioning	the	marks	on	the	MRI	

template.	 Alternatively,	 researchers	 can	 register	 optode	 locations	 with	 a	

digitizer,	 such	 as	 Polhemus	 Digitising	 System	

(http://polhemus.com/scanning-digitizing/digitizing-products/),	 with	 the	

possibility	 to	 take	 into	 account	 infants’	 movement	 during	 the	 recording.	

However,	 the	 use	 of	 a	 digitizer	 is	 not	 always	 possible	 and	 realistic	 with	

restless	and	fidgety	infants,	so	the	support	of	pictures	for	spatial	registration	

is	still	currently	used	in	the	developmental	research	practice.	However,	with	
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both	these	methods	mentioned,	optode	locations	and	reference	points	can	

then	be	plotted	on	an	MRI	template,	and	then	used	as	input	for	the	spatial	

processing	in	both	SPM-NIRS	and	dcm_fnirs	toolboxes.	

3. As	already	highlighted,	motion	artefacts	are	recognized	as	one	of	the	major	

methodological	challenge	for	functional	connectivity	studies	(Satterthwaite	

et	 al.,	 2017),	 which	 is	 not	 a	 trivial	 aspect	 for	 researchers	 testing	 awake	

infants	and	interested	in	network	analysis.	In	order	to	avoid	false	positives,	

data	need	to	be	as	clean	as	possible,	which	is	not	always	the	case	for	data	

collected	with	awake	and	moving	infants,	even	after	the	 	appropriate	pre-

processing.	I	acknowledge	that	that	the	present	validation	of	DCM	has	been	

performed	 on	 a	 sleeping	 participant,	 thus	 any	 conclusion	 on	 how	 this	

method	 deals	 with	 more	 noisy	 infant	 data	 cannot	 be	 drawn.	 Given	 this	

limitation	of	this	work,	and	considering	that	the	avoidance	of	false	positive	

in	 connectivity	 analysis	 is	 highly	 dependent	 on	 the	 pre-processing	 steps,	

future	 studies	 focusing	 on	 the	 application	 of	 different	 pre-processing	

streams	and	cleaning	methods	should	elucidate	how	accurate	DCM	is	with	

noisy	infant	data.		

	

3.3.4.2	Future	directions	

Overcoming	the	various	challenges	mentioned	above	took	significantly	longer	

than	initially	anticipated.	Therefore,	I	have	not	been	able	to	apply	DCM	in	any	

of	the	studies	which	are	presented	in	this	thesis.	However,	I	will	be	engaged	in	

this	 in	 the	 near	 future,	 to	 better	 explore	 how	 variables	 related	 to	 the	

development	 of	 self-awareness	 can	 interplay	 with	 changes	 in	 brain	

connectivity.	 Moreover,	 with	 the	 rest	 of	 the	 team,	 I	 will	 be	 involved	 in	

integrating	the	scripts	modified	for	the	specification	of	the	DCM	models	in	the	



Chapter	3	

	 154	

main	dcm_fnirs	package,	 in	order	to	facilitate	and	promote	the	application	of	

this	 technique	 by	 other	 research	 teams.	 I	 hope	 that	 this	 study	 can	 aid	

developmental	 neuroscientists	 who	 are	 interested	 in	 exploring	 brain	

connectivity	in	infancy	and	early	childhood,	encouraging	the	study	of	effective	

connectivity	using	DCM	in	the	developing	brain.	
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3.4	 The	 developmental	 trajectory	 of	 the	 fronto-

temporoparietal	 connectivity:	 a	 longitudinal	 fNIRS	

investigation	

3.4.1	Abstract	

The	DMN	is	a	network	of	brain	regions	activated	while	we	are	not	engaged	in	

any	particular	task.	While	there	is	a	huge	volume	of	adult	works	documenting	

functional	connectivity	within	the	DMN,	knowledge	of	its	development	is	still	

limited.	 There	 is	 some	 evidence	 of	 a	 gradual	 increase	 of	 the	 functional	

connections	within	 the	DMN	during	 the	 first	 two	years	of	 life,	 in	 contrast	 to	

other	 primary	 resting-state	 networks,	 supporting	basic	 functions,	which	 are	

online	 from	 birth.	 This	 is	 consistent	with	 the	 fact	 that	 functions	 have	 been	

related	to	the	DMN,	such	as	emerging	self-awareness	and	other	social	functions,	

gradually	develop	over	the	first	two	years	of	life.	Previous	studies	focusing	on	

the	development	of	the	DMN	acquired	data	using	fMRI	from	sleeping	infants,	

but	sleep	stages	are	known	to	affect	functional	connectivity.	In	this	study,	for	

the	first	time,	fNIRS	was	used	to	acquire	spontaneous	fluctuations	within	the	

fronto-temporoparietal	areas	–	as	a	proxy	for	the	DMN	–	in	awake	participants	

longitudinally	 every	 six	 months	 at	 five	 time	 points,	 from	 11	 months	 to	 36	

months.	A	gradual	development	of	the	fronto-temporoparietal	connectivity	was	

found,	supporting	the	idea	that	the	DMN	is	shaping	over	the	first	years	of	life.	

The	 functional	 connectivity	 reached	 its	maximum	peak	 at	 about	24	months,	

which	seems	consistent	with	previous	findings	showing	that	by	2	years	of	age	

DMN	connectivity	is	similar	to	that	observed	in	adults.	This	study	validated	a	

method	for	recording	resting-state	data	from	awake	infants,	and	a	data	analyses	

pipeline	that	allows	the	investigation	of	the	functional	connections	with	fNIRS.	

Therefore,	a	new	line	of	research	could	benefit	from	the	technique	applied	here.		
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3.4.2	Introduction		

Many	 studies	have	 shown	 that	 our	brain	displays	a	 level	 of	 baseline	 activity	

characterised	 by	 correlations	 among	 spontaneous	 fluctuations	 in	 the	 low-

frequency	 range	 (<0.1	Hz)	 (for	a	 recent	 review	 see	Raichle,	2015).	Resting-

state	recording	refers	to	the	acquisition	of	this	intrinsic	brain	activity	during	

quiet	wakefulness,	in	the	absence	of	any	cognitive,	sensory	or	social	stimulation	

(Biswal,	Zerrin	Yetkin,	Haughton,	&	Hyde,	1995;	Damoiseaux	et	al.,	2006;	van	

den	Heuvel	&	Pol,	2010).	The	DMN	is	the	most	studied	resting-state	functional	

network	 in	 adults,	 with	 evidence	 of	 structural	 connections	 to	 support	 the	

temporal	 correlations	 (Raichle,	 2015;	 Sporns,	 2010).	 The	 importance	 of	 the	

DMN	 is	 underlined	 by	 several	 recent	 studies	 that	 found	 changes	 in	 the	

connectivity	 strength	 in	 this	 network	 to	 be	 a	 marker	 of	 psychopathologies	

(Broyd	et	al.,	2009),	such	as	autism	(Lynch	et	al.,	2013;	Padmanabhan,	Lynch,	

Schaer,	 &	 Menon,	 2017),	 depression	 (Mulders,	 van	 Eijndhoven,	 Schene,	

Beckmann,	&	Tendolkar,	2015;	Sheline	et	al.,	2009),	schizophrenia	(Garrity	et	

al.,	2007;	Woodward,	Rogers,	&	Heckers,	2011),	Alzheimer	disease	(Greicius,	

Srivastava,	Reiss,	&	Menon,	2004),	and	attention-deficit	hyperactivity	disorder	

(Fair	 et	 al.,	 2010).	Moreover,	 as	discussed	 in	 the	 introduction	of	 this	 thesis,	

adult	studies	on	the	DMN	consider	this	network	to	be	an	‘intrinsic	system’	that	

deals	with	self-related	signal	and	self-processing	(Golland	et	al.,	2008).	In	fact,	

the	DMN	activity	 is	 remarkably	 similar	 to	 that	 one	 shown	 in	 self-processing	

tasks	 (Buckner	&	Carroll,	 2007),	 and	neuroimaging	 studies	 showed	 that	 the	

DMN	 activity	 is	 positively	 correlated	 with	 participant	 reports	 of	 mind	

wandering	 and	 self-related	 thoughts	 (Mason	 et	 al.,	 2007;	 McKiernan	 et	 al.,	

2006).	Given	the	crucial	role	of	the	DMN	in	relation	to	self-processing,	 it	has	

been	suggested	that	that	the	gradual	development	of	this	functional	network	
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can	also	support	the	emergence	of	self-awareness	in	the	first	years	of	life	(Gao	

et	al.,	2016).	However,	despite	the	importance	associated	to	this	network,	the	

research	 focusing	 on	 the	 development	 of	 the	DMN	 is	 limited,	 and	 has	 some	

methodological	constrains.		

The	 first	 study	 that	 aimed	 to	 explore	 resting-state	 networks	 in	 the	

infant	 brain	 is	 dated	 to	 2007	 (Fransson	 et	 al.,	 2007).	 This	 study	 showed	

evidence	of	 the	presence	of	visual	and	primary	sensorimotor	networks	 from	

birth,	which	have	been	further	replicated	(Gao,	Alcauter,	Smith,	Gilmore,	&	Lin,	

2015;	 Lin	 et	 al.,	 2008;	 Liu,	 Flax,	 Guise,	 Sukul,	 &	 Benasich,	 2008).	 However,	

Fransson	 and	 colleagues	 were	 unable	 to	 identify	 traces	 of	 a	 temporal	

synchronisation	 in	 core	 regions	 of	 the	 DMN	 before	 the	 first	 year	 of	 life	

(Fransson	et	al.,	2007,	2009,	2011).	Interestingly,	while	the	early	maturation	of	

the	 primary	 sensory	 networks	 is	 thought	 to	 indicate	 the	 fact	 that	 primary	

sensory	functions	are	in	place	from	very	early	in	life,	the	gradual	development	

of	the	DMN	might	be	consistent	with	the	gradual	emergence	of	self-awareness	

(Gao	et	al.,	2016).	More	recent	studies	have	been	able	to	discover	precursors	of	

the	DMN	even	before	the	first	year	of	life.	For	example,	functional	correlations	

of	 core	 regions	 of	 the	 DMN	 were	 found	 in	 4-months-old	 infants,	 but	 with	

posterior	 and	 anterior	 components	 still	 not	 connected	 yet	 (Damaraju,	

Caprihan,	Lowe,	et	al.,	2014).	This	anterior-posterior	separation	decreases	over	

the	 development,	 suggesting	 a	 gradual	 long-range	 integration	 of	 the	 DMN	

(Damaraju,	Caprihan,	Lowe,	et	al.,	2014).	Gao	and	colleagues	showed	traces	of	

a	primitive	DMN	even	at	 two	weeks	of	 life,	and	they	demonstrated	 that	at	2	

years	of	age	the	DMN	is	similar	to	the	one	observed	in	adults	(Gao	et	al.,	2009).	

Moreover,	a	moderate	individual	variability	of	the	DMN	during	the	first	2	years	
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of	life	has	been	demonstrated	(Gao	et	al.,	2014),	which	is	consistent	with	adult	

results	(Mueller	et	al.,	2013).		

All	 the	 studies	mentioned	 above	 acquired	 resting-state	with	 fMRI	 in	

sleeping	 participants.	 However,	 as	 highlighted	 throughout	 this	 chapter,	

connectivity	estimated	during	sleep	does	not	display	the	same	patterns	of	co-

activation	 as	 connectivity	 measured	 during	 wakefulness.	 Moreover,	 sleep	

stages	affect	functional	networks	(Tagliazucchi	&	Laufs,	2014).	Consistent	with	

this,	 a	 recent	 study	 demonstrated	 that	 resting-state	 networks	 in	 sleeping	

infants	resemble	more	closely	the	networks	observed	during	sleep	than	during	

wakefulness	 in	 adults	 (Mitra	 et	 al.,	 2017).	 Therefore,	 knowledge	 of	 the	

development	of	the	DMN	collected	so	far	might	be	possibly	unprecise,	and	to	

compare	the	infant	and	adult	findings,	resting-state	data	need	to	be	collected	in	

awake	 infants.	 The	 study	 presented	 in	 this	 Chapter	 aims	 to	 fill	 this	 gap,	

exploring	 the	 developmental	 trajectory	 of	 the	 DMN	 in	 awake	 infants	 using	

fNIRS.	This	neuroimaging	 technique	enables	 resting-state	acquisitions	under	

similar	conditions	to	studies	performed	in	adults.	

To	 my	 knowledge,	 only	 a	 few	 infant	 investigated	 resting-state	

spontaneous	fluctuations	without	any	experimental	conditions	using	fNIRS,	but	

on	 sleeping	 participants	 (Homae	 et	 al.,	 2010;	 Konishi,	 Taga,	 Yamada,	 &	

Hirasawa,	2002;	Taga	et	al.,	2000).	In	particular,	Homae	et	al.	(2010)	recorded	

resting-state	in	a	longitudinal	sample	of	sleeping	neonates,	at	3	months	and	6	

months.	 An	 increase	 in	 functional	 connectivity	 was	 shown	 over	 the	 frontal,	

temporal,	parietal,	and	occipital	regions.	Moreover,	a	bilateral	organization	of	

spontaneous	 networks	 emerged	 around	 3rd	 month	 of	 life,	 when	 clusters	 of	

connections	started	to	 form	across	the	midline.	Beforehand,	 in	the	neonates,	

connections	were	detected	mainly	within	the	same	hemisphere	(Homae	et	al.,	
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2010).	Previous	adult	studies	have	used	fNIRS	to	assess	resting-state	functional	

connectivity,	suggesting	it	as	a	promising	tool	for	this	purpose	(Lu	et	al.,	2010;	

Mesquita,	Franceschini,	&	Boas,	2010;	Sasai	et	al.,	2012).	However,	due	to	the	

inherent	properties	of	fNIRS,	its	use	is	limited	to	the	outer	layers	of	the	cortex.	

Therefore,	 in	 this	 chapter	 the	 fronto-temporoparietal	 connectivity	 was	

investigated	 as	 a	 component	 of	 the	 DMN.	 The	 approach	 of	 studying	 some	

portions	of	the	DMN	as	a	proxy	for	this	network	has	been	recently	adopted	by	

adult	works,	focusing	in	particular	on	the	mPFC	(Durantin,	Dehais,	&	Delorme,	

2015;	Liang,	Chen,	Shewokis,	&	Getchell,	2016;	Sasai	et	al.,	2012)	and	on	the	

parietal	lobes	(Rosenbaum	et	al.,	2017;	Sasai	et	al.,	2012).		

In	 this	 study,	 in	 order	 to	 assess	 the	 developmental	 trajectory	 of	 the	

fronto-temporoparietal	 connectivity,	 resting-state	 data	 were	 acquired	 with	

fNIRS	in	a	longitudinal	study	with	5	time	points.	Participants	were	tested	with	

the	 same	 resting-state	 procedure	 every	 six	 months,	 from	 11	 months	 to	 36	

months.	 As	 neural	 changes	 happen	 rapidly	 through	 the	 first	 years	 of	 life	

(Johnson,	2001;	Yamada	et	al.,	1997),	the	fact	that	data	were	acquired	every	6	

months	should	allow	a	precise	description	of	the	developmental	trajectory	of	

the	 functional	 connectivity.	 I	 hypothesized	 a	 gradual	 increase	 of	 the	 fronto-

temporoparietal	 connectivity	 over	 the	 first	 years	 of	 life,	 which	 would	 be	

consistent	with	the	gradual	development	of	self-related	processes.		

	

3.4.3	Methods	

3.4.3.1	Participants	

fNIRS	resting-state	data	were	acquired	longitudinally	at	five	time-points,	every	

six	months	at:	i)	11	months;	ii)	18	months;	iii)	24	months;	iv)	30	months;	v)	36	

months.	All	included	infants	were	born	full-	term,	healthy	and	with	normal	birth	
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weight.	Written	 informed	 consent	was	 obtained	 from	 the	 infant’s	 caregiver	

prior	to	the	start	of	the	experiment.	Hereafter	follow	details	of	the	sample	at	

each	time	point.	

	

3.4.3.1.1	1st	time	point:	11	months	

Resting	state	data	were	acquired	from	11	11-month-olds	(6	males,	age	mean	±	

SD	=	342.72	±	8.10	days).	An	additional	35	infants	were	excluded	because:	(i)	

their	dataset	did	not	reach	 the	minimum	length	of	100	seconds	of	recording	

after	behavioural	coding	was	not	reached	(see	section	3.3.3.3	for	more	details)	

(21	infants);	(ii)	they	refused	to	wear	the	fNIRS	hat	or	poor	positioning	of	the	

fNIRS	headgear/hat	(9	infants);	(iii)	more	than	30%	of	the	channels	had	to	be	

excluded	due	to	poor	light	intensity	readings	(5	infants).	For	more	details	about	

behavioural	coding	and	mean	intensity	of	the	channels,	see	paragraph	3.3.3.3.	

The	mean	±	SD	of	the	resting	state	recording	considered	for	the	analysis	was	

134.25±57.15	seconds.	

	

3.4.3.1.2	2nd	time	point:	18	months	

Resting	state	data	were	acquired	from	21	18-month-olds	(10	males,	age	mean	

±	SD	=	554.73	±	9.19	days).	An	additional	28	infants	were	excluded	because:	

(i)	their	dataset	did	not	reach	the	minimum	length	of	100	seconds	of	recording	

after	behavioural	coding	was	not	reached	(see	section	3.3.3.3	for	more	details)	

(7	infants);	(ii)	they	refused	to	wear	the	fNIRS	hat	or	poor	positioning	of	the	

fNIRS	headgear/hat	(15	infants);	(iii)	more	than	30%	of	the	channels	had	to	be	

excluded	due	to	poor	light	intensity	readings	(5	infants).	For	more	details	about	

behavioural	coding	and	mean	intensity	of	the	channels,	see	paragraph	3.3.3.3.	
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The	mean	±	SD	of	the	resting	state	recording	considered	for	the	analysis	was	

196.64±60.69	seconds.	

	

3.4.3.1.3	3rd	time	point:	24	months	

Resting	state	data	were	acquired	from	25	24-month-olds	(11	males,	age	mean	

±	SD	=	737.61	±	14.10	days).	An	additional	24	infants	were	excluded	because:	

(i)	their	dataset	did	not	reach	the	minimum	length	of	100	seconds	of	recording	

after	behavioural	coding	was	not	reached	(see	section	3.3.3.3	for	more	details)	

(6	infants);	(ii)	they	refused	to	wear	the	fNIRS	hat	or	poor	positioning	of	the	

fNIRS	headgear/hat	(6	infants);	(iii)	more	than	30%	of	the	channels	had	to	be	

excluded	due	to	poor	light	intensity	readings	(6	infants).	For	more	details	about	

behavioural	coding	and	mean	intensity	of	the	channels,	see	paragraph	3.3.3.3.	

The	mean	±	SD	of	the	resting	state	recording	considered	for	the	analysis	was	

183.75±58.60	seconds.	

	

3.4.3.1.4	4th	time	point:	30	months	

Resting	state	data	were	acquired	from	28	30-month-olds	(18	males,	age	mean	

±	SD	=	918.75	±	8.68	days).	An	additional	20	infants	were	excluded	because:	

(i)	their	dataset	did	not	reach	the	minimum	length	of	100	seconds	of	recording	

after	behavioural	coding	was	not	reached	(see	section	3.3.3.3	for	more	details)	

(3	infants);	(ii)	they	refused	to	wear	the	fNIRS	hat	or	poor	positioning	of	the	

fNIRS	headgear/hat	(6	infants);	(iii)	more	than	30%	of	the	channels	had	to	be	

excluded	due	to	poor	light	intensity	readings	(9	infants).	For	more	details	about	

behavioural	coding	and	mean	intensity	of	the	channels,	see	paragraph	3.3.3.3.	

The	mean	±	SD	of	the	resting	state	recording	considered	for	the	analysis	was	

200.44±47.95	seconds.	
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3.4.3.1.5	5th	time	point:	36	months	

Resting	state	data	were	acquired	from	32	36-month-olds	(23	males,	age	mean	

±	SD	=	1101.13	±	16.03	days).	An	additional	25	infants	were	excluded	because:	

(i)	their	dataset	did	not	reach	the	minimum	length	of	100	seconds	of	recording	

after	behavioural	coding	was	not	reached	(see	section	3.3.3.3	for	more	details)	

(8	infants);	(ii)	more	than	30%	of	the	channels	had	to	be	excluded	due	to	poor	

light	intensity	readings	(8	infants).	For	more	details	about	behavioural	coding	

and	mean	intensity	of	the	channels,	see	paragraph	3.3.3.3.	The	mean	±	SD	of	the	

resting	state	recording	considered	for	the	analysis	was	177.02±45.49	seconds.	

	

3.4.3.2	Resting-state	data	acquisition	

See	section	2.2.3	for	information	about	the	experimental	set-up	and	fNIRS	cap	

application.	 See	 section	2.2.4	 for	 information	 about	 the	 fNIRS	 recording.	 11-

month-olds	wore	a	custom-built	headgear	with	a	total	of	26	channels	with	a	

source-detector	separation	of	25	mm	over	the	temporal	areas,	and	4	channels	

with	a	source-detector	separation	of	30	mm	over	the	frontal	area.	The	headgear	

was	placed	so	that	the	third	optode	was	centred	above	the	pre-auricular	point.	

Data	 acquired	 at	 the	 other	 time	 points	 were	 collected	 using	 the	 Easy	 cap	

described	in	the	Chapter	2,	as	this	provided	a	better	fit	on	the	participant’s	head,	

considering	 the	 increasing	presence	of	 hair.	 The	18-month-olds	were	 tested	

with	 the	 30-channel	 configuration	 with	 the	 Easy	 Cap.	 From	 the	 visit	 at	 24	

months	participants	were	 tested	with	 the	44-channel	 configuration	with	 the	

Easy	Cap.	Table	3.1	 summarises	 information	 about	 the	 array	design	used	at	

each	visit,	number	of	participants	tested	with	each	cap	size,	and	S-D	separation	

for	each	cap	size.	
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1	 11	months	 Silicon	band	 30-channel	 25	mm	temporal	lobe	

30	mm	frontal	lobe	

2	 18	months	 Easy	Cap	 30-channel	

48	cm,	17/21	participants,	

25	mm	temporal	lobe	

30	mm	frontal	lobe	

50	cm,	4/21	participants,	

26	mm	temporal	lobe	

31	mm	frontal	lobe	

3	 24	months	 Easy	Cap	 44-channel	

48	cm,	5/25	participants,	

25	mm	temporal	lobe	

30	mm	frontal	lobe	

50	cm,	18/25	participants,	

26	mm	temporal	lobe	

31	mm	frontal	lobe	

52	cm,	2/25	participants,	

27	mm	temporal	lobe	

32	mm	frontal	lobe	

4	 30	months	 Easy	Cap	 44-channel	

48	cm,	5/28	participants,	

25	mm	temporal	lobe	

30	mm	frontal	lobe	

50	cm,	16/28	participants,	

26	mm	temporal	lobe	

31	mm	frontal	lobe	

52	cm,	7/28	participants,	

27	mm	temporal	lobe	

32	mm	frontal	lobe	

5	 36	months	 Easy	Cap	 44-channel	

48	cm,	3/32	participants,	

25	mm	temporal	lobe	

30	mm	frontal	lobe	

50	cm,	18/32	participants,	

Time	
point	 Age	

Silicon	Band	
or	Easy	Cap	 Array	Design	

Cap	sizes	and			
S-D	separation	
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26	mm	temporal	lobe	

31	mm	frontal	lobe	

52	cm,	11/32	participants,	

27	mm	temporal	lobe	

32	mm	frontal	lobe	

	

Table	3.1.	Summary	of	the	array	design	used	at	each	visit,	number	of	participants	tested	

with	each	cap	size,	and	S-D	separation.	

	

During	the	resting-state	acquisition,	to	keep	participants	awake	and	as	

quiet	as	possible,	a	screensaver-like	video	with	coloured	bubbles	accompanied	

by	relaxing	music	was	shown	(Figure	3.9).	The	parent	was	asked	not	 to	 talk	

during	 the	 experiment	 to	 avoid	 brain	 activation	 in	 areas	 of	 interest	 not	

associated	with	the	spontaneous	fluctuations	commonly	found	during	rest.	If	

the	 parent	 talked	 to	 get	 the	 infant’s	 attention	 on	 the	 screen	 or	 in	 case	 of	

fussiness	or	distraction,	this	chunk	of	data	were	excluded	from	the	recording	

(see	section	3.3.3.3	for	more	details).	

	

	

Figure	3.9	Fragments	of	the	screensaver-like	video	shown	during	the	resting-state	
acquisition.	
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In	fMRI	resting-state	studies,	adult	participants	are	typically	asked	to	

think	about	nothing	in	particular.	However,	recent	studies	have	shown	that	the	

use	of	non-social	movies	or	videos	helps	to	keep	participants	awake,	increases	

compliance,	 and	 helps	 prevent	 social	 or	 emotional	 thoughts	 during	 mind-

wandering10	 (Anderson,	 Ferguson,	 Lopez-Larson,	 &	 Yurgelun-Todd,	 2011;	

Cantlon	 &	 Li,	 2013;	 Conroy,	 Singer,	 Guntupalli,	 Ramadge,	 &	 Haxby,	 2013;	

Sabuncu	 et	 al.,	 2010).	 Likewise,	 previous	 studies	 used	 non-social	 videos	 to	

acquire	 resting-state	 with	 fMRI	 in	 awake	 children	 (Müller,	 Kühn-Popp,	

Meinhardt,	 Sodian,	 &	 Paulus,	 2015;	 Vanderwal,	 Kelly,	 Eilbott,	 Mayes,	 &	

Castellanos,	 2015;	 Xiao,	 Friederici,	 Margulies,	 &	 Brauer,	 2016).	 In	 adults,	

consistency	 within	 participants	 has	 been	 found	 between	 resting-state	 data	

acquired	 in	a	 stimulus-free	 context	and	data	acquired	during	observation	of	

non-social	videos	(Finn	et	al.,	2017;	Vanderwal	et	al.,	2015).	

	

3.4.3.3	Resting-state	data	pre-processing	and	analysis	

Data	analysis	were	carried	out	in	MATLAB	(Mathworks,	USA).	fNIRS	data	were	

extracted	for	each	participant	from	all	the	channels	for	both	HbO2	and	HHb	and	

channels	with	mean	intensity	lower	than	10-3	µmol	were	excluded	(most	likely	

due	to	bad	optode-scalp	coupling,	based	on	the	intrinsic	characteristics	of	the	

UCL-NIRS	topography	system).	

Videos	of	 the	 testing	 session	were	 coded	offline	 and	periods	of	 time	

during	which	the	infant	moved,	cried,	or	looked	at	something	socially	engaging	

(e.g.	the	mum	or	the	experimenter)	were	marked	as	invalid,	as	well	as	periods	

of	 time	 during	 which	 the	 mum	 or	 experimenter	 was	 talking.	 Assuming	 8	

																																																													
10	Mind-wandering	can	affect	resting-state	functional	connectivity	as	shown	by	Chou	
and	colleagues	(Chou	et	al.,	2017)	



Chapter	3	

	 166	

seconds	to	be	the	minimum	time	for	the	infant	HRF	to	return	to	baseline	levels	

(Lloyd-Fox	et	al.,	2010;	Taga,	Watanabe,	&	Homae,	2011),	8	seconds	of	data	

across	all	the	channels	were	excluded	after	each	invalid	section,	to	ensure	that	

we	were	only	 including	periods	of	 resting	 state.	 Sections	of	 good	data	were	

included	 only	 if	 they	 were	 at	 least	 5	 consecutive	 seconds	 long.	 After	 the	

behavioural	 coding,	 time	 series	 for	 each	 fNIRS	 channel	 free	 from	movement	

artefacts	were	extracted	for	each	participant	and	only	participants	who	had	at	

least	100	seconds	of	clean	data11	 in	 total,	and	less	than	30%	of	the	channels	

excluded	were	 considered	 for	 further	 analysis.	 The	 light	 attenuation	 values	

were	band-pass	filtered	(0.01-0.08)	and	converted	to	relative	concentrations	of	

haemoglobin	using	the	modified	Beer-Lambert	law	(Villringer	&	Chance,	1997).		

For	each	participant,	 the	correlation	matrix	between	all	 the	channels	

that	remained	after	the	previous	pre-processing	steps	was	calculated	for	both	

HbO2	 and	 HHb	 and	 the	 fisher	 Z-scores	 transformation	 was	 applied	 on	 the	

correlation	 matrix,	 to	 allow	 the	 comparison	 of	 the	 matrices	 and	 perform	

statistical	analyses.	Results	are	corrected	for	multiple	comparisons	using	the	

False	Discovery	Rate	(FDR).	Pairs	of	functional	connections	were	included	in	

the	analysis	only	if	at	least	half	of	the	sample	contributed	to	the	statistical	tests.	

Throughout	this	study,	the	connections	between	the	frontal	region	and	

the	temporoparietal	region	are	defined	as	the	connections	between	channels	

belonging	to	the	mPFC	(channel	27,	28,	29,	30)	and	the	left	STG	(channel	5,	6,	

7),	the	right	STG	(channel	18,	19,	20),	the	left	middle/posterior	temporal	gyrus	

(channel	8,	10,	11,	13),	the	right	middle/posterior	temporal	gyrus	(channel	21,	

																																																													
11	A	recent	study	on	children	showed	that	as	little	as	1	minute	of	resting-state	fNIRS	
recording	is	sufficient	to	obtain	accurate	functional	connectivity	estimation	(J.	Wang,	
Dong,	&	Niu,	2017).	
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23,	24,	26),	the	left	TPJ	(channel	9,	12,	34,	35,	36),	the	right	TPJ	(channel	22,	25,	

41,	42,	43)	as	specified	in	Chapter	2,	section	2.2.2.		

	

3.4.4	Results	

3.4.4.1	Functional	connectivity	in	the	fronto-temporoparietal	areas	and	

in	the	whole	set	of	channels	per	age	group	

Some	previous	research	with	adults	explored	the	relationship	between	HbO2	

and	 HHb	 in	 fNIRS	 resting-state	 data,	 and	 revealed	 a	 comparable	 pattern	 of	

spontaneous	 fluctuation	 of	 the	 two	 chromophores,	 suggesting	 a	 similar	

underlying	neurophysiological	mechanism	during	resting-state	(Lu	et	al.,	2010;	

Sasai,	Homae,	Watanabe,	&	Taga,	2011;	White	et	al.,	2009).	However,	the	HHb	

map	 seemed	 to	 show	 fewer	 connections	 than	 the	 HbO2	map	within	 fronto-

temporoparietal	 areas	 (Sasai	 et	 al.,	 2011).	 Therefore,	 prior	 to	 any	 further	

analyses,	 I	 investigated	 the	consistency	of	 the	connectivity	patterns	between	

the	 HbO2	 and	 HHb	 signal,	 performing	 one	 sample	 t-tests	 on	 the	 Fisher-

transformed	correlation	coefficients	on	both	chromophores	for	each	age	group.	

Figure	 3.10	 shows	 the	 fronto-temporoparietal	 connections	 that	 were	

significant	 per	 age	 group,	 for	 both	 HbO2	 and	 HHb.	 Significant	 functional	

connections	 within	 the	 whole	 set	 of	 channels	 were	 also	 plotted	 to	 assess	

whether	 functional	 connections	 in	 the	 whole	 set	 of	 channels.	 Results	 are	

summarise	in	Table	3.2		
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Table	3.2	Number	of	functional	connections	that	are	significantly	different	from	zero	at	
each	 time	 point,	within	 the	 fronto-temporoparietal	 regions	 and	 in	 the	whole	 set	 of	
channels,	in	HbO2	and	in	HHb.	p-values	are	reported	uncorrected	and	FDR	corrected.	
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Figure	 3.10	 Graphical	 representations	 of	 the	 functional	 connections	 that	 are	 significantly	

different	from	zero,	both	in	the	fronto-temporoparietal	regions	(straight	lines)	and	in	the	whole	

set	of	channels	(dotted	lines).	HbO2	is	plotted	in	red,	HHb	is	plotted	in	blue.	

	

	 The	 table	 and	 the	 figure	 above	 highlighted	 that	 the	 number	 and	 the	

location	of	the	connections	that	are	significant	different	from	zero	in	the	HbO2	

and	in	the	HHb	maps	are	similar	within	each	group.	

Fronto-temporoparietal	connectivity	 Whole	set	of	channels

Age N HbO2 HHb HbO2 HHb

11	months 11

18	months 21

24months 25

30	months 28

chiahh

36 months 32

Fronto-temporoparietal	connectivity	 Whole	set	of	channels	
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3.4.4.2	Differences	in	fronto-temporoparietal	connectivity	

In	 order	 to	 test	 the	 hypothesis	 of	 an	 increased	 fronto-temporoparietal	

functional	 connectivity	 with	 age,	 the	 Fisher-transformed	 correlation	

coefficients	were	first	compared	with	paired	t-tests	between	the	time	points.		

Table	3.3	reports	the	number	of	the	functional	connections	that	are	significantly	

different	 between	 the	 two	 time	 points,	 in	 the	 fronto-temporoparietal	

connections	in	HbO2	and	in	HHb	between	two	time	points.	Significant	functional	

connections	within	the	whole	set	of	channels	were	also	tested	to	assess	whether	

changes	in	the	connectivity	are	limited	to	the	fronto-temporoparietal	areas	or	

whether	they	are	affecting	also	connectivity	between	all	the	other	channels.	See	

Appendix	A	for	degrees	of	freedom	the	t-tests	between	the	two	age	points	in	

each	connection	(Supplementary	Table	1-10).	
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Table	3.3	Number	of	functional	connections	that	are	significantly	different	between	the	
two	 time	points,	 in	 the	 fronto-temporoparietal	 connections	 and	 in	 the	whole	 set	 of	
channels	 in	 HbO2	 and	 in	 HHb.	 p-values	 are	 reported	 both	 uncorrected	 and	 FDR	
corrected.	
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Figure	3.11	shows	graphical	representations	of	the	differences	in	the	fronto-

temporoparietal	connections	and	in	the	whole	set	of	channels	in	the	HbO2	and	

the	HHb	maps	for	each	comparison.		

	

	

11-month-olds	>	18-month-olds
18-month-olds	>	11-month-olds

11-month-olds	>	18-month-olds
18-month-olds	>	11-month-olds

Fronto-temporoparietal	connectivity	 Whole	set	of	channels

HbO2 HHb HbO2 HHb

11-month-olds	>	24-month-olds
24-month-olds	>	11-month-olds

11-month-olds	>	24-month-olds
24-month-olds	>	11-month-olds

deoxy deoxy

Fronto-temporoparietal	connectivity	 Whole	set	of	channels

HbO2 HHb HbO2 HHb

11	months	vs.	18	months

11	months	vs.	24	months

11	months	vs.	30	months

11-month-olds	>	30-month-olds
30-month-olds	>	11-month-olds

11-month-olds	>	30-month-olds
30-month-olds	>	11-month-olds

Fronto-temporoparietal	connectivity	 Whole	set	of	channels

HbO2 HHb HbO2 HHb

Fronto-temporoparietal	connectivity	 Whole	set	of	channels	

11	months	vs.	18	months	

Fronto-temporoparietal	connectivity	 Whole	set	of	channels	

11	months	vs.	24	months	

Fronto-temporoparietal	connectivity	 Whole	set	of	channels	

11	months	vs.	30	months	
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11	months	vs.	36	months

18	months	vs.	24	months

18	months	vs.	30	months

11-month-olds	>	36-month-olds
36-month-olds	>	11-month-olds

11-month-olds	>	36-month-olds
36-month-olds	>	11-month-olds
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Figure	3.11	Graphical	representations	of	the	differences	in	the	fronto-temporoparietal	

connections	and	in	the	whole	set	of	channels	in	HbO2	and	HHb	for	each	comparison.		
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3.4.4.3	Linear	mixed	model	

A	more	appropriate	estimation	of	the	developmental	trajectory	of	the	fronto-

temporoparietal	functional	connectivity	is	given	by	a	repeated	measures	model	

that	compares	all	the	resting-state	measures	of	the	participants	over	time.	To	

better	characterise	the	developmental	trajectory	of	the	fronto-temporoparietal	

connectivity,	each	connection	between	channels	belonging	to	the	frontal	region	

and	the	temporoparietal	region	was	inserted	as	a	dependent	variable	in	a	linear	

mixed	model	(Verbeke	&	Molenberghs,	2000).	Compared	to	repeated	measures	

ANOVA,	mixed	linear	models	account	for	within	person	dependence	and	allow	

for	there	to	be	missing	data,	using	only	information	from	the	individual	at	the	

other	time	points	(A.	Field,	Miles,	&	Field,	2012;	Gad	&	Youssif,	2004).	The	linear	

mixed	model	for	a	dependent	variable	 ‘y’,	of	the	participant	 ‘pth’,	at	a	specific	

time	point	‘t’,	is:	

ypt	=	Interceptp	=	dp	+	bAgept	+	ept	

where	 	 Agept	 	 is	 the	 age	 of	 the	 pth	 participant	 at	 the	 tth	 time	 of	 the	 data	

acquisition.	 The	 dependent	 variable,	 i.e	 the	 functional	 connectivity,	 was	

modelled	here	as	a	function	age	(bAge)	with	a	random	person	effect	(dp)	and	

errors	 (ept).	 Intercept	 and	 age	 were	 fixed	 effects,	 while	 within	 person	

dependence	(dp)	was	modelled	as	a	random	effect.	This	same	procedure	was	

used	 in	 other	 longitudinal	 studies	 that	 explored	 brain	 connectivity	 changes	

over	time	(for	example	see	Wierenga	et	al.,	2018).	

The	linear	mixed	model	included	the	32	participants	who	had	valid	data	

at	least	two	time	points.	The	type	of	covariance	between	the	observations	was	

specified	as	Autoregression	(AR)	as	 two	measures	close	 in	 time	of	 the	same	

participant	are	likely	to	be	correlated	(Selig	&	Little,	2012).		
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Table	 3.4	 shows	 statistically	 significant	 changes	 of	 the	 connections	

within	 the	 fronto-temporoparietal	 channels	 over	 time,	 showing	whether	 the	

model	better	fits	changes	in	functional	connectivity	when	the	five	time	points	

are	 considered	 into	 the	 model	 (left	 part	 of	 the	 table).	 Betas	 at	 11	 months	

represent	the	connectivity	values	estimated	at	11	months	by	the	random	effects	

and	the	p-value	at	11	months	tested	the	significant	difference	with	zero.	Betas	

at	the	following	time	points	describe	changes	in	connectivity	compared	with	11	

months	(right	part	of	the	table).	

	

Temporo
parietal	
channels	

mPFC	
channels	 F	 p	

11	months	
Beta(SE)	

p	

18	months	
Beta(SE)	

p	

24	months	
Beta(SE)	

p	

30	months	
Beta(SE)	

p	

36	months	
Beta(SE)	

p	

10	
28	 4.18	 0.004**	 -0.06(0.15)	

0.672	
-0.26(0.19)	
0.180	

0.29(0.18)	
0.116	

0.21(0.17)	
0.220	

0.01(0.17)	
0.965	

29	 2.74	 0.035*	 -0.05(0.14)	
0.733	

-0.28(0.17)	
0.111	

0.01(0.17)	
0.052†	

0.13(0.17)	
0.451	

-0.09(0.17)	
0.593	

12	 28	 3.24	 0.016**	 -0.12(0.14)	
0.391	

-0.07(0.18)	
0.679	

0.41(0.16)	
0.018*	

0.26(0.16)	
0.124	

0.18(0.16)	
0.258	

13	 29	 3.97	 0.006**	 -0.36(0.15)	
0.024*	

0.33(0.18)	
0.083	

0.37(0.18)	
0.045*	

0.60(0.18)	
0.001*	

0.23(0.17)	
0.184	

13	 30	 4.33	 0.004**	 -0.55(0.14)	
0.001*	

0.41(0.17)	
0.020*	

0.62(0.17)	
0.001*	

0.65(0.16)	
0.001*	

0.48(0.16)	
0.004*	

18	 27	 3.09	 0.021*	 0.15(0.13)	
0.276	

-0.21(0.17)	
0.221	

0.26(0.16)	
0.119	

0.09(0.16)	
0.540	

-0.01(0.15)	
0.973	

20	 29	 4.04	 0.005**	 -0.03(0.12)	
0.788	

-0.30(0.15)	
0.052†	

0.14(0.15)	
0.363	

0.13(0.15)	
0.391	

0.02(0.15)	
0.873	

22	 29	 3.46	 0.012**	 -0.50(0.12)	
0.001*	

0.46(0.15)	
0.003*	

0.55(0.15)	
0.001*	

0.48(0.15)	
0.002*	

0.43(0.14)	
0.005*	

25	
28	 2.98	 0.023**	 -0.31(0.13)	

0.023*	
0.15(0.17)	
0.381	

0.35(0.16)	
0.028*	

0.34(0.15)	
0.029*	

0.42(0.15)	
0.007*	

29	 5.50	 0.004**	 -0.46(0.14)	
0.002*	

0.51(0.16)	
0.003*	

0.71(0.16)	
0.001*	

0.74(0.16)	
0.001*	

0.64(0.16)	
0.001*	

	

Table	3.4	Changes	of	the	connections	within	the	fronto-temporoparietal	channels	over	

time.	For	each	time	point,	results	are	displayed	in	terms	of	,	standard	errors	(SE)	and	

p-values.	 **,	 p<0.05	 that	 survived	 the	 FDR	 correction	 for	 multiple	 comparisons;	 *,	

p<0.05;	†,	p<0.065.	

	

Figure	3.12	shows	betas	estimated	from	the	models,	representing	changes	of	the	

connections	within	the	fronto-temporoparietal	channels	over	time.	
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Figure	 3.12	 Graphical	 representation	 of	 the	 functional	 connections	 that	 showed	 a	
significant	change	over	 time	within	 the	 fronto-temporoparietal	 channels.	Functional	
connections	with	channels	belonging	to	the	left	middle/posterior	temporal	gyrus	are	
plotted	in	pink;	functional	connections	with	channels	belonging	to	the	right	STG	are	
plotted	 in	blue;	 functional	 connections	with	channels	belonging	 to	 the	 right	TPJ	are	
plotted	in	green.	
	

As	 can	 be	 seen	 from	 the	 table,	 channels	 belonging	 to	 the	 temporoparietal	

regions	 that	 showed	 statistically	 significant	 functional	 connections	 with	 the	

frontal	 cortex	 can	 be	 clustered	 into	 two	 regions,	 the	 left	 middle/posterior	

temporal	gyrus	(channel	10,	12,	13)	and	the	right	STG/TPJ	(channel	18,	20,	22,	

25).	Among	the	ten	functional	connections	the	showed	a	statistically	significant	

change	 in	 time,	 only	 two	 did	 not	 survive	 the	 FDR	 correction	 for	 multiple	

comparisons	(27-18	and	29-10).	As	can	be	seen	from	the	values	of	the	betas	

estimated,	the	peak	in	fronto-temporoparietal	connectivity	was	at	24	months	

for	5	out	of	the	10	connections	that	significantly	changed	with	time	(28-10,	28-

12,	 27-18,	 29-20,	 29-22),	 at	30	months	 for	4	out	of	 the	10	 connections	 that	

significantly	changed	with	time	(29-10,	29-13,	30-13,	29-15),	while	only	one	
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fronto-temporoparietal	 connection	 reached	 the	 maximum	 increase	 at	 36	

months	(28-25).	

In	order	to	limit	the	number	of	the	linear	mixed	models,	the	same	mixed	

model	analysis	was	repeated	using	the	functional	connections	among	the	ROIs.	

To	do	this,	Fisher-transformed	correlation	coefficients	were	averaged	for	the	

ROIs	specified	above	in	section	3.4.3.3.	As	the	TPJ	is	covered	by	channels	of	the	

44-channel	 configuration	which	were	not	used	 to	 acquire	data	 from	 the	11-

month-olds	and	the	18-month-olds,	the	estimation	of	the	connectivity	between	

the	frontal	cortex	and	the	TPJ	was	performed	considering	two	definitions	of	this	

region:	i)	the	TPJ	channels	used	at	every	time	point	(9	and	12	for	the	left	TPJ	

and	22	and	25	for	the	right	TPJ);	ii)	all	the	channels	belonging	to	the	TPJ	region,	

but	comparing	only	24-month-olds,	30-month-olds	and	36-month-olds.	Table	

3.5	 shows	the	 changes	of	 the	 connections	within	 the	 fronto-temporoparietal	

ROIs	over	time,	where	betas	at	11	months	showed	the	difference	with	zero,	and	

betas	 and	 the	 following	 time	 points	 showed	 significant	 difference	 with	 11	

months.	
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Temporoparietal	
regions	 F	 p	

11	months	
Beta(SE)	

p	

18	months	
Beta(SE)	

p	

24	months	
Beta(SE)	

p	

30	months	
Beta(SE)	

p	

36	months	
Beta(SE)	

p	

Left	STG	 1.37	 0.249	 -0.12(0.079)	
0.877	

-0.04(0.10)	
0.627	

-0.09(0.09)	
0.302	

0.003	(0.09)	
0.967	

0.05(0.09)	
0.571	

Right	STG	 0.65	 0.625	 0.00(0.75)	
0.990	

-0.09(0.09)	
0.358	

0.02(0.08)	
0.789	

0.00(0.08)	
0.016*	

-0.03(0.08)	
0.661	

Left	
middle/posterior	
temporal	gyrus	

2.00	 0.102	 -0.08(0.08)	
0.355	

-0.04(0.13)	
0.656	

0.10(0.10)	
0.321	

0.14(0.09)	
0.146	

0.02(0.09)	
0.808	

Right	
middle/posterior	
temporal	gyrus	

0.91	 0.458	 0.16(0.08)	
0.049	

-0.17(0.09)	
0.073	

-0.14(0.09)	
0.128	

-0.14(0.09)	
0.123	

-0.16(0.09)	
0.088	

Left	TPJ																																																																																																																																																																																																																																																																																		
(channels	9,	12)	 2.35	 0.062†	 -0.21(0.08)	

0.015*	
0.06(0.10)	
0.538	

0.26(0.10)	
0.011*	

0.13(0.10)	
0.174	

0.014(0.09)	
0.137	

Right	TPJ		
(channels	22,	25)	 4.33	 0.03*	 -0.27(0.07)	

0.001*	
0.27(0.09)	
0.006*	

0.24(0.09)	
0.009*	

0.29(0.09)	
0.02*	

0.23(0.08)	
0.011*	

Left	TPJ	 1.75	 0.183	 /	 /	 -0.02(0.03)	
0.538	

-0.09(0.05)	
0.078	

-0.02(0.04)	
0.551	

Right	TPJ	 1.31	 0.278	 /	 /	 0.01(0.04)	
0.736	

-0.04(0.05)	
0.456	

-0.08(0.05)	
0.114	

	

Table	3.5	Changes	of	the	connections	within	the	fronto-temporoparietal	ROIs	over	time.	
For	each	time	point,	results	are	displayed	in	terms	of	estimated	betas,	standard	errors	
(SE)	and	p-values.	*,	p<0.05;	†,	p<0.065.	
	

Figure	3.13	shows	betas	estimated	from	the	models	,	representing	changes	of	the	

connections	within	the	fronto-temporoparietal	ROIs	over	time.	

	

	

	

	

	

	

	

	

	

	
Figure	 3.13	 Graphical	 representation	 of	 the	 changes	 of	 the	 connections	 within	 the	
fronto-temporoparietal	ROIs	over	time.	Colours	of	the	ROIs	are	the	same	as	the	ones	
used	in	the	previous	plot.	
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As	can	be	seen	from	the	table,	there	was	a	statistically	significant	change	

in	time	in	the	functional	connection	between	the	frontal	cortex	and	the	right	

TPJ	 (only	 channels	 22	 and	 25),	 with	 a	 maximum	 peak	 in	 the	 fronto-

temporoparietal	connections	at	30	months,	and	a	marginal	significant	change	

in	 time	 in	 the	 connection	 between	 the	 frontal	 cortex	 and	 the	 left	 TPJ	 (only	

channels	 9	 and	 12),	 with	 a	 maximum	 peak	 in	 the	 fronto-temporoparietal	

connections	at	24	months.	However,	these	two	statistically	significant	models	

did	not	survive	the	FDR	correction	for	multiple	comparisons.	

	

3.4.5	Discussion	

The	DMN	is	a	resting-state	network	that	has	been	extensively	studied	in	adults,	

but	 knowledge	 of	 its	 development	 is	 limited.	 In	 contrast	 to	 other	 primary	

sensory	resting-state	networks	that	are	online	at	birth	to	support	basic	primary	

sensory	functions,	recent	studies	suggested	that	the	DMN	develops	gradually	

over	the	first	years	of	life.	However,	most	of	the	data	on	the	development	of	the	

DMN	rely	on	studies	performed	with	fMRI	on	sleeping	infants.	This	might	limit	

the	understanding	of	 the	developmental	 trajectory	of	 this	network,	 as	 it	 has	

been	 shown	 that	 sleep	 stages	 can	 affect	 functional	 connectivity	 estimates	

(Mitra	et	al.,	2017;	Tagliazucchi	&	Laufs,	2014).	Therefore,	the	use	of	fNIRS	in	

awake	 infants	might	enrich	 this	 investigation.	With	 the	current	study,	 I	used	

this	 neuroimaging	 technique	 to	 explore	 the	 developmental	 trajectory	 of	 the	

fronto-temporoparietal	connectivity	–	as	a	proxy	of	the	DMN	–	in	awake	infants	

at	5	time	points.	The	one	sample	t-test	at	each	time	point	on	the	HbO2	and	the	

HHb	maps	 showed	 consistency	of	 the	 connectivity	patterns,	which	 is	 in	 line	

with	 HbO2	 and	 the	 HHb	 resting-state	 data	 acquired	 by	 previous	 studies,	
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suggesting	 reliability	 of	 the	 data	 acquired	 (Lu	 et	 al.,	 2010;	 Sasai,	 Homae,	

Watanabe,	&	Taga,	2011;	White	et	al.,	2009).		

As	 hypothesized,	 the	 paired	 t-tests	 showed	 stronger	 fronto-

temporoparietal	connections	at	older	ages	compared	to	younger	ages,	up	to	24	

months.	 This	 is	 consistent	 with	 previous	 studies	 that	 have	 found	 a	 gradual	

increase	of	DMN	connectivity	over	 the	 first	year	of	 life	(Damaraju,	Caprihan,	

Lowe,	et	al.,	2014;	Gao	et	al.,	2009).	24-month-olds	showed	the	same	number	

of	 fronto-temporoparietal	 connections	 as	 the	 30-month-olds	 and	 36-month-

olds	in	the	HbO2	map,	and	a	greater	of	connections	in	the	HHb	map	(but	none	

of	 these	 connections	 survived	 the	 FDR	 corrections	 for	multiple	 comparison,	

which	suggests	that	there	may	be	no	differences	in	the	fronto-temporoparietal	

connections	 between	24-months-olds	 and	 older	 ages	 also	 in	 the	HHb	map).	

Results	 from	 the	mixed	model	 analysis	 between	 the	 fronto-temporoparietal	

channels	 and	 between	 fronto-temporoparietal	 ROIs	 are	 consistent	with	 this	

finding,	 showing	 the	 maximum	 increase	 of	 the	 fronto-temporoparietal	

connections	at	24	months	or	at	30	months.	One	may	think	that	the	maximum	

peak	 of	 the	 functional	 connection	 at	 24	 months	 could	 be	 related	 to	

methodological	aspects,	such	as	a	higher	level	of	noise	in	the	data	at	this	age.	In	

fact,	a	high	level	of	movement	during	the	resting-state	acquisition	might	have	

led	to	a	spurious	increase	in	functional	connections	(Deen	&	Pelphrey,	2012;	

Power	et	al.,	2012;	van	Dijk	et	al.,	2012).	However,	the	noise	in	the	data	was	

limited	to	the	chucks	that	were	removed	during	the	pre-processing.	Among	all	

the	 time	 points,	 the	 11-month-olds	 provided	 the	 noisiest	 dataset,	 and	 the	

quality	 of	 the	 resting-state	 recordings	 increased	 with	 age.	 More	 likely,	 the	

maximum	peak	of	the	functional	connection	at	24	months	indicates	a	stability	

in	the	strength	of	the	connectivity	in	DMN	regions,	which	is	consistent	with	a	
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previous	study	from	Gao	and	colleagues	(2009),	that	showed	that	by	2	years,	

the	DMN	is	similar	 to	 the	one	observed	 in	adults	 (Gao	et	al.,	2009;	Gao,	Lin,	

Grewen,	 &	 Gilmore,	 2016).	 Therefore,	 in	 the	 current	 study,	 the	 absence	 of	

differences	in	the	fronto-temporoparietal	connections	at	24	months	and	older	

ages	 might	 reveal	 a	 set	 of	 fronto-temporoparietal	 connections	 that	 are	

relatively	stable	from	around	24	months	of	age.		

Interestingly,	while	there	were	no	differences	between	the	24	months	

and	the	older	ages	in	the	fronto-temporoparietal	connections,	the	24	months	

showed	 a	 greater	 number	 of	 connections	 within	 the	 whole	 set	 of	 channels	

compared	 with	 the	 older	 ages.	 This	 nonlinear	 growth	 of	 the	 functional	

connections	can	be	related	to	pruning	processes,	i.e.	the	removal	of	redundant	

connections	(Huttenlocher,	Vasilyeva,	&	Shimpi,	2004),	which	is	known	to	start	

at	around	2	years	and	lasts	for	almost	20	years	(Kolb	&	Gibb,	2011),	with	the	

aim	of	leaving	a	more	efficient	set	of	connections	(Thompson	et	al.,	2005)	and	

enabling	 the	 reorganization	 of	 functional	networks	 (Gao	 et	 al.,	 2016;	 Levitt,	

2003).	However,	while	the	pruning	process	affects	only	connections	outside	the	

fronto-temporoparietal	regions	is	unclear.	It	is	worth	mentioning	that	a	limited	

number	 of	 the	 connections	 within	 the	 whole	 set	 of	 channels	 that	 were	

significantly	 stronger	 at	 24	 months	 than	 at	 older	 ages	 survived	 the	 FDR	

correction	 for	 multiple	 comparison,	 which	 might	 indicate	 that	 the	 actual	

differences	 in	 the	 functional	 connections	 within	 the	 whole	 set	 of	 channels	

between	the	24-month-olds	and	older	ages	are	very	limited.		Nonetheless,	while	

most	of	 the	previous	 longitudinal	studies	acquired	resting-state	data	up	to	2	

years,	or	with	intervals	not	as	frequent	as	6	months	(for	example	see	Damaraju,	

Caprihan,	&	Lowe,	2014;	Gao	et	al.,	2009;	Homae	et	al.,	2010),	this	is	the	first	

study	 that	 explored	 the	 development	 of	 the	 fronto-temporoparietal	
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connections	 up	 to	 3	 years	 at	 frequent	 intervals.	 Further	 research	 needs	 to	

clarify	the	developmental	trajectory	of	the	fronto-temporoparietal	connections	

after	 the	2nd	 year	of	 life,	 to	 confirm	 the	 evidence	of	 a	maximum	peak	of	 the	

fronto-temporoparietal	connections	at	24	months.	

Among	 the	 paired	 sample	 t-tests,	 the	 limited	 number	 of	 functional	

connections	 that	 survived	 the	 FDR	 correction	 for	 multiple	 comparisons	

represents	 the	 main	 limitation	 of	 this	 study.	 A	 post-hoc	 power	 analysis	

performed	with	 G*Power	 (Faul,	 Erdfelder,	 Lang,	 &	 Buchner,	 2007)	 revealed	

that	in	order	to	detect	a	medium	effect	size	as	significant	at	the	5%	level	(d=0.5,	

Cohen,	1988),	a	sample	of	54	participants	would	have	been	required	for	each	

paired	 sample	 t-test.	 This	 indicates	 that	 the	 comparisons	between	 two	 time	

points	 are	 underpowered	 and	 results	 should	 be	 interpreted	 with	 caution.	

However,	most	 of	 the	 linear	mixed	models	 survived	 the	 FDR	 correction	 for	

multiple	comparison,	which	allows	more	confidence	in	interpreting	the	results.	

It	 is	interesting	to	notice	that	the	main	reason	for	exclusion	from	the	

analysis	changed	over	time.	While	participants	at	younger	ages	were	excluded	

mainly	because	their	artefact-free	resting-state	data	did	not	reach	the	minimum	

length	or	because	they	refused	to	wear	the	fNIRS	cap,	at	older	ages	the	main	

reason	for	exclusion	was	the	high	number	of	channels	with	poor	light	intensity.	

This	 informs	 fNIRS	 users	 on	 different	 challenges	 related	 to	 test	 infants	 at	

different	ages	with	this	technique,	with	younger	infants	being	more	fidgety	and	

inattentive,	and	the	older	ones	with	 inevitably	more	hair,	which	 is	known	to	

affect	the	source-detector	coupling.	The	difficulty	for	young	infants	to	reach	a	

quiet	state	reduced	the	11-month-old	sample,	compared	with	 the	other	 time	

points,	limited	the	degrees	of	freedom	of	the	comparison	with	the	11	months.	

In	addition	to	 this	methodological	 limitation,	 the	 fact	 that	the	participants	at	
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different	time	points	were	tested	with	two	different	fNIRS	array	configurations	

did	 not	 allow	 the	 comparisons	 of	 some	 of	 the	 fronto-temporoparietal	

connections	between	all	the	time	points.	Although	the	44-channel	configuration	

was	 an	 extension	 of	 the	 30-channel	 configuration,	 comparisons	 at	 11	 at	 18	

months	were	limited	by	the	absence	of	the	additional	channels.	As	mentioned	

in	Chapter	2,	 the	 rationale	behind	adding	 the	 additional	 channels	 to	 the	30-

channel	configuration	was	about	the	improvement	of	the	detection	of	the	TPJ	

activation,	 one	 of	 the	 core	 region	 of	 the	 investigation	 of	 the	 developmental	

changes	in	the	fronto-temporoparietal	connections.	

Despite	 the	 mentioned	 limitations,	 this	 study	 seems	 to	 suggest	 a	

gradual	increase	of	the	fronto-temporoparietal	connectivity,	with	a	peak	at	24	

months	which	might	indicate	that	the	DMN	is	as	shaped	as	in	adults	by	this	age.	

Moreover	the	gradual	decrease	of	the	functional	connections	within	the	whole	

set	of	channels	may	indicate	an	effect	of	pruning.	As	this	is	the	first	time	that	

functional	connectivity	was	estimated	in	awake	infants	with	fNIRS,	this	work	

might	be	considered	as	a	reference	for	other	researchers	who	are	interested	in	

this	technique.	This	study	validated	a	method	of	resting-state	data	acquisition	

from	 awake	 infants,	 and	 provided	 a	 data	 analysis	 pipeline	 that	 allows	 the	

investigation	of	the	functional	connections.	Therefore,	a	new	line	of	research	

can	benefit	from	this	study	in	the	future,	and	in	this	PhD	work	this	technique	is	

applied	in	the	next	chapter.	In	fact,	it	has	been	demonstrated	in	adults	that	the	

DMN	supports	self-referential	processing	(Gao	et	al.,	2016;	Golland	et	al.,	2008),	

and	 researchers	 assumed	that	 its	gradual	 shaping	between	 the	 first	and	 the	

second	year	of	life	might	reflect	the	emergence	of	self-awareness	(Amsterdam,	

1972).	 However,	 to	 date	 there	 is	 no	 scientific	 evidence	 supporting	 this	

hypothesis.	The	next	chapter	aims	to	fill	this	gap	by	exploring	whether	different	
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levels	of	self-awareness	at	18	months	might	be	associated	with	the	strength	in	

the	fronto-temporoparietal	connectivity	–	as	an	index	of	the	DMN	–	using	the	

technique	validated	in	this	current	study.	

	



Chapter	4	

	 186 

	

	

	

	

	

	

Chapter	4	
	

	
Fronto-temporoparietal	connectivity	as		

a	potential	neural	marker	of		
self-awareness	in	18-month-olds:		

a	resting	state	fNIRS	study		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Chapter	4	

	 187 

4.1	Abstract	

How	 and	when	 a	 concept	 of	 the	 ‘self’	 emerges	 has	 been	 the	 topic	 of	 much	

interest	 in	 developmental	 psychology,	 yet	 there	 is	 still	 relatively	 little	

agreement	on	the	validity	of	existing	markers	of	self-awareness.	Self-awareness	

is	 thought	 to	 develop	 at	 around	 18	 months,	 when	 infants	 begin	 to	 show	

evidence	of	mirror	self-recognition.	Understanding	the	neural	underpinnings	of	

self-awareness	has	been	a	focus	interest,	and	adult	research	has	shown	that	the	

DMN,	a	network	that	is	activated	when	we	are	mind-wandering,	 is	related	to	

self-processing.	Additionally,	the	TPJ	and	the	mPFC,	core	regions	of	the	DMN,	

are	activated	in	self-processing	tasks.	However,	we	know	very	little	about	the	

neural	mechanisms	supporting	self-processing	at	the	age	when	the	sense	of	self	

is	still	emerging.	Taking	advantage	of	 fNIRS,	 I	assessed	whether	 infants	who	

recognize	 themselves	 in	 the	mirror	–	a	behaviour	 that	 is	 thought	 to	 indicate	

emerging	 self-awareness	 -	 exhibit	 differences	 in	 the	 fronto-temporoparietal	

connectivity,	 –	 a	 possible	 proxy	 for	 the	 DMN	 -	 when	 compared	 with	 Non-

Recognizers.	

	 Resting	 state	 data	 were	 collected	 from	 18	 Recognizers	 and	 22	 Non-

Recognizers	 at	 18	months	 of	 age,	 and	 results	 showed	 significantly	 stronger	

fronto-temporoparietal	 connectivity	 in	 Recognizers	 compared	 to	 Non-

Recognizers.	 This	 suggests	 that	 fronto-temporoparietal	 connectivity	 is	

associated	 not	 only	 with	 self-processing	 in	 adulthood,	 but	 also	 with	 the	

emergence	of	self-awareness	in	infancy.	
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4.2	Introduction	

The	emergence	of	an	infant’s	sense	of	self	is	a	topic	of	investigation	which	has	

progressed	very	little	in	developmental	psychology	over	the	last	decades,	as	it	

is	 one	 that	 is	 difficult	 to	 investigate	 and	 operationalize	 empirically.	 There	

appears	to	be	a	consensus	that	we	are	born	with	some	‘minimal’	sense	of	self	

that	allows	us	to	interact	with	the	environment	(Zahavi,	2017),	and	empirical	

work	 suggests	 that	 young	 infants	 have	 some	 rudimentary	 bodily	 self-

perception	 abilities	 (Filippetti	 et	 al.,	 2013).	 Nevertheless,	 there	 is	 also	 a	

consensus	 that	 there	 is	 a	 distinction	 between	 physical	 self-perception	 and	

psychological	self-perception	(Gillihan	&	Farah,	2005)	and	arguably,	 it	 is	not	

clear	 to	 which	 extent	 the	 currently	 available	 measures	 assess	 physical	 or	

psychological	 self-perception	 (Bard,	 Todd,	 Bernier,	 Love,	 &	 Leavens,	 2006;	

Gadlin	&	Ingle,	1975).	The	classic	test	to	assess	self-awareness	in	infancy	is	the	

MSR	 task	 (Amsterdam,	 1972;	 Rochat,	 2003),	 which	 has	 been	 used	 also	 in	

animals	(Gallup,	1970;	Marino,	Reiss,	&	Gallup,	1994;	Parker,	Mitchell,	&	Boccia,	

1995).	While	young	infants	placed	in	front	of	a	mirror	appear	to	perceive	their	

specular	image	as	an	extension	of	the	environment,	from	around	18	months,	

infants	begin	to	systematically	detect	the	link	between	seen	and	felt	movements	

(Rochat,	2003),	suggesting	that	at	around	this	age,	they	start	to	understand	that	

what	they	see	in	the	mirror	is	themselves.	Many	have	argued	that	this	physical	

self-perception	 reflects	a	broader	 conceptualization	of	 the	 self	 (Gallup	 et	al.,	

2014;	 Suddendorf	 &	 Butler,	 2013),	 including	 elements	 of	 psychological	 self-

perception.	 Nevertheless,	 despite	 being	 the	 dominant	 measure	 of	 emerging	

self-awareness,	there	is	to	this	day	no	general	acceptance	of	the	claim	that	the	

MSR	 test	 reflects	 a	 developing	 self-concept.	 Critics	 of	 this	 test	 argued	 that	

infants’	 self-recognition	 reflects	 a	 pure	 detection	 of	 matching	 visual	 and	
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kinaesthetic	information	(Heyes,	1996;	Mitchell,	1993),	or	the	understanding	

of	the	reflective	proprieties	of	the	mirror	(Loveland,	1986).	

While	our	current	knowledge	of	early	self-related	processing	is	limited,	

much	 work	 in	 adult	 cognitive	 neuroscience	 has	 already	 made	 progress	 in	

identifying	the	neural	underpinnings	of	self-related	processing.	Specifically,	a	

network	of	brain	regions	engaged	in	passive	rest	in	the	low-frequency	range	

(<0.1	Hz),	appears	to	be	recruited	during	self-related	processing.	This	so-called	

DMN	overlaps	considerably	with	the	social	brain	network	(Davey	et	al.,	2016;	

Greicius	et	al.,	2003;	Harrison	et	al.,	2008;	Mars	et	al.,	2012;	Molnar-Szakacs	&	

Uddin,	2013;	Raichle,	2015;	Schilbach	et	al.,	2008;	Sporns,	2010),	and	is	thought	

to	play	a	pivotal	 role	 in	several	 introspective	and	adaptive	mental	activities,	

such	 as	 autobiographical	 memory	 (Philippi,	 Tranel,	 Duff,	 &	 Rudrauf,	 2014;	

Yang,	 Bossmann,	 Schiffhauer,	 Jordan,	 &	 Immordino-Yang,	 2013),	 theory	 of	

mind	and	mentalizing	(Li,	Mai,	&	Liu,	2014;	Mars	et	al.,	2012),	and	planning	and	

envisioning	 future	 events	 (Østby	 et	 al.,	 2012;	 Xu,	 Yuan,	 &	 Lei,	 2016).	 Self-

referential	mental	processing	is	the	common	feature	of	most	of	the	processes	

which	 elicit	 DMN	 engagement,	 suggesting	 that	 this	 network	 is	 our	 ‘intrinsic	

system’	related	to	self-related	signals	and	self-processing	(Davey	et	al.,	2016;	

Golland	 et	 al.,	 2008;	Molnar-Szakacs	&	 Uddin,	 2013;	 Raichle,	 2015;	 Sporns,	

2010).	The	activity	in	the	DMN	has	been	shown	to	be	remarkably	similar	to	the	

one	observed	during	self-processing	tasks,	suggesting	that	during	quiet	resting	

there	might	be	a	shift	from	perceiving	the	external	world	to	internal	modes	of	

cognition	(Buckner	&	Carroll,	2007).	This	 is	consistent	with	 imaging	studies	

that	demonstrated	that	the	DMN	activity	at	rest	was	positively	correlated	with	

subjects	 reports	 of	mind	wandering	 and	 self-related	 thoughts	 (Mason	 et	 al.,	

2007;	 McKiernan	 et	 al.,	 2006).	 Crucially,	 the	 DMN	 appears	 to	 be	 primarily	
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involved	 in	 psychological	 self-processing	 and	 less	 so	 in	 physical	 self-

recognition	(Qin	&	Northoff,	2011).		

To	 date	we	 know	 very	 little	 about	 the	 neural	 underpinnings	 of	 self-

awareness	in	the	developing	brain.	However,	given	the	debate	surrounding	the	

validity	of	the	MSR	task	as	an	indicator	of	self-awareness	beyond	physical	self-

recognition	 (Suddendorf	 &	 Butler,	 2013),	 investigating	 the	 relationship	

between	the	DMN	and	self-recognition	in	the	mirror	could	inform	this	debate.	

Specifically,	if	a	network	of	regions	overlapping	with	those	areas	considered	to	

comprise	the	DMN	is	associated	with	success	on	the	MSR	task	in	infants,	it	could	

suggest	that	MSR	indexes	a	broader	self-awareness	than	simple	physical	self-

recognition,	 in	 line	 with	 those	 studies	 that	 have	 found	 relationships	 with	

empathy	and	personal	pronoun	use	(Bischof-Köhler,	2012;	Lewis	&	Ramsay,	

2004).	One	of	 the	 few	 studies	 that	 investigated	 the	neural	 substrates	of	 the	

developing	sense	of	self	was	found	that	the	TPJ	maturation	was	associated	with	

self-recognition	as	early	as	15	months	of	age,	suggesting	a	role	for	TPJ	during	

the	 emergence	 of	 self-awareness.	 However,	while	 some	 research	 has	 begun	

exploring	 the	maturation	 of	 the	 DMN	 during	 the	 first	 years	 of	 life	 (e.g.	 see	

Emberson,	Richards,	&	Aslin,	2015;	Fransson,	Åden,	Blennow,	&	Lagercrantz,	

2011;	Homae,	Watanabe,	Nakano,	&	Taga,	2011),	and	the	experiment	present	

in	the	previous	chapter	is	consistent	with	this,	to	date,	we	have	no	knowledge	

of	how	spontaneous	fluctuations	in	core	regions	for	self-processing	and	part	of	

the	DMN	might	be	related	to	the	emergence	of	self-awareness.	

fNIRS	allows	the	acquisition	of	resting-state	recordings	under	similar	

conditions	 to	 those	 in	 which	 data	 on	 the	 DMN	 involvement	 in	 self-related	

processing	has	been	acquired	in	adults.	Additionally,	compared	to	other	infant-

friendly	neuroimaging	methods	such	as	electroencephalography,	fNIRS	offers	
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clear	 advantages	 for	 assessing	 functional	 connectivity,	 as	 highlighted	 in	

Chapter	 3.	 Previous	 adult	 studies	 have	 used	 fNIRS	 to	 assess	 resting-state	

functional	connectivity	(Lu	et	al.,	2010;	Mesquita	et	al.,	2010;	Sasai	et	al.,	2012),	

but	due	to	the	inherent	properties	of	fNIRS,	its	use	is	limited	to	the	outer	layers	

of	 the	 cortex.	 Therefore,	 the	 fronto-temporoparietal	 connectivity	 was	

investigated	as	a	component	of	the	DMN,	as	in	the	study	presented	in	section	

3.4.		

In	the	current	study,	I	employed	fNIRS	during	awake	rest	to	investigate	

the	relationship	between	fronto-temporoparietal	functional	connectivity,	as	a	

putative	 index	of	DMN	activity,	and	self-awareness	as	measured	by	 the	MSR	

task.	 Based	 on	 previous	 literature	 implicating	 the	 DMN	 in	 self-related	

processes,	 I	 hypothesized	 that	 infants	who	 exhibited	 self-recognition	would	

exhibit	greater	 fronto-temporoparietal	connectivity,	as	measured	by	resting-

state	fNIRS,	compared	to	infants	who	did	not	yet	exhibit	self-recognition.		

	

4.3	Methods	

4.3.1	Participants	

fNIRS	resting	state	data	were	acquired	from	43	18-month-olds	(23	males,	age	

mean	±	SD	=	553.11	±	12.17	days).	An	additional	52	infants	were	excluded	

because:	(i)	their	dataset	did	not	reach	a	minimum	of	100	seconds	of	recording	

after	behavioural	coding	(28	infants);	(ii)	they	refused	to	wear	the	fNIRS	hat	or	

poor	positioning	of	the	fNIRS	headgear/hat	(18	infants);	(iii)	more	than	30%	of	

the	channels	had	to	be	excluded	due	to	poor	light	intensity	readings	(6	infants).	

For	more	details	about	behavioural	coding	and	mean	intensity	of	the	channels,	

see	Chapter	3,	section	3.4.3.3.		
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All	included	infants	were	born	full-	term,	healthy	and	with	normal	birth	

weight.	Written	 informed	 consent	was	 obtained	 from	 the	 infant’s	 caregiver	

prior	to	the	start	of	the	experiment.		

	

4.3.2	MSR	task	and	coding	scheme	

Prior	to	the	fNIRS	resting	state-acquisition,	self-awareness	was	assessed	with	

the	MSR	task	(Amsterdam,	1972).	The	task	took	place	in	a	room	with	a	mirror	

positioned	against	one	of	the	walls.	For	18	out	of	the	43	infants,	one	camera	was	

used	to	record	the	task,	while	for	the	rest	of	the	sample	three	cameras	recording	

from	different	angles	were	used.	One	of	the	experimenters	focused	on	adjusting	

the	position	of	the	cameras	with	the	possibility	to	zoom	in	on	the	image,	making	

sure	the	cameras	captured	a	full	view	of	the	infant	in	front	of	the	mirror	(two	

cameras	 from	 the	 back	 and	 one	 from	 the	 side	 of	 the	 mirror).	 To	 avoid	

interfering	with	the	testing	session,	the	experimenter	controlling	the	cameras	

entered	 the	 testing	 room	 first	 and	 hid	 behind	 the	 curtains	 covering	 the	

computer	station.	A	second	experimenter	first	engaged	the	infant	in	a	warm-up	

play	 session	 in	 the	 room,	 and	 then	 redirected	 the	 infant’s	 attention	 to	 the	

mirror.	Once	the	infant	had	visually	fixated	the	mirror	image	of	his/her	face	at	

least	three	times,	the	experimenter	covertly	applied	a	red	dot	with	lipstick	on	

his/her	 cheek,	 while	 pretending	 to	 wipe	 the	 infant’s	 nose.	 After	 this,	 the	

experimenter	again	engaged	the	infant	in	front	of	the	mirror,	making	sure	that	

the	 infant	 looked	 at	 him/herself	 at	 least	 three	 times.	 The	 experimenter	

prompted	 the	 child	 to	 look	 at	 the	 mirror	 by	 saying	 ‘Look	 there’	 whenever	

necessary,	 but	 the	 only	 prompt	 for	 self-recognition	 that	 was	 used	 was	 the	

question	 "Who	 is	 that?",	 for	 a	 maximum	 of	 three	 times.	 This	 is	 the	 same	

procedure	 used	 by	 other	 infant	 studies	 (Asendorpf	 &	 Baudonnière,	 1994;	
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Asendorpf	et	al.,	1996;	Kristen-Antonow,	Sodian,	Perst,	&	Licata,	2015;	Lewis	&	

Carmody,	2008;	Nielsen,	Dissanayake,	&	Kashima,	2003;	Zmyj	et	al.,	2013).	The	

experimenter	used	bubbles	to	engage	the	child	in	playing,	both	before	and	after	

the	red	mark	was	placed	(to	avoid	any	differences	between	the	two	parts	of	the	

test).	The	caregiver	was	present	in	the	room	for	the	whole	testing	session,	but	

asked	not	to	alert	the	child	to	his/her	image	in	the	mirror	and	to	stay	outside	of	

the	visual	field	reflected	in	the	mirror,	preventing	the	infant	from	seeing	his/her	

image	reflected	as	a	cue	for	self-recognition.	The	experimenter	also	remained	

outside	the	mirror	field	of	view.		

Two	 experimenters	 independently	 classified	 the	 infants	 as	

‘Recognisers’,	‘Ambiguous’,	or	‘Non-Recognisers’	based	on	their	behaviours	in	

front	of	the	mirror	after	the	red	mark	was	placed,	and	they	agreed	in	96%	of	

the	 cases.	 Discrepancies	 were	 discussed	 until	 agreement	 was	 reached.	

Participants	were	defined	as	 ‘Recognisers’	 if	they	touched	the	cheek	with	the	

red	mark,	the	nose	or	the	other	cheek.	They	were	classified	as	‘Ambiguous’	if	

they	said	their	name	when	looking	at	themselves	in	the	mirror	but	did	not	touch	

their	face.	All	other	behaviours	fell	in	the	Non-Recognisers	category.	

	

4.3.3	Resting	state	data	acquisition,	pre-processing	and	analysis		

See	section	2.2.1	for	information	about	the	fNIRS	cap	and	the	arrays	design.	

See	section	2.2.3	for	information	about	the	NIRS	system	proprieties	and	the	

recording.		

In	 this	 study,	 participants	 were	 tested	 with	 the	 two	 different	 fNIRS	

arrays	described	in	Chapter	2,	section	2.2.112.	The	first	array	design,	including	

																																																													
12	The	44-channel	configuration	was	an	extension	of	the	30-channel	configuration	and	
included	two	additional	rows	of	optodes	that	added	7	channels	per	hemisphere,	 in	a	
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30	channels,	was	used	to	test	20	out	of	the	43	participants;	the	second	design,	

including	44	 channels,	was	 used	 to	 test	 23	 out	 of	 the	 43	 participants.	 Both	

configurations	 shared	 the	 design	 and	 the	 location	 of	 the	 channels	 covering	

frontal,	inferior	frontal	and	temporal	regions	(30	channels	out	of	44),	therefore	

the	 data	 acquired	 with	 the	 two	 different	 configurations	 can	 be	 analysed	

together.	As	mentioned	in	Chapter	2,	a	range	of	several	cap	sizes	was	available,	

in	order	to	adjust	the	cap	size	to	the	participant’s	head	circumference.	Table	4.1	

lists	 information	 about	 source-detector	 separation	 and	 number	 of	 infants	

included	in	the	analysis	who	were	tested	with	each	cap	size.		

	

	 	 	 	

48	cm	 25	mm	 30	mm	 28/43	

50	cm	 26	mm	 31	mm	 15/43	
	

Table	4.1	S-D	separation	and	number	of	infants	tested	with	each	cap	size.	
	

The	procedure	for	the	resting-state	data	acquisition	was	the	same	as	the	

one	described	in	the	second	study	in	Chapter	3,	section	3.3.3.2.	fNIRS	data	pre-

processing	 and	 analysis	 were	 the	 same	 as	 the	 one	 described	 in	 Chapter	 3,	

section	3.3.3.3.	

	

4.4	Results	

Out	of	the	43	infants	that	contributed	data	to	the	resting-state	analyses,	18	were	

classified	as	Recognisers	and	22	as	Non-Recognisers.	Only	3	participants	were	

classified	as	Ambiguous,	and	given	the	small	size	of	this	group,	I	focused	the	

																																																													
superior	location	to	the	two	existing	lateral	arrays.	This	allowed	to	improve	detection	
of	TPJ	activation,	a	core	region	of	interest	for	this	study.	
	

Cap	size	 S-D	temporoparietal	lobe	 S-D	frontal	lobe	 Number	of	participants	
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analysis	 only	 on	 infants	 who	 clearly	 fell	 into	 the	 Recognisers	 and	 Non-

Recognisers	categories.	The	two	groups	did	not	show	any	significant	difference	

in	parameters	that	could	potentially	affect	resting-state,	such	as	age	(mean	±	

SD	Recognisers	=	557.05	±	9.29	days,	mean	±	SD	Non-	Recognisers	=	550.54	

±	 14.48	 days),	 t(38)=1.18,	 p	 =0.24,	 and	 total	 length	 of	 the	 data	 sets	 after	

cleaning	(mean	±	SD	Recognisers	=164.65	±	69.23	seconds,	mean	±	SD	Non-

Recognisers	=	187.03	±	61.61	seconds),	t(38)=1.08,	p	=0.28.	

As	in	the	study	presented	in	section	3.4,	prior	to	any	further	analyses,	I	

investigated	the	consistency	of	the	connectivity	patterns	between	the	HbO2	and	

HHb	 signal,	 performing	 one	 sample	 t-tests	 on	 the	 Fisher-transformed	

correlation	 coefficients	 on	 both	 chromophores	 in	 the	whole	 sample.	 In	 fact,	

some	previous	adult	studies	explored	the	relationship	between	HbO2	and	HHb	

in	fNIRS	resting-state	data,	and	revealed	a	comparable	pattern	of	spontaneous	

fluctuation	 of	 the	 two	 chromophores,	 suggesting	 a	 similar	 underlying	

neurophysiological	mechanism	during	resting-state	(Lu	et	al.,	2010;	Sasai	et	al.,	

2011;	White	et	al.,	2009).	Results	are	summarise	in	Table	4.2	and	Figure	4.1	

shows	 the	 fronto-temporoparietal	 connections	 that	were	 significant	 per	 age	

group,	 for	both	HbO2	and	HHb.	 Significant	 functional	 connections	within	 the	

whole	 set	 of	 channels	 were	 also	 plotted	 to	 assess	 whether	 functional	

connections	in	the	whole	set	of	channels.		

Fronto-	temporoparietal	connectivity	 Whole	set	of	channels	

HbO2	 HHb	 HbO2	 HHb	

p<0.05	 FDR	
corrected	 p<0.05	 FDR	

corrected	 p<0.05	 FDR	
corrected	 p<0.05	 FDR	

corrected	

5	 2	 2	 /	 112	 77	 89	 63	
	

Table	4.2	Number	of	functional	connections	that	are	significantly	different	from	zero	in	
the	whole	sample,	within	the	fronto-temporoparietal	regions	and	in	the	whole	set	of	
channels,	in	HbO2	and	in	HHb.	p-values	are	reported	uncorrected	and	FDR	corrected.	
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Figure	 4.1.	 Graphical	 representation	 of	 the	 one	 sample	 t-tests	 in	 the	whole	 sample	
within	the	fronto-temporoparietal	regions	and	within	the	whole	set	of	channels.	HbO2	
is	plotted	in	red,	Hbb	is	plotted	in	blue.	A,	fronto-temporoparietal	connections,	HbO2;	B,	
fronto-temporoparietal	connections,	HHb;	C,	Whole	set	of	channels,	HbO2;	D,	Whole	set	
of	channels,	HHb.	Solid	lines	show	connections	between	frontal	and	temporoparietal	
regions,	while	dotted	lines	the	connections	within	the	whole	brain.		
	

In	 order	 to	 test	 the	 hypothesis	 of	 greater	 functional	 connectivity	 in	

fronto-temporoparietal	areas	in	infants	that	exhibit	self-recognition	compared	

with	 those	 who	 did	 not,	 the	 Fisher-transformed	 correlation	 coefficients	 of	

Recognisers	and	Non-Recognisers	were	compared	using	independent	sample	t-

tests.	Driven	by	my	hypothesis,	the	main	interest	was	to	compare	Recognisers	

and	Non-Recognisers	on	the	fronto-temporoparietal	connections	–	as	a	proxy	

for	the	DMN	–	but	we	report	here	also	comparisons	between	connections	within	

the	whole	set	of	channels	for	completeness.	Results	are	summarise	in	Table	4.3	

and	Figure	4.2	shows	connections	that	were	significantly	different	between	the	

two	groups	within	both	the	HbO2	and	the	Hbb	maps	(p<0.05).	All	the	pairs	of	
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functional	 connections	 were	 analysed,	 as	 more	 than	 half	 of	 the	 sample	

contributed	to	the	statistical	tests.	See	Appendix	B	for	degrees	of	freedom	of	the	

t-test	between	the	two	groups	in	each	connection	(Supplementary	Table	11).	

	

comparison	

Fronto-	temporoparietal	connectivity	 Whole	set	of	channels	

HbO2	 HHb	 HbO2	 HHb	

p<0.05	 FDR	
corrected	 p<0.05	 FDR	

corrected	 p<0.05	 FDR	
corrected	 p<0.05	 FDR	

corrected	
Recs>	

Non-Recs	 13/14	 3/14	 7/8	 3/8	 48/57	 6/57	 19/27	 9/27	
Non-Recs>	

Recs	 1/14	 /	 1/8	 1/8	 9/57	 /	 8/27	 5/27	
	

Table	 4.3	Number	 of	 functional	 connections	 that	are	 significantly	 different	 between	
Recognisers	 and	 Non-Recognisers	 in	 the	 44-channel	 configuration,	 in	 the	 fronto-
temporoparietal	connections	and	in	the	whole	set	of	channels	in	HbO2	and	in	HHb.	p-
values	are	reported	both	uncorrected	and	FDR	corrected.	
	

	
Figure	 4.2.	 Graphical	 representation	 of	 the	 differences	 in	 fronto-temporoparietal	
connectivity	 between	 Recognisers	 and	 Non-Recognisers.	 A,	 fronto-temporoparietal	
connections,	 HbO2;	 B,	 fronto-temporoparietal	 connections,	 HHb;	 C,	 Whole	 set	 of	
channels,	HbO2;	D,	Whole	set	of	channels,	HHb.	Solid	lines	show	connections	between	
frontal	 and	 temporoparietal	 regions,	 while	 dotted	 lines	 the	 connections	 within	 the	
whole	brain.		
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Table	4.4	reports	difference	in	connectivity	between	Recognisers	and	

Non-Recognisers	 only	 within	 the	 set	 of	 30	 channels	 in	 common	 to	 all	 the	

participants.	

	

	
Table	 4.4	Number	 of	 functional	 connections	 that	are	 significantly	 different	 between	
Recognisers	 and	 Non-Recognisers	 in	 the	 30-channel	 configuration,	 in	 the	 fronto-
temporoparietal	connections	and	in	the	whole	set	of	channels	in	HbO2	and	in	HHb.	p-
values	are	reported	both	uncorrected	and	FDR	corrected.	

	

Figure	4.3	shows	difference	 in	connectivity	between	Recognisers	and	

Non-Recognisers	 only	 within	 the	 set	 of	 30	 channels	 in	 common	 to	 all	 the	

participants	(p<0.05).		

comparison	

Fronto-	temporoparietal	connectivity	 Whole	set	of	channels	

HbO2	 HHb	 HbO2	 HHb	

p<0.05	 FDR	
corrected	 p<0.05	 FDR	

corrected	 p<0.05	 FDR	
corrected	 p<0.05	 FDR	

corrected	
Recs>	
Non-Recs	 8/9	 2/9	 4/5	 2/5	 28/28	 7/57	 7/13	 4/13	
Non-Recs>	

Recs	 1/9	 /	 1/5	 1/5	 2/28	 /	 6/13	 3/13	
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Figure	4.3	Graphical	 representation	of	 the	differences	 in	 the	 fronto-temporoparietal	
connectivity	 in	 the	 30	 channels	 in	 common	 to	 all	 the	 participants.	 A,	 fronto-
temporoparietal	 connections,	 HbO2;	 B,	 fronto-temporoparietal	 connections,	 HHb;	 C,	
Whole	 set	 of	 channels,	 HbO2;	 D,	 Whole	 set	 of	 channels,	 HHb.	 Solid	 lines	 show	
connections	 between	 frontal	 and	 temporoparietal	 regions,	 while	 dotted	 lines	 the	
connections	within	the	whole	brain.	
	

4.5	Discussion	

Investigating	 the	 ontogeny	 of	 self-awareness	 remains	 challenging	 (Zahavi	&	

Roepstorff,	2011),	and	one	important	way	of	moving	this	field	of	study	forward	

is	to	develop	measures	which	have	a	high	degree	of	validity.	While	it	has	been	

claimed	 the	 MSR	 test	 indexes	 an	 emerging	 self-concept	 (Gallup,	 Platek,	 &	

Spaulding,	2016),	 there	 is	still	no	general	agreement	that	 this	 is	the	case.	To	

date,	the	confidence	in	the	MSR	test	as	a	measure	of	emerging	self-awareness	is	

limited	by:	 a)	 a	 lack	of	 alternative	 age-appropriate	 self-related	 tasks	against	

which	 performance	 on	 the	 MSR	 can	 be	 compared	 and	 b)	 alternative	
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explanations	for	success	on	the	MSR	test	which	do	not	involve	any	self-related	

processing	(Heyes,	1994b).	In	the	current	study,	I	approached	this	question	by	

asking	whether	 a	 functional	 network	 of	 brain	 regions	 in	 adults	 –	 the	 DMN,	

which	 is	 commonly	 thought	 to	 be	 involved	 in	 psychological	 self-related	

processing	–	is	associated	with	MSR	in	infancy.	Specifically,	I	hypothesized	that	

if	the	MSR	task	reflects	self-related	processing,	and	not	merely	recognition	of	

the	 physical	 self,	 or	 a	 matching	 of	 seen	 and	 felt	 movements,	 then	 regions	

comprising	 the	 DMN	 could	 differentiate	 those	 infants	 who	 do	 and	 do	 not	

recognize	 themselves	 in	 the	 mirror.	 The	 results	 showed	 support	 this	

hypothesis,	showing	that	the	fronto-temporoparietal	connectivity	is	associated	

with	 the	 emergence	of	 infants’	 self-recognition,	 suggesting	 this	 as	 a	possible	

neural	marker	for	the	development	of	the	sense	of	self	in	early	development.		

While	 I	 cannot	 claim	 that	 this	 fronto-temporoparietal	 connectivity	

reflects	the	entire	DMN,	this	increased	connectivity	in	Recognizers	is	consistent	

with	previous	adult	reports	of	a	link	between	frontal	and	temporoparietal	areas	

and	 the	 sense	 of	 self	 (Davey	 et	 al.,	 2016;	 Molnar-Szakacs	 &	 Uddin,	 2013;	

Philippi,	 2012).	 The	 pattern	 of	 long-range	 connectivity	 displayed	 by	 infants	

who	have	a	more	robust	sense	of	self	at	18	months	of	age	might	be	supported	

by	an	advanced	integration	in	a	network	of	core	areas	for	self-processing.	The	

functional	 connections	 between	 these	 areas	 at	 rest	 displayed	 by	 those	 who	

recognised	 themselves	 in	 the	 mirror	 compared	 to	 those	 who	 did	 not	 may	

underlie	an	ongoing	process	of	monitoring	 self-relevant	 internal	 signals	 and	

thoughts	during	the	absence	of	any	specific	cognitive	and	social	stimulation.	It	

is	worth	mentioning	that	the	connections	stronger	in	the	Recognisers	than	in	

the	Non-Recognisers	 surviving	 the	FDR	 correction	 for	multiple	 comparisons	

are	 limited.	A	post-hoc	power	analysis	performed	with	G*Power	(Faul	et	al.,	
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2007)	 revealed	 that	 a	 power	 of	 only	 0.46	 is	 achieved	 for	 an	 effect	 size	 as	

significant	at	the	5%	level	(d=0.5,	Cohen,	1988),	given	18	and	22	participants	

in	the	two	groups.		

These	 findings	 of	 a	 possible	 role	 for	 the	 fronto-temporoparietal	

connections	in	the	emergence	of	self-awareness	are	broadly	consistent	with	the	

only	previous	study	which	has	investigated	the	neural	basis	of	MSR	in	infants.	

In	 that	 study,	 Lewis	 &	 Carmody	 (2008)	 found	 that	 infants	 who	 recognized	

themselves	in	the	mirror	showed	greater	maturation	of	the	left	temporoparietal	

junction,	 a	 region	 that	 is	 central	 to	 the	DMN.	 In	 the	 current	 study,	 the	 vast	

majority	 of	 the	 fronto-temporoparietal	 connections	 that	 were	 stronger	 in	

Recognizers	than	in	Non-Recognizers	are	observed	in	the	right	hemisphere,	a	

tendency	 which	 has	 also	 been	 reported	 in	 previous	 adult	 studies	 (Keenan,	

Nelson,	O’Connor,	&	Pascual-Leone,	2001;	Kircher	et	al.,	2001;	Molnar-Szakacs	

&	Uddin,	2013;	Platek,	Keenan,	Gallup,	&	Mohamed,	2004;	Platek	et	al.,	2006;	

Sugiura	et	al.,	2005).	Moreover,	a	recent	study	aimed	at	identifying	structural	

brain	correlates	of	MSR	in	chimpanzees	reported	increased	right	hemisphere	

fronto-parietal	white	matter	connectivity	in	chimpanzees	who	passed	the	MSR	

task	(Hecht,	Mahovetz,	Preuss,	&	Hopkins,	2017).	While	these	previous	studies	

analysed	structural	connectivity,	our	study	provides	additional	evidence	for	the	

importance	of	this	network	of	brain	regions	by	demonstrating	a	relationship	

between	functional	connectivity	in	these	areas	and	MSR.	

	 While	 the	 current	 study	 revealed	 only	 a	 few	 connections	 that	 were	

stronger	 in	 Non-Recognizers	 than	 Recognizers,	 most	 of	 those	 that	 were	

stronger	tended	to	be	short-range	connections.	Previous	research	suggests	that	

increased	 short-range	 connectivity	within	 frontal	 and	 temporal	 regions	 and	

decreased	 long-range	 connections	 between	 frontal	 and	 temporoparietal	
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regions	can	be	observed	in	situations	where	self-awareness	is	impaired,	such	

as	 in	 schizophrenia	 (Ebisch	 et	 al.,	 2014;	 Liemburg	 et	 al.,	 2012)	or	 in	 autism	

(Lynch	et	al.,	2013;	Müller	et	al.,	2011;	Uddin	&	Menon,	2009;	Uddin,	Supekar,	

&	 Menon,	 2010).	 While	 there	 were	 no	 predictions	 concerning	 short-range	

connectivity,	 our	 results	 are	 consistent	 with	 the	 idea	 that	 self-related	

processing	may	be	associated	not	only	with	increasing	long-range	connectivity	

between	frontal,	temporal,	and	parietal	cortex,	but	rather	a	gradual	transition	

from	short	and	localised	connections	to	long-range	connectivity.		

It	is	important	to	note	that	these	findings	cannot	exclude	the	possibility	

that	the	functional	connectivity	observed	in	the	Recognisers	reflects	a	generally	

more	 mature	 brain,	 which	 also	 gives	 rise	 to	 a	 more	 mature	 level	 of	 self-

awareness	(Fair	et	al.,	2008;	Gao	et	al.,	2009,	2014;	Nathan	Spreng	&	Schacter,	

2012).	Relevant	here	might	be	that	in	the	whole	brain	analysis,	the	Recognizers	

showed	 increased	 brain	 connectivity	 overall,	 so	 also	 outside	 the	 regions	

associated	with	the	DMN.	Assessing	the	brain	maturation	in	each	participant	

would	allow	us	to	investigate	this	possibility.	However,	this	would	require	the	

acquisition	 of	 MRI	 images	 to	 assess	 structural	 connectivity	 and	 cortical	

thickness	as	an	index	of	maturation	of	the	brain.		

Another	limitation	of	this	study	is	the	fact	that	the	investigation	into	the	

connectivity	in	the	entire	DMN	was	unachievable,	as	fNIRS	allows	to	measure	

only	 from	 the	 surface	of	 the	 cortex.	However,	 I	 benefited	 from	 the	 excellent	

suitability	of	fNIRS	for	the	acquisition	of	resting-state	data	from	infants	during	

quiet	wakefulness,	which	most	closely	approximates	the	recording	conditions	

under	which	resting-state	data	is	typically	acquired	in	adults.	As	a	result,	the	

data	were	likely	less	affected	by	motion	artefacts	than	it	would	have	been	had	

we	used	fMRI.	The	high	consistency	between	the	HbO2	and	the	HHb	maps	is	in	
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line	 with	 fNIRS	 resting-state	 data	 acquired	 by	 previous	 studies,	 suggesting	

reliability	of	the	data	acquired	(Lu	et	al.,	2010;	Sasai,	Homae,	Watanabe,	&	Taga,	

2011;	White	et	al.,	2009).		

With	 this	 study,	 it	 has	 been	 shown	 that	 the	 fronto-temporoparietal	

connectivity	considered	as	a	proxy	of	the	DMN	may	plays	a	role	in	emerging	

self-awareness.	 However,	 how	 the	 developing	 brain	 responds	 during	 self-

recognition,	 is	 something	 still	 unexplored.	 This	 investigation,	 which	 may	

provide	a	deeper	insight	on	the	mechanisms	underlying	the	developing	sense	

of	self,	is	the	focus	of	the	next	chapter.		
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Chapter	5	

	 205 

5.1	Abstract	

The	 previous	 chapter	 showed	 that	 the	 fronto-temporoparietal	 connectivity	

measured	 at	 rest	 is	 associated	with	 emerging	 self-awareness	 at	 18	months.	

Adult	 studies	 suggest	 that	 these	 two	 brain	 regions	 are	 also	 engaged	 in	 self-

processing	and	self-recognition	tasks,	but	whether	these	areas	are	involved	in	

self-processing	also	in	the	developing	brain	is	something	still	unexplored.	An	

important	cue	for	self-recognition	during	the	first	years	of	life	is	thought	to	be	

the	 detection	 of	 temporal	 contingency	 between	 performed	 and	 observed	

movements.	In	this	study,	the	temporal	contingency	of	participants’	movements	

was	manipulated	while	18-month-olds	observed	videos	of	themselves,	either	

with	matching	observed	and	performed	movements,	or	mismatching	observed	

and	performed	movements.	Additionally,	participants	were	also	observed	an	

unfamiliar	infant.	Infants’	brain	responses	were	recorded	using	fNIRS	and	self-

awareness	was	behaviourally	assessed	using	the	MSR	task.		

18-month-olds	 that	 exhibited	 self-recognition	 showed	 greater	

activation	 of	 the	 mPFC	 and	 the	 TPJ	 when	 they	 looked	 at	 themselves	 with	

matching	 rather	 than	 mismatching	 movements.	 They	 also	 showed	 greater	

mPFC	activation	when	they	looked	at	their	own	videos	compared	with	those	of	

an	unfamiliar	infant.	Moreover,	two	behavioural	measures	used	as	indexes	of	

self-recognition	(looking	time	in	the	mirror	during	the	MSR	task	and	level	of	

movements	during	the	fNIRS	task)	were	positively	correlated	with	the	mPFC	

activation.	 Consistent	with	 findings	 from	 the	previous	 chapter,	 these	 results	

suggest	a	role	for	the	mPFC	and	the	TPJ	in	self-related	processes	from	early	in	

life.	Furthermore,	these	results	are	remarkably	in	line	with	the	works	in	adult.		
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5.2	Introduction		

As	suggested	by	data	discussed	in	the	previous	Chapter,	functional	connectivity	

between	the	mPFC	and	the	TPJ	–	crucial	areas	of	the	DMN	–	is	associated	with	

emerging	self-awareness	at	18-months.	This	finding	may	represent	one	of	the	

first	neural	markers	of	emerging	self-awareness.	Furthermore,	it	may	suggest	

that	 self-recognition	 in	 the	 mirror	 is	 an	 index	 not	 only	 of	 physical	 self-

awareness	but	also	of	the	development	of	a	broader	sense	of	self,	as	indicated	

by	 the	 relationship	 between	 the	 DMN	 and	 psychological	 self-processing	 in	

adults.	The	positive	association	between	fronto-temporoparietal	connectivity	

and	emerging	self-awareness	in	18-month-olds	laid	the	foundation	for	a	further	

question:	 are	 the	 mPFC	 and	 the	 TPJ	 also	 engaged	 in	 the	 process	 of	 self-

recognition	in	infancy?	Given	the	results	from	the	previous	chapter,	one	may	

hypothesize	that	these	two	brain	regions	would	be	functionally	activated	also	

during	self-recognition.		

The	study	of	the	neural	correlates	of	self-awareness	in	adults	has	been	

a	target	of	interest	in	recent	neuroimaging	research.	The	mPFC	and	the	TPJ	are	

defined	by	many	as	the	‘self’	brain	regions	(for	reviews	see	Northoff	et	al.,	2006;	

Northoff	&	Bermpohl,	2004;	Ruby	&	Legrand,	2007).	In	fact,	these	regions	were	

found	to	be	remarkably	engaged	in	several	self-processing	tasks	(Davey	et	al.,	

2016;	Kaplan	et	al.,	2008;	Kelley	et	al.,	2002;	Kircher	et	al.,	2000;	Uddin	et	al.,	

2005).	 Moreover,	 it	 has	 been	 shown	 that,	 when	 comparing	 self-faces	 with	

others’,	 the	 frontal	 and	 parietal	 lobes	 are	 found	 to	 be	 engaged	 in	 self-face	

processing	tasks	when	own	faces	are	contrasted	with	familiar-faces,	whereas	

the	 temporoparietal	 cortex	 is	 specifically	 activated	 when	 own	 faces	 are	

contrasted	with	unfamiliar	faces	(Kaplan	et	al.,	2008;	Platek,	Keenan,	Gallup,	&	

Mohamed,	2004;	Platek	et	al.,	2006).		
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Most	of	our	knowledge	of	the	neural	correlates	of	self-recognition	come	

from	adult	studies,	while	infant	research	on	this	topic	is	still	very	limited.	To	

summarise,	the	literature	reviewed	on	the	previous	infants	studies	in	Chapter	

1	 revealed	 that	 i)	 TPJ	 grey	 matter	 maturation	 is	 associated	 with	 self-

representation	between	18-	and	30-month-old	(Lewis	&	Carmody,	2008);	 ii)	

both	TPJ	and	the	STS	are	activated	during	self-body	representation	in	5-month-

olds	(Filippetti	et	al.,	2015);	iii)	the	N290	ERP	component	is	a	marker	of	self-

image	processing	at	18-months	when	infants’	own	images	are	compared	with	

familiar	 and	 unfamiliar	 ones	 (Stapel	 et	 al.,	 2016).	 However,	 brain	 regions	

functionally	engaged	in	self-recognition	in	infancy	are	still	unexplored.		

During	 the	 first	 years	 of	 life	 the	 detection	 of	 temporal	 contingency	

between	 observed	 and	 performed	 movements	 has	 been	 suggested	 as	 an	

important	 cue	 for	 self-recognition	 (Rochat,	 2003).	 A	 ‘contingency	 detection	

module’,	aimed	to	analyse	the	temporal	conditional	probabilities	of	stimuli	and	

responses,	has	been	hypothesised	as	innate	(Gergely	&	Watson,	1996,	1999)	or	

present	from	very	early	in	life	(Reddy	et	al.,	2007;	Rochat	&	Striano,	1999;	van	

der	Meer	et	al.,	1995).	This	module	would	enable	infants	to	seek	and	explore	

contingent	 stimulations,	 serving	 the	 evolutionary	 function	 of	 developing	 a	

rudimentary	representation	of	their	bodily	self	(Gergely,	2004).	However,	the	

active	 exploration	 of	 temporal	 contingency	 in	 movements	 performed	 and	

observed	in	the	light	of	emerging	self-awareness	will	not	be	present	until	about	

18-months	 (Rochat,	 2003).	 Some	 behavioural	 works	 have	 already	 explored	

whether	infants	respond	differently	to	delayed	self-videos	compared	with	live	

self-videos,	 showing	 that	 infants	 do	 not	 master	 self-recognition	 in	 delayed	

media	before	2.5	years	of	age	(Povinelli	et	al.,	1996;	Povinelli	&	Simon,	1998;	

Skouteris	et	al.,	2009).	In	terms	of	neuroimaging	studies,	Sugiura	et	al.	(2015)	
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showed	that	the	adult	brain	responds	differently	to	self-live	and	self-delayed	

videos,	suggesting	an	important	role	for	contingency.	While	the	frontal	and	the	

occipital	lobes	were	found	sensitive	to	movements	when	comparing	self-videos	

with	self-static	images,	the	cuneus	was	found	significantly	associated	with	the	

contingency	 of	 self-movements.	 These	 findings	 allude	 to	 a	 multicomponent	

brain	 network	 supporting	 self-recognition	 processes.	 Moreover,	 different	

patterns	 of	 brain	 responses	 to	 self-live	 and	 self-delayed	 videos	 seem	 to	

highlight	 the	 importance	 of	 the	 detection	 of	 temporal	 contingency	 for	

processing	self-related	information	(Sugiura	et	al.,	2015).	Therefore,	one	may	

think	 that	 the	developing	brain	could	respond	differently	 to	self-videos	with	

different	 level	 of	 temporal	 contingency	 in	 self-movements,	 when	 self-

awareness	has	started	to	emerge.		

In	 this	 study,	 I	 used	 fNIRS	 to	 test	 the	 neural	 underpinnings	 of	 self-

recognition	 in	18-month-olds	while	 they	observed	videos	of	 themselves	 live	

(Self-Live	 condition)	 and	 videos	 of	 themselves	 previously	 recorded	 (Self-

Recorded	 condition).	 At	 the	 beginning	 of	 the	 task,	 participants	 observed	 an	

additional	condition	with	an	unfamiliar	infant	wearing	the	same	fNIRS	cap	in	

the	same	setting	(Other	condition).	This	allowed	the	investigation	of	the	neural	

underpinnings	of	 self-other	differentiation.	Participants	were	 also	 tested	 for	

self-recognition	 in	 the	 mirror	 with	 the	 MSR	 task,	 to	 obtain	 a	 behavioural	

measurement	of	 their	 level	of	self-awareness.	 I	hypothesized	a	greater	brain	

response	in	core	regions	for	self-processing,	i.e.	mPFC	and	TPJ,	in	the	Self-Live	

condition	rather	than	in	the	Self-Recorded	one,	and	that	this	would	be	mediated	

by	whether	or	not	the	infants	passed	the	MSR	task.	This	would	be	consistent	

with	the	categorisation	attributed	by	the	MSR	task,	with	adult	studies	and	with	

the	 functional	 connectivity	 data	 previously	 presented	 in	 Chapter	 4.	 If	 this	
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analysis	reveals	the	hypothesized	pattern	of	results,	the	Self-Live	condition	will	

be	compared	with	the	Other	condition,	in	order	to	assess	the	neural	substrates	

of	Self	vs.	Other.	Alternatively,	if	no	differences	in	brain	activation	is	identified	

when	comparing	the	two	Self	conditions,	these	conditions	will	be	collapsed	and	

compared	with	the	Other	condition.	Brain	regions	engaged	in	self-processing	

(Self-Live	vs.	Self-Recorded)	are	also	expected	to	be	activated	in	Self	vs.	Other	-	

mainly	in	Recognisers	at	the	MSR	task	-	as	a	further	marker	of	self-processing	

in	 infanthood.	 Additionally,	 functional	 connectivity	 analysis	 is	 employed	 to	

further	investigate	whether	fronto-temporoparietal	functional	connections	are	

associated	 with	 self-processing	 in	 the	 developing	 brain	 during	 a	 self-

recognition	 task.	 Finally,	 behavioural	 measures	 related	 to	 self-related	

processing	 are	acquired	during	 the	MSR	task	and	the	 fNIRS	 task	 in	order	 to	

provide	a	further	description	of	emerging	self-awareness.	Looking	time	in	the	

mirror	after	the	red	mark	is	placed	during	the	MSR	task	and	level	of	exploration	

of	 matching	 movements	 have	 been	 previously	 used	 as	 indexes	 of	 self-

awareness	 (Keller,	 Kärtner,	 Borke,	 Yovsi,	 &	 Kleis,	 2005;	 Rochat,	 2003).	

Therefore,	I	hypothesize	that	a	longer	looking	time	at	the	mirror	after	the	mark	

was	placed	 than	before	 characterizes	only	 those	participants	 exhibiting	 self-

recognition.	 Moreover,	 I	 hypothesize	 that	 Recognisers	 at	 the	 MSR	 task	 will	

show	a	higher	level	of	movements	to	explore	matching	behaviours	during	the	

fNIRS	task.	If	these	hypotheses	are	confirmed,	the	association	between	these	

two	behavioural	measures	with	brain	response	during	the	fNIRS	task	will	be	

investigated.	
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5.3	Methods	

5.3.1	Participants	

24	18-month-old	 infants	provided	sufficient	data	 to	be	 included	 in	 the	 fNIRS	

analyses	(14	males,	age	mean	±	SD	=	553.57	±	14.05	days).	An	additional	57	

infants	were	tested	but	excluded	from	the	fNIRS	analyses	because:	(i)	they	did	

not	 provide	 enough	 trials,	 either	 due	 to	 fussiness	 (14	 participants)	 or	 to	

inattentiveness	 (24	participants);	 (ii)	 they	 refused	 to	wear	 the	 fNIRS	hat	 or	

poor	positioning	of	the	fNIRS	hat	(7	participants);	(iii)	they	refused	to	sit	on	the	

high-chair	(8	participants);	(iv)	they	showed	more	than	30%	of	the	channels	

excluded	 due	 to	 poor	 light	 intensity	 readings	 (3	 participants);	 (v)	 technical	

error	 (1	 participant).	 It	 is	 worth	mentioning	 that	 the	 use	 of	 the	 high-chair	

constituted	an	additional	stress	factor	for	some	infants.	This	contributed	to	a	

higher	 participants’	 exclusion	 rate	 compared	 to	 the	 other	 fNIRS	 studies	

presented	in	this	thesis.	

All	included	infants	were	born	full-	term,	healthy	and	with	normal	birth	

weight.	Written	 informed	 consent	was	 obtained	 from	 the	 infant’s	 caregiver	

prior	to	the	start	of	the	experiment.		

	

5.3.2	MSR	and	coding	scheme	

Prior	 to	 the	 fNIRS	 task,	 self-awareness	 was	 assessed	 with	 the	 MSR	 task	

(Amsterdam,	 1972).	 The	 task	 took	 place	 in	 an	 empty	 room	 with	 a	 mirror	

positioned	against	one	of	the	walls.	For	all	the	participants	tested	in	this	study,	

three	cameras	from	different	angles	were	used	to	record	the	task.	The	MSR	task	

procedure	and	the	coding	scheme	used	was	the	same	as	described	in	Chapter	4,	

section	 4.3.2.	 Two	 experimenters	 independently	 classified	 the	 infants	 as	
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‘Recognisers’,	‘Ambiguous’,	or	‘Non-Recognisers’	based	on	their	behaviours	in	

front	of	the	mirror	after	the	red	mark	was	placed,	and	they	agreed	in	92%	of	

the	cases.	Discrepancies	were	discussed	until	agreement	was	reached.		

For	each	infant,	looking	time	at	his/her	own	image	in	the	mirror	before	

and	after	the	red	mark	was	placed	on	his/her	cheek	was	coded.	In	particular,	

the	percentage	of	looking	time	(%LT)	in	the	mirror	was	calculated,	considering	

the	looking	time	in	the	mirror	after/before	the	mark	was	placed	over	the	length	

of	the	testing	session	after/before	the	mark	was	placed.		

	

5.3.3	fNIRS	task:	stimuli	and	procedure	

See	 section	 2.2.3	 for	 experimental	 set-up,	 fNIRS	 cap	 application	 and	 testing	

procedure.	

In	this	task,	infants	sat	on	a	high-chair	positioned	in	front	of	the	plasma	

screen,	and	the	parent	sat	next	to	them.	The	set-up	used	in	this	study	is	different	

from	the	usual	one	discussed	in	Chapter	2	with	participants	attending	the	fNIRS	

session	 on	 the	 parent’s	 lap.	 In	 fact,	 as	 in	 this	 task	 the	 self-videos	 of	 the	

participants	are	recorded	and	projected	during	the	experiment,	positioning	the	

child	by	him/herself	prevented	the	recording	of	any	body-part	of	the	parent.	A	

Logitech-HD	Pro	Webcam	was	positioned	on	top	of	the	plasma	screen,	allowing	

the	recording	of	the	participant’s	videos	to	be	presented	in	the	Self-Recorded	

condition.	

Infants	were	presented	with	3	conditions:	i)	an	unfamiliar	infant	(Other	

condition);	ii)	their-selves	in	a	live	video	(Self-Live	condition);	iii)	their-selves	

recorded	few	minutes	before	(Self-Recorded	condition).	In	order	to	avoid	any	

brain	activation	not	related	to	the	task,	the	videos	showed	in	the	3	conditions	

presented	 the	 same	 set-up,	 with	 the	 infants	 (either	 the	 participant	 or	 the	
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unfamiliar	infant)	sitting	on	the	high-chair	while	wearing	the	fNIRS	cap.	Each	

experimental	trial,	which	lasted	15	seconds,	was	alternated	with	Baseline	trials	

which	 were	 screensaver-like	 videos	 of	 colourful	 swirly	 bubbles	 coloured	

shapes	 (Baseline),	which	 lasted	 10	 seconds.	 The	 trials	were	 structured	 in	 a	

block-design,	divided	into	two	parts.	In	the	first	part	of	the	block	design,	infants	

were	 presented	with	 a	 series	 of	 Other	 trials	 alternated	with	 Baseline	 trials.	

While	the	participant	attended	at	the	Other	trials,	the	experimenter	recorded	

videos	of	the	infant	with	the	Logitech-HD	Pro	Webcam	positioned	on	top	of	the	

plasma	screen.	These	videos	constituted	the	trials	to	be	presented	in	the	Self-

Recorded	 condition	 in	 the	 later	 part	 of	 the	 task.	 For	 each	 participant,	 four	

videos	were	recorded,	to	provide	some	varieties	of	movements	performed	by	

the	participants	as	in	the	Self-Live	and	Other	conditions.	After	the	acquisition	

of	 enough	videos	 for	 the	Self-Recorded	 condition	and	 the	presentation	of	 at	

least	4	trials	for	the	Other	condition,	the	experimenter	started	the	second	part	

of	the	block	design,	composed	of	Self-Live	and	Self-Recorded	trials,	alternated	

with	Baseline	 trials.	The	Self-Live	and	 the	Self-Recorded	trails	were	pseudo-

randomised	 to	make	 sure	 that	 each	 condition	was	presented	not	more	 than	

twice	in	a	row.		

	

5.3.4	fNIRS	data	acquisition	and	processing		

See	section	2.2.1	for	information	about	the	fNIRS	cap	and	the	array	design.	All	

the	participants	of	this	study	were	tested	with	the	44-channel	array	design.	

Table	5.1	lists	information	concerning	S-D	separation	and	the	number	of	infants	

included	in	the	analysis	who	were	tested	with	each	cap	size.		
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48	cm	 25	mm	 30	mm	 14/24	

50	cm	 26	mm	 31	mm	 10/24	
	

Table	5.1.	S-D	separation	and	number	of	participants	tested	with	each	cap	size.	
	

See	section	2.2.4	for	information	about	the	NIRS	system	proprieties	and	

the	 recording.	 As	 mentioned	 in	 section	 2.3.1,	 infants	 were	 video-recorded	

throughout	the	testing	session.	In	addition	to	the	general	exclusion	criteria13,	

trials	where	infants	did	not	attend	to	the	screen	for	more	than	60%	of	the	length	

of	the	trial	were	excluded.	In	order	to	observe	any	difference	between	the	Self-

Live	and	Self-Recorded	trials,	it	was	essential	that	i)	in	the	Self-Live	condition,	

the	participant	performed	at	least	one	movement	visible	by	him/herself	in	the	

live-video;	ii)	in	the	Self-Recorded	condition,	the	participant	saw	at	least	one	

movement	performed	by	him/herself	in	the	recorded	video	or	the	participant	

performed	at	least	one	movement	not	present	in	the	recorded	video.	Therefore,	

Self-Live	 trials	were	 included	only	 if	participants	attended	at	least	one	gross	

movement	matching	 the	 performed	 one,	 whereas	 Self-Recorded	 trials	 were	

included	 only	 if	 participants	 attended	 at	 least	 one	 gross	 mismatching	

movement	(of	at	least	2	seconds).	In	order	to	assess	the	level	of	movements	

performed	 and	 observed	 during	 the	 task,	 Self-Live	 and	 Self-Recorded	 trials	

were	coded	for	movements	performed	and	seen	with	a	value	from	1	to	3	(1=	

small	limbs	or	body	movements,	3	=	big	limb	or	body	movements).		

As	 described	 in	 section	 2.3.2,	 fNIRS	 data	 were	 pre-processed	 in	

Homer_2	 (Huppert	 et	 al.,	 2009),	 and	 the	 spline	 interpolation	 (function	

																																																													
13	 Trials	were	 excluded	 if	 participant	 looked	 at	 the	 parent	 or	 anything	 social,	 if	 the	
experimenter	or	the	parent	talked.	

Cap	size	 S-D	temporoparietal	lobe	 S-D	frontal	lobe	
Number	of	
participants	
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hmrMotionCorrectionSpline)	was	 added	 to	 the	 general	 pipeline	 as	 a	 further	

motion	correction	(Scholkmann	et	al.,	2010),	after	the	prune	of	the	channels	

with	a	low	signal	to	noise	ratio.	This	additional	correction	was	applied	due	to	a	

high	level	of	noise	and	several	spikes	presented	in	the	fNIRS	raw	data	by	most	

of	 the	 participants,	which	 is	 likely	 to	 be	 due	 to	 the	 greater	 chance	 that	 the	

infants	were	moving	while	seated	in	the	high-chair	in	this	task,	compared	to	the	

classic	set-up	on	the	parent’s	lap.	In	fact,	 fNIRS	data	recorded	from	the	same	

participants	 in	 the	 same	 testing	 session	 using	 the	 classical	 set-up	 did	 not	

present	as	many	spikes	and	noise	as	this	dataset14.	

After	 the	pre-processing,	 data	were	 analysed	using	 a	 combination	of	

custom	Matlab	scripts	and	the	SPM-NIRS	toolbox	(Ye	et	al.,	2009),	as	described	

in	section	2.3.3.	For	each	participant,	a	design	matrix	was	built	modelling	the	3	

experimental	conditions	and	the	baselines.	Trials	excluded	due	to	the	cleaning	

in	 the	 pre-processing	 or	due	 to	 behavioural	 coding	were	 removed	 from	 the	

analyses.	 Betas	 extracted	 from	 the	 design	 matrix	 were	 used	 to	 calculate	

contrasts	of	interest	for	each	participant	(Self-Live	vs.	Self-Recorded	and	Self-

Live	vs.	Other),	and	then	submitted	to	statistical	tests.	Statistical	analyses	were	

performed	both	on	each	channel	and	on	the	mPFC,	the	left	TPJ	and	the	right	TPJ	

as	ROI	defined	by	the	co-registration	study	presented	in	section	2.2.2,	for	their	

crucial	 role	 in	 self-processing	 (Northoff	 et	 al.,	 2006;	 Northoff	 &	 Bermpohl,	

2004;	Ruby	&	Legrand,	2007).	Analysis	of	fNIRS	data	were	based	on	changes	in	

HbO2,	 as	 previous	 fNIRS	 studies	 with	 infants	 typically	 do	 not	 find	 any	

statistically	significant	HHb	changes	(for	some	examples	see:	Grossmann,	Cross,	

																																																													
14	After	this	task,	if	participants	were	still	quiet	and	compliant,	they	were	tested	with	
the	 EMG-fNIRS	 task	 presented	 in	 Chapter	 6	 and	 with	 the	 resting-state	 protocol	
presented	in	Chapter	4.	
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Ticini,	&	Daum,	2013;	Lloyd-Fox	et	al.,	2010;	Lloyd-Fox,	Széplaki-Köllod,	Yin,	&	

Csibra,	 2015;	 Southgate,	 Begus,	 Lloyd-Fox,	 di	 Gangi,	 &	 Hamilton,	 2014).	

However,	the	pattern	of	HHb	will	be	plotted	for	completeness.	fNIRS	results	are	

corrected	for	multiple	comparisons	using	the	FDR	approach.	

To	further	explore	the	relationship	between	areas	engaged	in	the	self-

processing	task,	functional	connectivity	was	estimated	using	PPI	(see	section	

3.1.2	for	more	details)	(Friston	et	al.,	1997).	Consistently	with	the	functional	

activation	analysis,	PPI	analysis	is	performed	only	on	the	HbO2	signal.	In	order	

to	 ensure	 statistical	 reliability,	 PPI	 results	 are	 corrected	 for	 multiple	

comparisons	with	FDR.	

	

5.4	Results	

5.4.1	Characteristics	of	the	sample	and	behavioural	results	

Out	 of	 the	 24	 infants	 that	 contributed	 data	 to	 the	 fNIRS	 analyses,	 10	 were	

classified	as	Recognisers	and	11	as	Non-Recognisers.	Only	3	participants	were	

classified	as	Ambiguous,	and	given	 the	small	size	of	 this	group,	analyses	are	

focused	 only	 on	 infants	 who	 clearly	 fell	 into	 the	 Recognisers	 and	 Non-

Recognisers	categories.	The	two	groups	did	not	show	any	significant	difference	

in	parameters	that	could	potentially	affect	the	haemodynamic	response	in	this	

task,	such	as	age	(mean	±	SD	Recognisers	=	550.55	±	16.50	days,	mean	±	SD	

Non-Recognisers	 =	 553.75	 ±	 12.44	 days),	 t(21)=0.52,	 p=0.603,	 sex	

(Recognisers	=	5	females,	5	males;	Non-Recognisers	=4	females,	7	males),	c2(1,	

N=21)=0.39,	 p=0.528.	 A	 repeated	 measure	 ANOVA	 with	 number	 of	 trials	

included	per	type	as	within	subject	factor	(Self-Live	vs.	Self-Recorded	vs.	Other)	

and	MSR	outcome	as	between	subject	factor	(Recognisers	vs	Non-Recognisers)	



Chapter	5	

	 216 

did	not	show	a	significant	interaction,	F(1,	19)	=	1.04,	p	=	0.371,	ηp2	=	0.104,	

suggesting	 no	 significant	 differences	 between	 Recognisers	 and	 Non-

Recognisers	in	number	of	trials	included	per	each	condition.		

A	repeated	measure	ANOVA	with	%	LT	as	within	subject	factor	(before	

vs	 after)	 and	 MSR	 outcome	 (Recognisers	 vs	 Non-Recognisers)	 as	 between	

subject	factor	did	not	show	any	significant	interaction,	F(1,	19)=1.96,	p=0.177,	

ηp2=0.094.	However,	post-hoc	paired	t-tests	revealed	that	Recognisers	showed	

a	significantly	longer	%LT	in	the	mirror	after	the	mark	was	placed	in	the	MSR	

task	compared	to	before	the	mark	was	placed	(mean	±	SD	%LT	after	=	21.53	±	

17.04,	 mean	 ±	 SD	 %LT	 before	 =	 7.34	 ±	 4.70),	 t(9)=2.36,	 p=0.042.	 No	

significant	difference	in	%LT	either	after	or	before	the	mark	was	placed	was	

found	in	Non-Recognisers	(mean	±	SD	%LT	after	=	11.08	±	8.60	trials,	mean	±	

SD	 %LT	 before	 =	 6.78	 ±	 11.60	 trials),	 t(10)=1.08,	 p=0.30.	 Among	 the	

Recognisers	subset,	one	data	point	fell	around	two	standard	deviations	from	

the	mean	in	%LT	in	the	mirror	after	the	mark	was	placed.	Although	this	was	not	

an	extreme	outlier,	to	ensure	that	the	comparison	between	%LT	in	the	mirror	

before	and	after	the	infant’s	cheek	was	marked	was	not	merely	driven	by	this	

one	data	point,	it	was	replaced	with	a	value	.01	greater	than	the	highest	non-

outlier	 scores	 to	 normalise	 the	 distribution	 (Tabachnick	 &	 Fidell,	 2007).	

Hereafter,	 the	 comparison	 between	%LT	 in	 the	mirror	 before	 and	 after	 the	

mark	placed	is	still	significant	in	the	Recognisers	group,	t(9)=2.62,	p=0.028.		

A	repeated	measure	ANOVA	with	level	of	performed	movements	as	a	

within	 subjects	 factor	 (performed	 movements	 in	 the	 Self-Live	 condition	 vs	

performed	 movements	 in	 the	 Self-Recorded	 condition)	 and	 MSR	 outcome	

(Recognisers	vs	Non-Recognisers)	as	a	between	subjects	factor	demonstrated	

a	 main	 effect	 of	 condition,	 F(1,	 19)=7.21,	 p=0.015,	 ηp2=0.275,	 revealing	 a	
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significantly	higher	level	of	performed	movement	in	the	Self-Live	rather	than	in	

the	 Self-Recorded	 condition	 in	 the	 whole	 sample.	 No	 significant	 interaction	

between	level	of	performed	movements	and	MSR	was	found,	F	(1,	19)=0.02,	

p=0.885,	 ηp2=0.001.	 However,	 paired	 sample	 t-tests	 between	 Self-Live	 and	

Self-Recorded	conditions	 in	 the	 two	groups	showed	that	Recognisers	moved	

significantly	 more	 in	 the	 Self-Live	 rather	 in	 the	 Self-Recorded	 condition,	

t(9),=2.53,	 p=0.032,	 while	 Non-Recognisers	 did	 not,	 t(10),=1.57,	 p=0.146.	

Moreover,	 a	 repeated	measure	 ANOVA	with	 level	 of	movements	 in	 the	 Self-

Recorded	 condition	 as	 a	 within	 subjects	 factor	 (performed	 movements	 vs	

observed	movements)	and	MSR	outcome	(Recognisers	vs	Non-Recognisers)	as	

a	 between	 subject	 factor	 demonstrated	 a	 main	 effect	 of	 movement,	 F(1,	

19)=10.32,	 p=0.005,	 ηp2=0.352,	 revealing	 a	 significantly	 higher	 level	 of	

performed	rather	than	observed	movements	in	the	Self-Recorded	condition	in	

the	 whole	 sample.	 No	 significant	 interaction	 between	 level	 of	 movements	

observed	and	performed	in	the	Self-Recorded	condition	and	MSR	was	found,	

F(1,	19)=0.947,	p=0.343,	ηp2	=0.047.	However,	post-hoc	independent	t-tests	

within	 the	 Self-Recorded	 condition	 showed	 that	 Recognisers	 performed	

significantly	more	movement	than	the	ones	they	observed	in	the	Self-Recorded	

videos,	 t(9),=3.54,	 p=0.006.	 Non-Recognisers	 did	 not	 show	 a	 significant	

difference	between	observed	and	performed	movements	in	the	Self-Recorded	

condition,	t(10),=1.42,	p=0.185	(Figure	5.1).	
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Figure	5.1	Mean	values	of	movements	during	the	Self	conditions	in	the	task.	A,	Graph	

bars	represent	mean	values	of	movements	performed	in	Self-Live	and	Self-Recorded	

trials	 in	Non-Recognisers	 and	Recognisers.	 B,	 Graph	bars	 represent	mean	 values	 of	

movements	performed	and	observed	in	Self-Recorded	trials	 in	Non-Recognisers	and	

Recognisers.	Error	bars	indicate	1	SEM;	*,	p<0.05.	

	

5.4.2	fNIRS	results	

5.4.2.1	 Self-Live>Baseline,	 Self-Recorded>Baseline,	 Other>Baseline	

contrasts	

To	explore	which	channels	were	activated	by	the	task,	the	Self-Live,	the	Self-

Recorded	and	the	Other	conditions	were	contrasted	to	the	Baseline	(see	Table	

5.2).	 Table	 5.2	 shows	 the	 channels	 that	 are	 statistically	 significant	 and	

marginally	statistically	significant	activated	by	the	task.		

	

	

	

	

	

	

Non-Recognisers Recognisers Non-Recognisers Recognisers

me
an
	va
lue
s	o
f	m

ov
em
en
t	p
er
for
me
d	

in
	Se
lf-
Liv
e	a
nd
	Se
lf-
Re
co
de
d	t
ria
ls

2

1.5

1

0.5

0

2

1.5

1

0.5

0

Self-Live
Self-Recorded

me
an
	va
lue
s	o
f	m

ov
em
en
t	p
er
for
me
d	

an
d	o
bs
er
ve
d	i
n	S
elf
-R
ec
od
ed
	tr
ial
s

Performed	Movements
Observed Movements

A B
*

*



Chapter	5	

	 219 

channel	 brain	region	 t	value	 p	value	 df	

Self-Live>Baseline	

26	 Right	posterior	temporal	
gyrus	 2.02	 0.055†	 17	

30	 mPFC	 2.25	 0.034*	 22	

40	 Right	supramarginal	gyrus	 2.10	 0.046*	 23	

Self-Recorded>Baseline	

1	 Left	IFG	 2.20	 0.039*	 20	

Other>Baseline	

/	 /	 /	 /	 /	
	
Table	 5.2	 Channels	 that	 showed	 greater	 activation	 for	 Self-Live>Baseline,	 Self-
Recorded>Baseline,	Other>Baseline.	*,	p<0.05;	†,	p<0.065.	
	

As	can	be	seen	by	the	table,	the	Self-Live	condition	engaged	one	channel	

over	 the	 right	 posterior	 temporal	 gyrus	 (channel	26),	 one	 channel	 over	 the	

mPFC	 (channel	 30)	 and	 one	 channel	 over	 the	 right	 supramarginal	 gyrus	

(channel	 40),	 whereas	 the	 Self-Recorded	 condition	 engaged	 some	 channels	

only	one	channel	over	the	left	IFG	(channel	1).	However,	none	of	these	channels	

showed	 a	 significant	 activation	 after	 FDR	 correction.	 No	 channels	 were	

significantly	activated	by	the	Other	condition.	

Table	 5.3	 shows	 channels	 that	 are	 significantly	 and	 marginally	

significantly	 activated	 for	 Baseline>Other.	 No	 channels	 were	 significantly	

activated	 in	 the	 baseline	 trials	 when	 contrasted	 with	 Self-Live	 and	 Self-

Recorded.	
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channel	 brain	region	 t	value	 p	value	 df	

Baseline>Other	

5	 Left	STG	 2.29	 0.034*	 18	

9	 Left	TPJ	 1.95	 0.064†	 21	

18	 Right	STG	 2.04	 0.055†	 19	

20	 Right	STG	 1.99	 0.06†	 20	

35	 Left	TPJ	 2.29	 0.033*	 19	
	

Table	 5.3	 Channels	 that	 showed	greater	activation	 for	Baseline>Other.	 *,	 p<0.05;	 †,	

p<0.065.	

	

As	can	be	seen	from	the	table,	one	channel	over	the	left	STG	(channel	5)	

and	one	over	the	left	TPJ	(channel	35)	were	found	to	be	significantly	activated	

by	the	Baseline	when	compared	with	the	Other	condition.	

	

5.4.2.2	Repeated	measures	ANOVA	

A	 repeated	measures	ANOVA	with	 the	betas	 from	the	 Self-Live	and	 the	 Self-

Recorded	condition	compared	with	Baseline	as	a	within	subjects	factor	(Self-

Live>Baseline	vs.	Self-Recorded>Baseline)	and	the	MSR	outcome	as	a	between	

subjects	 factor	 revealed	 a	marginally	 significant	main	 effect	 of	 condition	 in	

channel	28	(mPFC),	F(1,	20)	=	3.85,	p=0.064,	ηp2=0.300,	in	channel	30	(mPFC),	

F(1,	19)	=	3.80,	p=0.065,	ηp2=0.395	and	in	the	mPFC	as	ROI,	F(1,	20)	=	4.28,	

p=0.055,	ηp2=0.176,	but	no	significant	interaction	with	the	MSR	outcome.	Post-

hoc	 analysis	 revealed	 that	 channels	28	 and	 the	mPFC	as	ROI	 that	 showed	a	

marginally	significant	effect	main	effect	of	condition	were	significantly	more	

activated	 for	 the	 Self-Live	 than	 the	 Self-Recorded	 condition	 (channel	 28:	

t(23)=2.24,	p=0.035;	mPFC:	t(23)=2.15,	p=0.042).	
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	 A	repeated	measures	ANOVA	with	the	betas	from	the	Self	and	the	Other	

condition	compared	with	Baseline	as	a	within	subjects	factor	(Self>Baseline	vs.	

Other>Baseline)	and	the	MSR	outcome	as	a	between	subjects	factor	revealed	a	

significant	main	 effect	 of	 condition	 in	 channel	 30	 (mPFC),	 F(1,	 17)	 =	 7.38,	

p=0.015,	ηp2=0.467	(not	significant	after	FDR	correction),	but	no	significant	

interaction	with	the	MSR	outcome.	Post-hoc	analysis	revealed	that	channel	30	

was	 significantly	 more	 activated	 for	 the	 Self	 than	 the	 Other	 condition,	

t(20)=2.94,	p=0.008.		

	

5.4.2.3	 One	 sample	 t-tests	 in	 the	 Recognisers	 and	 in	 the	 Non-

Recognisers	

5.4.2.3.1	Self-Live>Self-Recorded	contrast	

To	explore	whether	there	are	any	brain	regions	that	showed	any	differences	in	

activation	in	response	to	self-processing	(Self-Live>Self-Recorded)	in	the	two	

groups,	 one-sample	 t-tests	 on	 the	 HRF	 contrast	 were	 performed	 in	 the	

Recognisers	 and	 in	 the	 Non-Recognisers	 by	 using	 the	 split	 analysis.	 This	

analysis	might	 elucidate	 different	neural	 brain	 regions	 activated	 by	 the	 two	

conditions	 in	 the	 two	 groups	which	 can	 be	 associated	with	 the	 behavioural	

measures	 (%LT	 and	 level	 of	 performed	 movements).	 Table	 5.4	 shows	 the	

channels	that	showed	greater	activation	for	Self-Live>Self-Recorded	and	Self-

Recorded>Self-Live	in	Recognisers	and	in	Non-Recognisers	(see	figure	5.2	for	

the	HRF	plots).	
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Self-Live>Self-Recorded	

channel	 brain	region	 t	value	 p	value	 df	

Recognisers	

23	 Right	posterior	temporal	gyrus	 1.94	 0.078†	 8	

26	 Right	posterior	temporal	gyrus	 1.95	 0.082†	 7	

28	 mPFC	 2.89	 0.018*	 9	

29	 mPFC	 3.67	 0.005*	 9	

30	 mPFC	 2.12	 0.052†	 9	

mPFC	(ROI)	 2.31	 0.046*	 9	

Right	TPJ	(ROI)	 3.64	 0.007**	 9	

Non-Recognisers	

/	 /	 /	 /	 /	

Self-Recorded>Self-Live	

Recognisers	

14	 Right	IFG	 2.59	 0.032*	 8	

Non-Recognisers	

37	 Left	TPJ/angular	gyrus	 2.36	 0.056†	 8	
	

Table	 5.4	 Channels	 that	 showed	 greater	 activation	 for	 Self-Live>Self-Recorded	 and	
Self-	Recorded>Self-Live,	 in	the	whole	sample	and	in	the	subsets	of	Recognisers	and	
Non-Recognisers	 at	 the	 MSR	 task.	 **,	 p<0.05	 that	 survived	 the	 FDR	 correction	 for	
multiple	comparisons;	*,	p<0.05;	†,	p<0.065.	
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Figure	5.2	HRF	plots	of	the	channels	that	are	significantly	activated	at	the	one-sample	
t-tests	 for	 the	 Self-Live>Self-Recorded	 contrast	 in	 the	Recognisers	 and	 in	 the	 Non-
Recognisers.	 A,	 channels	 significantly	 activated	 for	 Self-Live>Self-Recorded	 in	 the	
Recognisers;	 B,	 channels	 significantly	 activated	 for	 Self-Recorded>Self-Live	 in	 the	
Recognisers.	The	grey	square	indicates	the	length	of	the	experimental	trial.	
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As	can	be	seen	 from	the	 table,	Recognisers	showed	activation	 in	two	

channels	 over	 the	 mPFC	 (channel	 28	 and	 29)	 for	 Self-Live>Self-Recorded.		

Moreover,	Recognisers	showed	significant	activation	in	the	mPFC	and	the	right	

TPJ	 as	 ROI	 showed	 significant	 activation	 for	 Self-Live>Self-Recorded,	which	

also	 survived	 the	 FDR	 correction	 for	 multiple	 comparisons.	 The	 Non-

Recognisers	 did	 not	 show	 any	 significant	 activation	 for	 Self-Live>Self-

Recorded.	While	the	Recognisers	showed	only	one	channel	over	the	right	IFG	

(channel	 14)	 significantly	 activated	 for	 Self-Recorded>Self-Live,	 the	 Non-

Recognisers	showed	marginally	significant	activation	in	only	one	channel	over	

the	Left	TPJ/angular	gyrus	(channel	37)	for	Self-Recorded>Self-Live.	However,	

none	of	these	channels	showed	a	significant	activation	after	FDR	correction.	

As	 except	 for	 channel	6	 and	19,	 all	 the	 channels	 exhibited	 a	 normal	

distribution,	 parametric	 independent	 t-tests	 were	 performed	 in	 order	 to	

explore	whether	Recognisers	showed	higher	responses	than	Non-Recognisers	

in	Self-Live>Self-Recorded	contrast	(see	Table	5.5,	Figure	5.3	and	Figure	5.4).		
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Self-Live>Self-Recorded	

channel	 brain	region	 t	value	 p	value	 df	

Recognisers>Non-Recognisers	

25	 Right	TPJ	 1.98	 0.023*	 13	

28	 mPFC	 1.91	 0.071†	 17	

29	 mPFC	 2.63	 0.016*	 17	

37	 Left	TPJ/	angular	gyrus	 2.69	 0.023*	 11	

42	 Right	TPJ	 2.06	 0.058†	 14	

Right	TPJ	(ROI)	 3.17	 0.005**	 16	

Non-Recognisers>Recognisers	

/	 /	 /	 /	 /	
	
Table	5.5	Channels	where	Recognisers	 showed	greater	activation	 for	Self-Live>Self-
Recorded	 than	 Non-Recognisers.	 **,	 p<0.05	 that	 survived	 the	 FDR	 correction	 for	
multiple	comparisons;	*,	p<0.05;	†,	p<0.065.	
	



Chapter	5	

	 226 

	
	

Figure	5.3	HRF	plot	of	 the	channels	 that	 showed	significantly	greater	activation	 the	

Recognisers	and	in	the	Non-Recognisers	for	Self-Live>Self-Recorded.	The	grey	square	
indicates	the	length	of	the	experimental	trial.	
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25	and	42),	and	in	the	right	TPJ	as	ROI	in	the	Self-Live>Self-Recorded	contrast,	

which	 also	 survived	 the	FDR	 correction	 for	multiple	 comparisons.	However,	
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only	channel	25	channel	37,	channel	29	and	the	TPJ	as	ROI	reached	a	significant	

difference,	and	none	of	these	channels	are	contiguous.	Non-Recognisers	did	not	

show	 any	 greater	 activation	 than	 Recognisers	 for	 Self-Live>Self-Recorded.	

Figure	5.4	shows	the	mean	betas	values	for	the	channels	that	showed	significant	

more	activation	in	the	Self-Live>Self-Recorded	in	the	Recognisers	rather	than	

in	the	Non-Recognisers.	

	

	

	

Figure	5.4	Mean	betas	values	for	Self-Live>Self-Recorded	contrast	in	the	Recognisers	

and	in	the	Non-Recognisers.	Error	bars	indicate	1	SEM;	*,	p<0.05.	

	

Although	the	right	TPJ	is	the	only	ROI	that	is	significantly	more	activated	
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and	 figure	 5.2),	 and	 the	 right	 TPJ	 is	 significantly	 more	 activated	 in	 the	

Recognisers	than	in	the	Non-Recognisers	in	Self-Live>Self-Recorded.		

	

	
Figure	5.5	A,	Mean	betas	values	for	Self-Live>Self-Recorded	contrast	in	the	Recognisers	
and	in	the	Non-Recognisers.	Error	bars	indicate	1	SEM;	*,	p<0.05.	B,	HRF	plot	of	the	
mPFC	and	the	left	TPJ	in	the	Recognisers	and	in	the	Non-Recognisers	for	Self-Live	and	
Self-Recorded.	
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In	addition,	Chi-squared	(c)	tests	on	the	Self-Live>Self-Recorded	betas	

in	the	ROIs	were	performed	between	Recognisers	and	Non-Recognisers	to	test	

whether	 the	 two	 subsets	 significantly	 showed	 a	 consistent	 pattern	 of	 brain	

regions	engagement	in	the	task.	8/10	Recognisers	showed	greater	activation	

for	Self-Live	rather	than	Self-Recorded	condition	in	the	Right	TPJ,	while	only	

4/11	Non-Recognisers	showed	greater	activation	for	Self-Live	rather	than	Self-

Recorded	 condition	 in	 the	 Right	 TPJ,	 c2(1,	 N=21)=6.07,	 p=0.014.	 No	 other	

significant	differences	were	detected	when	considered	other	ROIs.	

	

5.4.2.3.2	Self>Other	contrast	

As	the	previous	section	showed	significant	differences	in	the	brain	response	to	

self-processing,	 engaging	 mPFC	 and	 TPJ	 significantly	 more	 in	 the	 Self-Live	

rather	 than	 in	 the	 Self-Recorded	 condition,	 the	 Self-Live	 condition	 was	

considered	the	most	appropriate	to	be	contrasted	with	the	Other	condition.	To	

explore	whether	there	were	any	brain	regions	that	showed	any	differences	in	

activation	in	response	to	Self>Other	in	the	two	groups,	one-sample	t-tests	on	

the	 HRF	 contrast	 were	 performed	 in	 the	 Recognisers	 and	 in	 the	 Non-

Recognisers	 by	 using	 the	 split	 analysis.	 Table	 5.6	 shows	 the	 channels	 that	

showed	greater	activation	in	Self-Live>Self-Recorded	and	Self-Recorded>Self-

Live	in	Recognisers	and	in	Non-Recognisers	(see	figure	5.6	for	the	HRF	plots).		
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channel	 brain	region	 t	value	 p	value	 df	

Self	>Other	

Recognisers	

28	 mPFC	 2.25	 0.049*	 8	

30	 mPFC	 2.92	 0.019*	 8	

Non-Recognisers	

/	 /	 /	 /	 /	
	
	

Table	5.6	Channels	that	showed	greater	activation	for	Self>Other,	in	the	whole	sample	

and	in	the	subsamples	of	Recognisers	and	Non-Recognisers	at	the	MSR	task.	*,	p<0.05.	

	

	

Figure	5.6	HRF	plot	of	 the	channels	 that	 showed	significantly	greater	activation	 the	

Recognisers	for	Self>Other.	The	grey	square	indicates	the	length	of	the	experimental	
trial.	

	

As	can	be	seen	from	the	table,	the	Recognisers	showed	grater	activation	

in	Self>Other	in	two	spatially	contiguous	channels	over	the	mPFC	(channel	28	

and	30,	not	significant	after	FDR	correction).	
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5.4.2.4	Psychophysiological	Interaction	results		

Analyses	performed	on	brain	activation	revealed	 that	 the	mPFC	was	a	brain	

region	highly	engaged	in	self-processing,	both	when	testing	for	Self-Live>Self-

Recorded	and	Self>Other.	Therefore,	 channels	 over	mPFC	were	 chosen	as	 a	

region	of	interest	for	the	PPI	analyses.	As	PPI	analysis	estimates	the	coupling	

between	two	time	series,	in	each	participant	both	channels	belonging	to	each	

connection	must	be	included	in	the	previous	pre-processing	steps.	Therefore,	

due	 to	 the	 limited	 sample	 size	 of	 this	 study,	 degrees	 of	 freedom	 of	 each	

connection	dropped	considerably.	For	this	reason,	results	presented	hereafter	

in	table	5.7	are	related	to	the	whole	sample	only,	without	exploring	functional	

connectivity	 in	 the	 two	 subgroups	 of	 Recognisers	 and	 Non-Recognisers	

separately.	None	of	these	couples	of	channels	survived	the	FDR	correction	for	

multiple	comparisons.	

	

channel	 brain	region	 t	value	 p	value	 df	

Self-Live>Self-Recorded	

27-20	 mPFC	–	right	STG	 2.31	 0.031*	 21	

27-43	 mPFC	–	right	TPJ	 2.31	 0.034*	 16	

30-36	 mPFC	–	left	TPJ	 2.04	 0.062†	 13	

Self	>Other	

27-23	 mPFC	–	right	posterior	temporal	
gyrus	 2.27	 0.034*	 20	

27-40	 mPFC	–	right	supramarginal	gyrus	 2.03	 0.050*	 21	

29-15	 mPFC	–	right	IFG	 1.02	 0.063†	 14	

30-15	 mPFC	–	right	IFG	 2.28	 0.040*	 13	

30	-	39	 mPFC	–	right	precentral	gyrus	 2.42	 0.028*	 16	
	
Table	 5.7	 Significant	 and	 marginally	 significant	 functional	 connections	 for	 Self-

Live>Self-Recorded	and	for	Self>Other	in	the	whole	sample.	*,	p<0.05;	†,	p<0.065.	
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As	can	be	seen	from	the	table,	the	mPFC	presented	greater	functional	

connectivity	with	right	STG	(27-20),	with	the	left	TPJ	(27-43),	and	with	the	right	

TPJ	 (30-36)	 in	 the	 Self-Live	 rather	 than	 in	 the	 Self-Recorded	 condition.	

Moreover,	 the	 mPFC	 presented	 greater	 functional	 connectivity	 with	 right	

posterior	temporal	gyrus	(27-23),	with	the	right	supramarginal	gyrus	(27-40),	

and	with	the	right	IFG	(29-15	and	30-15)	and	with	the	right	precentral	gyrus	

(30-39)	in	the	Self-Live	rather	than	in	the	Other	condition.	

	

5.4.3	 Correlations	 between	 brain	 activation	 and	 behavioural	

measures	

Hereafter	I	investigated	the	relationship	between	the	haemodynamic	response	

over	 the	 channels	 significantly	 activated	 for	 the	 Self-Live>Self-Recorded	

contrast	in	the	Recognisers	and	in	the	Non-Recognisers	(see	previous	table	5.5)	

and	infants’	behavioural	measures.	The	level	of	performed	movements	in	the	

Self-Live	 condition	was	 significantly	positively	 correlated	with	betas	of	 Self-

Live>Self-Recorded	in	channel	29,	r(22)=0.437,	p=0.033	(not	significant	after	

FDR	correction),	and	almost	significantly	in	channel	30,	r(22)=0.273,	p=0.065,	

which	were	both	over	 the	mPFC	region	(Figure	5.7).	The	 level	of	performed	

movements	in	Self-Recorded	condition	did	not	show	any	significant	correlation	

with	channels	significantly	activated	for	the	Self-Live>Self-Recorded	contrast.		
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Figure	 5.7	 Scatterplots	 of	 the	 relationship	 between	 beta	 values	 of	 Self-Live>Self-
Recorded	in	channel	29	(A)	and	channel	30	(B)	and	mean	values	of	movement	in	Self-
Live	trials.	*,	p<0.05.	

	

As	%LT	in	the	mirror	post	mark	placement	was	higher	than	before	only	

in	Recognisers,	suggesting	this	as	an	index	of	self-recognition,	the	relationship	

between	betas	of	Self-Live>Self-Recorded	in	channels	significantly	engaged	by	

this	contrast	and	%LT	in	the	mirror	after	the	mark	was	placed	was	explored.	

%LT	 in	 the	 mirror	 after	 the	 mark	 was	 placed	 was	 significantly	 positively	

correlated	with	activity	in	Channel	29,	r(22)=0.403,	p=0.050	(not	significant	

after	FDR	correction),	and	channel	30,	r(21)=0.430,	p=0.041	(not	significant	

after	FDR	correction),	both	over	the	mPFC.	After	correcting	for	the	outlier,	the	

positive	correlation	between	%LT	in	the	mirror	after	the	mark	was	placed	and	

channel	30	was	still	significant,	r(23)=0.485,	N=23,	p=0.019)	(Figure	5.8).	
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Figure	 5.8	 Scatterplot	 of	 the	 relationship	 between	 beta	 values	 of	 Self-Live>Self-
Recorded	in	channel	30	and	%	LT	in	the	mirror	after	the	mark	was	placed	(corrected	
for	the	outlier).		*,	p<0.05.	

	

The	 relationship	 between	 the	 haemodynamic	 response	 over	 the	

channels	significantly	activated	for	the	Self>Other	contrast	in	the	Recognisers	

and	in	the	Non-Recognisers	(see	previous	table	5.6)	and	infants’	behavioural	

measures	was	investigated.	A	positive	relationship	between	%LT	in	the	mirror	

after	the	mark	was	placed	was	found	with	betas	of	Self>Other	in	channel	28,	

r(20)=0.530,	 p=0.011;	 corrected	 for	 the	 outlier:	 r(20)=0.518,	 p=0.013	

(significant	after	FDR	correction),	and	with	channel	30,	r(19)=0.610,	p=0.003;	

corrected	for	the	outlier:	r(19)=0.553,	N=21,	p=0.009	(significant	after	FDR	

correction).	(Figure	5.9)	
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Figure	5.9	Scatterplots	of	the	relation	between	beta	values	of	Self>Other	in	channel	28	
(A),	channel	30	(B)	and	%	LT	in	the	mirror	after	the	mark	was	placed	(corrected	for	the	
outlier).		**,	p<0.05	that	survived	the	FDR	correction	for	multiple	comparisons.	
	

5.5	Discussion	

The	study	presented	in	this	Chapter	sought	to	investigate	the	neural	substrates	

of	 self-recognition	 in	 18-month-old	 infants.	 A	 cohort	 of	 18-month-olds	 was	

tested	with	fNIRS,	manipulating	the	temporal	contingency	of	their	performed	

and	observed	movements	while	they	observed	videos	of	themselves	(Self-Live	

and	 Self-Recorded	 conditions).	 Their	 brain	 activation	 was	 additionally	

recorded	while	they	looked	at	videos	of	an	unfamiliar	infant	(Other	condition).	

Consistent	with	previous	adult	works,	mPFC	and	TPJ	were	engaged	by	this	self-

recognition	 task.	 In	 particular,	 only	 infants	 with	 more	 developed	 self-

awareness,	as	indexed	by	the	MSR	task,	showed	a	significant	engagement	of	the	

mPFC	and	the	TPJ	when	looking	at	videos	where	they	might	have	recognised	

themselves	 (Self-Live	 vs.	 Self-Recorded	 and	 Self	 vs.	 Other).	 Moreover,	

Recognisers	showed	a	significantly	greater	activation	than	Non-Recognisers	in	

Self-Live	vs.	Self-Recorded	in	channels	over	the	mPFC	and	the	right	TPJ.		
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More	than	one	finding	in	this	study	indicates	that	the	mPFC	may	play	a	

role	in	a	component	of	self-processing,	the	detection	of	own	movements,	in	the	

developing	 brain.	 In	 particular,	 results	 showed:	 i)	 a	 significantly	 greater	

activation	of	the	mPFC	only	in	Recognisers	in	the	Self-Live	vs.	Self-Recorded	and	

Self-Live	 vs.	 Other	 contrasts;	 ii)	 a	 positive	 relationship	 between	 the	 mPFC	

activation	and	two	behavioural	measurements	collected	during	the	MSR	task	

and	 suggesting	 self-recognition,	 and	 the	 fNIRS	 task;	 iii)	 greater	 functional	

connections	 between	 mPFC	 and	 TPJ	 in	 the	 Self-Live	 compared	 to	 the	 Self-

Recorded	 condition	 and	 in	 the	 Self	 rather	 than	 in	 the	 Other	 condition.	 The	

crucial	 role	of	 the	 frontal	cortex	as	a	neural	substrate	of	self-awareness	was	

previously	shown	in	adults	(for	some	examples	see	Araujo,	Kaplan,	Damasio,	&	

Damasio,	2015;	Heatherton	et	al.,	2006;	Heatherton,	Macrae,	&	Kelley,	2004;	

Jenkins	&	Mitchell,	2011;	Platek,	Wathne,	Tierney,	&	Thomson,	2008),	and	here	

it	has	been	implicated	in	the	developing	brain	for	the	first	time.	Interestingly,	

animal	 studies	 showed	 that	 non-human	 primates	 that	 exhibited	 self-

recognition	 in	 the	 mirror	 are	 those	 that	 have	 significantly	 more	 developed	

frontal	lobes	(Platek	et	al.,	2008;	Semendeferi,	Damasio,	Frank,	&	Van	Hoesen,	

1997).	In	human	beings,	the	frontal	lobes	are	rapidly	developing	between	the	

first	and	 third	 years	of	 life	 (Bell	&	Fox,	 1992;	 Fuster,	 2003;	 Johnson,	 2001),	

which	is	a	fundamental	period	for	developing	capacities	to	represent	self	and	

other	(Amsterdam,	1972).	The	essential	role	of	the	mPFC	in	social	and	cognitive	

abilities	early	in	age	has	been	demonstrated	by	several	studies	(for	a	review	see	

Grossmann,	2013),	and	this	work	further	supports	its	role	in	social	domains,	

and	 in	 particular,	 in	 emerging	 self-processing.	 Studies	 on	 patients	 with	

damaged	frontal	lobes	which	showed	impaired	abilities	to	recognise	their	own	

faces,	and	deficits	in	self-evaluation,	are	consistent	with	the	importance	of	the	
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frontal	 lobes	 in	 physical	 and	 mental	 self-related	 aspects	 (for	 a	 review	 see	

Feinberg	&	Keenan,	2005).		

Functional	connectivity	analysis	may	have	provided	 further	evidence	

for	the	mPFC	as	a	core	region	for	self-processing,	showing	stronger	connections	

between	the	mPFC	and	the	right	TPJ	in	the	Self-Live	compared	with	the	Self-

Recorded	 condition	 and	 in	 the	 Self	 compared	with	 the	Other	 condition.	The	

limited	sample	sizes	of	the	Recognisers	and	Non-Recognisers	subsets	did	not	

allow	for	any	functional	connectivity	investigation	in	the	two	groups	separately.	

However,	 given	 the	 brain	 activation	 results	 and	 the	 positive	 relationship	

between	the	mPFC	activation	in	the	self-recognition	task	and	the	behavioural	

measures,	a	cautious	prediction	is	that	the	mPFC-TPJ	coupling	related	to	self-

recognition	may	be	driven	by	the	Recognisers.	Future	studies	should	build	on	

this	 work	 by	 attempting	 to	 replicate	 these	 findings	 with	 larger	 samples	 of	

infants,	 so	 as	 to	 be	 able	 to	perform	more	 statistically	meaningful	 functional	

connectivity	 analyses.	 This	 would	 allow	 the	 investigation	 of	 different	 brain	

connectivity	 pattern	 in	 Recognisers	 and	 Non-Recognisers,	 which	 will	

potentially	 provide	 support	 for	 the	 findings	 from	 the	 previous	 chapter	 on	

functional	 connectivity	 estimated	 at	 rest.	While	 this	 work	 suggests	 that	 the	

mPFC	and	the	TPJ	work	simultaneously	when	processing	self-related	stimuli,	

the	 analysis	 performed	 does	 not	 provide	 any	 further	 description	 of	 the	

relationship	between	these	two	brain	regions.	In	the	next	future,	I	aim	to	apply	

the	DCM	technique	validated	for	infant	fNIRS	data	in	Chapter	3	on	this	dataset,	

which	 will	 provide	 a	 more	 informative	 understanding	 of	 the	 mPFC-TPJ	

connections	in	this	task,	providing	knowledge	of	directionality	and	causality.	

Platek	 et	 al.	 (2008)	 hypothesized	 a	 posterior–anterior	 stream	 of	 self-

processing,	whereby	TPJ	serves	as	a	first	level	characterization	of	bodies	and	



Chapter	5	

	 238 

faces.	Later,	the	information	might	be	sent	to	the	frontal	cortices	to	differentiate	

self	from	others	at	a	higher	level	of	processing,	and	perhaps	at	an	abstract	level	

of	knowledge	about	the	self	(Platek	et	al.,	2008).	Further	research	should	test	

this	hypothesis,	which	will	 contribute	 to	a	better	understanding	of	 the	brain	

mechanisms	supporting	emerging	self-awareness.	

Recognisers	also	showed	stronger	activation	of	the	TPJ	in	Self-Live	vs.	

Self-Recorded	 conditions.	This	 is	 consistent	with	 findings	 from	adult	 studies	

which	showed	that	this	area	responds	to	visual	self-face	processing	stimuli	(for	

a	review	see	Ruby	&	Legrand,	2007).	It	has	been	shown	that	the	right	TPJ	plays	

a	role	 in	maintaining	a	coherent	sense	of	physical	self,	as	disruptions	 in	this	

brain	region	make	the	distinction	between	what	is	or	is	not	part	of	one's	body	

more	ambiguous	on	the	basis	of	multisensory	evidence	(Tsakiris	et	al.,	2008).	

Moreover,	bilateral	activation	of	the	TPJ	was	demonstrated	to	be	a	central	hub	

of	 a	 complex	 network	 attributed	 to	 bodily	 self-awareness	 (Ionta,	 Martuzzi,	

Salomon,	&	Blanke,	2013).	The	role	of	the	TPJ	in	self-other	interaction	is	a	focus	

of	 much	 interest	 of	 the	 recent	 developmental	 research,	 mostly	 in	 studies	

focused	on	theory	of	mind,	i.e.	predicting	others’	actions	and	beliefs.	Recently,	

Hyde	 and	 colleagues	 found	 activation	 of	 the	 TPJ	 when	 7-month-olds	

participated	 in	 a	 perspective	 taking	 task	 (Hyde,	 Simon,	 Ting,	 &	 Nikolaeva,	

2018),	 which	 is	 consistent	 with	 adult	 research	 into	 the	 role	 of	 TPJ	 in	

mentalizing	 processes	 (for	 some	 examples	 see	 Aichhorn	 et	 al.,	 2009;	 Costa,	

Torriero,	Oliveri,	&	Caltagirone,	2008;	Perner,	Aichhorn,	Kronbichler,	Staffen,	&	

Ladurner,	2006;	Saxe	&	Kanwisher,	2003;	Saxe	&	Wexler,	2005).	The	agreement	

on	 the	 strong	 link	 between	 emerging	 self-awareness	 and	 social	 cognitive	

abilities	 (Bradford,	 Jentzsch,	 &	 Gomez,	 2015;	 Happe,	 2003;	 Kyselo,	 2016;	

Southgate,	2018;	Vogeley	et	al.,	2001;	Zahavi,	2017)	is	consistent	with	empirical	
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research	showing	a	shared	activation	of	the	TPJ	in	mentalizing	and	perspective	

taking	tasks	but	also	in	self-processing	tasks,	when	more	abstract	self-concepts	

are	 considered,	 such	 as	 self-judgments	 and	 self-evaluation	 (Decety	 &	

Sommerville,	2003).	Future	studies	focusing	on	the	relationship	between	the	

development	of	the	sense	of	self	and	the	development	of	theory	of	mind	skills	

might	better	disentangle	how	these	two	psychological	domains	interact	during	

the	first	years	of	life.	

The	 different	 pattern	 of	 brain	 activation	 characterizing	 Self-Live	 vs.	

Self-Recorded	conditions	suggests	the	importance	of	the	detection	of	temporal	

contingency	in	movements	as	a	cue	for	self-recognition	in	the	first	years	of	life,	

which	 is	 in	 line	 with	 previous	 behavioural	 studies	 (Povinelli	 et	 al.,	 1996;	

Povinelli	&	Simon,	1998;	Skouteris	et	al.,	2009),	and	with	a	neuroimaging	adult	

study	(Sugiura	et	al.,	2015).	Additionally,	it	has	been	previously	shown	that	the	

TPJ,	the	posterior	temporal	gyrus	and	the	mPFC	respond	to	the	manipulation	of	

sensory-feedback	(Farrer,	Franck,	Paillard,	&	Jeannerod,	2003;	Farrer	&	Frith,	

2002;	Hashimoto	&	Sakai,	 2003;	Yomogida	 et	 al.,	 2010),	which	 is	 consistent	

with	 the	 brain	 activation	 showed	 in	 this	 task	 to	 the	 temporal	 contingency	

modulation.	

The	 fact	 that	different	outcomes	 in	 the	MSR	task	are	associated	with	

different	patterns	of	brain	activation	during	a	different	self-recognition	 task,	

might	 provide	 support	 for	 the	 validity	 of	 both	 tasks.	 Further	 evidence	 in	

support	 of	 the	 claim	 that	 that	 the	 MSR	 task	 indexes	 self-recognition	 is	 the	

significantly	 greater	 %LT	 in	 the	 mirror	 after	 the	 mark	 has	 been	 placed	

compared	 with	 before,	 and	 the	 significantly	 greater	 level	 of	 exploratory	

movements	during	self-videos	exhibited	by	Recognisers.	However,	it	is	worth	

mentioning	that	the	HRF	plots	showed	an	increase	in	HbO2	blood	flow	in	the	
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mPFC	 and	 in	 the	 left	 TPJ	 as	 ROI	 for	 Self-Live	 vs.	 Self-Recorded	 in	 Non-

Recognisers	as	well.	This	might	indicate	a	partial	engagement	of	these	regions	

in	relation	to	self-recognition	even	in	infants	with	less	developed	sense	of	self,	

suggesting	that	self-awareness	gradually	emerges	throughout	the	second	year	

of	life	(Bertenthal	&	Fischer,	1978;	Neisser,	1993;	Rochat,	1995).	Therefore,	one	

could	conclude	 that	 traces	or	precursors	of	self-awareness	might	be	present	

even	before	the	self-recognition	in	the	MSR	task	can	be	observed,	given	that	the	

MSR	task	makes	additional	demands	in	terms	of	motor	coordination	that	the	

fNIRS	task	may	not.	In	this	respect,	brain	responses	might	inform	on	a	‘lower	

level’	than	the	behavioural	response	exhibited	during	the	MSR	task.	In	fact,	we	

might	be	able	to	detect	evidence	of	self-recognition	at	an	earlier	age	evidenced	

by	 different	 brain	 response	 to	 self	 and	 other-related	 stimuli	 than	what	 it	 is	

indicated	 by	 the	MSR	 task,	which	 requires	 the	 infants	 to	 actually	 reach	 and	

touch	 the	 mark	 on	 their	 face.	 It	 would	 be	 interesting	 to	 follow	 the	 self-

awareness	 development	 in	 the	Non-Recognisers,	 and	 study	 how	 their	 brain	

response	 changes	 until	 the	 achievement	 of	 self-recognition	 indicated	 by	 the	

MSR.	This	might	provide	a	deeper	characterisation	of	the	variability	presented	

by	the	Non-Recognisers	group,	than	the	strict	categorisation	proposed	by	the	

MSR	task.	Moreover,	future	studies	could	use	this	fNIRS	task	in	infants	older	

than	 2-3-years	 of	 age,	 when	 self-recognition	 in	 delayed	 videos	 should	 be	

established,	 to	 explore	 whether	 any	 differences	 in	 neural	 substrates	 of	

previously	recorded	self-videos	compared	to	live	ones	are	present.	However,	it	

is	worth	mentioning	that	while	the	engagement	of	the	mPFC	in	both	Self-Live	

vs.	Self-Recorded	and	Self	vs.	Other	was	supported	by	the	findings	of	a	main	

effect	of	the	Self-Live	and	the	Self	conditions	in	the	repeated	measures	ANOVA	

analysis,	no	significant	interaction	with	the	MSR	outcome	was	shown	in	neither	
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of	the	contrasts	of	interest.	A	post-hoc	power	analysis	performed	with	G*Power	

(Faul,	 Erdfelder,	 Lang,	 &	 Buchner,	 2007)	 revealed	 that	 in	 order	 to	 detect	 a	

medium	effect	of	this	size	as	significant	at	the	5%	level	(d=0.5,	Cohen,	1988),	a	

sample	of	42	participants	would	be	required.	This	suggests	that	the	sample	of	

the	 current	 study	might	be	underpowered	to	detect	 a	significant	 interaction	

between	the	experimental	conditions	and	the	MSR	outcome	with	a	repeated	

measures	ANOVA.	The	reader	is	advised	to	interpret	results	with	cautious,	as	

the	 significance	 of	 these	 findings	 was	 based	 on	 one	 sample	 t-tests	 and	

independent	sample	t-tests,	which	are	less	robust	statistical	analyses	than	the	

ANOVA	approach.	

	 Some	channels	over	 left	and	right	STG	showed	a	significantly	greater	

activation	in	the	baseline	trials	compared	with	the	Other	condition.	None	of	the	

channels	 showed	 a	 significantly	 greater	 activation	 in	 the	 baseline	 trials	

compared	with	 the	 Self-Live	 and	Self-Recorded	 conditions.	 In	 this	study,	 the	

baseline	 trials	 were	 videos	 of	 colourful	 swirly	 bubbles,	 with	 the	 intent	 of	

keeping	participants	engaged	but	not	socially	stimulated.	It	is	possible	that	the	

STG	 activation	 is	 due	 to	 motion	 present	 in	 the	 baseline	 videos	 as	 the	 STG	

response	to	motion	has	been	shown	in	several	studies	(for	a	review	see	Giese	&	

Poggio,	 2003).	 Therefore,	 it	 is	 possible	 that	 the	 videos	 used	 in	 this	 task	 as	

baseline	might	have	 inadvertently	engaged	the	STG	due	 to	motion	contained	

within	them.	The	greater	activation	for	Baseline	compared	to	the	Other	but	not	

for	 the	 Self	 conditions	 might	 be	 due	 to	 the	 fact	 that	 the	 baseline	 videos	

constituted	 a	 novel	 attractive	 element	 mainly	 in	 the	 first	 part	 of	 the	 block	

design,	 when	 they	 were	 alternated	 with	 Other	 trials.	 This	 is	 a	 significant	

limitation	 of	 this	 study,	 and	 thus	 a	 different	 choice	 of	 baseline	 should	 be	

examined	whenever	this	fNIRS	task	will	be	used	again	in	the	future.		
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An	additional	limitation	of	the	current	study	is	the	high	variability	and	

the	unpredictable	amount	of	observed	and	performed	movements	during	the	

two	Self	conditions	exhibited	by	the	participants.	Even	though	this	aspect	is	not	

likely	to	have	an	effect	on	the	results,	researchers	interested	in	using	this	task	

in	the	future	should	take	into	account	the	possibility	to	test	more	subjects	than	

are	 usually	 tested	 in	 an	 fNIRS	 study.	 In	 fact,	 in	 this	 task	 the	 presence	 of	

movements	in	the	Self	trials	was	a	necessary	requirement	in	order	to	appreciate	

any	 differences	 between	 the	 conditions,	 yet	 this	 element	 is	 beyond	

experimental	control.	Therefore,	this	factor	contributed	to	a	very	high	exclusion	

rate,	already	exacerbated	by	the	use	of	the	high-chair.	This	requirement	meant	

that	many	infants	who	sat	perfectly	still	during	the	experiment	did	not	provide	

the	 minimum	 number	 of	 valid	 trials	 to	 be	 included	 in	 the	 analysis,	 due	 to	

absence	 of	 their	 own	 movements	 needed	 for	 them	 to	 detect	 contingency.	

However,	 infants	who	moved	 too	much	were	 often	 excluded	 from	 the	 final	

sample,	due	to	an	excessive	level	of	noise	in	the	data.	Any	future	replication	of	

this	study	should	consider	an	alternative	to	the	use	of	the	high	chair,	to	limit	the	

excessive	exclusion	rate	presented	by	this	study.	

	 In	conclusion,	this	is	the	first	study	to	provide	evidence	for	mPFC	and	

the	TPJ	engagement	in	the	process	of	self-recognition,	in	the	developing	brain.	

The	 frontal	cortex	 in	particular	seems	to	be	 important	 for	self-processing	 in	

infancy,	 supported	 by	 correlations	 with	 behavioural	 measurements	 and	

functional	connectivity	analysis.	Only	one	previous	study	showed	evidence	for	

a	role	for	the	TPJ	in	self-processing	in	18-month-olds	(Lewis	&	Carmody,	2008),	

while	this	is	the	first	time	that	the	mPFC	has	been	shown	to	be	implicated	in	

self-processing	and	self-other	distinction	in	infancy.	The	results	presented	in	

this	 study	are	 consistent	with	 the	 vast	 literature	 in	 adults	and	with	 findings	
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presented	 in	 the	previous	 chapter.	This	 chapter	 and	 the	previous	one	 taken	

together	have	notably	enriched	the	knowledge	of	the	neural	underpinnings	of	

self-awareness	 in	 the	 developing	 brain	 and	 they	 both	 provide	 evidence	 to	

support	 the	 use	 of	 the	MSR	 task	 as	 a	 valid	 tool	 to	 assess	 self-awareness	 in	

infancy.	 Moreover,	 as	 the	 study	 presented	 in	 Chapter	 4	 suggested	 that	 the	

significance	of	self-recognition	goes	beyond	physical	features,	results	from	the	

current	study	might	be	 interpreted	as	 the	neural	underpinnings	of	emerging	

self-awareness,	which	comprehend,	but	it	is	not	confined	to,	self-recognition.		

While	 Chapter	 4	 and	 Chapter	 5	 provided	 evidence	 on	 the	 neural	

substrates	of	the	sense	of	self	in	infancy,	the	next	two	chapters	are	dedicated	to	

explore	 the	 relationship	 between	 emerging	 self-awareness	 and	 social	

interactions.	 This	 will	 further	 enrich	 the	 understanding	 of	 mechanisms	

underlying	 the	 development	 of	 the	 sense	 of	 self	 and	 how	 this	may	 have	 an	

impact	on	social	cognitive	abilities.	
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6.1	Abstract	

A	 link	between	the	development	of	self-awareness	and	the	 interactions	with	

others	has	been	thought	to	be	present	from	early	in	life.	Moreover,	research	has	

shown	that	our	identity	is	partially	defined	by	our	sense	of	belonging	to	certain	

social	groups.	Previous	studies	have	shown	that	 infants	are	sensitive	 to,	and	

show	a	preference	 for	 in-group	members	 from	an	early	age.	While	this	early	

sensitivity	may	be	driven	by	a	preference	to	interact	with	familiar	others,	it	is	

likely	 that	 social	 categorisation	 based	 on	 self-comparison	 processes	 is	 only	

possible	 once	 infants	 have	 developed	 self-awareness.	 However,	 the	

relationship	 between	 emerging	 self-awareness	 and	 the	 tendency	 to	 identify	

with	in-group	members	is	still	unexplored.	Here	I	investigate	this	relationship	

by	asking	whether	the	tendency	to	selectively	mimic	linguistic	in-group	over	

out-group	members	is	dependent	on	the	presence	of	self-awareness.	Mimicry,	

the	spontaneous	tendency	to	copy	others’	actions,	has	been	shown	to	play	an	

important	 role	 in	 social	 affiliation.	 18-month-olds	 observed	 facial	 actions	

performed	 by	 either	 a	 native	 speaker	 or	 a	 foreign	 speaker	 model,	 while	

activation	 of	 the	 infants’	 corresponding	 facial	 muscles	 was	measured	 using	

EMG	to	obtain	an	index	of	mimicry.	fNIRS	was	simultaneously	used	to	record	

neural	responses	to	the	stimuli.	The	MSR	task	assessed	the	infants’	level	of	self-

awareness.	This	study	showed	a	general	tendency	to	selectively	mimic	the	facial	

actions	of	the	native	compared	to	the	foreign	speaker.	More	importantly,	this	

effect	 was	 present	 only	 in	 those	 infants	 who	 showed	 self-recognition.	

Furthermore,	Recognisers	showed	a	greater	engagement	of	one	channel	over	

the	 right	 posterior	 temporal	 gyrus	 compared	 with	 Non-Recognisers	 while	

observing	 facial	actions	performed	by	a	native	speaker	rather	 than	a	 foreign	

speaker.	The	facial	mimicry	findings	are	consistent	with	the	idea	that	a	more	
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advanced	level	of	self-awareness	may	allow	infants	to	identify	with	their	social	

group,	 hereby	 enhancing	 their	 tendency	 to	 selectively	 mimic	 in-group	

members.	However,	the	fNIRS	results	are	less	clear	and	not	associated	with	the	

facial	mimicry	scores,	therefore	they	should	be	interpreted	with	caution.		
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6.2	Introduction	

The	 introduction	 of	 this	 thesis	 underlined	 the	 connection	 between	 the	

development	 of	 self-awareness	 and	 the	 interactions	 with	 others.	 The	

alternation	between	self-other	integration	and	self-other	distinction	has	been	

shown	as	fundamental	for	efficient	social	interactions	(Decety	&	Sommerville,	

2003;	Sowden	&	Shah,	2014;	Steinbeis,	2016).	While	the	relationship	between	

self	 and	 other	 representations,	 and	 social	 interactions,	 has	 been	 a	 topic	

extensively	 explored	 in	 adults,	we	 know	 very	 little	 about	 the	 association	 of	

these	two	aspects	in	infancy.	However,	the	idea	of	a	social	construction	of	the	

self	 recently	 proposed	 (Prinz,	 2012;	 Rochat,	 2003;	 Rochat	 &	 Zahavi,	 2011)	

seems	to	favour	the	study	of	emerging	self-awareness	in	relation	to	the	social	

environment.	In	fact,	the	emerging	sense	of	self	likely	has	implications	for	the	

development	 of	 other	 social	 cognitive	 abilities,	 such	 as	 perspective	 taking,	

imitation,	empathy,	emotion	recognition,	and	vice	versa	(Carpendale	&	Lewis,	

2006).		

Research	has	shown	that	our	identity	is	partially	defined	by	our	sense	

of	 belonging	 to	 certain	 social	 groups	 (Bodenhausen,	 Kang,	 &	 Peery,	 2012;	

Castelli,	Tomelleri,	&	Zogmaister,	2008;	Dasgupta,	2004;	Devine,	1989;	Fiske	&	

Neuberg,	1990;	Tajfel,	2010;	Tajfel	&	Turner,	1986).	A	large	body	of	research	in	

social	psychology	has	explored	our	natural	disposition	 to	perceive	people	as	

belonging	 to	 social	 categories,	 and	 has	 shown	 that	 our	 behaviours	 towards	

others	 are	 influenced	 by	 their	 group	membership.	 For	 example,	 it	 has	 been	

shown	 that	 people	 judge	 members	 from	 their	 own	 group	 more	 positively	

(Gerard	 &	 Hoyt,	 1974;	 Schmitt	 &	 Branscombe,	 2001)	 they	 allocate	 more	

resources	 to	 them	 (Tajfel,	 1978)	 and	 they	 are	more	 likely	 to	 help	 in-group	

compared	to	out-group	members	(Levine,	Prosser,	Evans,	&	Reicher,	2005).		
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Social	categorisation	and	preferences	for	in-groups	have	been	shown	to	

have	their	basis	early	in	infancy	(Liberman,	Woodward,	&	Kinzler,	2017;	Ziv	&	

Banaji,	2012).	For	example,	10-month-olds	prefer	to	interact	with	and	to	accept	

a	toy	from	a	native	speaker	compared	to	a	foreign	speaker	(Kinzler,	Dupoux,	&	

Spelke,	2007)	and	they	are	more	 likely	 to	choose	a	puppet	who	shares	 their	

food	preferences	(Mahajan	&	Wynn,	2012).	Language	seems	to	be	a	particularly	

strong	cue	to	group	membership	(Liberman	et	al.,	2017),	with	several	studies	

demonstrating	 a	 preference	 for	 linguistic	 in-group	 compared	 to	 out-group	

members.	 For	 example,	 12-month-olds	 are	 more	 likely	 to	 choose	 foods	

endorsed	by	a	native	speaker	rather	than	by	a	foreign	speaker	(Shutts,	Kinzler,	

McKee,	&	Spelke,	2009)	and,	by	 the	second	year	of	 life,	 infants	imitate	novel	

object-directed	 actions	 of	 a	 linguistic	 in-group	member	more	 faithfully	 than	

actions	performed	by	a	linguistic	out-group	member	(Buttelmann,	Zmyj,	Daum,	

&	 Carpenter,	 2013;	 Howard,	 Henderson,	 Carrazza,	 &	 Woodward,	 2015).	

Together	these	findings	show	an	early-developing	preference	to	interact	with	

members	 of	 the	 same	 linguistic	 group.	 Interestingly	 though,	 mechanisms	

underlying	 the	preference	 for	 linguistic	 in-group	members	might	not	be	 the	

same	over	the	course	of	the	development.	Initially,	the	preference	for	linguistic	

in-group	members	in	young	infants	could	be	driven	by	a	preference	for	stimuli	

that	the	infant	frequently	encounters	(Liberman	et	al.,	2017).	The	finding	that	

infants	who	are	constantly	exposed	to	different	races	do	not	exhibit	an	own-

race	preference	seems	to	be	consistent	with	this	idea	(Bar-Haim,	Ziv,	Lamy,	&	

Hodes,	 2006;	 Gaither	 et	 al.,	 2014).	 However,	 it	 is	 plausible	 that	 later	 in	

development	 self-identification	 and	 self-comparison	 processes	 may	 start	 to	

influence	social	categorisation.	That	is,	whereas	early	preferences	for	in-group	

members	 may	 arise	 from	 familiarity,	 later	 preferences	 could	 plausibly	 be	
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influenced	also	by	a	process	of	comparing	the	other	with	the	self.	One	of	the	key	

turning	 points	 in	 this	 respect	 may	 be	 the	 development	 of	 the	 sense	 of	 self,	

arising	sometime	between	18	and	24	months	of	age,	which	could	permit	this	

process	of	self-comparison.	For	example,	to	exhibit	a	preference	for	someone	

who	 has	 been	 arbitrarily	 assigned	 to	 the	 same	 group	 as	 yourself	 with	 a	

particular	 colour	 t-shirt	 (Dunham,	 Baron,	 &	 Carey,	 2011;	 Tajfel,	 1974),	 one	

would	 need	 to	 understand	 that	 we	 both	 share	 this	 characteristic.	 This	

understanding	would	seem	to	require	a	process	of	self-other	comparison,	or	

recognizing	self-other	similarity.		To	do	this,	a	minimum	requirement	should	be	

the	development	of	self-awareness.		

Although	 self-awareness	 is	 likely	 to	 affect	 how	 infants	 perceive,	

identify,	 and	 interact	 with	 others,	 to	 date	 we	 know	 little	 about	 how	 its	

development	 might	 influence	 infants’	 social	 categorisations.	 In	 this	 study,	 I	

investigate	 the	 relationship	 between	 the	 development	 of	 the	 sense	 of	 self	

during	 the	 second	 year	 of	 life	 and	 the	 preference	 for	 in-group	members	 by	

exploring	 whether	 the	 tendency	 to	 selectively	 mimic	 native	 over	 foreign	

speakers	is	dependent	on	the	presence	of	a	sense	of	self.	As	explained	in	Chapter	

1,	mimicry	plays	a	pivotal	role	in	shaping	social	interactions,	building	relational	

bonds	 in	 every-day	 life	 (Lakin	 &	 Chartrand,	 2003;	 Lakin	 et	 al.,	 2003)	 and	

increasing	 affiliation	 and	 cooperation	 (Chartrand	 et	 al.,	 2012;	 Cheng	 &	

Chartrand,	 2003;	Fischer	 et	al.,	 2013;	Stel	 et	 al.,	 2010).	 Several	 studies	have	

explored	 the	social	modulation	of	mimicry	 in	adulthood.	For	 example,	 it	has	

been	shown	that	eye	contact	enhances	mimicry	(Wang,	Newport,	&	Hamilton,	

2011),	and	that	people	mimic	more	facial	expressions	of	characters	that	have	

been	judged	positively	(Likowski	et	al.,	2008).	Moreover,	the	influence	of	social	

groups	in	mimicry	has	been	also	explored	in	adults,	showing	that	people	mimic	
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more	in-group	that	out-group	members,	and	that	among	the	in-group	members	

people	mimic	more	those	that	they	evaluate	more	positively	(Yabar,	Johnston,	

Miles,	 &	 Peace,	 2006).	 People	 selectively	 mimic	 ingroup	 and	 outgroup	

depending	 on	 their	 facial	 emotion	 expressions	 (Bourgeois	 &	 Hess,	 2008).	

Despite	the	substantial	volume	of	literature	that	explored	the	social	modulation	

of	mimicry	in	adults,	research	has	only	recently	started	to	elucidate	how	social	

factors	influence	mimicry	throughout	the	first	few	years	of	life.	In	a	previous	

study	from	my	team,	11-month-old	infants	showed	greater	facial	mimicry	of	a	

model	 who	 spoke	 their	 native	 language	 compared	 to	 a	 foreign	 speaker	 (de	

Klerk	 et	 al.,	 under	 review).	 At	 this	 age,	 it	 seems	 unlikely	 that	 the	 infants	

performed	a	conscious	comparison	between	themselves	and	the	model,	or	that	

they	identified	with	her	based	on	a	process	of	self-comparison	with	their	own	

linguistic	 group.	 Instead,	 the	 selective	mimicry	 at	 this	 age	may	 have	mainly	

been	 driven	 by	 infants’	 tendency	 to	 prefer	 to	 interact	 with	 familiar	 others	

(Begus,	 Gliga,	 &	 Southgate,	 2016;	 Liberman	 et	 al.,	 2017).	 However,	 the	

mechanisms	underlying	 these	 selective	mimicry	processes	may	 change	once	

infants	develop	a	sense	of	self,	allowing	them	to	generate	more	conceptually-

rich	social	categories,	and	 to	start	to	actively	categorise	others	 in	relation	 to	

their	 own	 social	 identity.	 Previous	 research	 has	 already	 demonstrated	 an	

association	 between	 self-recognition	 and	 the	 tendency	 to	 imitate	 others	

(Asendorpf	&	Baudonnière,	 1994;	Asendorpf,	Warkentin,	&	Baudonni,	1996;	

Zmyj,	Prinz,	&	Daum,	2013),	but	how	emerging	self-awareness	interacts	with	

the	tendency	to	selectively	imitate	in-group	others	is	still	unknown.		

In	terms	of	neural	activation,	it	is	interesting	to	highlight	that	some	of	

the	regions	that	have	been	related	to	self-processing,	are	also	involved	during	

imitation.	 There	 are	 evidence	 of	 the	 MNS	 involved	 several	 during	 self-
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processing	tasks	in	adults	(Kaplan	et	al.,	2008;	Uddin	et	al.,	2007,	2005),	but	

there	is	also	an	extensive	literature	that	showed	that	the	MNS	is	engaged	during	

imitative	behaviours	(Iacoboni,	2005;	Rizzolatti	&	Craighero,	2004).	Given	the	

positive	 association	 between	 imitation	 and	 emerging	 self-awareness	

(Asendorpf	&	Baudonnière,	1994;	Asendorpf	et	al.,	1996;	Zmyj	et	al.,	2013),	the	

MNS	 has	 been	 proposed	 as	 a	 common	 neural	 substrate	 underlying	 both	

imitation	and	the	sense	of	self,	even	during	the	first	years	of	life.	This	functional	

substrate	should	support	the	integration	between	self	and	other	perspectives	

(Iacoboni	&	Dapretto,	2006;	Iacoboni,	2009).	However,	there	are	no	evidence	

to	support	this	hypothesis	in	developmental	neuroscience.		

Not	only	the	MNS,	but	also	the	mPFC	and	the	TPJ,	two	core	regions	of	

self-processing	 (for	 example	 see	 Arzy,	 Thut,	 Mohr,	 Michel,	 &	 Blanke,	 2006;	

Jenkins	 &	Mitchell,	 2011),	 are	 also	 activated	 during	 imitation,	 in	 particular	

during	inhibition	of	imitation	(Brass,	Ruby,	&	Spengler,	2009;	Spengler	et	al.,	

2010;	Spengler,	Von	Cramon,	&	Brass,	2009;	Wang,	Ramsey,	Hamilton,	2011;	

Wang	&	Hamilton,	2012).	A	role	 for	 the	mPFC	has	been	also	shown	 in	social	

categorization,	with	 an	 increasing	 activation	 related	 to	 in-group	 versus	 out-

group	stimuli,	 in	both	existing	(Morrison,	Decety,	&	Molenberghs,	2012)	and	

newly	 created	 groups	 (Molenberghs,	 2013).	 The	 authors	 associated	 the	

activation	of	the	mPFC	selectively	for	in-group	stimuli	with	activation	of	this	

regions	for	self-processing,	hypothesizing	an	overlapping	neural	activity	as	a	

marker	 of	 the	 social	 identity	 and	 group	 membership	 as	 parts	 of	 the	 self	

(Morrison,	Decety,	&	Molenberghs,	2012).	This	 is	consistent	with	a	previous	

study	that	found	the	activation	of	the	mPFC	for	in-group	favouritism	during	a	

minimal	group	paradigm	(Volz,	Kessler,	&	von	Cramon,	2009).	Both	the	mPFC	

and	the	TPJ	have	been	shown	to	be	activated	when	interacting	with	in-group	
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members	 during	 a	 decision	 making	 task,	 as	 a	 possible	 marker	 of	 self-

comparison	 with	 the	 in-group	 features	 with	 self-referential	 mental	 activity	

(Rilling,	Dagenais,	Goldsmith,	Glenn,	&	Pagnoni,	2008),	

	The	 TPJ	 activation	 is	 related	 to	 the	 ability	 to	 distinguish	 self-	 from	

other-generated	 actions	 (Decety	 &	 Lamm,	 2007;	 Steinbeis,	 2016),	 and	 an	

increase	in	TPJ	activation	has	been	shown	during	mimicry	in	affiliative	contexts,	

suggesting	 that	 this	 region	may	 play	 an	 important	 role	 in	 situations	where	

salient	affiliative	signals	increase	mimicry,	requiring	one	to	disambiguate	one’s	

own	 actions	 from	 those	 of	 others’	 (Rauchbauer,	 Majdandžić,	 Hummer,	

Windischberger,	 &	 Lamm,	 2015).	 Despite	 this	 extensive	 volume	 of	

neuroimaging	literature	that	explores	the	relationship	between	self	and	other	

representations	and	imitation	in	adults,	to	date	there	is	no	evidence	from	infant	

studies	showing	an	engagement	of	brain	regions	typically	associated	with	self-

awareness	in	social	interactions.	However,	an	investigation	into	this	could	shed	

light	 on	 the	 mechanisms	 that	 underlie	 the	 relationship	 between	 these	 two	

variables	during	the	first	years	of	life.		

The	current	study	aimed	to	investigate	whether	the	emergence	of	the	

sense	of	self	modulates	the	infants’	tendency	to	selectively	mimic	linguistic	in-

group	 members	 and	 whether	 infants	 with	 more	 developed	 self-awareness	

activate	different	brain	regions	for	facial	actions	performed	by	in-group	rather	

than	out-group	members.	Infants	were	tested	with	the	MSR	task	to	assess	their	

level	 of	 self-awareness.	 Hereafter,	 activation	 of	 18-month-olds’	 mouth	 and	

eyebrow	muscle	regions	was	measured	using	EMG	-	as	an	index	of	mimicry	-	

while	 they	observed	 facial	actions	performed	either	by	 a	native	or	a	 foreign	

speaker.	I	expect	to	find	a	greater	tendency	to	mimic	facial	actions	performed	

by	the	native	model	in	Recognisers	than	in	Non-Recognisers.	Simultaneously,	
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infants’	 brain	 activation	 was	 recorded	 using	 fNIRS.	 I	 hypothesize	 a	 greater	

engagement	 of	MNS	 regions	 (i.e.	 IFG	 and	 STG)	 supporting	 a	 higher	 level	 of	

mimicry	of	the	native	model	displayed	by	Recognisers.	Moreover,	I	expect	to	

find	a	crucial	role	of	the	mPFC	that	supports	selective	mimicry	of	in-group	vs.	

out-group,	especially	in	Recognisers.	In	particular,	the	mPFC	activation	during	

actions	performed	by	the	native	model	would	be	consistent	with	the	role	of	the	

frontal	 cortex	 in	 social	 categorisation	 in	 relation	 to	 in-group	 members,	 as	

acknowledge	as	similar	to	oneself	(Molenberghs,	2013;	Morrison	et	al.,	2012;	

Rilling	et	al.,	2008;	Volz	et	al.,	2009).	Alternatively,	the	mPFC	activation	during	

actions	performed	by	 the	 foreign	model	would	be	consistent	with	 its	role	of	

inhibition	of	mimicry,	modulating	the	activation	of	regions	typically	engaged	in	

mimicry,	such	as	the	IFG	and	the	STG,	as	previously	shown	in	adults	(Brass	et	

al.,	2009;	Spengler	et	al.,	2010,	2009;	Wang	et	al.,	2011;	Yin	Wang	&	Hamilton,	

2012).	Functional	connectivity	analysis	can	particularly	 inform	on	this	latter	

hypothesis,	 investigating	 how	 regions	 known	 to	 be	 involved	 in	mimicry	 are	

positively	or	negatively	activated	together,	elucidating	the	role	of	the	mPFC	in	

respect	to	the	other	brain	areas.	

	

6.3	Methods	

6.3.1	Participants	

47	18-month-olds	provided	sufficient	data	to	be	included	in	the	EMG	analyses	

(26	males,	 age	mean	 ±	 SD	 =	 555.17	 ±	 12.93	 days)	 and	 57	 18-month-olds	

provided	sufficient	data	 to	be	 included	 in	 the	 fNIRS	 analyses	 (28	males,	age	

mean	±	SD	=	552.88	±	12.08	days).	36	participants	contributed	data	both	to	

the	EMG	and	NIRS	analyses.		
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48	infants	were	excluded	from	the	EMG	analyses	due	to:	technical	error	

(N=13),	 because	 they	 did	 not	 provide	 enough	 trials	 for	 analyses	 due	 to:	

fussiness	 (N=10),	 inattentiveness	 (N=23),	 or	 because	 they	 constantly	

hiccupped	or	repeatedly	put	their	fingers	in	their	mouth	(N=2)	-	factors	which	

were	 likely	 to	 have	 resulted	 in	 EMG	 activity	 unrelated	 to	 the	 stimulus	

presentation.	 55	 infants	were	 excluded	 from	 the	NIRS	 analyses	due	 to	 (i)	 a	

refusal	to	wear	the	NIRS	cap	(N=10),	 (ii)	excessive	number	of	bad	channels	

(>30%	of	the	channels	excluded	due	to	poor	light	intensity	readings)	(N=14),	

(iii)	because	they	did	not	provide	the	minimum	of	3	good	trials	per	condition	

due	to	fussiness	(N=15)	or	inattentiveness	(N=14),	or	technical	error	during	

the	NIRS	acquisition	(N=2).		

19	out	of	the	47	participants	included	in	the	EMG	analyses	and	22	out	

of	the	57	participants	included	in	the	fNIRS	analyses	had	also	been	exposed	to	

the	 stimuli	 at	 11	months15	 (de	 Klerk	 et	 al.,	 under	 review).	 6	 of	 the	 infants	

included	in	the	analyses	were	bilingual	but	heard	English	at	least	60%	of	the	

time.	In	these	participants,	bilingualism	might	weaken	the	in-group/out-group	

distinction,	 although	 there	 is	 evidence	 that	 not	 only	 monolingual	 but	 also	

bilingual	 children	 prefer	 in-group	 members	 who	 use	 a	 familiar	 language	

(Souza,	Byers-Heinlein,	&	Poulin-Dubois,	2013).		

Power	analysis	performed	with	G*Power	(Faul	et	al.,	2007)	revealed	

that	in	order	to	detect	a	medium	effect	of	this	size	as	significant	at	the	5%	level	

(d=0.5,	Cohen,	1988),	a	sample	of	42	participants	would	be	required.		

																																																													
15	Unfortunately,	due	to	the	small	proportion	of	overlap	between	the	participants	who	
were	included	in	the	final	analyses	at	11	months	and	at	18	months	(N=9)	we	are	unable	
to	perform	any	longitudinal	comparison.		
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All	included	infants	were	born	full-term,	healthy	and	with	normal	birth	

weight.	Written	 informed	 consent	was	 obtained	 from	 the	 infant’s	 caregiver	

prior	to	the	start	of	the	experiment.	

	

6.3.2	Mirror	self-recognition	task	

Prior	 to	 the	 fNIRS	 task,	 self-awareness	 was	 assessed	 with	 the	 MSR	 task	

(Amsterdam,	1972).	The	 task	 took	place	 in	a	room	with	a	mirror	positioned	

against	one	of	the	walls.	For	27	infants,	one	camera	was	used	to	record	the	task,	

while	for	the	rest	of	the	sample	three	cameras	recording	from	different	angles	

were	used.	The	MSR	task	procedure	and	the	coding	scheme	used	was	the	same	

as	described	in	Chapter	4,	section	4.3.2.		

Two	 experimenters	 independently	 classified	 the	 infants	 as	

‘Recognisers’,	‘Ambiguous’,	or	‘Non-Recognisers’	based	on	their	behaviours	in	

front	of	the	mirror	after	the	red	mark	was	placed,	and	they	agreed	in	94%	of	

the	cases.	Discrepancies	were	discussed	until	agreement	was	reached.		

	

6.3.3	EMG	and	fNIRS	recording		

6.3.3.1	Stimuli	and	procedure16	

See	 section	 2.3.2	 for	 experimental	 set-up,	 fNIRS	 cap	 application	 and	 testing	

procedure.	

Infants	were	presented	with	 videos	of	 two	models	who	 spoke	 either	

English	(Native	speaker)	or	Italian	(Foreign	speaker)	(see	Figure	6.1).	Infants	

first	observed	2	Familiarisation	trials	during	which	the	models	labelled	familiar	

																																																													
16	Stimuli	and	procedure	for	this	experiment	were	the	same	as	those	in	our	previous	
experiment	with	11-month-olds	(de	Klerk	et	al.,	under	review).	
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objects	in	either	English	or	Italian.	Thereafter,	Reminder	trials	–	in	which	one	

of	the	models	labelled	a	familiar	object,	and	Facial	Action	trials	–	in	which	the	

same	 model	 performed	 facial	 actions	 such	 as	 mouth	 opening	 and	 eyebrow	

raising-	alternated.	Facial	Action	trials	started	with	1000	ms	during	which	the	

model	did	not	perform	any	actions,	followed	by	her	performing	three	repeats	

of	the	same	facial	action,	each	lasting	3000	ms.	The	Reminder	and	Facial	Action	

trials	were	alternated	with	pictures	of	houses,	landscapes,	and	landscapes	with	

and	animals	with	a	duration	of	8000	ms	to	allow	the	haemodynamic	response	

to	return	to	baseline	levels.	The	order	of	trials	within	the	Familiarisation	phase	

was	randomised	and	the	order	of	trials	in	the	Reminder	and	Facial	Action	phase	

were	pseudo-randomised	to	ensure	that	infants	saw	roughly	the	same	number	

of	eyebrow	and	mouth	actions.	The	EMG	analyses	focused	on	the	Facial	Action	

trials.	The	role	of	the	models	(Native	vs.	Foreign	speaker)	was	counterbalanced	

across	infants17.	

Figure	6.1	Schematic	overview	of	the	stimulus	presentation	(image	reproduced	with	
permission	from	de	Klerk	et	al.,	under	review).	
	

																																																													
17	For	all	of	the	participants	who	had	been	tested	with	the	same	paradigm	at	11	months,	
the	native	speaker	model	and	the	foreign	speaker	model	were	the	same	at	the	18-month	
visit,	to	avoid	weakening	the	effect	in	case	infants	may	have	remembered	which	model	
was	the	native	speaker	in	the	previous	testing	session.		
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6.3.3.2	EMG	recording	and	processing		

Bipolar	 EMG	 recordings	 were	 made	 using	 paediatric	 surface	 Ag/AgCl	

electrodes	that	were	placed	on	the	cheek	and	forehead	with	an	inter-electrode	

spacing	of	approximately	1	cm	to	measure	activation	over	 the	masseter	and	

frontalis	 muscle	 area,	 respectively	 (see	 Figure	 6.2).	 The	 electrodes	 were	

connected	 to	 Myon	 wireless	 transmitter	 boxes	 that	 amplified	 the	 electrical	

muscle	activation,	which	was	recorded	using	ProEMG	at	a	sampling	rate	of	2000	

Hz.	After	recording,	the	EMG	signal	was	filtered	(high-pass:	30	Hz,	 low-pass:	

500	Hz)	 smoothed	 (root	mean	 square	over	20	ms	bins),	 and	 rectified.	Each	

3,000	ms	period	during	which	a	facial	action	was	performed	was	treated	as	a	

separate	trial.	The	EMG	signal	was	segmented	into	3,000	ms	epochs,	and	the	

average	 activity	 in	 each	 epoch	 was	 normalised	 (i.e.	 expressed	 as	 z-scores)	

within	each	participant	and	each	muscle	group	(masseter	and	frontalis	region),	

before	the	epochs	for	each	trial	type	were	averaged	together.	This	allows	for	

meaningful	comparison	of	values	between	muscle	regions,	as	well	as	reducing	

the	impact	of	individual	differences	in	reactivity	on	the	group	mean.	Hereafter	

we	calculated	a	mimicry	score	per	 trial	by	subtracting	EMG	activity	over	 the	

non-corresponding	muscle	region	 from	EMG	activity	over	 the	corresponding	

muscle	 region	 (e.g.	 on	 an	 eyebrow	 trial	 we	 subtracted	 activity	 over	 the	

masseter	region	from	activity	over	the	frontalis	region,	so	that	a	more	positive	

score	indicates	more	mimicry).	

	

6.3.3.3	fNIRS	recording	and	data	analysis	

See	section	2.2.1	for	information	about	the	fNIRS	cap	and	the	arrays	design.	See	

section	 2.2.3	 for	 information	 about	 the	 NIRS	 system	 properties	 and	 the	

recording.		
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In	 this	 study,	 participants	 were	 tested	 with	 the	 two	 different	 fNIRS	

arrays	described	in	Chapter	2,	section	2.2.118.	The	first	array	design,	including	

30	channels,	was	used	to	test	21	out	of	the	57	participants;	the	second	design,	

including	44	 channels,	was	 used	 to	 test	 36	 out	 of	 the	 57	 participants.	 Both	

configurations	 shared	 the	 design	 and	 the	 location	 of	 the	 channels	 covering	

frontal,	inferior	frontal	and	temporal	regions	(30	channels	out	of	44),	therefore	

the	 data	 acquired	 with	 the	 two	 different	 configurations	 can	 be	 analysed	

together.	As	mentioned	in	Chapter	2,	the	cap	size	was	adapted	to	the	infant’s	

head	circumference.	Table	6.1	lists	information	concerning	S-D	separation	and	

the	number	of	infants	included	in	the	analysis	who	were	tested	with	each	cap	

size.		

	

	 	 	 	

48	cm	 25	mm	 30	mm	 36/57	

50	cm	 26	mm	 31	mm	 21/57	
	

Table	6.1	S-D	separation	and	number	of	infants	tested	with	each	cap	size.	
	

Figure	 6.2	 shows	 an	 example	 of	 infants	 wearing	 the	 two	 headgear	

configurations	with	the	EMG	electrodes.		

	

																																																													
18	The	44-channel	configuration	was	an	extension	of	the	30-channel	configuration	and	
included	two	additional	rows	of	optodes	that	added	7	channels	per	hemisphere,	 in	a	
superior	location	to	the	two	existing	lateral	arrays.	This	allowed	to	improve	detection	
of	TPJ	activation,	a	core	region	of	interest	for	this	study.	

Cap	size	 S-D	temporoparietal	lobe	 S-D	frontal	lobe	
Number	of	
participants	
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Figure	 6.2	 Infants	 wearing	 the	 fNIRS	 cap.	 A	 graphical	 representation	 of	 the	 EMG	

electrodes	on	the	masseter	and	the	frontalis	regions	was	added	on	the	pictures.	The	

first	row	represents	the	cap	with	the	30-channel	configuration,	and	the	second	row	the	

cap	with	the	44-channel	configuration	(Parents	provided	consent	for	these	images	to	

be	used).	

	

6.3.4	Video	coding	and	data	exclusion		

EMG	trials	in	which	the	infant	did	not	see	at	least	two	thirds	of	the	action,	or	

trials	 during	 which	 the	 infant	 vocalised,	 yawned,	 smiled,	 cried,	 or	 had	

something	in	their	mouth	(e.g.	their	hand)	were	excluded	from	the	analyses	as	

EMG	activity	in	these	cases	was	most	likely	due	to	the	infants’	own	actions.	Only	

infants	 with	 at	 least	 2	 trials	 per	 trial	 type	 (Native	Mouth,	 Native	 Eyebrow,	

Foreign	Mouth,	Foreign	Eyebrow)	and	at	least	6	 trials	per	condition	(Native	
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Facial	 Actions	 and	 Foreign	 Facial	 Actions)	 were	 included	 in	 the	 analyses.	

Participants	contributed	an	equal	number	of	trials	to	the	Native	and	Foreign	

condition	(number	of	trials	for	the	Native	condition,	mean	±	SD	=	12.30	±	3.61;	

number	 of	 trials	 for	 the	 Foreign	 condition,	 mean	 ±	 SD	 =	 11.74	 ±	 3.80),	

t(46)=1.36,	p=0.406.		

fNIRS	trials	in	which	the	infant	did	not	attend	to	at	least	2	of	the	3	facial	

actions,	in	addition	to	the	general	trial	exclusion	criteria19,	were	excluded	from	

further	 analyses	 (see	 section	2.3.1	 for	more	details	 on	 trial	 exclusion).	Only	

infants	with	at	least	3	trials	per	experimental	condition	were	included	in	the	

NIRS	analyses	(Lloyd-Fox,	Blasi,	Everdell,	&	Johnson,	2011;	Southgate,	Begus,	

Lloyd-Fox,	 di	 Gangi,	 &	 Hamilton,	 2014).	 Participants	 contributed	 an	 equal	

number	of	trials	to	the	Native	and	Foreign	condition	(number	of	trials	for	the	

Native	condition,	mean	±	SD	=	4.84	±	1.14;	number	of	trials	for	the	Foreign	

condition,	mean	±	SD	=	4.88	±	1.32),	t(56)=0.26,	p=0.792.	

	

6.3.5	fNIRS	data	processing	and	analysis		

See	 section	 2.2.3	 for	 information	 about	 the	NIRS	 system	 properties	 and	 the	

recording.	fNIRS	data	were	pre-processed	in	Homer_2	(Huppert	et	al.,	2009)	

following	the	pre-processing	pipeline	described	in	section	2.3.2.	After	the	pre-

processing,	data	were	analysed	using	a	combination	of	custom	Matlab	scripts	

and	the	SPM-NIRS	toolbox	(Ye	et	al.,	2009),	as	described	in	section	2.3.3.	For	

each	 participant,	 a	 design	 matrix	 was	 built	 modelling	 the	 2	 experimental	

conditions	 (Native	 Facial	 Actions,	 Foreign	 Facial	 Actions),	 the	 2	 Reminder	

																																																													
19	 Trials	were	excluded	 if	 participant	 looked	at	 the	 parent	 or	 anything	 social,	 if	 the	
experimenter	or	the	parent	talked.	
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conditions	 (Reminder	 Native,	 Reminder	 Foreign)	 and	 the	 baselines.	 Trials	

excluded	due	to	the	cleaning	in	the	pre-processing	or	due	to	behavioural	coding	

were	removed	from	the	analyses.	Betas	extracted	from	the	design	matrix	were	

used	 to	 calculate	 contrasts	 of	 interest	 for	 each	 participant	 (Native	 Facial	

Actions>Foreign	 Facial	 Actions),	 and	 then	 submitted	 to	 statistical	 tests.	

Analysis	of	fNIRS	data	were	based	on	changes	in	HbO2,	as	fNIRS	studies	with	

infants	do	not	consistently	find	statistically	significant	HHb	changes	(for	some	

examples	see:	Grossmann,	Cross,	Ticini,	&	Daum,	2013;	Lloyd-Fox	et	al.,	2010;	

Lloyd-Fox,	Széplaki-Köllod,	Yin,	&	Csibra,	2015;	Southgate,	Begus,	Lloyd-Fox,	di	

Gangi,	 &	 Hamilton,	 2014).	 However,	 the	 pattern	 of	 HHb	 is	 plotted	 for	

completeness.	As	explained	in	section	2.3.3.1,	fNIRS	results	are	corrected	for	

multiple	comparisons	using	the	FDR	approach.	

To	further	explore	the	role	of	the	mPFC	during	facial	actions	performed	

by	different	social	groups,	functional	connectivity	was	estimated	using	PPI	(see	

section	 3.1.2	 for	 more	 details)	 (Friston	 et	 al.,	 1997).	 Consistently	 with	 the	

functional	 activation	 analysis,	 PPI	 analysis	 is	 performed	 only	 on	 the	 HbO2	

signal.	 In	 order	 to	 ensure	 statistical	 reliability,	 PPI	 results	 are	 corrected	 for	

multiple	comparisons	with	FDR,	as	for	the	functional	activation	results.	

	

6.4	Results	

6.4.1	EMG		

6.4.1.1	Characteristic	of	the	sample	

Out	 of	 the	 47	 infants	 that	 contributed	 data	 to	 the	 EMG	 analyses,	 23	 were	

classified	 as	 Recognisers	 and	 24	 as	 Non-Recognisers	 (see	 coding	 scheme	

described	in	paragraph	2.2).	None	of	the	infants	included	in	the	EMG	analyses	
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were	 classified	 as	 Ambiguous.	 The	 two	 groups	 did	 not	 show	any	 significant	

difference	in	parameters	that	could	potentially	affect	mimicry	outcomes,	such	

as	 age	 (mean	 ±	 SD	 Recognisers	 =	 555.52	 ±	 15.22	 days,	 mean	 ±	 SD	 Non-	

Recognisers	=	554	±	10.93	days),	t(45)=0.13,	p=0.89,	sex	(Recognisers	=	13	

females,	 10	 males;	 Non-Recognisers	 =	 13	 females,	 12	 males),	 c2(1,	

N=47)=0.025,	p=0.871.	A	repeated	measures	ANOVA	with	number	of	included	

trials	 per	 condition	 (Native	 vs.	 Foreign)	 as	 within	 subject	 factor	 and	 MSR	

outcome	 (Recognisers	 vs.	 Non-Recognisers)	 as	 between	 subject	 factor	

demonstrated	a	significant	interaction	between	number	of	trials	per	condition	

and	MSR,	F(1,	45)	=	6.70,	p=0.013,	ηp2=0.130.	Follow	up	t-tests	showed	that	

there	 was	 no	 difference	 in	 the	 number	 of	 included	 trials	 between	 the	 two	

conditions	 in	 the	 Non-Recognisers,	 t(23)=0.747,	 p=0.463,	 but	 that	 in	 the	

Recogniser	 group	 there	 were	 significantly	 more	 valid	 trials	 in	 the	 Native	

condition	compared	to	the	Foreign	condition,	t(22)=3.001,	p=0.007.	In	order	

to	explore	whether	 this	could	be	related	 to	a	difference	 in	 the	level	of	visual	

attention	 in	 the	 two	 groups,	 I	 performed	 a	 repeated	measures	 ANOVA	with	

number	 of	 trials	 excluded	 because	 of	 not	 looking	 per	 condition	 (Native	 vs.	

Foreign)	 as	 within	 subject	 factor	 and	 MSR	 outcome	 (Recognisers	 vs.	 Non-

Recognisers)	 as	 between	 subject	 factor.	 The	 repeated	 measures	 ANOVA	

showed	 a	 non-significant	 interaction	 between	 number	 of	 trials	 excluded	

because	 of	 not	 looking	 per	 condition	 and	 MSR,	 F(1,	 45)	 =	 0.28,	 p=0.264,	

ηp2=0.028.	

	

6.4.1.2	EMG	results	

A	 repeated	 measures	 analysis	 on	 the	 Mimicry	 scores	 (activation	 over	 the	

corresponding	 muscle	 region	 minus	 activation	 over	 the	 non-corresponding	
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muscle	region)	with	Linguistic	group	(Native	vs.	Foreign	speaker),	and	Action	

type	(Mouth	vs.	Eyebrow)	as	within	subject	factors	demonstrated	a	significant	

main	effect	of	 linguistic	group,	F	(1,	45)=5.089,	p=0.029,	ηp2=0.099.	 Infants	

showed	significantly	greater	mimicry	 in	 the	Native	compared	to	 the	Foreign	

condition	(Figure	6.3-A).	A	repeated	measures	analysis	on	the	Mimicry	scores	

(activation	 over	 the	 corresponding	muscle	 region	minus	 activation	 over	 the	

non-corresponding	muscle	 region)	with	Linguistic	group	 (Native	 vs.	 Foreign	

speaker),	and	Action	type	(Mouth	vs.	Eyebrow)	as	within	subject	factors	and	

the	outcome	on	the	MSR	test	as	between	subject	factors	(Recogniser	vs.	Non-

Recogniser)	did	not	show	a	significant	interaction	between	Group	and	MSR,	F	

(1,	45)=0.009,	p=0.924,	ηp2=0.001	(Figure	6.3-B).	However,	a	post-hoc	paired-

samples	 t-test	 on	 the	 average	 mimicry	 scores	 in	 the	 Native	 and	 Foreign	

condition	showed	a	significant	difference	only	in	the	Recognisers,	t(22)	=	2.15,	

p	=	0.043,	and	not	in	the	Non-Recognisers,	t(23)	=	1.32,	p	=	0.198	(Figure	6.3-

C).	 Moreover,	 the	 average	 mimicry	 score	 in	 the	 Native	 condition	 was	

significantly	different	from	0	only	in	the	Recognisers,	t(22)	=	2.49,	p=0.021,	

and	not	in	the	Non-Recognisers,	t(23)	=	0.23,	p=0.841.	
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Figure	6.3.	Graphical	representation	of	the	EMG	results.	A,	Mean	mimicry	scores	for	the	

eyebrow	 and	mouth	 actions	 in	 the	 Native	 and	 Foreign	Mimicry	 condition.	 B,	Mean	

mimicry	scores	for	the	eyebrow	and	mouth	actions	in	the	Native	and	Foreign	condition	

displayed	by	Recognisers	and	Non-Recognisers	at	 the	MSR	 task.	C,	Average	mimicry	

scores	in	the	Native	and	Foreign	condition	in	Recognisers	and	Non-Recognisers.	The	

grey	bars	represent	mimicry	scores	in	the	Native	condition,	the	white	bars	represent	

scores	in	the	Foreign	condition,	the	dots	pattern	represent	mimicry	scores	of	the	mouth	

actions,	the	stripes	pattern	represent	mimicry	scores	of	the	eyebrow	actions.	Error	bars	

indicate	1	SEM,	*	p	<	.05.		

	

Correlational	 analyses	 to	 assess	 whether	 the	 mimicry	 scores	 were	

associated	with	 the	 number	 of	 valid	 trials	were	 performed.	 No	 relationship	

between	the	number	of	 included	trials	and	 the	mimicry	scores	 in	 the	Native	

condition	was	found,	r(45)=-0.480,	p=0.750	or	between	the	number	of	valid	

trials	and	the	mimicry	scores	in	the	Foreign	condition,	r(45)=0.160,	p=0.283.	

As	there	was	a	significant	difference	in	the	number	of	valid	trials	between	the	

two	 conditions	 in	 the	 Recogniser	 group	 specifically,	 I	 also	 performed	 these	

correlational	 analyses	 for	 the	 Recogniser	 group	 separately.	 There	 was	 no	

relationship	between	the	number	of	included	trials	and	the	mimicry	scores	in	

the	Native	condition,	 r(21)=0.273,	p=0.207	or	between	the	number	of	valid	

trials	and	the	mimicry	scores	in	the	Foreign	condition,	r(21)=0.269,	p=0.226	

in	this	group.		

Considering	 that	 a	 subset	 of	 the	 included	 infants	 had	 already	 been	

exposed	to	the	stimuli	before	(see	de	Klerk	et	al.,	under	review),	I	also	tested	

whether	this	may	have	influenced	the	results.	A	repeated	measures	analysis	on	

the	Mimicry	 scores	 (activation	over	 the	 corresponding	muscle	 region	minus	

activation	over	 the	non-corresponding	muscle	 region)	with	Linguistic	 group	

(Native	vs.	Foreign	speaker),	and	Action	type	(Mouth	vs.	Eyebrow)	as	within	

subject	 factors	 and	with	 the	 previous	 exposure	 to	 the	 stimuli	 as	 a	 between	



Chapter	6	

	 266 

subjects	factor	still	demonstrated	a	significant	main	effect	of	linguistic	group,	

F(1,	 45)=4.49,	 p=0.040,	 ηp2=0.091,	 and	 no	 significant	 interaction	 with	

previous	 exposure.	 	 A	 repeated	 measures	 analysis	 on	 the	 Mimicry	 scores	

(activation	 over	 the	 corresponding	muscle	 region	minus	 activation	 over	 the	

non-corresponding	muscle	 region)	with	Linguistic	group	 (Native	 vs.	 Foreign	

speaker),	and	Action	type	(Mouth	vs.	Eyebrow)	as	within	subject	factors	and	

outcome	 on	 the	 MSR	 test	 as	 between	 subject	 factors	 (Recogniser	 vs.	 Non-

Recogniser),	 and	 with	 the	 previous	 exposure	 to	 the	 stimuli	 as	 a	 between	

subjects	factor	demonstrated	a	significant	main	effect	of	linguistic	group,	and	

no	significant	interaction	between	Group	and	MSR,	F(1,	45)=0.037,	p=0.849,	

ηp2=0.001.	Thus,	the	previous	exposure	to	the	stimuli	did	not	affect	this	result.		

	

6.4.2	fNIRS		

6.4.2.1	Characteristic	of	the	sample	

Out	 of	 the	 57	 infants	 that	 contributed	 data	 to	 the	 fNIRS	 analyses,	 25	 were	

classified	 as	 Recognisers	 and	 31	 as	 Non-Recognisers	 (see	 coding	 scheme	

described	in	paragraph	2.2).	Only	one	participant	was	classified	as	Ambiguous.	

Recognisers	 and	Non-Recognisers	did	not	 show	any	 significant	difference	 in	

parameters	 that	 could	potentially	 affect	 infants’	 brain	 response,	 such	 as	 age	

(mean	±	SD	Recognisers	=	555.40	±	14.09	days,	mean	±	SD	Non-	Recognisers	

=	 553.25	 ±	 10.46	 days),	 t(54)=0.26,	 p=0.795,	 or	 gender	 (Recognisers,10	

females,	 15	 males;	 Non-Recognisers	 =	 18	 females,	 13	 males),	 c2(1,	

N=56)=1.48,	p=0.223.	A	repeated	measures	ANOVA	with	the	number	of	valid	

trials	 per	 condition	 (Native	 vs.	 Foreign)	 as	 a	within	 subject	 factor	 and	MSR	

outcome	 (Recognisers	 vs.	 Non-Recognisers)	 as	 a	 between	 subject	 factor	

showed	 that	 there	was	neither	 a	main	 effect	 of	 condition	nor	 an	 interaction	
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between	number	of	 trials	per	 condition	and	MSR,	F(1,	 54)=0.143,	 p=0.707,	

ηp2=0.003.		

	

6.4.2.2	fNIRS	results	

6.4.2.2.1	Native	Facial	Actions>Baseline	and	Foreign	Facial	Actions>Baseline	

To	 explore	 which	 channels	 were	 activated	 by	 the	 task,	 both	 the	 Native	

(speaker)	Facial	Actions	and	the	Foreign	(speaker)	Facial	Actions	conditions	

were	 contrasted	 to	 the	 Baseline.	 Table	 6.2	 shows	 the	 channels	 that	 are	

statistically	 significantly	 activated	 and	 marginally	 statistically	 significantly	

activated	by	the	task.	

	

channel	 brain	region	 t	value	 p	value	 df	

Native	Facial	Actions>Baseline	

28	 mPFC	 2.04	 0.046*	 54	

29	 mPFC	 2.27	 0.027*	 55	

43	 Right	TPJ	 1.92	 0.064†	 30	

Foreign	Facial	Actions>Baseline	

1	 Left	IFG	 2.93	 0.005*	 43	

6	 Left	STG	 2.13	 0.038*	 49	

16	 Right	IFG	 2.11	 0.039*	 56	

24	 Right	posterior	temporal	gyrus	 2.57	 0.013*	 51	

27	 mPFC	 3.55	 0.001**	 53	

28	 mPFC	 2.23	 0.03*	 54	

29	 mPFC	 2.38	 0.021*	 54	

	
Table	 6.2	 Channels	 that	 showed	 a	 significant	 (p<0.05)	 and	 a	marginally	 significant	

(p<0.065)	greater	activation	 in	Native	Facial	Action>Baseline	and	 in	Foreign	Facial	

Action>Baseline.	 **,	 p<0.05	 that	 survived	 the	 FDR	 correction	 for	 multiple	

comparisons;	*,	p<0.05,	†,	p<0.065.	
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As	can	be	seen	from	the	table,	contiguous	channels	over	the	mPFC	are	activated,	

both	 in	 the	Native	 Facial	 Actions	 condition	 (channel	 28	 and	 29)	 and	 in	 the	

Foreign	Facial	Actions	condition	(channel	27,	28	and	29).	Moreover,	while	the	

Native	Facial	Actions	condition	engaged	only	one	channel	over	the	right	TPJ,	the	

Foreign	Facial	Actions	engaged	one	channel	over	the	left	(channel	1)	and	one	

channel	over	the	right	IFG	(channel	16),	one	channel	over	the	left	STG	(channel	

6)	and	one	channel	over	the	right	posterior	temporal	gyrus	(channel	24).	

	

6.4.2.2.2	Repeated	measures	ANOVA	

A	 repeated	measures	 ANOVA	with	 the	 betas	 from	 each	 condition	 compared	

with	Baseline	as	a	within	subjects	 factor	(Native	Facial	Actions>Baseline	vs.	

Foreign	Facial	Actions>Baseline)	and	the	MSR	outcome	as	a	between	subjects	

factor	revealed	a	main	effect	of	condition	in	channel	1	 	(left	IFG),	F(1,	42)	=	

5.35,	 p=0.026,	 ηp2=0.113,	 channel	 4	 (left	 IFG/left	 STG),	 F(1,	 44)	 =	 5.57,	

p=0.023,	ηp2=0.112,	channel	9	(left	STG),	F(1,	42)	=	7.14,	p=0.010,	ηp2=0.125,	

and	channel	27	(mPFC),	F(1,	50)	=	5.22,	p=0.027,	ηp2=0.088	(not	significant	

after	FDR	 correction).	 Post-hoc	 analysis	 revealed	 that	 channels	1,4,9	and	27	

that	showed	a	main	effect	of	condition	were	significantly	more	activated	 for	

Foreign	 Facial	 Actions	 than	 Native	 Facial	 Actions	 (channel	 1:	 t(43)=2.36,	

p=0.023;	 channel	4:	 t(45)=2.39,	 p=0.021;	 channel	 9:	 t(51)=2.75,	 p=0.008;	

channel	27:	t(52)=2.92,	p=0.005).		

A	significant	interaction	between	condition	and	the	MSR	outcome	was	

statistically	significant	only	in	channel	26	over	the	posterior	temporal	lobe,	F(1,	

44)	=	5.81,	p=0.006,	ηp2=0.209.	A	post-hoc	independent	sample	t-test	revealed	

that	the	Recognisers	displayed	a	significantly	greater	activation	in	channel	26	
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than	 Non-Recognisers	 in	 the	 Native	 Facial	 Actions	 condition,	 t(44)=2.19,	

p=0.034,	and	that	the	Recognisers	displayed	a	significantly	greater	activation	

in	channel	26	in	the	Native	Facial	Actions	condition	rather	than	in	the	Foreign	

Facial	Actions	condition,	t(20)=2.34,	p=0.029.	Figure	6.5	showed	the	HRF	plots	

of	 the	 brain	 activation	 in	 channel	 26	 in	 the	 Recognisers	 and	 in	 the	 Non-

Recognisers	 and	 the	mean	 betas	 values	 for	 the	 two	 conditions	 compared	 to	

Baseline	in	channel	26	in	the	Recognisers	and	in	the	Non-Recognisers.	
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Figure	6.5	A,	HRF	plot	of	channel	26	in	the	Recognisers	and	in	the	Non-Recognisers.	The	
grey	square	indicates	the	length	of	the	experimental	trial.	B,	Mean	betas	values	from	
Native	Facial	Actions>Baseline	and	Foreign	Facial	Actions>Baseline	in	channel	26	in	
the	Recognisers	and	in	the	Non-Recognisers.	
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6.4.2.2.3	One	sample	t-tests	on	the	Native	Facial	Actions>Foreign	Facial	Actions	

contrast	in	the	Recognisers	and	the	Non-Recognisers	

To	explore	whether	there	are	any	brain	regions	that	specifically	respond	to	the	

observation	of	facial	actions	performed	by	native	compared	to	foreign	speakers		

(Native	Facial	Actions>Foreign	Facial	Actions)	in	the	two	groups,	one-sample	

t-tests	on	the	HRF	contrast	were	performed	in	the	Recognisers	and	in	the	Non-

Recognisers	by	using	the	split	analysis.	This	analysis	might	elucidate	different	

neural	brain	regions	activated	by	the	two	conditions	in	the	two	groups	that	can	

be	 related	 to	 the	 facial	 mimicry	 results.	 Table	 6.3	 shows	 the	 channels	 that	

showed	greater	activation	in	Native	Facial	Actions>Foreign	Facial	Actions	and	

Foreign	 Facial	 Actions>Native	 Facial	 Actions	 in	 Recognisers	 and	 in	 Non-

Recognisers	(see	figure	6.4	for	the	HRF	plots).		
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Native	Facial	Actions>Foreign	Facial	Actions	

channel	 brain	region	 t	value	 p	value	 df	

Recognisers	

26	 Right	posterior	temporal	gyrus	 2.07	 0.050*	 20	

40	 Right	supramarginal	gyrus	 2.87	 0.012*	 15	

Non-Recognisers	

/	 /	 /	 /	 /	

Foreign	Facial	Actions>Native	Facial	Actions	

Recognisers	

16	 Right	IFG	 2.17	 0.039*	 24	

17	 Right	IFG/Right	STG	 2.00	 0.057†	 23	

27	 mPFC	 2.19	 0.038*	 23	

38	 Right	Supramarginal	gyrus	 2.53	 0.023*	 25	

Non-Recognisers	

1	 Left	IFG	 2.59	 0.016*	 24	

4	 Left	IFG/left	STG	 1.98	 0.059†	 24	
	

Table	 6.3	 Channels	 that	 showed	 a	 significant	 (p<0.05)	 and	 a	marginally	 significant	

(p<0.065)	greater	activation	to	Native	Facial	Action>Foreign	Facial	Action	and	Foreign	

Facial	 Action>Native	 Facial	 Action,	 in	 the	 whole	 sample	 and	 in	 the	 subsets	 of	

Recognisers	and	Non-Recognisers.	*,	p<0.05;	†,	p<0.065.	
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Figure	6.4.	HRF	plots	of	the	channels	that	are	significantly	activated	at	the	one-sample	
t-tests	for	the	Native	Facial	Actions>Foreign	Facial	Actions	contrast	in	the	Recognisers	
and	 in	 the	 Non-Recognisers.	 A,	 channels	 significantly	 activated	 for	 Native	 Facial	
Actions>Foreign	Facial	Actions	in	the	Recognisers;	B,	channels	significantly	activated	
for	 Foreign	 Facial	 Actions>Native	 Facial	 Actions	 in	 the	 Recognisers;	 C,	 channels	
significantly	 activated	 for	 Foreign	 Facial	 Actions>Native	 Facial	 Actions	 in	 the	 Non-
Recognisers.	The	grey	square	indicates	the	length	of	the	experimental	trial.	
	

21 1424 18

1517202326

1619

38

25 22

404244

394143

27

2829

30

1

2

1185

74 10 13

12963

353331 37

32 34 36

Channels	significantly	activated	Foreign	Facial	Actions>Foreign	Facial	Actions in	the	Recognisers

Right	Hemisphere

21 1424 18

1517202326

1619

38

25 22

404244

394143

27

2829

30

1

2

1185

74 10 13

12963

353331 37

32 34 36

Frontal	Lobe

Channel	38	(right	supramarginal	gyrus)

time	(ms)

ch
an
ge
	in
	µ
m
ol

ch
an
ge
	in
	µ
m
ol

time	(ms)

Channel	16	(right	IFG)

-200																											50																														100																								150

-200																											50																														100																								150

Channel	27	(mPFC)

time	(ms)

ch
an
ge
	in
	µ
m
ol

-200																											50																														100																								150

Legend:
Native	Facial	Actions	HbO2
Foreign	Facial	Actions	HbO2
Native	Facial	Actions	HHb
Foreign	Facial	Actions	HHb

21 1424 18

1517202326

1619

38

25 22

404244

394143

27

2829

30

1

2

1185

74 10 13

12963

353331 37

32 34 36

Channels	significantly	activated	for	Native	Facial	Actions>Foreign	Facial	Actions in	the	Recognisers

Right	Hemisphere

Channel	26	(right	pSTS)

Channel	40	(right	supramarginal	gyrus)

time	(ms)

ch
an
ge
	in
	µ
m
ol

ch
an
ge
	in
	µ
m
ol

time	(ms)
-200																											50																														100																								150

-200																											50																														100																								150

Legend:
Native	Facial	Actions	HbO2
Foreign	Facial	Actions	HbO2
Native	Facial	Actions	HHb
Foreign	Facial	Actions	HHb

21 1424 18

1517202326

1619

38

25 22

404244

394143

27

2829

30

1

2

1185

74 10 13

12963

353331 37

32 34 36

Channels	significantly	activated	for	Foreign	Facial	Actions>Foreign	Facial	Actions in	the	Non-Recognisers

Left	Hemisphere

Channel	1	(left	IFG)

time	(ms)
-200																											50																														100																							150

ch
an
ge
	in
	µ
m
ol

Legend:
Native	Facial	Actions	HbO2
Foreign	Facial	Actions	HbO2
Native	Facial	Actions	HHb
Foreign	Facial	Actions	HHb

A

B

C

Legend:
Native	Facial	Actions	HbO2
Foreign	Facial	Actions	HbO2
Native	Facial	Actions	HHb
Foreign	Facial	Actions	HHb

Legend:
Native	Facial	Actions	HbO2
Foreign	Facial	Actions	HbO2
Native	Facial	Actions	HHb
Foreign	Facial	Actions	HHb

Channels	significantly	activated	for	Native	Facial	Actions>Foreign	Facial	Actions in	the	Recognisers

Channels	significantly	activated	Foreign	Facial	Actions>Foreign	Facial	Actions in	the	Recognisers

Channels	significantly	activated	for	Foreign	Facial	Actions>Foreign	Facial	Actions in	the	Non-Recognisers

Legend:
Native	Facial	Actions	HbO2
Foreign	Facial	Actions	HbO2
Native	Facial	Actions	HHb
Foreign	Facial	Actions	HHb

Channels	significantly	activated	for	Native	Facial	Actions>Foreign	Facial	Actions	in	the	Recognisers		
Channel	40	(right	supramarginal	gyrus)	

Channel	26	(right	pSTS)	

Channels	significantly	activated	for	Foreign	Facial	Actions>Native	Facial	Actions	in	the	Recognisers		
Channel	38	(right	supramarginal	gyrus)	

Channel	16	(right	IFG)	

Channel	27	(mPFC)	

Channels	significantly	activated	for	Foreign	Facial	Actions>Native	Facial	Actions	in	the	Non-Recognisers		

Channel	1	(left	IFG)	

					-2																												5																												10																										15																	
time	(sec)			

					-2																												5																												10																										15																	
time	(sec)			

					-2																												5																										10																										15																	
time	(sec)			

					-2																												5																									10																										15																	
time	(sec)			

					-2																												5																									10																										15																	
time	(sec)			

					-2																												5																													10																								15																	
time	(sec)						



Chapter	6	

	 274 

As	can	be	seen	from	the	table,	the	IFG/STG	showed	a	greater	activation	

for	 Foreign	 Facial	 Actions>Native	 Facial	 Actions	 in	 both	 the	 Recognisers	

(channel	16	and	17)	and	the	Non-Recognisers	(channel	1,4,5),	even	though	this	

activation	was	lateralised	in	the	right	hemisphere	in	the	Recognisers	and	in	the	

left	 hemisphere	 in	 the	Non-Recognisers.	Additionally,	 Recognisers	 showed	 a	

greater	activation	in	channel	27	over	mPFC	for	Foreign	Facial	Actions>Native	

Facial	 Actions.	 None	 of	 the	 channels	 showed	 greater	 activation	 for	 Native	

Action>Foreign	Facial	Action	in	the	whole	sample	and	in	the	Non-Recognisers	

group,	but	Recognisers	showed	a	greater	activation	in	channel	26	and	channel	

40	over	the	right	temporal	lobe	in	Native	Facial	Actions>Foreign	Facial	Actions.			

	

6.4.2.3	Psychophysiological	Interaction	results		

As	it	has	been	hypothesized	that	the	mPFC	is	a	crucial	region	for	the	modulation	

of	mimicry,	affecting	the	activity	of	other	regions	belonging	to	the	MNS	(Brass	

et	al.,	2009;	Spengler	et	al.,	2010,	2009;	Wang	et	al.,	2011;	Wang	&	Hamilton,	

2012),	channels	27,	28,	29	and	30	over	mPFC	were	chosen	as	region	of	interest	

for	the	PPI	analyses.		

Table	 6.4	 lists	 all	 pairs	 of	 channels	 that	 showed	 greater	 functional	

connectivity	in	response	to	the	Foreign	Facial	Actions	condition	compared	with	

the	Native	Facial	Actions	condition,	in	the	whole	sample,	in	Recognisers.	None	

of	 the	 functional	 connections	 survived	 the	 FDR	 correction	 for	 multiple	

comparisons.	
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Foreign	Facial	Actions>Native	Facial	Actions	

Whole	sample	

channel	 brain	region	 t	value	 p	value	 df	

28-23	 mPFC	–	right	STG	 2.13	 0.038*	 52	

29-2	 mPFC	–	left	IFG	 2.17	 0.034*	 49	

Recognisers	

28-15	 mPFC-right	IFG	 2.45	 0.023*	 20	

Non-Recognisers	

28-23	 mPFC-right	STG	 2.00	 0.054†	 29	

28-24	 mPFC-right	posterior	temporal	gyrus	 2.59	 0.015*	 27	

28-25	 mPFC-right	TPJ	 2.98	 0.006*	 24	
	

Table	 6.4	 Significant	 and	 marginally	 significant	 functional	 connections	 for	 Foreign	

Facial	Actions	>	Native	Facial	Actions	in	the	whole	sample.	*,	p<0.05;	†,	p<0.065.	

	

There	 was	 no	 statistically	 significant	 greater	 functional	 connectivity	 in	 the	

Native	Facial	Actions	compared	to	the	Foreign	Facial	Actions	condition.	Channel	

2	 (left	 IFG)	 and	 channel	 23	 (right	 STG)	 displayed	 greater	 functional	

connectivity	 with	 channel	 28	 and	 29	 over	 the	 mPFC	 in	 the	 Foreign	 Facial	

Actions	rather	than	in	the	Native	Facial	Actions	condition.	While	Recognisers	

showed	only	one	statistically	significant	greater	functional	connection	between	

channel	28	(mPFC)	and	channel	15	(right	 IFG)	 in	the	Foreign	Facial	Actions	

rather	 than	 in	 the	 Native	 Facial	 Actions	 condition,	 the	 Non-Recognisers	

displayed	greater	functional	connectivity	between	channel	28	(mPFC)	and	two	

contiguous	channels,	channel	24	(right	posterior	temporal	gyrus)	and	channel	

25	 (right	TPJ)	 in	 the	Foreign	Facial	Actions	 rather	 than	 in	 the	Native	Facial	

Actions	condition.	
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6.4.3	Relationship	between	EMG	and	fNIRS	data	

Hereafter	I	investigated	the	relationship	between	the	haemodynamic	response	

over	the	channels	significantly	activated	for	the	Native	Facial	Actions>Foreign	

Facial	Actions	and	 the	Foreign	Facial	Actions>Native	Facial	Actions	contrast	

and	 infants’	 facial	mimicry.	 To	 limit	 the	 number	 of	 correlational	 analyses,	 a	

differential	mimicry	score	was	calculated	(facial	mimicry	score	 in	 the	Native	

condition	minus	facial	mimicry	score	in	the	Foreign	condition).	The	differential	

mimicry	score	was	negatively	correlated	only	with	greater	activation	in	channel	

27	(mPFC),	r(31)=-0.364,	p=0.037	(not	significant	after	FDR	correction),	and	

channel	4	(left	IFG/left	STG),	r(29)=-0.395,	p=0.034	(not	significant	after	FDR	

correction)	(Figure	6.5).	Thus,	 infants	who	showed	a	greater	HbO2	response	

over	channel	27	and	channel	4	when	observing	facial	actions	performed	by	the	

Native	speaker	compared	to	facial	actions	performed	by	the	Foreign	speaker,	

showed	less	mimicry	of	facial	actions	of	the	Native	speaker	compared	to	facial	

actions	 of	 the	 Foreign	 speaker.	 No	 significant	 correlation	 was	 observed	

between	the	pairs	of	channels	that	displayed	significant	functional	connections	

in	 the	 Foreign	Facial	Actions	 rather	 than	 in	 the	 in	 the	Native	 Facial	Actions	

results	and	the	infants’	facial	mimicry	scores.	
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Figure	 6.5	 Scatterplot	 of	 the	 relationship	 between	 activation	 in	 channel	 27	 (A)	 and	

channel	 4	 (B)	 in	 Native	 Facial	 Actions>Foreign	 Facial	 Actions	 and	 the	 differential	

mimicry	score.	*,	p<0.05.	

	

6.5	Discussion	

How	the	emergence	of	self-awareness	during	the	second	year	of	life	affects	the	

ability	 to	 identify	 with	 one’s	 social	 group	 is	 still	 unknown.	 While	 infants’	

preference	for	in-group	members	early	in	life	may	be	driven	by	a	preference	to	

interact	 with	 familiar	 others,	 mechanisms	 related	 to	 self-comparison	 might	

plausibly	start	 to	play	 a	more	 important	 role	 once	 infants	have	developed	a	

sense	of	self.	To	test	this,	the	current	study	aimed	to	investigate	whether	the	

emergence	of	a	sense	of	self	modulates	infants’	tendency	to	selectively	mimic	

linguistic	in-group	members	–	an	index	of	in-group	preference	-	and	whether	

infants	with	more	developed	self-awareness	activate	different	brain	regions	for	

facial	actions	performed	by	in-group	rather	than	out-group	members.	
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6.5.1	Facial	mimicry	results	

In	 this	 study,	 I	 explored	 how	 infants’	 developing	 self-awareness	 impacts	 on	

their	 tendency	 to	 affiliate	with	 in-group	members,	 as	 indicated	 by	 selective	

mimicry	of	linguistic	in-group	over	out-group	members.	Only	those	18-month-

olds	 with	 a	 more	 advanced	 level	 of	 self-awareness	 –	 as	 indexed	 by	 self-

recognition	during	the	MSR	task	–	exhibited	significantly	greater	mimicry	of	the	

facial	 actions	 performed	 by	 the	 native	 speaker,	 compared	 to	 the	 foreign	

speaker.	These	findings	are	consistent	with	previous	studies	that	have	shown	

an	effect	of	the	emerging	sense	of	self	on	other	imitative	behaviours	in	young	

children	(Asendorpf	&	Baudonnière,	1994;	Asendorpf	et	al.,	1996;	Zmyj	et	al.,	

2013).	However,	 the	 current	work	 is	 the	 first	 to	additionally	 investigate	 the	

interaction	with	group	status.	Our	results	suggest	that	instead	of	making	infants	

generally	more	imitative,	a	more	advanced	level	of	self-awareness	may	instead	

make	 infants	 more	 aware	 of	 themselves	 in	 relation	 to	 others,	 enhancing	

imitative	responses	selectively	of	those	that	they	are	motivated	to	affiliate	with	

(e.g.	with	in-group	members).	This	is	an	effect	that	the	previous	studies	were	

unable	to	pick	up	on	because	only	native	language	models	or	peers	were	used	

(Asendorpf	&	Baudonnière,	1994;	Asendorpf	et	al.,	1996;	Zmyj	et	al.,	2013).	

This	study	is	also	consistent	with	the	idea	that	the	MSR	task	measures	

something	more	than	physical	self-recognition.	In	fact,	our	findings	suggest	that	

passing	 the	MSR	 task	may	 reflect	 a	 change	 in	 the	 infants’	 ability	 to	 form	 a	

representation	 of	 themselves	 or	 a	 ‘self-concept’,	 that	 can	 be	 perceived	 in	

relation	 to	 others	 (Asendorpf	&	 Baudonnière,	 1994;	 Nielsen	&	Dissanayake,	

2004;	 Suddendorf	&	Whiten,	 2001),	 rather	 than	a	mere	 detection	 of	 visual-

motor	contingencies	(Heyes,	1994;	Mitchell,	1993).		
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Consistent	with	 the	 idea	 that	 the	Recognisers	may	have	preferred	 to	

interact	 with	 the	 in-group	 member,	 we	 found	 that	 the	 Recognisers	 had	

significantly	more	valid	trials	in	the	Native	compared	to	the	Foreign	condition.	

One	 may	 argue	 that	 our	 results	 could	 be	 explained	 by	 the	 fact	 that	 the	

Recognisers	 observed	 more	 trials	 of	 the	 in-group	 model’s	 facial	 actions,	

therefore	 leading	 to	higher	mimicry	 levels.	However,	 it	 is	worth	mentioning	

that	Recognisers	had	only	two	more	valid	trials	than	the	Non-Recognisers	in	the	

Native	condition.	Additionally,	Recognisers	had	only	two	more	valid	trials	in	the	

Native	than	in	the	Foreign	condition.	Moreover,	the	non-significant	correlations	

between	 the	mimicry	 scores	 and	 the	 number	 of	 included	 trials	 (both	 in	 the	

whole	sample	and	in	the	Recognisers)	suggest	that	the	mimicry	scores	are	not	

purely	 driven	 by	 the	 different	 number	 of	 trials	 included	 in	 the	 analysis.	

Furthermore,	 there	 was	 no	 significant	 difference	 in	 the	 number	 of	 trials	

excluded	 because	 of	 not	 looking	 between	 the	 Recognisers	 and	 the	 Non-

Recognisers,	suggesting	that	the	mimicry	scores	are	not	driven	by	a	different	

level	of	attention	 in	 the	 two	groups.	However,	 further	work	may	explore	 the	

role	of	attention	in	influencing	social	categorisation	in	more	detail.	As	there	is	

evidence	showing	that	people	pay	less	attention	to	out-group	members	(Graen,	

Novak,	 &	 Sommerkamp,	 1982;	 Martiny-Huenger,	 Gollwitzer,	 &	 Oettingen,	

2014),	it	would	be	interesting	to	test	whether	different	levels	of	attention	can	

interact	with	self-related	processes	in	influencing	affiliation	with	the	in-group.	

Nevertheless,	 the	 absence	 of	 a	 significant	 interaction	 between	

Linguistic	group	and	MSR	requires	us	to	be	cautious	when	generalising	these	

findings.	The	absence	of	an	interaction	might	be	driven	by	the	large	amount	of	

variability	 in	our	data,	 in	particular	 in	 the	Non-Recognisers	 group.	The	high	

variability	in	the	mimicry	scores	of	the	Non-Recognisers	might	reflect	the	fact	
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that	 the	 emergence	 of	 self-awareness	 is	 a	 gradual	 process	 (Bertenthal	 &	

Fischer,	1978;	Neisser,	1993;	Rochat,	1995),	rather	than	a	stage-like	transition.	

Potentially	some	of	the	infants	included	in	this	study	had	an	intermediate	stage	

of	 self-awareness	 resulting	 in	 selective	mimicry	 behaviours	 that	were	more	

similar	 to	 those	 displayed	 by	 infants	 categorised	 as	 Recognisers	 than	 those	

displayed	by	true	Non-Recognisers.		

	

6.5.2	Brain	response	results		

The	 haemodynamic	 response	 patterns	 in	 the	 Recognisers	 and	 the	 Non-

Recognisers	 are	 less	 clear	 than	 the	 facial	 mimicry	 results.	 The	 channels	

activated	 by	 the	 task	 or	 that	 showed	 a	 greater	 activation	 in	 one	 condition	

compared	to	the	other	are	often	not	clustered	together.	Moreover,	among	all	

the	 statistical	 comparisons	 performed,	 only	 channel	 27	 over	 the	 mPFC	

significantly	 activated	 by	 the	 Foreign	 Facial	 Actions	 when	 compared	 with	

Baseline	survived	the	FDR	correction	for	multiple	comparisons.	This	makes	the	

interpretation	 of	 the	 results	 difficult,	 and	 therefore	 these	 findings	 must	 be	

generalised	with	caution.	

	

6.5.2.1	The	IFG	and	the	STG	in	the	Foreign	Facial	Actions	condition		

One	of	my	hypotheses	predicted	a	greater	activation	of	areas	belonging	to	the	

MNS	 in	 the	Native	 rather	 than	 in	 the	Foreign	Facial	Action	 condition,	which	

would	 have	 been	 consistent	with	 the	 facial	mimicry	 results.	 In	 fact,	 there	 is	

evidence	of	the	IFG	and	the	STG	as	region	involved	in	mimicry	(Likowski	et	al.,	

2012;	Rymarczyk,	Zurawski,	Jankowiak-Siuda,	&	Szatkowska,	2018;	Wang	et	al.,	

2011).	 The	 repeated	 measure	 ANOVA	 revealed	 a	 significant	 interaction	

between	the	experimental	condition	and	the	MSR	outcome	in	channel	26	over	
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the	posterior	 temporal	 lobe,	with	 the	Recognisers	significantly	 engaging	 the	

posterior	temporal	lobe	in	the	Native	Facial	Actions	rather	than	in	the	Foreign	

Facial	Actions	condition,	showing	a	significant	greater	activation	in	the	Native	

Facial	Actions	compared	with	the	Non-Recognisers.	A	greater	activation	of	the	

temporal	 lobe	 in	 the	 Recognisers	 was	 confirmed	 by	 the	 one-sample	 t-test	

performed	on	the	Native	Facial	Actions>Foreign	Facial	Actions	contrast,	where	

the	 Recognisers	 displayed	 a	 significantly	 greater	 activation	 in	 two	 channels	

over	the	temporal	lobe.	However,	they	are	not	spatially	contiguous	-	aspect	that	

might	suggest	 they	belong	 to	the	same	cluster	of	activation	 -	with	one	being	

more	anterior	(channel	40)	and	one	more	posterior	(channel	26).	As	there	is	

evidence	 that	 the	 temporal	 lobe	 is	engaged	during	mimicry	(Iacoboni,	2005;	

Rizzolatti	&	Craighero,	2004),	the	activation	of	these	two	channels	might	reflect	

the	greater	tendency	to	mimic	the	Native	rather	the	Foreign	model,	which	was	

exhibited	by	the	Recognisers	only.	However,	the	single-channel	activation	and	

the	absence	of	significant	correlations	between	betas	in	these	channels	and	the	

facial	mimicry	scores	cannot	validate	this	hypothesis.		

The	repeated	measures	ANOVA	revealed	a	main	effect	of	 the	Foreign	

Facial	actions	condition	over	the	left	IFG/STG	(channel	1,4,9).	Consistent	with	

findings	from	the	repeated	measures	ANOVA,	the	one	sample	t-tests	on	the	HRF	

contrast	in	the	Recognisers	and	the	Non-Recognisers	revealed	that	both	groups	

exhibited	 greater	 activation	 for	 the	 Foreign	 Facial	 Actions	 rather	 than	 the	

Native	Facial	Actions	 condition	 in	 some	 channels	over	 IFG.	The	 activation	 is	

lateralised	 in	 the	 right	 hemisphere	 for	 the	 Recognisers	 and	 in	 the	 left	

hemisphere	 for	 the	 Non-Recognisers.	 Even	 though	 I	 did	 not	 have	 any	

predictions	in	terms	of		 lateralisation	of	activation,	this	seems	to	indicate	the	

recruitment	of	regions	 typically	 involved	 in	mimicry	(Rizzolatti	&	Craighero,	
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2004).	While	some	suggested	that	the	IFG		but	it	is	unclear	why	this	is	stronger	

in	the	Foreign	rather	than	in	the	Native	Facial	Actions	condition.	Moreover,	this	

is	not	consistent	with	the	facial	mimicry	results	that	showed	a	greater	tendency	

to	 mimic	 the	 Native	 rather	 than	 the	 Foreign	 model.	 However,	 the	 grater	

activation	of	the	IFG/STG	in	the	Foreign	Facial	Actions	rather	than	in	the	Native	

Facial	Actions	condition	is	supported	by	a	negative	correlation	between	betas	

of	the	Native	rather	than	the	Foreign	facial	actions	in	channel	4	(left	IFG/left	

STG)	 and	 the	 differential	 mimicry	 score.	 This	 suggests	 that	 infants	 who	

presented	a	greater	activation	of	the	IFG/STG	for	Foreign	Facial	Actions>Native	

Facial	Actions	also	showed	greater	mimicry	of	the	Foreign	rather	than	for	the	

Native	model,	which	 is	consistent	with	 the	 idea	 that	 IFG	may	be	 involved	 in	

supporting	 mimicry	 (Rizzolatti	 &	 Craighero,	 2004).	 However,	 why	 the	

relationship	between	the	IFG	activation	and	the	facial	mimicry	scores	has	been	

found	to	be	significant	only	in	the	Foreign	and	not	in	the	Native	Facial	Actions	

condition	 is	 unclear.	 When	 looking	 at	 the	 scatterplots	 of	 the	 significant	

correlations,	 it	 is	difficult	 to	 identify	a	 clear	pattern	of	 relationship	between	

haemodynamic	response	and	facial	mimicry	that	distinguish	Recognisers	and	

Non-Recognisers.	 In	 fact,	 both	 groups	 are	 distributed	 along	 the	 fitted	 line	

without	any	clustering.	This	makes	it	difficult	to	draw	any	conclusions	about	

how	 emerging	 self-awareness	may	 influence	 the	 relationship	 between	 facial	

mimicry	and	neural	responses	to	facial	actions.			

	

6.5.2.2	The	mPFC	in	the	Foreign	Facial	Actions	condition		

The	 third	 hypothesis	 was	 related	 to	 a	 crucial	 role	 of	 mPFC	 that	 supports	

selective	 mimicry	 of	 in-group	 vs.	 out-group,	 especially	 in	 Recognisers.	 As	

explained	 in	 the	 introduction	 of	 this	 study,	 there	 is	 evidence	 of	 the	 mPFC	
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activation	 for	 actions	 performed	 by	 in-group	 members,	 indicating	 self-

processing	(Molenberghs,	2013;	Morrison	et	al.,	2012;	Rilling	et	al.,	2008;	Volz	

et	 al.,	 2009),	 but	 also	during	 actions	performed	 by	 the	 out-group	members,	

indicating	inhibition	of	mimicry	(Brass	et	al.,	2009;	Spengler	et	al.,	2010,	2009;	

Wang	et	al.,	2011;	Wang	&	Hamilton,	2012).	In	the	whole	sample,	the	mPFC	was	

activated	to	both	the	Native	Facial	Actions	and	the	Foreign	Facial	Actions	(and	

this	latter	condition	the	activation	in	channel	27	survived	the	FDR	correction	

for	 multiple	 comparison,	 therefore	 suggesting	 higher	 statistical	

interpretability).	The	one	sample	t-tests	on	the	HRF	in	the	two	groups	revealed	

a	greater	activation	in	Foreign	Facial	Actions>Native	Facial	Actions	over	mPFC	

only	 in	 the	 Recognisers.	 At	 a	 first	 sight,	 this	 might	 appear	 as	 an	 index	 of	

inhibition	of	 facial	mimicry	of	 the	actions	performed	by	 the	 foreign	speaker.	

This	would	be	consistent	with	 the	significant	greater	 tendency	 to	selectively	

mimic	 the	Native	rather	 than	the	Foreign	 facial	actions,	which	was	exhibited	

only	 by	 infants	 with	more	 advanced	 self-awareness.	 However,	 the	 negative	

correlation	between	betas	of	Foreign	Facial	Actions>Native	Facial	Actions	in	

channel	 27	 (mPFC)	 and	 the	 differential	 mimicry	 score	 disconfirmed	 this	

hypothesis.	 In	 fact,	 this	 correlation	 analysis	 shows	 that	 participants	 that	

presented	greater	activation	over	mPFC	in	Foreign	Facial	Actions	rather	than	in	

Native	Facial	Actions	displayed	also	greater	facial	mimicry	of	the	Foreign	rather	

than	the	Native	model,	which	is	not	in	line	with	the	facial	mimicry	results.		

	

6.5.2.4	Functional	connectivity	

Connectivity	analyses	performed	with	PPI	did	not	provide	further	clarification	

to	 the	 haemodynamic	 activation	 results.	 Moreover,	 none	 of	 the	 statistically	

significant	 functional	 connections	 survived	 the	 FDR	 correction	 for	 multiple	
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corrections.	The	greater	functional	coupling	between	mPFC-IFG	and	mPFC-STG	

in	 the	 Foreign	 rather	 than	 in	 the	 Native	 facial	 actions	 conditions	 can	 be	

interpreted	as	a	modulation	of	the	mimicry	of	the	foreign	model	suggested	by	

previous	studies	(Wang,	Ramsey,	&	Hamilton,	2011;	Wang	&	Hamilton,	2012).	

This	would	be	consistent	with	the	greater	tendency	to	mimic	the	native	rather	

than	the	foreign	model	as	displayed	by	the	facial	mimicry	scores.	However,	this	

inference	is	limited	to	only	2	pairs	of	connections	(28-23	and	29-2),	and	the	

absence	of	significant	correlations	between	the	functional	connectivity	values	

and	 the	 facial	 mimicry	 scores	 (even	 when	 looking	 at	 it	 in	 the	 two	 groups	

separately)	does	not	provide	support	for	this	interpretation.		

	

6.5.3	Conclusions	

To	summarise,	the	facial	mimicry	findings	confirmed	my	predictions,	with	the	

Recognisers	 showing	 a	 selectively	 greater	 tendency	 to	 mimic	 the	 in-group	

rather	than	the	out-group	model,	which	suggest	that	a	more	advanced	level	of	

self-awareness	may	allow	infants	to	identify	with	their	social	group.		Moreover,	

the	 facial	mimicry	results	inform	mechanisms	underlying	self-recognition,	as	

passing	 the	MSR	 task	may	 reflect	 a	 change	 in	 the	 infants’	 ability	 to	 form	 a	

representation	 of	 themselves,	 that	 can	 be	 perceived	 in	 relation	 to	 others	

(Asendorpf	&	Baudonnière,	1994;	Nielsen	&	Dissanayake,	2004;	Suddendorf	&	

Whiten,	 2001).	 However,	 the	 fNIRS	 results	 are	 difficult	 to	 interpret.	 As	

indicated	 by	 the	 power	 analysis,	 sample	 sizes	 are	 big	 enough	 to	 potentially	

detect	 a	 statistically	 significant	 effect,	 therefore	 the	 unclear	 fNIRS	 results	

cannot	 be	 attributed	 to	 an	 underpowered	 study.	Moreover,	 the	 inconsistent	

relationship	 between	 facial	mimicry	 and	 the	 haemodynamic	 responses	 does	

not	 help	 the	 understanding	 of	 the	 fNIRS	 results.	 In	 the	 previous	 study	
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performed	 by	my	 team	 on	 the	 11-month-old	 sample	 (de	 Klerk	 et	 al.,	 under	

review),	participants	showed	greater	activation	over	the	TPJ	for	Native	rather	

than	Foreign	facial	actions.	The	study	was	conducted	in	the	same	way	and	data	

analyses	have	been	performed	with	the	same	toolboxes.	Therefore,	I	would	not	

attribute	any	differences	in	the	fNIRS	results	to	methodological	aspects.		

It	would	be	 interesting	 for	 future	 research	 to	 explore	whether	other	

cues	to	group	membership	would	show	similar	effects,	such	as	race	and	gender,	

making	 our	 results	 more	 generalizable.	 In	 fact,	 we	 know	 that	 language	 is	 a	

potent	 cue	 to	 group	 membership	 (Liberman	 et	 al.,	 2017),	 but	 other	 social	

categories	have	been	less	investigated.	Moreover,	future	research	can	focus	on	

those	infants	who	are	constantly	exposed	to	different	social	categories,	such	as	

bilingual	children.	As	it	has	been	shown	that	the	affiliation	with	a	social	group	

becomes	 part	 of	 the	 psychological	 self	 (Tajfel	 &	 Turner,	 1986),	 one	 may	

hypothesize	 that	mechanisms	 related	 to	 self-comparison	 identify	more	 than	

one	social	group	as	in-groups	in	those	infants	that	are	constantly	exposed	to	

some	social	groups	for	the	same	social	category.	Moreover,	future	studies	can	

explore	how	emerging	self-awareness	may	influence	the	affiliation	with	groups	

which	are	clearly	not	depending	on	familiarity,	for	example	a	coloured	t-shirt	

assigned	 on	 the	 day	 of	 the	 testing	 session	 (based	 on	 the	 minimal	 group	

paradigm,	 Tajfel,	 1974).	 In	 this	 case,	 only	 infants	 which	 are	 able	 of	 self-

comparison	 processes	 would	 exhibit	 greater	 tendency	 of	 affiliation,	 as	

expressed	 by	mimicry,	which	would	 be	 consistent	with	 the	 influence	 of	 the	

emergence	of	 self-awareness	during	 the	 second	year	of	 life	 on	 the	 ability	 to	

identify	with	one’s	social	group	and	with	the	idea	that	the	MSR	task	measures	

something	more	than	physical	self-recognition.	
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This	 chapter	 showed	 the	 first	 investigation	 into	 the	 relationship	

between	 self-awareness	 and	 social	 interactions	 in	 infancy,	 showing	 that	 the	

sense	of	self	may	allow	infants	to	identify	with	their	social	group.	With	the	next	

chapter,	 I	 explored	 the	 relationship	 between	 self-awareness	 and	 social	

interactions	from	another	angle.	Based	on	the	hypothesis	of	a	social	shaping	of	

the	sense	of	self	through	the	interactions	with	others	(Prinz,	2012;	Rochat	&	

Zahavi,	2011),	the	next	chapter	investigates	whether	the	early	interactions	with	

the	mother	may	influence	the	emergence	of	the	sense	of	self	at	18	months.		
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7.1	Abstract	

The	literature	reviewed	in	this	thesis	has	revealed	a	remarkable	link	between	

emerging	 self-awareness	 and	 social	 interactions.	 Recent	 theories	 on	 the	

development	of	the	sense	of	self	have	hypothesized	a	social	construction	of	the	

self	 through	 interactions	 with	 others,	 especially	 with	 the	 mother.	 The	 first	

mother-child	 interactions	 are	 usually	 characterized	 by	 a	 high	 level	 of	

contingency	and	maternal	imitation,	and	some	studies	showed	that	this	aspect	

is	fundamental	for	the	later	development	of	social	cognitive	abilities.	It	has	been	

hypothesized	 that	 the	 first	 mother-child	 social	 interactions	 constitute	 the	

foundations	 of	 a	 primary	 subjectivity	 in	 the	 infant,	 suggesting	 a	 positive	

relationship	between	the	mother’s	early	imitation	of	the	infant	and	emerging	

self-awareness.	However,	 it	has	been	also	hypothesized	that	being	mimicked	

blurs	 self-other	 boundaries,	 suggesting	 a	 negative	 relationship	 between	 the	

mother’s	early	imitation	of	the	infant	and	emerging	self-awareness.	Despite	the	

ubiquity	of	mother-child	contingency	during	the	first	years	of	life,	it	is	unclear	

how	 these	 early	 social	 interactions	 are	 related	 to	 the	 emergence	 of	 self-

awareness	 later	 in	 the	 development.	 In	 the	 current	 study,	 I	 aimed	 to	 test	

whether	mothers’	 tendency	 to	 imitate	 their	4-month-olds	predicts	 emerging	

self-awareness	–	as	indexed	by	the	MSR	task	at	18	months.	

Results	 showed	 no	 significant	 relationship	 between	 the	 mothers’	

tendency	 to	 imitate	 their	 infants	 at	 4	 months	 and	 the	 MSR	 outcome	 at	 18	

months.	However,	the	absence	of	significant	relationships	does	not	necessarily	

provide	evidence	against	the	hypothesis	that	suggests	a	social	construction	of	

the	self,	hence	the	results	are	discussed	in	terms	of	methodological	limitations.	

Specifically,	factors	such	as	samples	size,	age	gap	between	the	time	points,	and	

a	limitation	of	the	strict	categorisation	of	the	MSR	task	are	examined.	 	
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7.2	Introduction	

Recent	 theories	 proposed	 a	 strong	 link	 between	 the	 emerging	 self	 and	 the	

interaction	with	others,	suggesting	a	social	nature	of	the	sense	of	self,	where	

others	serve	as	social	mirrors	(Prinz,	2012;	Rochat	&	Zahavi,	2011).	Through	

the	interaction	with	others,	there	is	also	a	gradual	development	the	idea	of	‘me’,	

which	is	the	ability	to	understand	how	others	perceive	oneself,	a	foundational	

aspect	of	the	development	of	self-awareness	(Lewis,	2011;	Rochat,	1995,	2003;	

Rochat	&	 Zahavi,	 2011).	 Consistent	 with	 this,	 researchers	 in	 this	 field	 have	

proposed	an	association	between	emerging	self-awareness	and	social	cognitive	

abilities	(Iacoboni,	2009;	Rochat	&	Zahavi,	2011;	Southgate,	2018;	Steinbeis,	

2016).	In	particular,	 imitation	has	been	thought	to	be	remarkably	associated	

with	emerging	self-awareness,	possibly	supported	by	the	MNS	as	a	mechanism	

for	shared	neural	substrates	(Iacoboni,	2009).	In	fact,	as	areas	belonging	to	the	

MNS	system	have	been	found	to	be	engaged	both	during	imitative	behaviours	

(Iacoboni,	 2005;	 Rizzolatti	 &	 Craighero,	 2004)	 and	 self-related	 processing	

(Kaplan	et	al.,	2008;	Uddin	et	al.,	2007,	2005),	and	developmental	studies	have	

found	a	positive	association	between	emerging	self-awareness	and	 imitation	

(Asendorpf	&	Baudonnière,	1994;	Asendorpf	et	al.,	1996;	Zmyj	et	al.,	2013),	it	

has	been	proposed	that	the	MSN	may	be	the	functional	link	between	imitation	

and	the	sense	of	self	even	during	the	first	years	of	life	(Iacoboni	&	Dapretto,	

2006;	Iacoboni,	2009).	However,	to	date	there	is	a	lack	of	empirical	evidence	to	

support	this	idea.	

The	study	presented	in	the	previous	chapter	is	in	agreement	with	the	

idea	of	an	association	between	emerging	self-awareness	and	social	interactions,	

showing	that	infants	with	a	more	developed	sense	of	self	significantly	exhibited	

a	greater	tendency	to	selectively	affiliate	with	in-group	members	rather	than	
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outgroup	ones,	indexed	by	a	greater	level	of	facial	mimicry	of	the	native	rather	

than	 foreign	 speaker.	 While	 Chapter	 6	 provided	 evidence	 supporting	 the	

influence	of	emerging	self-awareness	on	social	interactions,	it	does	not	inform	

about	the	social	nature	of	self.	There	is	very	limited	evidence	supporting	the	

idea	that	social	interactions	play	a	role	in	shaping	the	self,	and	the	current	study	

aims	to	go	some	way	towards	filling	this	gap.	

When	considering	early	interactions	with	others,	it	is	worth	mentioning	

that	the	first	fundamental	other	for	the	infant	is	the	mother	(Prinz,	2012).	For	

example,	 infants	 prefer	 to	 look	 at	 their	 own	 mother’s	 face	 compared	 to	 a	

stranger’s	face	(Bushnell,	Sai,	&	Mullin,	1989;	Field,	Guy,	&	Umbel,	1985;	Field,	

Cohen,	 Garcia,	 &	 Greenberg,	 1984),	 and	 they	 recognize	 their	mother’s	 voice	

from	 about	 3	 days	 of	 age	 (Decasper	 &	 Fifer,	 1980).	 From	 an	 evolutionary	

perspective,	 this	 mother-infant	 bond	 is	 thought	 to	 be	 crucial	 not	 only	 for	 a	

survival	 purpose,	 but	 also	 for	 the	 development	 of	 self-related	 processes	

(Bowlby,	 1958;	 Fonagy,	 Gergely,	 &	 Target,	 2007;	 Mayes,	 Fonagy,	 &	 Target,	

2007).	In	fact,	the	first	mother-child	interactions	are	usually	characterized	by	a	

high	level	of	contingency	(Leclère	et	al.,	2014),	which	has	been	suggested	to	be	

crucial	 for	 the	 later	 development	 of	 social	 cognitive	 abilities,	 such	 as	

communication	abilities	(Kaye,	1982),	but	also	for	self-related	aspects,	such	as	

self-consciousness	(Tronick,	2012),	self-other	differentiation	and	orientation	

towards	the	social	environment	(Gergely	&	Watson,	1996,	1999).	Therefore,	it	

has	been	hypothesized	that	the	first	mother-child	social	interactions	constitute	

the	 foundations	 of	 a	 primary	 subjectivity	 of	 the	 infant	 (Fonagy,	 Gergely,	 &	

Target,	2006).	In	this	framework,	it	has	been	proposed	that	the	mother	covers	

a	 ‘pedagogy	 function’,	 where	 the	 infant	 learn	 through	 continuous	 social	

communications,	especially	with	the	help	of	ostensive	cues,	such	as	eye	contact,	
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calling	the	infant	by	name,	and	using	specific	type	of	voice	intonation	(Fonagy	

et	al.,	2006).	During	the	mother-child	interactions,	the	mothers	are	naturally	

predisposed	 to	 imitate	 their	 infants’	 facial	 actions	 (Lenzi	 et	 al.,	 2009).	 This	

might	promote	social	dialogs	that	contribute	to	the	infants’	development	of	a	

sense	 of	 self,	 where	 the	 infant	 learns	 to	 switch	 between	 self	 and	 other	

representations	 (Emde,	 1992).	 However,	 it	 has	 been	 also	 hypothesized	 that	

being	mimicked	increases	the	overlap	between	self	and	other,	promoting	bodily	

closeness	and	interpersonal	fusion	(Ashton–James	et	al.,	2007).	A	parental	style	

with	these	characteristics	of	higher	proximity	has	been	associated	with	a	lower	

successful	rate	on	 the	MSR	task	(Keller	et	al.,	2004,	2005;	Ross	et	al.,	2017).	

Based	 on	 this,	 it	 also	 is	 reasonable	 to	 hypothesize	 a	 negative	 relationship	

between	early	maternal	imitation	and	emerging	self-awareness.	

Despite	 the	ubiquity	of	mother-child	contingency	 in	 the	 first	years	of	

life,	 the	mechanisms	 underlying	 the	 relationship	 between	 these	 early	 social	

interactions	and	the	emergence	of	self-awareness	later	in	the	development	is	

still	not	clear.	Moreover,	the	literature	on	this	topic	lacks	empirical	evidence,	

and	 possible	 processes	 related	 to	 a	 positive	 association	 between	 the	 early	

mother-child	 interactions	 and	 the	 later	 self-awareness	 are	 not	 always	

described	clearly.	This	study	aims	to	shed	light	on	the	social	construction	of	the	

self,	and	given	the	crucial	role	of	the	high	level	of	contingency	during	the	first	

mother-child	interactions,	the	mothers’	tendency	to	imitate	their	infants	early	

in	life	is	investigated	as	a	possible	predictor	of	self-awareness	at	18	months.	As	

during	the	first	few	months	of	their	life	infants	spend	most	of	their	time	in	face-

to-face	interactions	(Rayson,	Bonaiuto,	Ferrari,	&	Murray,	2017),	in	this	study	

4-month-old	 infants	were	exposed	to	a	 face-to-face	mother-child	 interaction,	

which	 allows	 the	 measurement	 of	 parental	 imitation	 of	 the	 infant’s	 facial	
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actions.	 The	 same	 infants	were	 tested	 again	 at	 18	months,	 a	 crucial	 age	 for	

emerging	self-awareness,	with	the	MSR	task.	I	hypothesized	that	the	mothers’	

tendency	to	imitate	their	4-month-olds’	facial	actions	would	predict	emerging	

self-awareness,	 which	 would	 support	 the	 fundamental	 role	 of	 maternal	

imitation	in	the	development	of	the	sense	of	self.	A	positive	association	between	

the	mothers’	 tendency	 to	 imitate	 their	 infants	 and	 emerging	 self-awareness	

would	 support	 the	 idea	of	 a	pedagogic	 role	of	 the	mother,	where	 the	 infant	

learns	about	self	and	other	representations	(Emde,	1992;	Fonagy	et	al.,	2006).	

A	negative	association	between	the	mothers’	tendency	to	imitate	their	infants	

and	emerging	self-awareness	would	support	the	idea	an	inverse	relationship	

between	the	development	of	the	sense	of	self	and	a	proximal	parenting	style	

fusion	(Keller	et	al.,	2004,	2005;	Ross	et	al.,	2017).	

	

7.3	Methods	

7.3.1	Participants	

The	 final	 sample	 consisted	 of	 31	 4-month-olds	 (18	 males,	 age	 mean	 ±	

SD=119.81	±	8.57	days).	All	the	infants	that	participated	in	the	parent-child	

interaction	at	4	months	were	also	tested	with	the	MSR	task	at	18	months	(18	

males,	age	mean	±	SD	=	551.65	±	9.50	days).		

All	included	infants	were	born	full-	term,	healthy	and	with	normal	birth	

weight.	Written	 informed	 consent	was	 obtained	 from	 the	 infant’s	 caregiver	

prior	to	the	start	of	the	experiment.		
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7.3.2	4	month	session:	the	Parent-Child	Interaction		

This	section	is	the	same	as	the	one	described	in	a	previous	study	performed	by	

members	of	my	team	(de	Klerk,	under	review).		

Infants	 participated	 in	 a	 five-minute	 face-to-face	 Parent-Child	

Interaction	(PCI).	Infants	were	placed	in	a	semi-reclined	infant	seat	facing	their	

mother.	Parents	were	informed	that	the	researchers	would	be	out	of	the	room	

for	 5	minutes	 and	 that	 during	 this	 time	 they	were	 to	 play	with	 their	 infant	

however	 they	 would	 at	 home,	 without	 any	 toys	 around.	 Three	 cameras	

recorded	a	frontal	view	of	the	infant’s	face,	a	frontal	view	of	the	mother’s	face,	

and	a	side	view	of	the	infant’s	face	and	body.		

As	some	of	the	infants	were	fussy	by	the	end	of	the	PCI	session,	a	total	

of	three	minutes	of	the	interaction	was	video-coded	for	the	amount	of	parental	

imitation.	To	obtain	an	index	of	the	infants’	opportunity	to	associate	visual	and	

motor	representations	of	facial	actions,	we	calculated	the	probability	that	the	

mother	 would	 imitate	 her	 infant’s	 facial	 action	 within	 a	 three	 second	 time	

window.	 This	 time	 window	 was	 chosen	 based	 on	 the	 finding	 that	 infants	

younger	than	six	months	do	not	experience	events	as	contingent	if	they	occur	

more	than	three	seconds	after	their	own	actions	(Gergely	&	Watson,	1999). 

Videos	were	coded	for	facial	actions	such	as	frowning,	eyebrow	raising,	mouth	

opening,	 tongue	 protrusion20	 using	Mangold	 INTERACT	 coding	 software.	 To	

ensure	an	objective	measure	of	maternal	imitation,	the	videos	of	the	infants	and	

mothers	were	coded	separately	-	i.e.	the	coder	never	played	the	footage	of	the	

																																																													
20	 These	 actions	were	 chosen	 as	 the	 PCI	 has	 been	 also	 associated	with	 the	 infants’	
tendency	to	mimic	others’	facial	actions	at	4	months	in	a	study	performed	by	members	
of	 my	 team.	 In	 this	 study,	 infants	 observed	 models	 performing	 frowning,	 eyebrow	
raising,	mouth	opening,	tongue	protrusion,	therefore	the	PCI	videos	were	coded	for	the	
same	facial	actions	(de	Klerk	et	al.,	under	review).	
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infant	 and	 the	 mother	 simultaneously.	 A	 maternal	 imitation	 score	 was	

calculated	 by	 dividing	 the	 number	 of	 infant	 facial	 actions	 that	 the	 mother	

imitated	within	 three	 seconds	by	 the	 total	 number	of	 facial	 actions	 that	 the	

infant	performed.		

	

7.3.3	18	month	session:	the	MSR	task	

Self-awareness	was	assessed	with	the	MSR	task	(Amsterdam,	1972).	The	task	

took	place	in	a	room	with	a	mirror	positioned	against	one	of	the	walls,	with	one	

camera	 recording	 the	 task.	The	MSR	 task	procedure	 and	 the	 coding	 scheme	

used	was	the	same	as	described	in	Chapter	4,	section	4.3.2.		

Two	 experimenters	 independently	 classified	 the	 infants	 as	

‘Recognisers’,	‘Ambiguous’,	or	‘Non-Recognisers’	based	on	their	behaviours	in	

front	of	the	mirror	after	the	red	mark	was	placed,	and	they	agreed	in	98%	of	

the	cases.	Discrepancies	were	discussed	until	agreement	was	reached.		

	

7.4	Results	

Out	of	the	31	participants	that	provided	data	for	the	PCI,	19	were	categorised	

as	Non-Recognisers,	1	as	Ambiguous	and	11	as	Recognisers.	The	Recognisers	

and	 the	 Non-Recognisers	 groups	 did	 not	 show	 any	 significant	 difference	 in	

parameters	 that	 could	 potentially	 affect	 the	 outcome,	 such	 as	 age	 at	 the	 4	

months	session	(mean	±	SD	Recognisers	=	118.91	±	8.19	days,	mean	±	SD	Non-	

Recognisers	=	120	±	9.08	days),	t(28)=0.32,	p=0.745,	age	at	the	18	months	

session	 (mean	 ±	 SD	Recognisers	 =	 551.25	 ±	 10.58	 days,	 mean	 ±	 SD	 Non-	

Recognisers	=	552.75	±	9.40	days),	t(28)=0.30,	p=0.769,	sex	(Recognisers	=	

6	 females,	 5	 males;	 Non-Recognisers	 =	 7	 females,	 12	 males),	 c2(1,	
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N=30)=0.889,	 p=0.346.	 A	 binomial	 logistic	 regression	 with	 a	 bootstrap	

method	(1000	samples)	was	performed	to	 test	 the	relationship	between	the	

mothers’	tendency	to	imitate	their	4-month-old’s	facial	actions	and	emerging	

self-awareness	 at	 18	 months,	 as	 indexed	 by	 the	 MSR	 task.	 There	 was	 no	

significant	 relationship	 between	 the	 mothers’	 tendency	 to	 imitate	 their	 4	

months’	 facial	 actions	 and	 the	 infants’	 MSR	 outcome	 at	 18	 months,	

𝜒2(1)=0.645,	 p=0.434,	 C.I.=-3.68	 –	 11.44.	 Even	 though	 I	 did	 not	 have	 a	

prediction	 in	 terms	of	a	different	effect	of	 the	mouth	and	eyebrow	maternal	

imitation	at	4	months	on	emerging	self-awareness	at	18	months,	I	performed	

an	exploratory	level	analysis	investigating	whether	there	was	any	relationship	

between	the	mothers’	tendency	to	imitate	their	4	months’	eyebrow	or	mouth	

actions	 and	 self-awareness	 at	 18	months.	 The	mothers’	 tendency	 to	 imitate	

their	4	months’	eyebrow	actions	and	mouth	actions	did	not	predict	infants	at	

the	MSR	outcome	at	18	months	(eyebrow:	𝜒2(1)=0.017,	p=0.872,	C.I.=-4.55	–	

6.98;	mouth:	𝜒2(1)=0.46,	p=0.478,	C.I.=-3.59	–	6.50)	(Figure	7.1).	
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Figure	7.1	Graphical	representation	of	the	relationship	between	the	mothers’	tendency	
to	imitate	their	4	months’	facial	actions	and	success	at	the	MSR	at	18	months.		
	

7.5	Discussion	

Recent	 theories	 on	 the	 development	 of	 the	 sense	 of	 self	 advanced	 the	

hypothesis	of	a	social	construction	of	the	self	through	interactions	with	others,	

especially	with	the	mother	(Prinz,	2012;	Rochat	&	Zahavi,	2011).	In	particular,	

imitation	is	thought	to	play	a	crucial	role	in	shaping	the	sense	of	self	from	early	

in	life	(Emde,	1992;	Iacoboni,	2009),	and	the	first	mother-child	interactions	are	

usually	characterized	by	a	high	level	of	imitation	and	contingency	(Leclère	et	

al.,	 2014;	 Lenzi	 et	 al.,	 2009).	 These	 interactions	 have	 been	 hypothesized	 to	

constitute	the	foundations	of	a	primary	subjectivity	of	the	infant	(Fonagy	et	al.,	

2006),	where	the	infant	gradually	learns	about	self	and	other	representations	

(Emde,	 1992).	However,	 it	 has	been	also	hypothesized	 that	being	mimicked	

increase	the	overlap	between	self	and	other,	therefore	promoting	interpersonal	

fusion	(Ashton–James	et	al.,	2007).	To	date,	it	is	unclear	how	these	early	social	
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interactions	are	associated	with	the	emergence	of	self-awareness	later	in	the	

development.	 To	 test	 this,	 in	 the	 current	 study	 I	 investigated	 whether	 the	

mothers’	 tendency	 to	 imitate	 their	 4-month-olds	 predicted	 emerging	 self-

awareness	 at	 18	months,	 but	 there	was	 no	 significant	 relationship	 between	

these	two	variables.		

The	absence	of	a	significant	effect	of	the	mothers’	tendency	to	imitate	

their	 infants	on	emerging	self-awareness	does	not	imply	an	evidence	 for	 the	

absence	of	the	hypothesized	relationship.	Bayes	statistical	analysis	has	recently	

enriched	the	interpretation	of	findings,	providing	a	further	exploration	of	non-

significant	results	(Morey	&	Rouder,	2011).	In	fact,	this	approach	can	inform	on	

whether	 non-significant	 results	 do	 actually	 support	 the	 null-hypothesis,	 or	

whether	 the	 data	 are	 not	 sensitive	 enough	 to	 support	 the	 experimental	

hypothesis,	such	as	due	to	an	underpowered	study	(Dienes,	2014;	Hartgerink,	

Wicherts,	 &	 Van	 Assen,	 2017).	Unfortunately,	 it	 seems	 that	 this	method	 not	

applicable	on	binomial	logistic	regressions,	which	have	been	performed	in	this	

study.		

There	are	some	possible	reasons	to	explain	the	absence	of	a	predictive	

association	between	the	mothers’	tendency	to	imitate	their	4	months	and	the	

tendency	to	mimic	others	and	emerging	self-awareness	at	18	months.	First,	the	

age	 gap	between	4	months	and	18	months	might	have	been	 too	big.	 Future	

studies	 focusing	 on	 assessing	 the	 parent-child	 contingency	 closer	 in	 time	 to	

emerging-self-awareness	might	provide	more	reliable	 information.	However,	

one	may	also	think	that	many	months	of	experience	of	mother-child	interaction	

precede	the	emergence	of	self-awareness,	therefore	a	big	age	gap	between	the	

two	observations	may	be	accurate.	Second,	the	wide	variance	observed	in	the	

extent	 of	 parent-child	 contingent	 interaction	 might	 have	 obscured	 a	
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relationship	 between	 these	 two	 aspects.	 Therefore,	 in	 order	 to	 answer	 the	

question	 of	 this	 study	 and	 to	 elude	 the	 high	 variance	 of	 this	 data,	 a	 bigger	

sample	size	is	likely	to	be	necessary.	In	particular,	as	evidenced	by	the	plot	in	

the	results	section	(figure	7.1),	the	mothers’	tendency	to	imitate	their	infants’	

mouth	actions	at	4-months	presented	a	greater	variance	in	the	group	of	those	

that	 at	 18	months	were	 classified	 as	Non-Recognisers	 at	 the	MSR	 task	 than	

Recognisers.	This	aspect	might	shed	light	on	the	categorisation	provided	by	the	

MSR	task.	In	fact,	as	evidenced	already	in	other	studies	of	this	thesis,	the	high	

variance	 related	 to	 the	 Non-Recognisers	 data	 may	 suggest	 inaccuracy	 in	

classifying	the	Non-Recognisers	with	the	MSR	task,	with	some	18-month-olds	

which	might	be	capable	of	self-recognition	being	erroneously	classified	as	Non-

Recognisers	due	to	lack	of	motivation	or	a	shy	temperament	during	the	MSR	

task.	Alternatively,	this	may	reflect	a	gradual	emergence	of	self-awareness,	with	

some	of	the	Non-Recognisers	possibly	being	close	to	recognising	themselves	in	

the	mirror	at	the	time	of	the	MSR	task	even	if	without	a	clear	touch	of	their	faces,	

which	may	had	been	exposed	to	high	level	of	maternal	imitation	at	4	months.		

It	 is	worth	mentioning	 that	 the	 absence	 of	 a	 significant	 relationship	

between	mothers’	tendency	to	imitate	their	infants	and	the	infants’	later	self-

awareness	might	suggest	that	the	key	mechanism	predicting	the	emergence	of	

self-awareness	at	18	months	is	not	specifically	the	mothers’	imitation	of	infants’	

facial	actions,	but	rather	the	contingency	of	maternal	responding.	This	would	

be	 consistent	 with	 the	 wider	 literature	 suggesting	 a	 fundamental	 role	 of	

contingency	 response	 during	 mother-infant	 interactions	 (e.g.	 Gergely	 &	

Watson,	 1996,	 1999a;	 van	 der	 Meer	 et	 al.,	 1995).	 In	 this	 framework,	 the	

temporal	relationship	between	the	infant’s	action	and	the	mother’s	response	is	
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key	to	the	infant	learning	how	to	switch	between	self	and	other	representations	

(Emde,	1992),	rather	than	the	contingent	imitation	of	the	same	action.		

Although	 maternal	 imitation	 has	 only	 been	 included	 in	 the	 current	

analysis	if	contingent,	an	alternative	way	to	analyse	this	dataset	would	be	to	

consider	 all	 the	 possible	 contingent	mother	 responses	 to	 infant	 actions,	 for	

example,	 the	 mother	 smiling	 after	 the	 infant	 opens	 his	 mouth	 as	 a	 more	

sensitive	 predictor	 of	 emerging	 self-awareness	 later	 in	 development.	

Additionally,	 this	 would	 represent	 a	 more	 realistic	 and	 naturalistic	 way	 of	

investigating	mother-infant	interactions	as	it	is	more	likely	that	a	wide	range	of	

the	mother’s	 contingent	responses	 follows	 the	 infant’s	actions.	This	 includes	

but	 is	not	 limited	 to	 the	 imitation	of	 exactly	 the	 same	 facial	 action.	One	 can	

hypothesise	 a	 positive	 association	 between	 contingency	 of	 maternal	

responding	 early	 in	 life	 and	 emerging	 self-awareness	 at	 18	 months,	 which	

would	provide	 evidence	 for	 the	pedagogy	 role	of	mother-infant	 interactions	

when	scaffolding	a	primary	subjectivity	of	the	infant	(Emde,	1992;	Fonagy	et	

al.,	2006).	

In	 conclusion,	 this	 study	 did	 not	 provide	 any	 evidence	 supporting	 a	

social	construction	of	the	self,	as	there	was	no	significant	relationship	between	

maternal	imitation	and	emerging	self-awareness.	Future	studies	are	needed	to	

overcome	 the	 aforementioned	 methodological	 limitations	 of	 this	 study,	

recruiting	 bigger	 samples,	 assessing	 the	 mothers’	 tendency	 to	 imitate	 their	

infants	 at	 older	 ages	 than	 at	 4	 months,	 and	 considering	 the	 mother’s	

contingency	 response	 to	 the	 infant’s	 actions	as	 a	more	 realistic	predictor	of		

emerging	self-awareness	at	18	months.	
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The	sense	of	self	is	a	person’s	essential	being	that	makes	them	different	from	

others.	 While	 as	 adults	 we	 tend	 to	 take	 our	 self-concepts	 for	 granted,	

mechanisms	that	underlie	their	development	are	still	largely	unknown.	

Until	now,	self-awareness	in	infancy	has	been	assessed	with	the	MSR	

task	(Amsterdam,	1972).	Despite	the	criticisms	around	this	test	(Heyes,	1996;	

Loveland,	 1986;	Mitchell,	 1993),	 no	 real	alternative	measures	 to	 assess	self-

awareness	 in	 infancy	 have	 been	 developed.	 This	 field	 of	 research	 has	

progressed	 very	 little	 since	 the	 development	 of	 the	 MSR	 task,	 which	 is	 in	

contrast	to	the	extensive	volume	of	studies,	especially	neuroimaging	ones,	that	

have	 started	 to	 shed	 light	 on	 the	 sense	 of	 self	 in	 adulthood.	 However,	 the	

interest	 in	 exploring	 mechanisms	 underlying	 emerging	 self-awareness	 has	

undergone	a	revival	recently.	In	fact,	it	has	been	hypothesized	that	there	is	an	

association	between	self-processing	and	social	cognitive	abilities	(Santiesteban	

et	 al.,	 2012),	 which	 might	 be	 in	 place	 even	 during	 the	 first	 years	 of	 life	

(Southgate,	2018).	Given	this,	a	deeper	understanding	of	the	development	of	

the	sense	of	self	is	needed,	and	this	PhD	work	aimed	to	fill	this	gap.	With	this	

project,	I	intended	to	bring	the	topic	of	the	development	of	the	sense	of	self	into	

research	 again.	 The	 focus	 of	 this	 project	 was	 to	 provide	 evidence	 for	 the	

accuracy	of	the	MSR	task,	to	explore	the	neural	underpinnings	of	emerging	self-

awareness	 with	 a	 focus	 on	 brain	 networks,	 and	 to	 understand	 how	 the	

development	of	the	sense	of	self	is	associated	with	social	interactions,	especially	

mimicry.	

Specifically,	the	overarching	aim	of	this	PhD	thesis	was	to	elucidate	the	

mechanisms	 underlying	 the	 development	 of	 self-awareness	 in	 infancy,	 by	

investigating	the	following	questions:	

£ What	is	the	significance	of	visual	self-recognition	in	infancy?	
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£ May	 functional	 connections	 in	 brain	 networks	 at	 rest	 be	 a	

marker	of	self-awareness	in	infants,	as	it	is	in	adults?	

£ Are	 the	 brain	 areas	 that	 are	 typically	 engaged	 in	 adult	 self-

processing	also	engaged	in	emerging	self-awareness?	

£ What	role	do	others	play	in	the	construction	of	our	sense	of	self?		

£ How	does	 self-awareness	 influence	 how	 infants	 interact	with	

the	social	world?		

This	 chapter	 summarises	 the	 experimental	 findings	 of	 this	 PhD	 work,	 and	

discusses	 them	 in	 relation	 to	 each	 other	 and	 the	 existing	 literature.	 The	

following	 sections	 also	 acknowledge	 possible	 limitations	 of	 the	 studies,	 and	

propose	potential	directions	for	future	research.	

	

8.1	Summary	of	findings	

In	 order	 to	 discuss	 the	main	 findings	 of	 this	 PhD	work	 in	 detail,	 Table	 8.1	

provides	a	brief	summary	of	each	study	and	its	results,	with	the	aim	to	remind	

the	reader	of	the	experimental	studies	presented	in	this	thesis.		
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	 Study		 Method	 Main	Findings	
Ch
ap
te
r	3
	

Dynamic	Causal	

Modelling	on	infant	

fNIRS	data:		

a	validation	study	on	a	

simultaneously	

recorded	fNIRS-fMRI	

dataset	

fNIRS	and	fMRI	on	a	

single	6-month-old,	

comparison	of	the	DCM	

method	on	the	two	

techniques	

Converging	results	between	

the	DCM	models	and	

parameters	estimated	with	

fMRI	and	fNIRS	

The	developmental	

trajectory	of	the	

fronto-

temporoparietal	

connectivity:		

a	longitudinal	fNIRS	

investigation	

fNIRS,	longitudinal	

resting-state	fronto-

temporoparietal	

connectivity	in		

awake	infants	at		

11,	18,	24,	30,	36	

months	

Gradual	increase	of	the	

fronto-temporoparietal	

connectivity.	The	24-month-

olds	showed		

	the	greatest	increase	in	

connectivity.	

Ch
ap
te
r	4
	

Fronto-

temporoparietal	

connectivity	as	a	

potential	neural	

marker	of		

self-awareness	in		

18-month-olds:	a	

resting	state	fNIRS	

study	

18	months,	MSR	and	

fNIRS	resting-state	

fronto-

temporoparietal	

connectivity		

Recognizers	showed	

significantly	stronger	fronto-

temporoparietal	connectivity	

compared	to	Non-

Recognizers.	

Ch
ap
te
r	5
	 Neural	underpinnings	

of	self-recognition		

in	18-month-olds	

18	months,	MSR	and	

fNIRS	while	looking	at	

matching	and	

mismatching	

participants’	own	

movements	and	an	

unfamiliar	other	infant	

Recognisers	showed	a	greater	

activation	of	the	mPFC	and	

the	TPJ	for	Self-Live>Self-

Recorded.	Recognisers	also	

showed	a	greater	activation	of	

the	mPFC	for	Self>Other.	

Behavioural	measures	

indicating	self-recognition	

were	positively	correlated	

with	the	mPFC	activation	
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Ch
ap
te
r	6
	

The	role	of	self-

awareness	in	selective	

facial	mimicry		

of	linguistic		

in-group	over		

out-group	members	

18	months,	MSR,		

fNIRS	and	EMG	while		

looking	at	facial	

actions		

of	in-group	and		

out-group	models	

Recognisers	showed		

significant	greater	mimicry	of	

Native>Foreign	Facial	Action	

and	a	greater	engagement	of	

the	mPFC	for	Foreign>Native	

Facial	Actions.	Non-

Recognisers	engaged	left	STG	

for	Foreign>Native	Facial	

Actions.	No	relationships	

were	found	between	the	

fNIRS	and	the	EMG.	

Ch
ap
te
r	7
	

An	investigation	into		

the	relationship	

between	the	mothers’	

tendency	to	imitate		

their	4-month-olds		

and	emerging		

self-awareness		

through	the	infants’	

tendency	to	mimic	

others	at	18	months		

PCI	at	4	months	and		

MSR	at	18	months		

The	mothers’	tendency	to	

mimic	their	infants	at	4	

months	did	not	significantly	

predict	the	infants’	MSR	

outcome	at	18	months.		

	

Table	8.1	Summary	of	the	main	results	of	each	study	in	this	PhD	thesis.	
	

	

Chapter	 3	 focused	 on	 methodological	 improvements	 in	 connectivity	

analyses	for	fNIRS	to	explore	brain	networks	supporting	the	emergence	of	self-

awareness	and	to	enhance	this	neuroimaging	technique	for	more	sophisticated	

analyses.	 Tracking	 the	 development	 of	 brain	 networks,	 both	 spontaneous	

fluctuations	and	task-related,	is	a	hot	topic	in	neurodevelopmental	research.	In	

this	 respect,	 fNIRS	 is	 a	 valuable	 technique,	 allowing	 the	 acquisition	of	 brain	

fluctuations	and	responses	in	awake	infants,	which	is	more	similar	to	adult	fMRI	

studies.	The	first	study	presented	in	this	chapter	validated	the	use	of	DCM	with	
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infant	fNIRS	data.	DCM	estimates	effective	connectivity,	which	informs	about	

directionality	of	the	connections	and	how	they	are	modulated	by	experimental	

conditions.	Taking	advantage	of	a	unique	dataset	where	fNIRS	and	fMRI	data	

were	 recorded	 simultaneously,	 a	 high	 correspondence	 between	 the	 DCM	

models	 and	 connectivity	 parameters	 estimated	 with	 fMRI	 and	 fNIRS	 was	

demonstrated.	Although	 I	was	not	able	 to	apply	 this	 technique	on	any	other	

datasets	in	this	thesis,	this	study	opens	new	lines	of	research	in	developmental	

neuroscience,	providing	a	better	understanding	of	networks	in	the	brain	under	

certain	experimental	conditions.	The	second	experiment	presented	in	Chapter	

3	 examined	 the	 longitudinal	 trajectory	 of	 the	 fronto-temporoparietal	

connectivity	 -	 as	 a	proxy	 of	 the	DMN	 -	 acquired	 during	 quiet	 rest	 in	 awake	

infants.	A	vast	adult	literature	has	shown	that	the	DMN	is	a	network	of	brain	

regions	 activated	when	we	 are	not	 engaged	 in	 any	 particular	 task,	 and	 it	 is	

related	to	psychological	self-processing	(Qin	&	Northoff,	2011;	Raichle,	2015).	

This	 study	 demonstrated	 a	 gradual	 increase	 of	 the	 fronto-temporoparietal	

connections	 with	 age,	 with	 a	 peak	 at	 around	 24	 months.	 This	 seem	 to	 be	

consistent	with	a	previous	fMRI	resting-state	study	that	showed	that	by	2	years,	

the	DMN	is	similar	to	that	observed	in	adults	(Gao	et	al.,	2009;	Gao,	Lin,	Grewen,	

&	Gilmore,	2016).	For	the	first	time,	this	study	validated	a	method	of	resting-

state	data	acquisition	from	awake	infants,	and	provided	a	data	analysis	pipeline	

that	 will	 open	 new	 lines	 of	 research	 for	 the	 investigation	 of	 functional	

connectivity	at	rest.	

The	 second	 aim	 of	 this	 thesis	 was	 to	 investigate	 the	 neuronal	

underpinnings	of	 emerging	 self-awareness.	Taking	 advantage	of	 the	 analysis	

pipeline	provided	by	the	longitudinal	resting-state	study	in	Chapter	3,	the	study	

in	Chapter	4	demonstrated	that	infants	who	displayed	self-recognition	in	the	
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mirror	 showed	 significantly	 stronger	 fronto-temporoparietal	 connectivity	

compared	to	those	who	did	not.	As	the	DMN	appears	to	be	primarily	involved	

in	psychological	self-processing	and	less	in	physical	self-recognition	in	adults	

(Qin	&	Northoff,	 2011),	 this	 result	 suggests	 that	 passing	 the	MSR	 task	may	

indicate	 broader	 self-awareness	 than	 mere	 physical	 self-recognition.	 This	

interpretation	is	consistent	with	previous	studies	that	showed	a	relationship	

between	self-recognition	in	the	mirror	and	empathy	and	personal	pronoun	use	

(Bischof-Köhler,	 2012;	 Lewis	&	Ramsay,	 2004).	 Therefore,	 results	 from	 this	

study	inform	the	debate	surrounding	the	significance	of	visual	self-recognition	

in	 infancy	and	the	validity	of	 the	MSR	task	as	an	 indicator	of	self-awareness	

beyond	 physical	 self-recognition	 (Suddendorf	 &	 Butler,	 2013)	 (this	 topic	 is	

expanded	in	sections	8.2.1).	Additionally,	this	study	showed	for	the	first	time	

that	fronto-temporoparietal	connectivity	is	a	neural	correlate	of	self-awareness	

not	only	in	adults,	but	in	infants	as	well.	

Chapter	5	aimed	to	explore	which	areas	of	the	developing	brain	respond	

during	self-recognition.	18-month-olds’	brain	responses	were	acquired	while	

they	 looked	 at	 videos	 of	 themselves,	 either	 live	 video	 feed	 or	 a	 previously	

recorded	video	of	themselves.	Participants	were	also	presented	with	videos	of	

an	 unfamiliar	 infant.	 18-month-olds	 that	 exhibited	 self-recognition	 in	 the	

mirror	showed	greater	activation	of	the	mPFC	and	the	TPJ	when	looking	at	the	

live	video	of	themselves	compared	to	the	previously	recorded	video.	They	also	

showed	 greater	 mPFC	 activation	 when	 looking	 at	 their	 own	 live	 videos	

compared	with	those	of	an	unfamiliar	infant.	The	mPFC	seems	to	play	a	crucial	

role	 in	 self-processing	 in	 infancy	 as	 two	 behavioural	 measures	 used	 in	 this	

study	as	indexes	of	self-recognition	(looking	time	in	the	mirror	during	the	MSR	

task	 and	 level	 of	movements	during	 the	 self-videos	 in	 the	 fNIRS	 task)	were	
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found	 to	 be	 positively	 correlated	 with	 the	 mPFC	 activation	 during	 the	

observation	of	themselves.	The	key	function	of	the	mPFC	in	self-processing	is	

consistent	 with	 animal	 studies	 showing	 that	 primates	 that	 exhibited	 self-

recognition	are	those	with	more	developed	frontal	lobes	(Platek	et	al.,	2008;	

Semendeferi,	Damasio,	Frank,	&	Van	Hoesen,	1997),	and	that	in	human	beings,	

the	 frontal	 lobes	are	developing	over	 the	 first	three	years	of	 life	 (Bell	&	Fox,	

1992;	 Fuster,	 2003;	 Johnson,	 2001),	 a	 fundamental	 period	 for	 developing	

capacities	 to	 represent	 self	 and	 other	 (Amsterdam,	 1972).	 Functional	

connectivity	analysis	on	this	task	provided	further	evidence	for	the	importance	

of	the	mPFC	for	self-processing.	Stronger	connections	between	the	mPFC	and	

the	 right	 TPJ	 were	 exhibited	 during	 videos	 with	 matching	 rather	 that	

mismatching	 self-movements,	 and	 in	 self-videos	 rather	 than	 in	other-videos.	

These	findings	are	consistent	with	those	from	the	previous	chapter	showing	a	

crucial	 role	of	 the	mPFC	and	the	TPJ	 in	a	 functional	network	related	 to	self-

processing,	 and	 with	 the	 adult	 literature	 that	 extensively	 demonstrated	 the	

engagement	 of	 the	mPFC	 and	 the	 TPJ	 in	 self-processing	 tasks	 (Davey	 et	 al.,	

2016;	Northoff	et	al.,	2006)	

Recent	 theories	 in	 developmental	 psychology	 have	 emphasised	 the	

importance	of	social	interactions	in	emerging	self-awareness,	and	that	others	

play	 a	 fundamental	 role	 in	 constructing	 one’s	 own	 self-concept	 by	 acting	 as	

social	mirrors	(Prinz,	2012;	Rochat,	2003;	Rochat	&	Zahavi,	2011).	Therefore,	

it	 seems	 crucial	 to	 study	 emerging	 self-awareness	 in	 the	 context	 of	 infants’	

interactions	with	 others	 and	 the	 social	 environment.	 Moreover,	 some	 adult	

work	has	suggested	a	link	between	imitation	and	self-awareness	or	self-other	

distinction.	For	example,	it	has	been	shown	that	imitation–inhibition	training	

enhances	self-other	processes	in	adults	(Santiesteban	et	al.,	2012).	A	positive	
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relationship	 between	 imitation	 and	 emerging	 self-awareness	 has	 been	

demonstrated	 by	 some	 developmental	 studies	 (Asendorpf	 &	 Baudonnière,	

1994;	 Asendorpf	 et	 al.,	 1996;	 Zmyj	 et	 al.,	 2013).	 In	 this	 PhD	 project,	 the	

relationship	 between	 emerging	 self-awareness	 and	 social	 interactions	 was	

explored	by	focusing	on	mimicry,	a	form	of	imitation,	through	Chapters	6	and	

7.	The	study	presented	in	Chapter	6	aimed	to	investigate	how	emerging	self-

awareness	can	influence	infants’	mimicry	of	linguistic	in-group	and	out-group	

members.	 Only	 infants	 with	 a	 more	 advanced	 self-awareness	 showed	

significantly	greater	facial	mimicry	of	a	native	compared	to	a	foreign	speaker.	

fNIRS	 results	 displayed	 a	 few	 single-channel	 activations	 which	 were	 not	

statistically	associated	with	the	facial	mimicry	results,	therefore	these	findings	

should	be	treated	cautiously.	The	facial	mimicry	results	are	consistent	with	the	

idea	that	a	more	advanced	level	of	self-awareness	may	allow	infants	to	identify	

with	their	social	group,	hereby	enhancing	their	tendency	to	selectively	affiliate	

with	in-group	members.	

Chapter	7	aimed	to	investigate	the	role	of	others	in	constructing	the	self,	

which	refers	to	the	idea	of	the	social	nature	of	the	self.	In	particular,	it	has	been	

hypothesized	 that	 infants’	 early	 imitative	 interactions	 with	 their	 mother	

contribute	 to	the	 formation	of	the	self	(Prinz,	2012;	Rochat	&	Zahavi,	2011).	

Moreover,	through	frequent	mother-child	exchanges,	infants	are	also	exposed	

to	 the	perceptual-motor	coupling	 that	will	 lead	 them	to	copy	others’	actions.	

With	this	study,	I	investigated	whether	the	mothers’	tendency	to	imitate	their	

infants	at	4	months	is	a	predictor	of	self-awareness.	However,	results	showed	

no	 significant	 relationship	 between	 the	 mothers’	 tendency	 to	 imitate	 their	

infants	and	emerging	self-awareness.	The	absence	of	significant	relationships	

between	the	mothers’	tendency	to	imitate	their	infants	during	the	first	months	
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of	life	and	emerging	self-awareness	later	in	the	development	does	not	provide	

any	 support	 for	 that	 the	 self	 is	 socially	 constructed.	 However,	 from	 a	

methodological	perspective,	statistical	analyses	were	underpowered,	and	the	

gap	between	the	two	observations	may	have	been	excessively	wide.	

	

8.2	Synthesis	and	theoretical	implications	

This	section	provides	a	discussion	of	the	studies	conducted	in	this	PhD	thesis,	

in	 relation	 to	 each	 other	 and	 to	 the	 previous	 literature.	 The	 theoretical	

implications	of	these	findings	have	been	synthesised	into	four	general	themes:	

i)	the	significance	of	visual	self-recognition	in	infancy;	ii)	considerations	on	the	

accuracy	of	the	MSR	task;	iii)	the	role	of	the	mPFC	and	the	TPJ	in	emerging	self-

awareness;	iv)	a	note	on	brain	network	analyses	with	fNIRS;	v)	the	interplay	

between	emerging	self-awareness	and	social	interactions.	

	

8.2.1	The	significance	of	visual	self-recognition	in	infancy	

The	development	of	the	MSR	as	a	test	of	self-awareness	in	infancy	dates	back	to	

1972	(Amsterdam,	1972).	Self-recognition	in	the	mirror	has	been	thought	to	

indicate	a	broader	sense	of	self	beyond	bodily	awareness,	as	success	on	the	MSR	

task	 has	 been	 associated	 with	 empathy	 (Bischof-Köhler,	 2012),	 personal	

pronoun	use	(Lewis	&	Ramsay,	2004),	and	capacity	for	 ‘symbol-mindedness’	

(Savanah,	2013).	It	has	been	also	suggested	that	self-recognition	in	the	mirror	

indicates	the	ability	to	understand	how	others	see	oneself	(Lewis,	2011;	Rochat,	

1995,	2003;	Rochat	&	Zahavi,	2011).	Critics	of	this	test	argued	that	infants’	self-

recognition	 reflects	 a	 pure	 detection	 of	 matching	 visual	 and	 kinaesthetic	

information	 (Heyes,	 1996;	 Mitchell,	 1993),	 or	 the	 understanding	 of	 the	
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reflective	proprieties	of	the	mirror	(Loveland,	1986).	Despite	the	controversy	

surrounding	this	task,	this	field	of	research	has	progressed	very	little	over	the	

last	decades.	Given	this,	one	of	the	purpose	of	this	PhD	thesis	was	to	provide	

evidence	 for	 the	 validity	 of	 the	MSR	 task,	 exploring	 the	 significance	 of	 self-

recognition.	

	 Chapter	 4	 showed	 that	 infants	 who	 displayed	 self-recognition	 had	

stronger	fronto-temporoparietal	connectivity	at	rest,	which	is	consistent	with	

a	rich	interpretation	of	the	MSR	task.	The	fronto-temporoparietal	connectivity	

was	considered	to	be	a	proxy	for	the	DMN,	which	is	a	network	that	has	been	

associated	 with	 abstract	 self-processing	 in	 adults	 (for	 example	 sees	 Davey,	

Pujol,	 &	 Harrison,	 2016;	 Golland,	 Golland,	 Bentin,	 &	Malach,	 2008;	 Molnar-

Szakacs	&	Uddin,	2013).	Therefore,	the	study	presented	in	Chapter	4	suggests	

that	the	fronto-temporoparietal	connectivity	may	be	a	marker	of	emerging	self-

awareness	 in	 infancy.	More	 importantly,	 this	neural	 correlate	may	elucidate	

which	components	of	the	18-month-olds’	self-awareness	arose	at	this	stage	of	

the	development.	As	regions	comprising	the	DMN	have	been	associated	with	

abstract	 self-processing	 in	 adults,	 and	 functional	 connectivity	 in	 regions	

belonging	 to	 this	 network	 differentiate	 those	 infants	 who	 did	 and	 did	 not	

recognize	themselves	in	the	mirror,	the	MSR	task	may	indeed	be	a	test	for	self-

related	processing,	and	not	merely	physical	self-recognition,	or	a	matching	of	

seen	and	felt	movements.	

	 Consistent	 with	 the	 idea	 of	 self-recognition	 as	 an	 index	 of	 self-

awareness,	Chapter	6	showed	that	only	infants	that	displayed	self-recognition	

showed	a	greater	tendency	to	mimic	in-group	versus	out-group	models.	This	

might	be	associated	with	self-comparison	and	identification	processes,	which	

are	 arguably	only	possible	 if	 infants	have	 a	 self-awareness.	Given	 that	mere	
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physical	self-recognition	or	a	detection	of	seen	and	felt	movements	should	be	

insufficient	for	such	a	self-comparison	process	involving	the	detection	of	shared	

language	use,	 a	more	plausible	 explanation	 for	 this	 relationship	 is	 that	MSR	

indexes	something	more	profound	about	the	self	than	physical	self-recognition.	

That	 infants	 may	 be	 able	 to	 compare	 features	 that	 goes	 beyond	 physical	

appearance	is	more	consistent	with	an	interpretation	of	self-recognition	that	

encompasses	also	abstract	characteristics	related	to	the	self.		

Taken	together,	that	infants	who	recognized	themselves	in	the	mirror	

evidenced	 stronger	 fronto-temporoparietal	 connectivity	 (which	 is	 a	 neural	

marker	that	may	be	related	to	abstract	self-processing),	and	a	greater	tendency	

to	affiliate	with	the	in-group	rather	than	the	out-group	(which	in	the	case	of	

more	abstract	markers	of	group	similarity	should	be	related	to	self-comparison	

and	 identification	 processes),	 is	 consistent	 with	 previous	 studies	 that	 have	

suggested	 that	 self-recognition	 is	 as	 an	 index	 of	 a	 broader	 concept	 of	 self-

awareness	(Bischof-Köhler,	2012;	Lewis,	2011;	Lewis	&	Ramsay,	2004;	Rochat,	

1995,	2003;	Rochat	&	Zahavi,	2011;	Savanah,	2013).	It	is	important	to	note	here	

that	 it	 is	 still	 possible	 that	 the	 observed	 stronger	 fronto-temporoparietal	

connectivity	may	also	be	an	index	of	a	general	maturation	of	the	brain.		

	

8.2.2	Considerations	on	the	accuracy	of	MSR	task		

The	 previous	 section	 described	 some	 of	 the	 evidence	 from	 this	 PhD	 work	

supporting	 the	 idea	 that	 the	MSR	 task	 assesses	 self-awareness	 -	 defined	 as	

knowledge	of	oneself	as	a	peculiar	 individual	with	both	physical	and	mental	

features-	 therefore	encompassing	also	abstract	self-concepts	(Rochat,	2003).	

Nevertheless,	some	further	considerations	on	the	results	from	this	PhD	work	

may	inform	us	about	the	accuracy	of	the	MSR	test.	
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	 The	 investigation	 into	 the	 neural	 underpinnings	 of	 self-processing	

presented	 in	 Chapter	 5	 showed	 that	 Recognisers	 displayed	 a	 significant	

activation	of	the	mPFC	and	the	TPJ	while	looking	at	live	videos	of	themselves.	

However,	the	HRF	plots	showed	an	increase	in	HbO2	blood	flow	in	the	mPFC	

and	in	the	left	TPJ	for	Self-Live	vs.	Self-Recorded	in	Non-Recognisers	as	well,	

even	 though	 this	 difference	 did	 not	 reach	 statistical	 significance.	 The	 study	

presented	in	Chapter	6	showed	that	the	Non-Recognisers	had	a	high	variability	

in	the	facial	mimicry	results,	as	was	illustrated	in	the	plots	in	the	results	section.	

Moreover,	 the	 absence	 of	 a	 predictive	 relationship	 between	 the	 mothers’	

tendency	 to	 imitate	 their	 4-month-olds’	 facial	 actions	 and	 emerging	 self-

awareness	at	18	months	(Chapter	7)	may	be	due	 to	a	high	variability	 in	 the	

mothers’	 tendency	 to	 mimic	 those	 infants	 that	 were	 classified	 as	 Non-

Recognisers	at	18	months,	as	evidenced	by	the	plots	in	the	results	section.		

There	are	two	possible	explanations	for	the	high	variability	presented	

by	the	Non-Recognisers	in	some	of	the	data	in	this	PhD	thesis.	First,	although	

my	own	data	suggests	that	the	MSR	task	is	a	valuable	tool	with	which	to	assess	

infants’	 self-awareness,	 it	might	also	provide	 false	negatives,	 i.e.	 categorising	

some	 infants	 as	 Non-Recognisers	 while	 they	 were	 actually	 capable	 of	 self-

recognition.	This	idea	is	consistent	with	some	of	the	criticisms	of	the	MSR	test,	

such	 as	 the	 fact	 that	 it	 is	 difficult	 to	 control	 for	 factors	 not	 related	 to	 self-

awareness,	such	as	a	timid	personality	or	motivation	in	touching	the	mark	on	

the	 face,	 which	 might	 affect	 the	 outcome	 at	 the	 MSR	 task	 (Brandl,	 2016).	

Therefore,	it	is	plausible	that	while	the	Recognisers	group	is	homogeneous	and	

less	likely	to	include	infants	that	had	not	actually	developed	self-awareness,	it	

is	possible	that	some	infants	who	had	the	ability	to	recognise	themselves	were	

erroneously	included	in	the	Non-Recognisers	group	due	to	factors	unrelated	to	
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self-awareness	 (such	 as	 shyness).	 Alternatively,	 the	 high	 variability	 in	 the	

neural	 and	 electromyographical	 data	 recorded	 from	 the	 Non-Recognisers	

might	 reflect	 the	 gradual	 process	 of	 the	 development	 of	 self-awareness	

(Bertenthal	 &	 Fischer,	 1978;	 Neisser,	 1993;	 Rochat,	 1995).	 This	 may	 be	

consistent	with	the	fact	that	some	of	the	Non-Recognisers	displayed	patterns	of	

brain	 activation	 and	 facial	 mimicry	 similar	 to	 the	 ones	 exhibited	 by	 the	

Recognisers,	aspect	that	increased	the	variance	of	the	Non-Recognisers	results.	

Therefore,	 these	 infants	may	 have	 been	 close	 to	 the	 self-recognition	 in	 the	

mirror,	even	if	they	did	not	exhibited	a	clear	touch	of	the	face.	This	suggests	that	

there	 may	 be	 evidence	 for	 self-recognition	 at	 an	 earlier	 age	 and	 that	 self-

awareness	gradually	emerges	throughout	the	second	year	of	life.		

The	inaccuracy	in	the	classification	of	the	Non-Recognisers	may	indeed	

reflect	the	gradual	emergence	of	the	sense	of	self,	which	is	an	aspect	that	cannot	

be	traced	by	the	categorisation	provided	by	the	MSR	test.	In	fact,	the	stringent	

categorisation	 that	 the	MSR	 test	 requires	may	 be	 too	 limited	when	 facing	 a	

complex	psychological	domain	that	gradually	develops	over	a	period	of	time.	

Instead	 of	 a	 strict	 categorical	 response,	 researchers	 in	 this	 field	 could	 think	

about	 some	 additional	 continuous	 variables	 to	 better	 characterise	 the	

emergence	level	of	self-awareness	(this	topic	is	expanded	on	section	8.5.4).	For	

example,	behavioural	measurements	as	those	considered	in	Chapter	5,	such	as	

infants’	 looking	 time	 in	 the	mirror	 after	 the	mark	 placement	 or	 number	 of	

testing	behaviours	while	infants	are	looking	at	themselves,		can	provide	a	better	

description	of	the	level	of	self-awareness.	
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8.2.3	The	role	of	the	mPFC	and	the	TPJ	in	emerging	self-awareness	

Neuroimaging	studies	can	shed	light	on	mechanisms	underlying	developmental	

changes,	providing	a	unique	insight	that	complements	behavioural	assessments	

(Skerry	&	Saxe,	2015).	However,	while	there	is	an	extensive	body	of	research	

that	 investigated	 the	 neural	 underpinnings	 of	 the	 sense	 of	 self	 in	 adults,	

knowledge	 of	 the	 neural	 substrates	 related	 to	 its	 development	 were	 still	

unexplored	when	I	began	this	PhD	project.	In	adult	research,	the	mPFC	and	the	

TPJ	have	been	described	as	the	‘self’	brain	regions	by	many	(for	reviews	see	

Northoff	et	al.,	2006;	Northoff	&	Bermpohl,	2004;	Ruby	&	Legrand,	2007),	as	

they	have	been	extensively	found	to	be	engaged	in	self-processing	tasks	(Davey	

et	al.,	2016;	Kaplan	et	al.,	2008;	Kelley	et	al.,	2002;	Kircher	et	al.,	2000;	Uddin	et	

al.,	2005).	Moreover,	the	mPFC	and	the	TPJ	are	two	core	hubs	of	the	DMN,	our	

‘intrinsic	system’	that	deals	with	self-related	signals	and	self-processing	(Davey	

et	al.,	2016;	Golland	et	al.,	2008;	Molnar-Szakacs	&	Uddin,	2013;	Raichle,	2015;	

Sporns,	 2010).	As	mentioned	 in	 the	 introduction	of	 this	work,	 the	 literature	

review	on	neuroimaging	adult	research	was	not	performed	with	the	intent	of	

equating	 the	 infant	 with	 the	 adult	 brain	 functions	 and	 networks.	 However,	

considering	the	very	limited	number	of	studies	performed	so	far	to	investigate	

neural	underpinnings	of	self-awareness	in	the	developing	brain,	understanding	

which	 are	 the	 ‘self’	 brain	 regions	 in	 	 adults	 constituted	 a	necessary	 starting	

point	for	this	PhD	work.	

The	 studies	 presented	 in	 Chapter	 4	 and	 5	 investigated	 the	 neural	

underpinnings	of	emerging	self-awareness	and,	consistent	with	previous	work	

in	adults,	they	showed	that	mPFC	and	TPJ	are	recruited	during	a	self-processing	

task	and	as	hubs	of	a	brain	network	at	rest.	Both	regions	have	been	the	focus	of	

much	 interest	 in	 relation	 to	 social	 cognition	 in	 infancy	 (for	 a	 review	 see	



Chapter	8	

	 315 

Grossmann,	2013b),	and	this	PhD	thesis	implicates	these	regions	in	emerging	

self-awareness.	Interestingly,	the	mPFC	and	the	TPJ	are	also	crucial	regions	of	

the	mentalizing	network	(for	a	recent	review	see	Mahy,	Moses,	&	Pfeifer,	2014).	

This	 overlap	 between	 regions	 implicated	 in	mentalizing	 and	 self-processing	

seems	to	be	consistent	with	 the	 idea	of	a	strong	 link	between	self	and	other	

perspectives	(Saxe	et	al.,	2006).	The	next	 challenge	would	be	 to	 identify	 the	

dependence	 relationship	 between	 self	 and	 other	 perspectives,	 informing	 on	

which	is	fundamental	for	the	development	of	the	other	one.	Consistent	with	the	

like-me	perspective	described	in	the	introduction	of	this	thesis,	one	may	think	

that	mentalizing	skills,	 i.e.	understanding	 the	other’s	perspective,	depend	on	

self-processing	 (Gallese,	 2005;	 Meltzoff,	 2007;	 Meltzoff	 &	 Moore,	 1997).	

However,	the	activation	of	the	TPJ	already	at	7	months	related	to	other’s	false	

belief	 (Hyde	et	al.,	2018)	and	the	successful	performance	of	 infants	younger	

than	18	months,	crucial	age	of	emerging	self-awareness	(Amsterdam,	1972),	on	

implicit	false	belief	tasks	(for	some	examples	see	Baillargeon,	Scott,	&	He,	2010;	

Onishi	and	Baillargeon,	2005;	Song	&	Baillargeon,	2008;	Southgate,	Chevallier,	

&	 Csibra,	 2010)	 seem	 to	 support	 the	 like-you	 perspective,	 where	 infants	

achieve	 a	 self-perspective	 through	 the	 understanding	 of	 other’s	 perspective	

(Prinz,	2012;	Rochat	&	Zahavi,	2011).		

	

8.2.4	A	note	on	brain	network	analyses	with	fNIRS	

Perceiving	the	brain	as	a	network	of	integrated	regions,	and	not	only	as	a	sum	

of	 localised	 activations,	 can	 enrich	 our	 understanding	 of	 multifaceted	 and	

complex	psychological	 domains,	 such	 as	 self-awareness	 (Petersen	&	Sporns,	

2015).	 In	 particular,	 the	 investigation	 of	 the	 fronto-temporoparietal	

connectivity	 –	 as	 a	 proxy	 of	 the	 DMN	 –	 in	 Chapter	 4	 would	 not	 have	 been	
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possible	 without	 an	 approach	 focused	 on	 brain	 networks.	 In	 fact,	 I	 would	

consider	the	finding	on	the	fronto-temporoparietal	connectivity	as	a	possible	

marker	 of	 emerging	 self-awareness	 as	 one	 of	 the	most	 novel	 results	 of	 this	

thesis,	as	it	may	inform	on	the	psychological	aspects	of	self-processing	present	

already	early	in	life.	For	the	purpose	of	investigating	neural	underpinnings	of	

self-awareness,	 in	 this	 PhD	project	 I	 took	 advantage	 of	 fNIRS	 and,	with	 this	

work,	 I	 provided	 evidence	 for	 its	 suitability	 for	 connectivity	 analyses,	 as	

discussed	 in	 Chapter	 3.	 The	 exponential	 use	 of	 fNIRS	 throughout	 the	 last	

decades	 is	 promising	 for	 an	 increasing	use	of	 this	neuroimaging	method	 for	

future	research,	in	particular	in	developmental	neuroscience	(Pinti	et	al.,	2018).	

Moreover,	 the	 importance	 of	 exploring	 functional	 connectivity	 and	 brain	

trajectories	 across	 human	 development	 is	 increasingly	 being	 recognized.	

Therefore,	I	hope	that	this	thesis	has	contributed	to	improve	the	use	of	fNIRS	

for	more	sophisticated	analyses	that	can	shed	light	on	functional	activation	and	

network	development	in	the	future	of	developmental	research.	

	

8.2.5	 The	 interplay	 between	 emerging	 self-awareness	 and	 social	

interactions		

A	complete	investigation	into	the	mechanisms	underlying	the	development	of	

the	sense	of	self	has	to	take	into	account	social	interaction	with	others,	as	these	

interactions	 have	 been	 suggested	 to	 be	 a	 fundamental	 component	 of	 the	

shaping	of	the	self	(Hauf	&	Prinz,	2005;	Prinz,	2003,	2012).	As	highlighted	by	

the	 like-you	 perspective,	 minds	 are	 conceived	 as	 open	 and	 interchangeable	

systems	and	subjectivity	is	defined	through	social	interactions	(Hauf	&	Prinz,	

2005;	 Prinz,	 2003,	 2012).	 In	 adult	 neuroimaging	 research,	 this	 constant	

interplay	between	self	and	other	perspectives	is	consistent	with	the	finding	of	
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some	shared	neural	systems	that	represent	self	and	other	(e.g.	the	MNS),	with	

also	some	brain	regions	(e.g.	TPJ	and	mPFC)	designated	to	clearly	distinguish	

between	self	and	other	(Decety	&	Sommerville,	2003;	Santiesteban,	2014).	In	

this	PhD	work,	the	link	between	emerging	sense	of	self	and	social	interactions	

has	been	explored	from	two	points	of	view:	first,	how	emerging	self-awareness	

affects	 social	 interactions	 (Chapter	6);	 second,	 how	early	 social	 interactions	

affect	emerging	self-awareness	(Chapter	7).	To	test	this,	 in	this	PhD	project	I	

focused	on	mimicry,	a	form	of	imitation	that	has	been	shown	to	play	a	role	in	

shaping	social	interactions	and	building	relational	bonds	in	everyday	life	(Lakin	

&	Chartrand,	2003;	Lakin	et	al.,	2003).		

In	 the	 introduction	 of	 this	 thesis,	 two	 possible	 directions	 of	 the	

relationship	 between	 emerging	 self-awareness	 and	 mimicry	 have	 been	

postulated:	i)	a	positive	relationship	between	these	two	aspects,	where	infants	

with	a	more	developed	sense	of	show	a	higher	tendency	to	mimic	others.	This	

would	be	consistent	with	previous	studies	showing	that	self-recognition	in	the	

mirror	 is	 associated	 with	 a	 greater	 tendency	 to	 imitate	 peers	 and	 models	

(Asendorpf	&	Baudonnière,	1994;	Asendorpf	et	al.,	1996;	Zmyj	et	al.,	2013);	ii)	

a	negative	relationship	between	these	two	aspects,	where	infants	with	a	less	

developed	 sense	of	 show	a	higher	 tendency	 to	mimic	others.	This	would	be	

consistent	with	adult	studies	suggesting	that	boundaries	between	self	and	other	

become	blurred	during	mimicry,	suggesting	an	overlapping	of	self	and	other	

perspectives	(Ashton–James	et	al.,	2007;	Georgieff	&	Jeannerod,	1998;	Hale	&	

Hamilton,	2016).	Results	 from	Chapter	6	 showed	 that	 infants	who	exhibited	

MSR	showed	a	greater	tendency	to	selectively	mimic	the	in-group	over	the	out-

group,	suggesting	that	infants	exhibiting	self-recognition	may	interpret	the	in-

group	member	 differently	 from	 infants	 who	 do	 not	 exhibit	 self-recognition.	
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Specifically,	 I	 propose	 that	 infants	 who	 exhibit	 self-recognition	 have	 a	 self-

awareness	that	allows	them	to	compare	the	other	with	the	self	(Asendorpf	&	

Baudonnière,	 1994;	Asendorpf	 et	 al.,	 1996;	 Zmyj	 et	 al.,	 2013).	 The	 fact	 that	

infants	 with	 self-awareness	 selectively	 mimicked	 more	 the	 in-group	 rather	

than	the	out-group	model	might	indicate	a	clear	distinction	between	self	and	

other	 (Asendorpf	&	 Baudonnière,	 1994;	 Asendorpf	 et	 al.,	 1996;	 Zmyj	 et	 al.,	

2013).	Alternatively,	one	may	think	that	the	higher	mimicry	of	the	in-group	is	

an	 indicator	 of	 the	 blurred	 boundaries	 between	 the	 self	 and	 the	 model	

recognised	as	in-group	member,	therefore	with	some	similar	features	(Ashton–

James	et	al.,	2007;	Georgieff	&	Jeannerod,	1998;	Hale	&	Hamilton,	2016).	

The	relationship	between	emerging	sense	of	self	and	mimicry	has	been	

explored	from	another	point	of	view	in	the	last	experimental	chapter,	where	

being	mimicked	early	in	life	has	been	hypothesized	to	have	an	effect	on	the	later	

development	of	the	sense	of	self,	with	two	possible	predictions.	One	may	think	

that	an	higher	 level	of	 infant’s	 imitation	by	the	mother	could	promote	social	

dialogs	that	contribute	to	the	infants’	development	of	a	sense	of	self,	where	the	

infant	learns	to	switch	between	self	and	other	representations	(Emde,	1992).	

Alternatively,	it	has	been	also	hypothesized	that	being	mimicked	increases	the	

overlap	between	self	and	other,	promoting	bodily	closeness	and	interpersonal	

fusion	 (Ashton–James	 et	 al.,	 2007).	 Based	 on	 this,	 the	mothers’	 tendency	 to	

imitate	their	infants	could	lead	to	a	more	delayed	emergence	of	self-awareness.	

Unfortunately,	 a	 role	 of	 early	 social	 interactions	 in	 influencing	 the	 emerging	

sense	of	self	has	not	been	demonstrated	in	Chapter	7,	and	this	study	has	been	

discussed	 especially	 in	 terms	 of	 methodological	 limitations	 (future	

recommendations	 for	 exploring	 the	 role	of	 the	mother-infant	 interactions	 in	

emerging	self-awareness	are	provided	in	section	8.4.2).	
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8.3 Limitations	

This	 section	 aims	 to	 critically	 explore	possible	 limitations	of	 this	PhD	work,	

which	 might	 also	 help	 to	 identify	 future	 lines	 of	 research.	 In	 particular,	 I	

acknowledge	 the	 absence	 of	 an	 assessment	 of	 the	 infant’s	 general	

developmental	level,	the	absence	of	an	investigation	into	early	exposure	to	self-

pictures	 and	 self-videos,	 and	 methodological	 issues	 related	 to	 fNIRS	 data	

analysis.	

	

8.3.1	The	absence	of	an	assessment	of	general	developmental	level		

In	this	PhD	thesis,	the	general	cognitivwe	development	of	the	participants	was	

not	 taken	 into	 account	 as	 a	 factor	 that	 could	 potentially	 influence	 the	

development	of	the	sense	of	self.	One	of	the	main	criticisms	of	the	MSR	task	is	

that	 infants	may	require	 certain	 cognitive	 skills	 to	 ‘pass’	 the	 task	 (Loveland,	

1986).	 Therefore,	 it	would	 have	 been	 beneficial	 to	measure	 infants’	 general	

developmental	level	to	control	for	such	factors.	Indeed,	one	may	argue	that	the	

differences	in	functional	connections	suggested	in	Chapter	4	and	the	stronger	

activation	 of	 core	 regions	 related	 to	 self-processing	 in	 Chapter	 5	 might	 be	

driven	by	a	greater	general	maturation	of	the	brain,	which	also	gives	rise	to	a	

more	advanced	level	of	self-awareness.	However,	assessing	the	general	level	of	

brain	maturation	requires	 the	acquisition	of	MRI	images	 to	assess	structural	

connectivity	and	cortical	thickness	in	each	participant.	As	cognitive	abilities	are	

likely	to	be	positively	related	to	the	general	maturation	of	the	brain	through	the	

first	years	of	life	(for	example	see	Casey,	Tottenham,	Liston,	&	Durston,	2005;	

Deoni	et	al.,	2016;	Nagy,	Westerberg,	&	Klingberg,	2004;	Peterson	et	al.,	2000),	
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a	 cognitive	 assessment	 may	 indirectly	 provide	 information	 concerning	 the	

brain	maturation	of	the	participants.	Therefore,	the	integration	of	a	cognitive	

assessment	(such	as	the	Mullen	Scales	of	Early	Learning	(Mullen,	1995),	 the	

Bayley	Scales	of	Infant	and	Toddler	Development	(Macha	&	Petermann,	2015),	

Vineland	Adaptive	Behaviour	Scales	(Sparrow,	Balla,	&	Cicchetti,	1984))	would	

have	enriched	the	study	of	the	emerging	self-awareness,	potentially	ruling	out	

the	 possible	 interpretation	 that	 general	 cognitive	 development,	 or	 general	

brain	 maturation,	 may	 lead	 to	 a	 positive	 association	 between	 stronger	

functional	connectivity	within	the	DMN	brain	regions	and	self-recognition.	

	

8.3.2	The	possible	influence	of	the	early	exposure	to	self-pictures	

and	self-videos	in	emerging	self-recognition	and	self-awareness	

The	advent	of	social	media	and	smartphones	has	extensively	changed	our	way	

of	 living.	This	has	 an	 impact	 also	on	 infants’	 daily	 routine,	 as	 they	 are	born	

surrounded	 by	 videos	 and	 images	 of	 themselves.	 Parents	 are	 increasingly	

documenting	their	infants’	 lives,	and	infants	are	exposed	to	their	images	and	

videos	to	a	greater	extent	now	than	only	a	few	years	ago.	Additionally,	the	use	

of	 video-calls,	 especially	 in	 cities	 like	 London	 where	 many	 families	 are	

geographically	separated	from	their	relatives,	increases	the	exposure	of	infants	

to	self-videos	(McClure,	Chentsova-Dutton,	Barr,	Holochwost,	&	Parrott,	2015).	

However,	to	date	an	effect	of	the	early	exposure	to	self-pictures	and	self-videos	

on	emerging	self-recognition	and	self-awareness	has	not	been	investigated.	One	

may	think	that	this	experience	could	possibly	accelerate	the	classic	milestone	

of	self-recognition,	but	whether	this	is	the	case	has	not	been	studied.	In	this	PhD	

work,	the	proportion	of	infants	who	successfully	recognised	themselves	in	the	

mirror	 was	 consistent	 with	 the	 proportion	 documented	 in	 previous	 studies	
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(Amsterdam,	1972;	Asendorpf	&	Baudonnière,	 1994;	Asendorpf	 et	 al.,	 1996;	

Rochat,	 1995).	 Therefore,	 it	 does	 not	 seem	 likely	 that	 higher	 levels	 of	 the	

exposure	to	self-pictures	and	self-videos	affected	the	outcome	of	the	studies	in	

this	 PhD	 thesis,	 and	 did	 not	 have	 an	 impact	 on	 emerging	 self-awareness.	

Although	the	internet	is	pervaded	by	blogs	and	articles	speculating	on	how	the	

early	exposure	to	self-pictures	and	self-videos	may	affect	later	self-awareness,	

there	currently	is	no	scientific	investigation	into	this	topic.		

	

8.3.3	Methodological	issues	related	to	fNIRS	data	analysis:	a	note	

on	data	quality	based	on	the	HRF	plots	

In	Chapters	5	and	6,	which	reported	brain	functional	activation	studies,	some	

of	the	channels	plotted	in	the	results	section	did	not	show	a	smooth,	canonical	

HRF.	While	most	 of	 the	 activations	 in	 this	work	 are	 inferred	 and	 discussed	

based	on	the	channels	that	showed	a	canonical	HRF,	it	is	worth	acknowledging	

that	the	HRF	plots	that	did	not	show	a	canonical	HRF	indicate	that	data	quality	

might	 have	 not	 been	 high	 in	 all	 channels	 and/or	 participants.	 While	 some	

variability	 in	 shape	 and	 length	 of	 the	 HRF	 in	 very	 young	 infants	 has	 been	

reported,	several	studies	with	infants	after	the	first	year	of	life	documented	an	

HRF	resembling	the	adult	one,	regardless	of	the	location	of	the	activation	or	the	

task	used	(for	a	review	see	Issard	&	Gervain,	2018).	Therefore,	considerations	

regarding	the	data	quality	in	infant	studies	based	on	the	HRF	plots	should	not	

differ	much	from	the	adult	ones.		

The	 canonical	HRF	should	have	 a	 gaussian	 shape,	which	 is	 generally	

characterised	by	a	peak	and	an	undershoot	(Poldrack	&	Nichols,	2011).	This	

shape	 reflects	 the	 increase	 in	 oxygenated	 blood	 to	 the	 brain	 areas	 that	 are	

activated	(Attwell	&	Iadecola,	2002).	Given	the	physiological	nature	of	the	HRF,	
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one	 has	 to	 bear	 in	 mind	 that	 adequate	 fNIRS	 recordings	 should	 contain	

information	about	the	participants’	physiological	activation,	for	example,	heart	

rate	is	usually	easily	visible	in	fNIRS	data.	Therefore,	excluding	channels	that	do	

not	 show	 the	 participants’	 heart	 rate	 preserves	 only	 those	 with	 good	 data	

quality	 and	 means	 they	 are	 reliable	 for	 inferring	 brain	 activation.	 In	 fact,	

detecting	 a	 participant’s	 heart	 rate	 in	 the	 fNIRS	 recording	 suggests	 a	 good	

coupling	between	the	scalp	and	the	optodes	(Perdue,	Westerlund,	McCormick,	

&	Nelson,	2014).	This	channel	rejection	step	can	be	easily	implemented	in	the	

analysis	pipeline	by	plotting	the	fNIRS	raw	data	by	power	spectrum,	where	a	

small	 peak	 around	 2	 Hz21	 showing	 the	 participant’s	 heart	 rate	 can	 be	

considered	as	 an	 indicator	 of	 good	 data	 quality.	 Channels	 that	 do	 not	 show	

evidence	of	the	participant’s	heart	rate	are	more	likely	to	be	characterised	by	

noise	instead	of	cerebral	blood	flow,	therefore,	they	should	be	excluded	from	

further	data	analysis.	

It	is	important	to	note	that	more	rigorous	criteria	for	data	cleaning	and	

channel	selection	would	necessarily	lead	to	a	higher	exclusion	rate	of	channels	

and	participants.	As	a	result,	a	high-quality	dataset	composed	of	a	small	number	

of	 participants	 may	 not	 be	 representative	 of	 the	 general	 population.	 For	

example,	participants	who	moved	more	than	average	during	the	experimental	

sessions	 or	 those	 with	 dark	 hair	 that	 prevent	 the	 light	 from	 the	 optodes	

efficaciously	reaching	the	brain	and	the	detectors	may	be	excluded.	The	danger	

of	a	massive	rejection	is	likely	to	characterise	infants	neuroimaging	studies,	not	

always	 meeting	 time	 constraints	 during	 a	 PhD	 project,	 or	 the	 increasing	

																																																													
21	 As	 infants	 have	 a	 faster	 heartbeat	 than	 adults,	 the	 infant	 heartrate	 is	 normally	
observed	at	around	2Hz	and	the	adult	one	at	1	Hz.	
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requests	of	reviewers	and	editors	of	well-regarded	scientific	journals	to	publish	

with	a	considerable	number	of	participants	(Button	et	al.,	2013).		

In	Chapter	6,	some	of	the	HRF	plots	showed	a	non-canonical	shape	as	

there	was	 an	 increase	 in	HbO2	before	 the	 stimulation.	 This	may	 indicate	 an	

effect	of	habituation	to	the	task,	where	the	participant	expects	a	certain	video	

to	appear	due	to	the	regular	alternation	between	the	experimental	conditions.	

In	the	study	in	Chapter	6,	the	anticipatory	brain	response	may	be	facilitated	by	

the	structure	of	the	experimental	design	as	every	mimicry	trial	was	anticipated	

by	 a	 reminder	 trial	 of	 the	 same	 speaker.	 Future	 studies	 similar	 to	 the	 one	

presented	in	Chapter	6	should	jitter	the	baseline,	which	is	a	strategy	commonly	

used	to	avoid	habituation	effects	in	brain	responses	(Lloyd-Fox	et	al.,	2010).	As	

participants	 cannot	 precisely	 anticipate	 when	 the	 experimental	 condition	

begins,	their	brain	response	is	more	likely	to	be	‘time-locked’	to	the	beginning	

of	the	trial	(Lloyd-Fox	et	al.,	2010).	

	
	

8.4 Recommendations	for	future	research	

Some	 suggestions	 for	 future	 studies	 were	 already	 given	 in	 the	 discussion	

section	of	each	chapter.	However,	this	PhD	project	has	given	rise	to	some	new	

questions,	 and	 the	 current	 section	 is	 focused	 on	 describing	 potential	 future	

research	on	the	topic	of	self-awareness	in	infancy.		

	

8.4.1	How	does	emerging	self-awareness	affect	theory	of	mind?	

This	PhD	work	was	partially	motivated	by	the	hypothesis	of	a	link	between	self-

processing	 and	 social	 cognitive	 skills,	 which	 renewed	 the	 interest	 in	
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understanding	 the	mechanisms	 underlying	 emerging	 self-awareness.	 In	 fact,	

self	and	other	perspectives	need	to	be	integrated	but	also	separated	to	achieve	

efficient	 social	 interactions	 (Santiesteban,	 2014).	 In	 this	 project,	 the	

relationship	 between	 the	 development	 of	 the	 sense	 of	 self	 and	 social	

interactions	 was	 explored	 by	 focusing	 on	 mimicry.	 However,	 there	 are	

hypotheses	of	an	influence	of	self-awareness	also	on	higher	social	processes,	

such	as	theory	of	mind	(ToM)	(Southgate,	2018).	

	 In	developmental	psychology,	how	and	when	infants	and	older	children	

are	able	to	make	inferences	about	others’	mental	states	and	perspectives	is	a	

hot	 topic.	 However,	 although	 there	 is	 a	 high	 volume	 of	 studies	 focusing	 on	

perspective	 taking	 abilities	 in	 infants	 and	 children,	 results	 are	 not	 always	

consistent	and	researchers	still	do	not	agree	on	the	mechanisms	that	underlie	

the	development	of	mentalizing	skills	(Rakoczy,	2012;	Southgate,	2018).	One	of	

the	unsolved	questions	 is	why	young	 infants	are	able	 to	successfully	predict	

other’	perspectives	during	implicit	false	belief	tasks,	but	older	children	seem	to	

fail	 explicit	 false	 belief	 tasks.	 While	 going	 into	 details	 about	 this	 debate	 is	

beyond	the	aim	of	this	section	(for	more	information	on	this	see	Heyes,	2014;	

Rakoczy,	 2012;	 Schaafsma,	 Pfaff,	 Spunt,	 &	 Adolphs,	 2015;	 Southgate,	 2018;	

Wellman,	Cross,	&	Watson,	2001),	it	has	been	proposed	that	one	of	the	reasons	

why	young	infants	are	able	to	predict	others’	perspectives	is	that	they	have	not	

yet	 acquired	 a	distinct	 self-perspective	 (Southgate,	 2018).	 In	 fact,	when	this	

eventually	develops	in	the	second	year	of	life,	it	has	to	be	inhibited	in	order	to	

fully	 understand	 others’	 perspectives	 (Southgate,	 2018).	 This	 theory	 would	

explain	 findings	 of	 successful	 performances	 on	 false-belief	 tasks	 in	 infants	

younger	than	between	18	and	24	months	(for	some	examples	see	Baillargeon,	

Scott,	&	He,	2010;	Hyde,	Simon,	Ting,	&	Nikolaeva,	2018;	Onishi	and	Baillargeon,	
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2005;	 Luo,	 2011;	 Song	&	 Baillargeon,	 2008;	 Southgate,	 Chevallier,	 &	 Csibra,	

2010),	before	the	development	of	the	sense	of	self		(Amsterdam,	1972;	Rochat,	

2003).	

Based	 on	 this	 theory,	 one	 can	 hypothesise	 that	 Non-Recognisers,	 as	

indicated	by	 the	MSR	task,	might	 successfully	perform	on	a	 false-belief	 task,	

while	Recognisers	might	not	be	able	to	correctly	represent	other’s	perspectives.	

Even	 if	 Recognisers	 successfully	 represent	 other’s	 perspectives,	 they	 might	

encounter	more	difficulties	in	doing	so	as	compared	with	Non-Recognisers,	as	

indexed	for	examples	by	the	need	for	more	trials	to	correctly	predict	the	other’s	

perspective.	To	provide	evidence	supporting	this	hypothesis,	during	the	next	

months22	 I	will	be	analysing	some	data	 that	 I	have	collected	during	my	PhD,	

aimed	 to	 assess	 false	 belief	 understanding	 in	 18-month-olds.	 In	 this	 study,	

participants	 watched	 a	 video	 sequence	 similar	 to	 that	 previously	 used	 by	

several	studies	of	my	supervisor	Professor	Victoria	Southgate	and	colleagues	

(Senju	 et	 al.,	 2010;	 Southgate,	 Senju,	 &	 Csibra,	 2007;	 Southgate	 &	 Vernetti,	

2014).	In	this	video,	a	female	actor	sat	behind	two	windows,	in	front	of	which	

there	 were	 placed	 two	 boxes.	 The	 participants	 know	which	 one	 of	 the	 two	

contains	a	ball	and	that	the	actor’s	aim	is	to	reach	for	the	ball	at	the	end	of	every	

trial.	 The	 capacities	 to	 understand	 false	 belief	 are	 tested	 when	 the	 actor	 is	

looking	away,	and	a	puppet	moves	the	location	of	the	ball.	During	this	task,	eye-

tracking	data	were	acquired,	to	measure	the	infants’	anticipatory	looking	to	the	

two	 boxes.	 Participants’	 brain	 response	 was	 simultaneously	 recorded	 with	

fNIRS,	to	try	to	isolate	any	brain	activation	in	relation	to	the	false	belief	trials.	

The	 same	 participants	 underwent	 the	 assessment	 of	 their	 level	 of	 self-

																																																													
22	Funded	by	the	Birkbeck	Wellcome	Trust	Institutional	Strategic	Support	Fund	(ISSF),	
which	aims	to	support	the	completion	of	PhD	studies,	analyses	and	publications.		
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awareness	with	the	MSR	task.	Based	on	Southgate’s	hypothesis,	I	predict	that	

the	18	months-olds	classified	as	Non-Recognisers	will	show	a	more	accurate	

performance	on	the	false-belief	task	-	exhibited	by	anticipatory	looking	to	the	

correct	 box	 that	 the	 actor	 will	 reach	 for	 -	 than	 18-month-olds	 classified	 as	

Recognisers.	In	addition,	the	Recognisers	might	show	a	greater	engagement	of	

the	 IFG,	 the	mPFC	 and	 the	 TPJ,	 brain	 regions	 of	 the	 ToM	network	 typically	

involved	 in	dealing	with	 conflicting	perspectives	during	 the	 false	belief	 task	

(Frith	 &	 Frith,	 2006;	 Hartwright,	 Hansen,	 &	 Apperly,	 2016;	 Saxe	 &	Wexler,	

2005),	likely	to	characterise	only	those	infants	who	have	to	inhibit	their	self-

perspective,	 in	 order	 to	 understand	 others’	 perspectives	 (Southgate,	 2018).	

However,	there	is	also	evidence	for	the	TPJ	activation	in	relation	to	overlapping	

boundaries	 between	 self	 and	 others	 (Lombardo,	 Chakrabarti,	 Bullmore,	

Wheelwright,	et	al.,	2010),	which	may	be	more	evident	in	Non-Recognisers	than	

Recognisers.	 Therefore,	 a	 greater	 activation	 of	 the	 right	 TPJ	 in	 the	 Non-

Recognisers	than	in	the	Recognisers,	might	support	the	successful	performance	

of	the	Non-Recognisers	on	the	false-belief	task.	

	

8.4.2	 How	 does	 the	 early	 relationship	 with	 the	 mother	 affect	

emerging	 self-awareness?	 The	 fundamental	 role	 of	 the	 frontal	

cortex	

A	social	shaping	of	the	self	has	been	hypothesized,	where	the	interactions	with	

others	are	a	fundamental	foundation	of	the	construction	of	the	self	(Prinz,	2012;	

Rochat	&	Zahavi,	2011).	In	this	context,	the	mother	is	the	first	source	of	social	

interaction	(Prinz,	2012;	Rochat	&	Zahavi,	2011).	Researchers	belonging	to	the	

tradition	 of	 a	 social	 construction	 of	 the	 self	 consider	 bidirectional	 imitative	
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interactions	 and	 proto-conversational	 turn-taking	 as	 fundamental	 for	 the	

construction	of	the	self	(Gergely	&	Watson,	1996;	Mayes	et	al.,	2007;	Rochat	&	

Striano,	 1999).	 In	 particular,	 it	 has	 been	 highlighted	 how	 this	 primary	

intersubjectivity	is	indeed	possible	because	of	the	infants’	tendency	to	identify	

temporal	contingency	between	stimuli	and	response	(Gergely	&	Watson,	1996,	

1999).	Although	the	work	in	this	thesis	contributed	to	a	better	understanding	

of	the	mechanisms	underlying	the	development	of	the	sense	of	self,	I	have	not	

been	able	to	demonstrate	an	association	between	the	early	social	interactions	

with	 the	 mother	 and	 the	 later	 emerging	 self-awareness	 (see	 Chapter	 7).	

However,	 as	 previously	 highlighted,	 it	 is	 possible	 that	 this	 was	 due	 to	

methodological	 constraints.	 It	 would	 be	 interesting	 for	 future	 research	 to	

further	 investigate	 mechanisms	 underlying	 the	 association	 between	 the	

mother-child	 relationship	 and	 emerging	 self-awareness.	 In	 this	 respect,	

neuroimaging	studies	might	shed	light	on	processes	related	to	this	interaction,	

enriching	the	evidence	obtained	by	previous	behavioural	assessments	(Gergely	

&	Watson,	1996;	Mayes	et	al.,	2007;	Rochat	&	Striano,	1999).	

In	terms	of	neuroimaging	findings,	we	know	very	little	about	how	the	

developing	 brain	 responds	 during	 the	 social	 exchanges	 with	 the	 mother	

through	 the	 first	 years	of	 life	 and	whether	 this	may	be	 related	 to	 later	 self-

awareness.	There	is	evidence	for	temporal	synchronisation	of	the	brain	of	the	

mother	and	the	child	during	social	interaction	recorded	with	EEG	(Leong	et	al.,	

2017;	Neale	 et	 al.,	 2018),	 showing	 that	 social	 cues	 increase	 the	 adult–infant	

connectivity	 during	 communication.	 However,	 these	 studies	 do	 not	 provide	

information	 on	 which	 brain	 regions	 are	 involved	 in	 mother-infant	 social	

exchanges.	To	my	knowledge,	there	is	only	one	study	that	used	fNIRS	to	record	

activation	from	the	frontal	cortex	in	mother-infant	dyads,	showing	that	both	the	
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mother	and	the	infant	activated	the	frontal	cortex	when	looking	at	videos	of	the	

other	 one	 (Minagawa-Kawai	 et	 al.,	 2009).	 However,	 in	 this	 study	 the	 brain	

responses	 of	 the	 mother	 and	 the	 infant	 were	 not	 recorded	 simultaneously	

during	 a	 live	 interaction,	 preventing	 a	 description	 of	 a	 possible	 temporal	

synchronisation	of	the	two	brain	responses,	which	may	be	informative	about	

the	mechanisms	underlying	the	mother-child	interaction.	Moreover,	the	fNIRS	

acquisition	was	focused	on	the	frontal	cortex	only,	but	exploring	the	functional	

connections	 between	 the	 mPFC	 and	 other	 regions	 that	 play	 a	 role	 in	 self-

processing,	such	as	TPJ	(Decety	&	Sommerville,	2003;	Lewis	&	Carmody,	2008;	

Murray,	Debban,	Fox,	Bzdok,	&	Eickhoff,	2015)	during	live	interactions	would	

be	 a	 fascinating	 topic	 for	 future	 studies.	 In	 fact,	 as	 it	 has	 been	 shown	 that	

functional	connectivity	in	regions	belonging	to	the	DMN	is	positively	associated	

with	 emotional	 synchrony	 between	 adolescents	 and	 their	 parents	 (Lee,	

Miernicki,	&	Telzer,	2017),	one	may	hypothesize	 that	 the	strength	of	 fronto-

temporoparietal	 connections	 in	 the	 infants	 and	 their	 mothers	 is	 positively	

associated	with	the	mother-infant	contingency	during	social	interactions.	

There	has	been	a	lot	of	interest	to	the	role	of	the	mPFC	region	in	social	

interactions,	both	in	adults	(Van	Overwalle,	2009)	and	during	the	first	years	of	

life	(Grossmann,	2013b).	Very	young	infants	seem	to	engage	the	mPFC	when	

detecting	communicative	cues	(Grossmann,	2013a;	Grossmann	et	al.,	2008)	and	

with	 this	 thesis,	 for	 the	 first	 time,	 a	 key	 role	 of	 the	mPFC	 in	 emerging	 self-

awareness	has	been	shown	in	18-month-olds	(see	Chapter	4	and	5).	Based	on	

this,	 future	 studies	 should	 investigate	 the	 role	 of	 the	 mPFC,	 which	 rapidly	

develops	between	 the	 first	 and	 third	 years	of	 life	 (Bell	&	Fox,	 1992;	 Fuster,	

2003;	 Johnson,	2001),	as	a	shared	neural	underpinning	of	 the	mother-infant	

relationship	 and	 emerging	 self-awareness.	 In	 particular,	 an	 impaired	 or	 a	
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delayed	 emergence	 of	 self-awareness	 may	 be	 associated	 with	 a	 reduced	

contingency	 of	 the	 mother,	 which	 would	 be	 consistent	 with	 the	 previous	

theories	that	highlighted	a	fundamental	role	the	mother	of	social	mirror	during	

social	 interactions	 (Csibra	 &	 Gergely,	 2006;	 Prinz,	 2012;	 Rochat	 &	 Zahavi,	

2011).	Alternatively,	a	delayed	or	impaired	emergence	of	self-awareness	may	

be	also	associated	with	a	reduced	 infants’	 sensitivity	 for	communicative	and	

social	 cues,	 which	 would	 be	 consistent	 with	 some	 theories	 that	 related	

impairments	 in	 the	 social	 cognition	 skills	 with	 a	 lack	 of	 detection	 of	

communicative	 cues	 (Elsabbagh	 &	 Johnson,	 2007;	 Grossmann,	 2013b;	

Zwaigenbaum	et	 al.,	 2005).	 I	 predict	 that	 this	 relationship	between	mother-

infant	social	interaction	and	emerging	self-awareness	at	around	18	months	may	

be	mediated	by	the	engagement	of	the	mPFC	during	social	interactions.	Future	

research	may	test	this	hypothesis	in	a	mediation	model	(Mackinnon,	2010).	For	

this	 purpose,	 fNIRS	 can	 shed	 light	 on	 young	 infants’	 brain	 response	 during	

mother-infant	 interactions,	 as	 this	 method	 has	 been	 established	 in	

neuroimaging	 research	 to	 be	 used	 both	 with	 infants	 and	 during	 live	 social	

interactions	(Lloyd-Fox,	Blasi,	&	Elwell,	2010;	Pinti	et	al.,	2015,	2018).		

Moreover,	 adult	 research	 has	 shown	 evidence	 for	 a	 subdivision	 of	

functional	 activation	 and	 connections	 of	 the	 more	 superior	 and	 inferior	

portions	of	the	mPFC	(Amodio	&	Frith,	2006;	Bzdok	et	al.,	2013;	Grossmann,	

2013b;	Ongür	&	Price,	2000).	While	the	central	portion	of	the	mPFC	has	been	

found	 to	 be	 related	 to	 self-processing	 and	 understanding	 of	 other’s	

perspectives	(Gusnard,	Akbudak,	Shulman,	&	Raichle,	2001;	Mitchell,	Banaji,	&	

Macrae,	 2005),	 a	 more	 superior	 portion	 of	 the	 mPFC,	 has	 been	 related	 to	

monitoring	 self-related	 actions,	 due	 also	 to	 the	 connections	 with	 the	motor	

cortex	(Cavada	&	Goldman-Rakic,	1989;	Walton,	Devlin,	&	Rushworth,	2004),	
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which	may	be	 related	 to	 the	development	of	a	 sense	of	 agency,	 the	 sense	of	

control	 over	 one’s	 actions	 (Moore,	 2016).	 The	more	 inferior	 portion	 of	 the	

mPFC,	 also	 known	 as	 orbitofrontal	 cortex,	 seems	 to	 be	 fundamental	 for	

integrating	sensory	information	that	contributes	to	bodily	self-awareness,	due	

also	to	the	connections	with	the	insular	cortex	and	the	somatosensory	cortex	

(Rolls,	2004).	Based	on	this	subdivision	of	the	mPFC	which	has	been	related	to	

different	 aspect	 of	 the	 self	 in	 adults,	 future	 research	may	offer	 a	map	of	 the	

frontal	cortex	through	the	first	years	of	life,	providing	specific	information	on	

the	 consequential	 stages	 of	 the	 development	 of	 the	 sense	 of	 self.	 In	 fact,	 as	

described	in	the	introduction	of	this	thesis,	 it	has	been	thought	that	different	

aspects	of	the	self	arise	at	different	ages.	The	bodily	self-awareness	seems	to	be	

achieved	in	the	first	months	after	birth	(Filippetti	et	al.,	2015;	Rochat	&	Hespos,	

1997);	 emerging	 self-awareness	 has	 been	 shown	 from	 18	months	with	 this	

thesis,	 consistent	 with	 previous	 studies	 (Amsterdam,	 1972;	 Asendorpf	 &	

Baudonnière,	1994;	Asendorpf	et	al.,	1996;	Rochat,	1995);	finally,	the	sense	of	

agency,	as	defined	by	Moore	(2016),	is	achieved	only	later	than	18	months,	with	

capacities	 of	 reflection	 on	 one’s	 own	 actions	 (Stephens	 &	 Graham,	 1994).	

Moreover,	it	would	be	interesting	to	look	at	patterns	of	functional	connectivity	

between	the	frontal	cortex	and	other	regions	that	are	fundamental	for	emerging	

self-awareness	 and	 whether	 the	 strength	 of	 these	 connections	 can	 predict	

emerging	 self-awareness	 at	 18	months.	 Lastly,	 the	 activation	 of	 these	 three	

portions	 of	 the	 frontal	 cortex	 can	 be	 explored	 also	 during	 mother-infant	

interaction,	 to	better	understand	which	aspects	of	 the	self	are	related	 to	 the	

early	interaction	with	the	mother.		

From	 a	 methodological	 perspective,	 these	 future	 studies	 would	 be	

possible	as	a	result	of	the	recent	improvements	of	the	fNIRS	method	in	terms	of	
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spatial	registration	and	functional	connectivity	analyses	tools,	which	this	PhD	

project	contributed	to.		

	

8.4.3	How	to	test	the	hypothesis	of	a	synchronous	development	of	

self-awareness	and	social	emotions?	

Rochat	hypothesized	that	self-recognition	in	the	mirror	might	indicate	not	only	

self-awareness,	 but	 also	 the	development	of	 social	 emotions,	 such	 as	 shame	

(Rochat	et	al.,	2012;	Rochat	&	Zahavi,	2011).	This	hypothesis	is	based	on	the	

idea	 that	 successful	 performance	on	 the	MSR	 task,	which	 involves	detecting	

something	unusual	on	one’s	face,	is	also	linked	to	understanding	how	others	see	

and	perceive	ourselves	(Lewis,	2011;	Rochat	&	Zahavi,	2011).	To	support	this,	

Rochat	(2012)	demonstrated	the	influence	of	social	norms	on	self-recognition	

by	placing	 a	 sticker	on	 the	 infant’s	 face	during	 the	MSR	 task,	with	 a	 similar	

sticker	being	worn	by	everyone	else	in	the	room.	Under	this	condition,	infants	

were	 more	 hesitant	 to	 remove	 the	 sticker,	 whereas	 this	 reaction	 was	 not	

observed	when	self-recognition	was	tested	in	a	set-up	in	which	the	other	people	

in	the	room	did	not	wear	the	sticker	(Rochat	et	al.,	2012).	Rochat	interpreted	

this	finding	as	an	evidence	for	the	fact	that	under	a	‘shared’	condition	of	having	

something	 unusual	 on	 the	 face,	 infants	 are	 less	 likely	 to	 experience	 shame	

compared	with	a	condition	where	only	the	infant	has	been	marked	on	his/her	

cheek,	 therefore	 attempting	 to	 take	 it	 off	 immediately	 (Rochat	 et	 al.,	 2012).	

Although	 the	 presence	 of	 an	 association	 between	 the	 development	 of	 self-

awareness	and	social	emotions	seems	plausible,	given	the	fact	that	awareness	

of	 oneself	 might	 indicate	 also	 awareness	 of	 others,	 to	 date	 there	 are	 no	

empirical	studies	that	support	a	synchronous	development	of	self-awareness	

and	social	emotions.	Moreover,	during	the	MSR	task,	shame	or	puzzlement	are	
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only	sometimes	observed	in	the	infants	who	exhibit	self-recognition,	but	there	

is	not	a	constant	association	between	the	two	aspects.	However,	investigating	

the	 relationship	 between	 emerging	 self-awareness,	 as	 indicated	 by	 the	MSR	

task,	and	social	emotions	might	provide	further	information	on	the	significance	

of	 self-recognition.	 For	 this	 purpose,	 adding	 the	 use	 of	 an	 infrared	 camera	

during	 the	 MSR	 task	 would	 be	 a	 possible	 way	 to	 perform	 a	 systematic	

investigation	 into	 the	 emotional	 reactions	 during	 self-recognition,	 detecting	

blush	on	infants’	cheeks	as	an	index	of	shame	(Leary,	Britt,	Cutlip,	&	Templeton,	

1992;	 Lewis,	 1992).	 This	 method,	 called	 infrared	 thermography,	 records	

temperature	 changes	 on	 the	 participant’s	 face,	 and	 it	 has	 been	 validated	 by	

previous	studies	as	a	valuable	tool	to	measure	emotional	arousal	(Clay-Warner	

&	Robinson,	2015;	Kolli,	Fasih,	Machot,	&	Kyamakya,	2011)	even	with	infants	

(Esposito	et	al.,	2015).	

	

8.4.4	 Are	 there	 any	 differences	 in	 emerging	 self-awareness	

between	 typical	 infants	 and	 infants	 with	 Autism	 Spectrum	

Disorder?	

	A	 large	 body	 of	 research	 has	 shown	 that	 individuals	 with	 ASD	 exhibit	

impairments	in	several	domains	that	have	been	thought	to	be	related	to	self-

other	awareness,	such	as	imitation	(Dawson	&	Adams,	1984;	Stone,	Lemanek,	

Fishel,	 Fernandez,	 &	 Altemeier,	 1990;	 Williams,	 Whiten,	 &	 Singh,	 2004),	

emotion	 recognition	 (Hobson,	 Ouston,	 &	 Lee,	 1988;	 Uljarevic	 &	 Hamilton,	

2013),	 and	 perspective	 taking	 (Baron-Cohen,	 2001;	 Baron-Cohen,	 Leslie,	 &	

Frith,	1985).	Therefore,	it	is	plausible	to	think	that	children	with	ASD,	who	have	

deficits	in	recognizing	other’s	perspectives,	might	have	an	impairment	in	self-
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processing	 as	 well	 (Frith	 &	 Happe,	 1999;	 Uddin,	 2011).	 This	 would	 be	

consistent	 with	 the	 hypothesis	 of	 a	 synchronous	 development	 of	 self-

awareness	 and	 social	 cognitive	 abilities	 highlighted	 in	 the	 previous	 section.	

Surprisingly	though,	children	with	ASD	showed	no	difficulties	in	‘passing’	the	

MSR	task.	However,	it	has	been	documented	that	they	do	not	show	any	signs	of	

embarrassment	or	perplexity	when	they	notice	the	mark	(Dawson	&	McKissick,	

1984;	Neuman	&	Hill,	1978;	Rochat	&	Zahavi,	2011;	Spiker	&	Ricks,	1984).	As	

previously	mentioned,	Rochat	hypothesized	an	association	between	emerging	

self-awareness	 and	 social	 emotions	 (Rochat	 et	 al.,	 2012;	 Rochat	 &	 Zahavi,	

2011).	However,	this	hypothesis	leaves	unexplained	why	autistic	children	have	

no	difficulties	 in	passing	 the	MSR	task.	 Interestingly,	 it	 has	been	 shown	that	

children	with	ASD	who	failed	to	recognise	themselves	were	more	likely	to	have	

more	severe	ASD	symptomatology,	as	evidenced	by	the	fact	that	they	were	non-

verbal,	while	children	with	ASD	who	were	capable	of	self-recognition	exhibited	

higher	levels	of	social	functioning	(Spiker	&	Ricks,	1984).	Consistent	with	this,	

Dawson	 reported	 that	 the	 few	 children	 with	 ASD	 that	 did	 not	 exhibit	 self-

recognition	also	 showed	a	 reduced	performance	 in	other	 cognitive	domains,	

such	as	object	permanence	(Dawson	&	McKissick,	1984).	The	fact	that	studies	

on	 self-recognition	 in	 ASD	 found	 an	 association	 between	 an	 unsuccessful	

performance	 on	 the	 MSR	 task	 and	 more	 severe	 symptomatology	 may	 be	

consistent	with	some	of	the	criticisms	regarding	this	task,	where	a	certain	level	

of	 cognitive	 development	 has	 been	 thought	 to	 be	 necessary	 to	 exhibit	 self-

recognition	 	 (Loveland,	 1986).	 Alternatively,	 one	 can	 also	 think	 that	 more	

severely	impaired	individuals	with	ASD	are	unsuccessful	at	the	MSR	task	due	to	

a	possible	more	delayed	development	of	the	self.	
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	 In	 contrast	 to	 the	 studies	 that	 showed	 a	 typical	 performance	 of	 the	

children	 with	 ASD	 on	 the	 MSR	 task,	 neuroimaging	 studies	 have	 provided	

evidence	for	an	altered	brain	response	in	relation	to	self-awareness	in	ASD.	It	

has	been	shown	that	the	functional	connectivity	between	regions	belonging	to	

the	DMN	and	the	CMS,	the	central	portions	of	the	DMN,	is	decreased	in	both	

adults	and	children	diagnosed	with	ASD	(Lynch	et	al.,	2013;	Müller	et	al.,	2011;	

Uddin	&	Menon,	2009;	Washington	et	al.,	2014).	While	 this	knowledge	came	

from	 resting-state	 studies,	 there	 is	 also	 evidence	 for	 differences	 in	 brain	

responses	between	typically	developing	children	and	children	with	ASD	during	

self-processing	 tasks.	 It	 has	 been	 shown	 that	 individuals	 with	 ASD	 show	 a	

reduced	activation	 in	 the	ACC	when	they	 imagine	 themselves	performing	an	

action	 compared	 to	 when	 the	 see	 others	 performing	 an	 action	 (Chiu	 et	 al.,	

2008),	and	a	reduced	activity	in	the	mPFC	and	reduced	functional	connectivity	

between	the	mPFC	and	the	somatosensory	cortex	while	they	made	judgments	

on	 both	 the	 self	 and	 other	 (Kennedy	 &	 Courchesne,	 2008;	 Lombardo,	

Chakrabarti,	Bullmore,	Sadek,	et	al.,	2010).	Moreover,	10-year-old	children	with	

ASD	showed	hypoactivation	of	the	right	IFG	compared	to	typically	developing	

children	 when	 looking	 at	 their	 own	 face	 (Kita	 et	 al.,	 2011).	 Lastly,	 while	

typically	 developing	 children	 showed	 activation	 of	 prefrontal	 regions	 when	

looking	at	their	own	face	and	others’	faces,	children	with	ASD	activated	these	

regions	for	images	of	their	own	face	only.	This	finding	has	been	interpreted	as	

evidence	 for	 a	 lack	 of	 shared	 representation	 between	 self	 and	 other,	which	

instead	characterised	typically	developing	children	(Uddin	et	al.,	2008).		

	 This	section	highlighted	how	current	knowledge	of	self-awareness	and	

ASD	are	controversial	and	not	always	coherent.	Performance	of	 the	children	

with	ASD	on	the	MSR	task	has	been	described	as	typical	(Dawson	&	McKissick,	
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1984;	Neuman	&	Hill,	1978;	Rochat	&	Zahavi,	2011;	Spiker	&	Ricks,	1984),	but	

there	is	a	large	body	of	neuroimaging	literature	showing	that	individuals	with	

ASD	exhibited	reduced	activation	and	 functional	connectivity	 in	core	regions	

for	self-processing	(Chiu	et	al.,	2008;	Kennedy	&	Courchesne,	2008;	Kita	et	al.,	

2011;	Lombardo,	Chakrabarti,	Bullmore,	Sadek,	et	al.,	2010;	Lynch	et	al.,	2013;	

Müller	et	al.,	2011;	Uddin	et	al.,	2008;	Uddin	&	Menon,	2009;	Washington	et	al.,	

2014).	 Giving	 this	 inconsistency	 between	 behavioural	 and	 neuroimaging	

findings,	 further	 research	 is	 needed	to	 systematically	 explore	 emerging	 self-

awareness	in	ASD.	In	particular,	studying	the	development	of	the	sense	of	self,	

i.e.	 during	 the	 second	 year	 of	 life,	 might	 better	 elucidate	 any	 differences	 in	

mechanisms	 underlying	 it	 the	 development	 of	 self-awareness	 in	 typically	

developing	children	and	children	with	ASD.	For	example,	it	would	be	interesting	

to	test	infants	at	high-risk	of	ASD	(which	have	at	least	one	older	sibling	with	a	

clinical	diagnosis	in	the	autism	spectrum)	with	the	fNIRS	paradigm	presented	

in	 Chapter	 5.	 This	 study	 may	 inform	 on	 a	 possible	 hypoactivation	 of	 core	

regions	related	to	self-processing	early	in	life	and	which	may	be	related	to	the	

behavioural	assessment	of	the	MSR	task.	Moreover,	implementing	the	infrared	

thermography	suggested	in	the	previous	section	for	the	study	of	emerging	self-

awareness	 in	high-risk	of	ASD	 infants	 can	 inform	on	 the	 emotional	 reaction	

during	self-recognition.		 	



Chapter	8	

	 336 

8.5 Concluding	remarks	

This	thesis	work	investigated	the	mechanisms	underlying	the	development	of	

self-awareness.	Taken	together,	the	results	of	this	PhD	project	have	provided	

evidence	 for	 the	 significance	of	 visual	 self-recognition	 in	 infancy,	 suggesting	

that	a	broad	sense	of	self	may	emerge	between	18	and	24	months,	indicating	

not	 only	 a	 recognition	 of	 physical	 features,	 but	 also	 psychological	 self-

awareness.	 In	 terms	 of	 neuroimaging	 findings,	 the	mPFC	 and	 the	 TPJ	 were	

identified	 as	 key	 brain	 regions	 for	 self-processing	 in	 infancy,	 and	 also	

functionally	synchronised	as	part	of	a	wider	brain	network	measured	during	

quiet	rest	in	infants	with	a	more	developed	sense	of	self.	This	PhD	work	focused	

also	 on	 the	 relationship	 between	 self-awareness	 and	 social	 interactions	 in	

infancy,	showing	that	self-awareness	influences	the	way	that	infants	perceive	

the	 social	 environment,	 and,	 if	 mimicry	 does	 indeed	 reflect	 a	 motivation	 to	

affiliate,	affecting	their	tendency	to	selectively	affiliate	with	social	groups.	

The	 present	 novel	 findings	 represent	 a	 pioneering	 starting	point	 for	

future	investigations	into	a	deeper	understanding	of	self-awareness	in	infancy.	

This	 PhD	 thesis	 opens	 up	 avenues	 for	 future	 studies	 interested	 in	 the	

relationship	 between	 developing	 self-awareness	 with	 other	 social	 domains,	

such	 as	 theory	 of	 mind,	 social	 emotions	 and	 the	 early	 mother-infant	

relationship.	Moreover,	based	on	the	findings	of	this	work,	future	research	can	

explore	 any	 differences	 in	 emerging	 self-awareness	 between	 typically	

developing	 infants,	 and	 infants	 at	 high-risk	 of	 ASD.	 From	 a	 methodological	

perspective,	the	fNIRS	community	may	benefit	from	the	connectivity	analyses	

tools	 advanced	 in	 this	 PhD	 that	 can	 open	 new	 avenues	 of	 research	 on	

understanding	the	trajectory	of	functional	networks	in	the	developing	brain.	
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Supplementary	Table	1	Degrees	of	 freedom	of	the	paired	t-tests	between	11	months	
and	18	months	in	each	connection.		
	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

1	 	 2	 2	 2	 3	 2	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 2	 2	

2	 2	 	 2	 2	 3	 2	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 2	 2	

3	 2	 2	 	 2	 3	 2	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 2	 2	

4	 2	 2	 2	 	 3	 2	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 2	 2	

5	 3	 3	 3	 3	 	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

6	 2	 2	 2	 2	 3	 	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 2	 2	

7	 3	 3	 3	 3	 3	 3	 	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

8	 3	 3	 3	 3	 3	 3	 3	 	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

9	 3	 3	 3	 3	 3	 3	 3	 3	 	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

10	 3	 3	 3	 3	 3	 3	 3	 3	 3	 	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

11	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	

12	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

13	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	

14	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

15	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

16	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

17	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

18	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

19	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 	 3	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

20	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 	 2	 3	 2	 2	 3	 3	 3	 2	 3	 2	

21	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 	 2	 2	 2	 2	 2	 2	 2	 2	 2	

22	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 	 2	 2	 3	 3	 3	 2	 3	 2	

23	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	

24	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 	 2	 2	 2	 2	 2	 2	

25	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 	 3	 3	 2	 3	 2	

26	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 	 3	 2	 3	 2	

27	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 	 2	 3	 2	

28	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 	 2	 2	

29	 2	 2	 2	 2	 3	 2	 3	 3	 3	 3	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 2	 	 2	

30	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 	
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Supplementary	Table	2	Degrees	of	 freedom	of	the	paired	t-tests	between	11	months	
and	24	months	in	each	connection.	Connections	highlighted	in	grey	are	those	excluded	
from	 the	 analysis	 as	 only	 half	 or	 less	 than	 half	 of	 the	 sample	 contribuited	 to	 the	
statistical	test.	
	

	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

1	
	

4	 3	 2	 3	 3	 3	 3	 4	 3	 3	 4	 3	 4	 4	 4	 4	 4	 4	 4	 4	 4	 3	 4	 3	 3	 4	 4	 4	 4	

2	 4	
	

4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

3	 3	 4	
	

2	 2	 4	 4	 4	 4	 4	 3	 4	 3	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 3	 3	 4	 4	 4	 4	

4	 2	 2	 2	
	

2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 2	 1	 2	 1	 1	 2	 2	 2	 2	

5	 3	 3	 2	 2	
	

2	 2	 2	 3	 2	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 3	

6	 3	 4	 4	 2	 2	
	

4	 4	 4	 4	 3	 4	 3	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 3	 3	 4	 4	 4	 4	

7	 3	 4	 4	 2	 2	 4	
	

4	 4	 4	 3	 4	 3	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 3	 3	 4	 4	 4	 4	

8	 3	 4	 4	 2	 2	 4	 4	
	

4	 4	 3	 4	 3	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 3	 3	 4	 4	 4	 4	

9	 4	 5	 4	 2	 3	 4	 4	 4	
	

4	 3	 5	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

10	 3	 4	 4	 2	 2	 4	 4	 4	 4	
	

3	 4	 3	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 3	 3	 4	 4	 4	 4	

11	 3	 3	 3	 2	 2	 3	 3	 3	 3	 3	
	

3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 3	

12	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	
	

3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

13	 3	 3	 3	 2	 2	 3	 3	 3	 3	 3	 3	 3	
	

3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 3	

14	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	
	

5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

15	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	
	

5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

16	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	
	

5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

17	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	
	

5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

18	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	
	

5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

19	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	
	

5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

20	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	 5	
	

4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

21	 4	 4	 3	 2	 3	 3	 3	 3	 4	 3	 3	 4	 3	 4	 4	 4	 4	 4	 4	 4	
	

4	 3	 4	 3	 3	 4	 4	 4	 4	

22	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	 5	 5	 4	
	

3	 4	 4	 4	 5	 5	 5	 5	

23	 3	 3	 2	 1	 2	 2	 2	 2	 3	 2	 2	 3	 2	 3	 3	 3	 3	 3	 3	 3	 3	 3	
	

3	 2	 2	 3	 3	 3	 3	

24	 4	 4	 3	 2	 3	 3	 3	 3	 4	 3	 3	 4	 3	 4	 4	 4	 4	 4	 4	 4	 4	 4	 3	
	

3	 3	 4	 4	 4	 4	

25	 3	 4	 3	 1	 2	 3	 3	 3	 4	 3	 2	 4	 2	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	
	

4	 4	 4	 4	 4	

26	 3	 4	 3	 1	 2	 3	 3	 3	 4	 3	 2	 4	 2	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 4	
	

4	 4	 4	 4	

27	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	
	

4	 5	 5	

28	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 4	
	

5	 5	

29	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	
	

5	

3	 4	 5	 4	 2	 3	 4	 4	 4	 5	 4	 3	 5	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 0	
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Supplementary	Table	3	Degrees	of	 freedom	of	the	paired	t-tests	between	11	months	
and	30	months	in	each	connection.	Connections	highlighted	in	grey	are	those	excluded	
from	 the	 analysis	 as	 only	 half	 or	 less	 than	 half	 of	 the	 sample	 contribuited	 to	 the	
statistical	test.	
	
	

	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

1	 	 2	 1	 1	 5	 1	 4	 4	 5	 5	 4	 2	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 1	 1	

2	 2	 	 2	 2	 6	 1	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 6	 6	 5	 6	 4	 6	 3	 4	 4	 4	 6	 6	 2	 2	

3	 1	 2	 	 2	 5	 1	 5	 4	 4	 4	 3	 3	 3	 5	 5	 5	 5	 5	 4	 5	 3	 5	 2	 3	 3	 3	 5	 5	 1	 1	

4	 1	 2	 2	 	 5	 1	 5	 4	 4	 4	 3	 3	 3	 5	 5	 5	 5	 5	 4	 5	 3	 5	 2	 3	 3	 3	 5	 5	 1	 1	

5	 5	 6	 5	 5	 	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 6	 6	 5	 6	 4	 6	 3	 4	 4	 4	 6	 6	 5	 5	

6	 1	 1	 1	 1	 4	 	 4	 4	 4	 4	 3	 2	 3	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 3	 3	 4	 4	 0	 0	

7	 4	 5	 5	 5	 5	 4	 	 4	 4	 4	 3	 3	 3	 5	 5	 5	 5	 5	 4	 5	 3	 5	 2	 3	 3	 3	 5	 5	 4	 4	

8	 4	 4	 4	 4	 4	 4	 4	 	 4	 4	 3	 2	 3	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 3	 3	 4	 4	 3	 3	

9	 5	 5	 4	 4	 5	 4	 4	 4	 	 5	 4	 2	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 4	 4	

10	 5	 5	 4	 4	 5	 4	 4	 4	 5	 	 4	 2	 3	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 4	 4	

11	 4	 4	 3	 3	 4	 3	 3	 3	 4	 4	 	 1	 3	 4	 4	 4	 4	 4	 4	 4	 4	 4	 3	 4	 3	 3	 4	 4	 4	 4	

12	 2	 3	 3	 3	 3	 2	 3	 2	 2	 2	 1	 	 1	 3	 3	 3	 3	 3	 2	 3	 1	 3	 1	 1	 1	 1	 3	 3	 2	 2	

13	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 3	 1	 	 3	 3	 3	 3	 3	 3	 3	 3	 3	 2	 3	 2	 2	 3	 3	 3	 3	

14	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 	 6	 6	 6	 6	 5	 6	 4	 6	 3	 4	 4	 4	 6	 6	 5	 5	

15	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 	 6	 6	 6	 5	 6	 4	 6	 3	 4	 4	 4	 6	 6	 5	 5	

16	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 	 6	 6	 5	 6	 4	 6	 3	 4	 4	 4	 6	 6	 5	 5	

17	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 	 6	 5	 6	 4	 6	 3	 4	 4	 4	 6	 6	 5	 5	

18	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 6	 	 5	 6	 4	 6	 3	 4	 4	 4	 6	 6	 5	 5	

19	 5	 5	 4	 4	 5	 4	 4	 4	 5	 5	 4	 2	 3	 5	 5	 5	 5	 5	 	 5	 4	 5	 3	 4	 4	 4	 5	 5	 4	 4	

2	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 6	 6	 5	 	 4	 6	 3	 4	 4	 4	 6	 6	 5	 5	

21	 4	 4	 3	 3	 4	 3	 3	 3	 4	 4	 4	 1	 3	 4	 4	 4	 4	 4	 4	 4	 	 4	 3	 4	 3	 3	 4	 4	 4	 4	

22	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 6	 6	 5	 6	 4	 	 3	 4	 4	 4	 6	 6	 5	 5	

23	 3	 3	 2	 2	 3	 2	 2	 2	 3	 3	 3	 1	 2	 3	 3	 3	 3	 3	 3	 3	 3	 3	 	 3	 2	 2	 3	 3	 3	 3	

24	 4	 4	 3	 3	 4	 3	 3	 3	 4	 4	 4	 1	 3	 4	 4	 4	 4	 4	 4	 4	 4	 4	 3	 	 3	 3	 4	 4	 4	 4	

25	 4	 4	 3	 3	 4	 3	 3	 3	 4	 4	 3	 1	 2	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 	 4	 4	 4	 3	 3	

26	 4	 4	 3	 3	 4	 3	 3	 3	 4	 4	 3	 1	 2	 4	 4	 4	 4	 4	 4	 4	 3	 4	 2	 3	 4	 	 4	 4	 3	 3	

27	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 6	 6	 5	 6	 4	 6	 3	 4	 4	 4	 	 6	 5	 5	

28	 5	 6	 5	 5	 6	 4	 5	 4	 5	 5	 4	 3	 3	 6	 6	 6	 6	 6	 5	 6	 4	 6	 3	 4	 4	 4	 6	 	 5	 5	

29	 1	 2	 1	 1	 5	 0	 4	 3	 4	 4	 4	 2	 3	 5	 5	 5	 5	 5	 4	 5	 4	 5	 3	 4	 3	 3	 5	 5	 	 2	

30	 1	 2	 1	 1	 5	 0	 4	 3	 4	 4	 4	 2	 3	 5	 5	 5	 5	 5	 4	 5	 4	 5	 3	 4	 3	 3	 5	 5	 2	 	

ch
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Supplementary	Table	4	Degrees	of	 freedom	of	the	paired	t-tests	between	11	months	
and	36	months	in	each	connection.	Connections	highlighted	in	grey	are	those	excluded	
from	 the	 analysis	 as	 only	 half	 or	 less	 than	 half	 of	 the	 sample	 contribuited	 to	 the	
statistical	test.	
	
	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

1	 	 3	 2	 2	 6	 2	 5	 5	 6	 6	 5	 6	 5	 6	 6	 6	 6	 6	 6	 6	 5	 6	 4	 5	 5	 5	 6	 6	 3	 3	

2	 3	 	 3	 3	 7	 2	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 4	 3	

3	 2	 3	 	 3	 6	 2	 6	 5	 6	 5	 4	 6	 4	 6	 6	 6	 6	 6	 6	 6	 4	 6	 3	 4	 4	 4	 6	 6	 3	 2	

4	 2	 3	 3	 	 6	 2	 6	 5	 6	 5	 4	 6	 4	 6	 6	 6	 6	 6	 6	 6	 4	 6	 3	 4	 4	 4	 6	 6	 3	 2	

5	 6	 7	 6	 6	 	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

6	 2	 2	 2	 2	 5	 	 5	 5	 5	 5	 4	 5	 4	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 2	 2	

7	 5	 6	 6	 6	 6	 5	 	 5	 6	 5	 4	 6	 4	 6	 6	 6	 6	 6	 6	 6	 4	 6	 3	 4	 4	 4	 6	 6	 6	 5	

8	 5	 5	 5	 5	 5	 5	 5	 	 5	 5	 4	 5	 4	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 4	 4	 5	 5	 5	 5	

9	 6	 7	 6	 6	 7	 5	 6	 5	 	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

10	 6	 6	 5	 5	 6	 5	 5	 5	 6	 	 5	 6	 5	 6	 6	 6	 6	 6	 6	 6	 5	 6	 4	 5	 5	 5	 6	 6	 6	 6	

11	 5	 5	 4	 4	 5	 4	 4	 4	 5	 5	 	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 4	 5	 4	 4	 5	 5	 5	 5	

12	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 	 5	 7	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

13	 5	 5	 4	 4	 5	 4	 4	 4	 5	 5	 5	 5	 	 5	 5	 5	 5	 5	 5	 5	 5	 5	 4	 5	 4	 4	 5	 5	 5	 5	

14	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

15	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

16	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

17	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

18	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

19	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 	 7	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

20	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 	 5	 7	 4	 5	 5	 5	 7	 7	 7	 6	

21	 5	 5	 4	 4	 5	 4	 4	 4	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 	 5	 4	 5	 4	 4	 5	 5	 5	 5	

22	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 7	 5	 	 4	 5	 5	 5	 7	 7	 7	 6	

23	 4	 4	 3	 3	 4	 3	 3	 3	 4	 4	 4	 4	 4	 4	 4	 4	 4	 4	 4	 4	 4	 4	 	 4	 3	 3	 4	 4	 4	 4	

24	 5	 5	 4	 4	 5	 4	 4	 4	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 4	 	 4	 4	 5	 5	 5	 5	

25	 5	 5	 4	 4	 5	 4	 4	 4	 5	 5	 4	 5	 4	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 	 5	 5	 5	 5	 5	

26	 5	 5	 4	 4	 5	 4	 4	 4	 5	 5	 4	 5	 4	 5	 5	 5	 5	 5	 5	 5	 4	 5	 3	 4	 5	 	 5	 5	 5	 5	

27	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 	 7	 7	 6	

28	 6	 7	 6	 6	 7	 5	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 	 7	 6	

29	 3	 4	 3	 3	 7	 2	 6	 5	 7	 6	 5	 7	 5	 7	 7	 7	 7	 7	 7	 7	 5	 7	 4	 5	 5	 5	 7	 7	 	 3	

30	 3	 3	 2	 2	 6	 2	 5	 5	 6	 6	 5	 6	 5	 6	 6	 6	 6	 6	 6	 6	 5	 6	 4	 5	 5	 5	 6	 6	 3	 	

channels	
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Supplementary	Table	5	Degrees	of	 freedom	of	the	paired	t-tests	between	18	months	
and	24	months	in	each	connection.		
	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

1	 		 6	 6	 5	 5	 6	 6	 6	 6	 6	 6	 5	 5	 6	 6	 6	 6	 6	 6	 6	 6	 6	 6	 5	 6	 5	 5	 6	 6	 8	

2	 6	 		 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

3	 6	 10	
	

5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

4	 5	 5	 5	
	

5	 5	 5	 5	 5	 5	 5	 8	 8	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 8	 5	 8	 8	 5	 5	 7	

5	 5	 5	 5	 5	
	

5	 5	 5	 5	 5	 5	 8	 8	 5	 5	 5	 5	 5	 5	 5	 5	 5	 5	 8	 5	 8	 8	 5	 5	 7	

6	 6	 10	 10	 5	 5	
	

9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

7	 6	 9	 9	 5	 5	 9	
	

9	 9	 9	 9	 8	 8	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 8	 8	 9	 6	

8	 6	 10	 10	 5	 5	 10	 9	
	

10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

9	 6	 10	 10	 5	 5	 10	 9	 10	
	

10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

10	 6	 10	 10	 5	 5	 10	 9	 10	 10	
	

9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

11	 6	 9	 9	 5	 5	 9	 9	 9	 9	 9	
	

8	 8	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 8	 8	 9	 6	

12	 5	 9	 9	 8	 8	 9	 8	 9	 9	 9	 8	
	

9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 8	 8	 9	 6	

13	 5	 9	 9	 8	 8	 9	 8	 9	 9	 9	 8	 9	
	

9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 8	 8	 9	 6	

14	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	
	

10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

15	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	
	

10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

16	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	
	

10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

17	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	
	

10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

18	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	
	

10	 10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

19	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	
	

10	 10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

20	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	
	

10	 10	 10	 9	 10	 9	 9	 9	 10	 7	

21	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	
	

10	 10	 9	 10	 9	 9	 9	 10	 7	

22	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	
	

10	 9	 10	 9	 9	 9	 10	 7	

23	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	
	

9	 10	 9	 9	 9	 10	 7	

24	 5	 9	 9	 8	 8	 9	 8	 9	 9	 9	 8	 8	 8	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	
	

9	 9	 9	 8	 9	 7	

25	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	
	

9	 9	 9	 10	 7	

26	 5	 9	 9	 8	 8	 9	 8	 9	 9	 9	 8	 8	 8	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	
	

9	 8	 9	 7	

27	 5	 9	 9	 8	 8	 9	 8	 9	 9	 9	 8	 8	 8	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	
	

6	 9	 7	

28	 6	 9	 9	 5	 5	 9	 8	 9	 9	 9	 8	 8	 8	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 6	
	

9	 7	

29	 6	 10	 10	 5	 5	 10	 9	 10	 10	 10	 9	 9	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 10	 9	 9	 9	
	

7	

30	 8	 7	 7	 7	 3	 7	 6	 7	 7	 7	 6	 6	 6	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	
	

ch
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Supplementary	Table	6	Degrees	of	 freedom	of	the	paired	t-tests	between	18	months	
and	30	months	in	each	connection.		
	
	
	
	
	
	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

1	 		 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

2	 9	 		 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

3	 9	 9	 		 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

4	 9	 9	 9	 		 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

5	 9	 9	 9	 9	 		 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

6	 9	 9	 9	 9	 9	 		 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

7	 9	 9	 9	 9	 9	 9	 		 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

8	 9	 9	 9	 9	 9	 9	 9	 		 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

9	 9	 9	 9	 9	 9	 9	 9	 9	 		 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

10	 9	 9	 9	 9	 9	 9	 9	 9	 9	 		 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

11	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 		 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

12	 6	 6	 6	 6	 6	 6	 6	 6	 6	 6	 6	 		 5	 6	 6	 6	 6	 6	 6	 6	 6	 6	 6	 5	 6	 5	 6	 5	 5	 5	

13	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 5	 		 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 6	 7	 6	 7	 6	 6	 5	

14	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 		 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

15	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 		 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

16	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 		 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

17	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 		 9	 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

18	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 		 9	 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

19	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 		 9	 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

20	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 		 9	 9	 9	 8	 9	 8	 9	 8	 8	 7	

21	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 		 9	 9	 8	 9	 8	 9	 8	 8	 7	

22	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 		 9	 8	 9	 8	 9	 8	 8	 7	

23	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 		 8	 9	 8	 9	 8	 8	 7	

24	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 5	 6	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 		 8	 8	 8	 7	 7	 6	

25	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 		 8	 9	 8	 8	 7	

26	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 5	 6	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 		 8	 7	 7	 6	

27	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 6	 7	 9	 9	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 8	 		 8	 8	 7	

28	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 5	 6	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 7	 8	 7	 8	 		 8	 7	

29	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 5	 6	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 7	 8	 7	 8	 8	 		 7	

30		 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 5	 5	 7	 7	 7	 7	 7	 7	 7	 7	 7	 7	 6	 7	 6	 7	 7	 7	 		

channels	
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Supplementary	Table	7	Degrees	of	 freedom	of	the	paired	t-tests	between	18	months	
and	36	months	in	each	connection.		
	
	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

1	
	

14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

2	 14	
	

14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

3	 14	 14	
	

14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

4	 14	 14	 14	
	

14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

5	 14	 14	 14	 14	
	

14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

6	 14	 14	 14	 14	 14	 		 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

7	 13	 13	 13	 13	 13	 13	 		 13	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 12	 13	 11	 12	 12	 13	 11	

8	 13	 13	 13	 13	 13	 13	 13	 		 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 12	 13	 11	 12	 12	 13	 11	

9	 14	 14	 14	 14	 14	 14	 13	 13	 		 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

10	 12	 12	 12	 12	 12	 12	 12	 12	 12	 		 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 11	 12	 12	 12	 11	 12	 11	 12	 11	

11	 14	 14	 14	 14	 14	 14	 13	 13	 14	 12	 		 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 		 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 12	 13	 11	 12	 12	 13	 11	

13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 		 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 12	 13	 11	 12	 12	 13	 11	

14	 14	 14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 		 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

15	 14	 14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 		 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

16	 14	 14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 		 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

17	 14	 14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 		 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

18	 14	 14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 		 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	 12	

19	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 		 13	 13	 12	 13	 12	 13	 11	 12	 12	 13	 11	

20	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 		 13	 12	 13	 12	 13	 11	 12	 12	 13	 11	

21	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 		 12	 13	 12	 13	 11	 12	 12	 13	 11	

22	 12	 12	 12	 12	 12	 12	 12	 12	 12	 11	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 		 12	 11	 12	 10	 11	 11	 12	 10	

23	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 		 12	 13	 11	 12	 12	 13	 11	

24	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 11	 12	 		 12	 11	 12	 11	 12	 11	

25	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 12	 		 11	 12	 12	 13	 11	

26	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 11	 10	 11	 11	 11	 		 11	 10	 11	 10	

27	 13	 13	 13	 13	 13	 13	 12	 12	 13	 12	 13	 12	 12	 13	 13	 13	 13	 13	 12	 12	 12	 11	 12	 12	 12	 11	 		 11	 13	 12	

28	 13	 13	 13	 13	 13	 13	 12	 12	 13	 11	 13	 12	 12	 13	 13	 13	 13	 13	 12	 12	 12	 11	 12	 11	 12	 10	 11	 		 13	 12	

29	 14	 14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 		 12	

30	 0	 14	 14	 14	 14	 14	 13	 13	 14	 12	 14	 13	 13	 14	 14	 14	 14	 14	 13	 13	 13	 12	 13	 12	 13	 11	 13	 13	 14	
	

channels	

ch
an
ne
ls	



	

	 414 

	
	

	
	
Supplementary	Table	8	Degrees	of	 freedom	of	the	paired	t-tests	between	24	months	
and	30	months	in	each	connection.		
	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	

1	
	

9	 9	 8	 8	 9	 9	 9	 9	 7	 9	 7	 9	 9	 9	 9	 8	 8	 8	 9	 8	 9	 9	 9	 9	 9	 9	 9	 9	 8	 9	 9	 9	 9	 9	 9	 8	 9	 9	 9	 9	 9	 8	 8	

2	 9	
	

14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

3	 9	 14	
	

8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

4	 8	 8	 8	
	

8	 8	 8	 8	 8	 7	 9	 9	 9	 8	 8	 8	 10	 10	 10	 8	 10	 8	 8	 8	 8	 8	 8	 8	 8	 10	 8	 8	 8	 8	 8	 8	 10	 9	 9	 8	 8	 8	 10	 10	

5	 8	 8	 8	 8	
	

8	 8	 8	 8	 10	 9	 9	 9	 8	 8	 8	 10	 10	 10	 8	 10	 8	 8	 8	 8	 8	 8	 8	 8	 10	 8	 8	 8	 8	 8	 8	 10	 9	 9	 8	 8	 8	 10	 10	

6	 9	 14	 14	 8	 8	
	

13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

7	 9	 13	 13	 8	 8	 13	
	

12	 13	 11	 10	 11	 10	 13	 13	 13	 12	 12	 11	 13	 12	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 12	 13	 13	 13	 12	 11	 10	 10	 12	 12	 13	 10	 11	

8	 9	 13	 13	 8	 8	 13	 12	
	

13	 11	 9	 11	 9	 13	 13	 13	 12	 12	 12	 13	 12	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 13	 13	 12	 12	 11	 11	 10	 10	 13	 13	 13	 11	 12	

9	 9	 14	 14	 8	 8	 14	 13	 13	
	

12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

10	 10	 12	 12	 10	 10	 12	 11	 11	 12	
	

10	 11	 10	 12	 12	 12	 11	 11	 10	 12	 11	 12	 12	 12	 12	 12	 12	 12	 11	 10	 12	 11	 12	 11	 11	 10	 11	 10	 10	 11	 11	 12	 10	 11	

11	 9	 10	 10	 9	 9	 10	 10	 9	 10	 10	
	

9	 10	 10	 10	 10	 10	 10	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 9	 10	 9	 10	 10	 10	 9	 9	 9	 9	 9	 9	 10	 8	 9	

12	 10	 12	 12	 9	 9	 12	 11	 11	 12	 11	 9	
	

9	 12	 12	 12	 11	 11	 10	 12	 11	 12	 12	 12	 12	 12	 12	 12	 11	 10	 12	 11	 12	 11	 11	 10	 11	 9	 9	 11	 11	 12	 10	 11	

13	 9	 10	 10	 9	 9	 10	 10	 9	 10	 10	 10	 9	 0	 10	 10	 10	 10	 10	 9	 10	 10	 10	 10	 10	 10	 10	 10	 10	 9	 9	 10	 9	 10	 10	 10	 9	 9	 9	 9	 9	 9	 10	 8	 9	

14	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	
	

14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

15	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	
	

14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

16	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	
	

13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

17	 8	 13	 13	 10	 10	 13	 12	 12	 13	 11	 10	 11	 10	 13	 13	 13	
	

13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 12	 13	 12	 13	 12	 12	 11	 11	 11	 11	 12	 12	 13	 10	 11	

18	 8	 13	 13	 10	 10	 13	 12	 12	 13	 11	 10	 11	 10	 13	 13	 13	 13	
	

12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 12	 13	 12	 13	 12	 12	 11	 11	 11	 11	 12	 12	 13	 10	 11	

19	 8	 12	 12	 10	 10	 12	 11	 12	 12	 10	 9	 10	 9	 12	 12	 12	 12	 12	
	

12	 12	 12	 12	 12	 12	 12	 12	 12	 11	 11	 12	 12	 12	 11	 11	 10	 10	 10	 10	 12	 12	 12	 10	 11	

20	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	
	

13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

21	 8	 13	 13	 10	 10	 13	 12	 12	 13	 11	 10	 11	 10	 13	 13	 13	 13	 13	 12	 13	
	

13	 13	 13	 13	 13	 13	 13	 12	 12	 13	 12	 13	 12	 12	 11	 11	 11	 11	 12	 12	 13	 10	 11	

22	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	
	

14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

23	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	
	

14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

24	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	
	

14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

25	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	
	

14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

29	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	
	

14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

27	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	
	

12	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

28	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 12	
	

13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

29	 9	 13	 13	 8	 8	 13	 12	 12	 13	 11	 9	 11	 9	 13	 13	 13	 12	 12	 11	 13	 12	 13	 13	 13	 13	 13	 13	 13	
	

12	 13	 12	 13	 12	 12	 11	 11	 10	 10	 12	 12	 13	 11	 11	

30	 8	 12	 12	 10	 10	 12	 11	 11	 12	 10	 9	 10	 9	 12	 12	 12	 12	 12	 11	 12	 12	 12	 12	 12	 12	 12	 12	 12	 12	 0	 12	 11	 12	 11	 11	 10	 10	 10	 10	 11	 11	 12	 10	 10	

31	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	
	

13	 14	 13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

32	 9	 13	 13	 8	 8	 13	 12	 13	 13	 11	 9	 11	 9	 13	 13	 13	 12	 12	 12	 13	 12	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	
	

13	 12	 12	 11	 11	 10	 10	 13	 13	 13	 11	 12	

33	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	
	

13	 13	 12	 12	 11	 11	 13	 13	 14	 11	 12	

34	 9	 13	 13	 8	 8	 13	 13	 12	 13	 11	 10	 11	 10	 13	 13	 13	 12	 12	 11	 13	 12	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 12	 13	
	

13	 12	 11	 10	 10	 12	 12	 13	 10	 11	

35	 9	 13	 13	 8	 8	 13	 13	 12	 13	 11	 10	 11	 10	 13	 13	 13	 12	 12	 11	 13	 12	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 12	 13	 13	
	

12	 11	 10	 10	 12	 12	 13	 10	 11	

36	 9	 12	 12	 8	 8	 12	 12	 11	 12	 10	 9	 10	 9	 12	 12	 12	 11	 11	 10	 12	 11	 12	 12	 12	 12	 12	 12	 12	 11	 10	 12	 11	 12	 12	 12	
	

11	 9	 9	 11	 11	 12	 9	 10	

37	 8	 12	 12	 10	 10	 12	 11	 11	 12	 11	 9	 11	 9	 12	 12	 12	 11	 11	 10	 12	 11	 12	 12	 12	 12	 12	 12	 12	 11	 10	 12	 11	 12	 11	 11	 11	
	

9	 9	 11	 11	 12	 10	 11	

38	 9	 11	 11	 9	 9	 11	 10	 10	 11	 10	 9	 9	 9	 11	 11	 11	 11	 11	 10	 11	 11	 11	 11	 11	 11	 11	 11	 11	 10	 10	 11	 10	 11	 10	 10	 9	 9	
	

11	 10	 10	 11	 8	 9	

39	 9	 11	 11	 9	 9	 11	 10	 10	 11	 10	 9	 9	 9	 11	 11	 11	 11	 11	 10	 11	 11	 11	 11	 11	 11	 11	 11	 11	 10	 10	 11	 10	 11	 10	 10	 9	 9	 11	
	

10	 10	 11	 8	 9	

40	 9	 13	 13	 8	 8	 13	 12	 13	 13	 11	 9	 11	 9	 13	 13	 13	 12	 12	 12	 13	 12	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 13	 13	 12	 12	 11	 11	 10	 10	
	

13	 13	 11	 12	

41	 9	 13	 13	 8	 8	 13	 12	 13	 13	 11	 9	 11	 9	 13	 13	 13	 12	 12	 12	 13	 12	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 13	 13	 12	 12	 11	 11	 10	 10	 13	
	

13	 11	 12	

42	 9	 14	 14	 8	 8	 14	 13	 13	 14	 12	 10	 12	 10	 14	 14	 14	 13	 13	 12	 14	 13	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 14	 13	 13	 12	 12	 11	 11	 13	 13	
	

11	 12	

43	 8	 11	 11	 10	 10	 11	 10	 11	 11	 10	 8	 10	 8	 11	 11	 11	 10	 10	 10	 11	 10	 11	 11	 11	 11	 11	 11	 11	 11	 10	 11	 11	 11	 10	 10	 9	 10	 8	 8	 11	 11	 11	
	

11	

44	 8	 12	 12	 10	 10	 12	 11	 12	 12	 11	 9	 11	 9	 12	 12	 12	 11	 11	 11	 12	 11	 12	 12	 12	 12	 12	 12	 12	 11	 10	 12	 12	 12	 11	 11	 10	 11	 9	 9	 12	 12	 12	 11	
	

channels	

ch
an
ne
ls	



	

	 415 

	
	

	
	
Supplementary	Table	9	Degrees	of	 freedom	of	the	paired	t-tests	between	24	months	
and	36	months	in	each	connection.		
	

	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	

1	
	

13	 13	 11	 11	 13	 13	 12	 12	 10	 10	 13	 11	 13	 13	 13	 12	 13	 11	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 13	 13	 12	 13	 13	 9	 9	 12	 10	 12	 11	 13	

2	 13	
	

17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

3	 13	 17	
	

11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

4	 11	 11	 11	
	

11	 11	 11	 10	 10	 9	 9	 11	 10	 11	 11	 11	 10	 11	 9	 10	 11	 11	 11	 11	 11	 11	 11	 11	 11	 10	 11	 11	 11	 11	 10	 11	 11	 11	 11	 10	 11	 10	 9	 11	

5	 11	 11	 11	 11	
	

11	 11	 10	 10	 9	 9	 11	 10	 11	 11	 11	 10	 11	 9	 10	 11	 11	 11	 11	 11	 11	 11	 11	 11	 10	 11	 11	 11	 11	 10	 11	 11	 11	 11	 10	 11	 10	 9	 11	

6	 13	 16	 16	 11	 11	
	

16	 15	 15	 13	 13	 16	 14	 16	 16	 16	 15	 16	 14	 15	 16	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	 16	 16	 15	 15	 15	 12	 12	 15	 13	 15	 13	 16	

7	 13	 16	 16	 11	 11	 16	
	

15	 15	 13	 13	 16	 14	 16	 16	 16	 15	 16	 14	 15	 16	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	 16	 16	 15	 15	 15	 12	 12	 15	 13	 15	 13	 16	

8	 12	 15	 15	 10	 10	 15	 15	
	

14	 12	 13	 15	 13	 15	 15	 15	 15	 15	 14	 14	 15	 15	 15	 15	 15	 15	 15	 15	 15	 14	 15	 15	 15	 15	 14	 14	 14	 12	 12	 14	 12	 14	 12	 15	

9	 12	 15	 15	 10	 10	 15	 15	 14	
	

13	 13	 15	 14	 15	 15	 15	 14	 15	 13	 14	 15	 15	 15	 15	 15	 15	 15	 15	 15	 14	 15	 15	 15	 15	 15	 14	 14	 11	 11	 14	 12	 14	 13	 15	

10	 10	 14	 14	 9	 9	 13	 13	 12	 13	
	

13	 14	 14	 14	 14	 13	 12	 14	 11	 13	 14	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 13	 13	 14	 13	 13	 11	 11	 12	 11	 14	 12	 14	

11	 10	 14	 14	 9	 9	 13	 13	 13	 13	 13	
	

14	 14	 14	 14	 13	 13	 14	 12	 13	 14	 14	 14	 14	 14	 14	 14	 14	 13	 12	 14	 13	 13	 13	 14	 13	 13	 12	 12	 12	 10	 13	 11	 14	

12	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	
	

15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

13	 11	 15	 15	 10	 10	 14	 14	 13	 14	 14	 14	 15	
	

15	 15	 14	 13	 15	 12	 14	 15	 15	 15	 15	 15	 15	 15	 15	 14	 13	 15	 14	 14	 14	 15	 14	 14	 12	 12	 13	 11	 14	 12	 15	

14	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	
	

17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

15	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	
	

16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

16	 13	 16	 16	 11	 11	 16	 16	 15	 15	 13	 13	 16	 14	 16	 16	
	

15	 16	 14	 15	 16	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	 16	 16	 15	 15	 15	 12	 12	 15	 13	 15	 13	 16	

17	 12	 15	 15	 10	 10	 15	 15	 15	 14	 12	 13	 15	 13	 15	 15	 15	
	

15	 14	 14	 15	 15	 15	 15	 15	 15	 15	 15	 15	 14	 15	 15	 15	 15	 14	 14	 14	 12	 12	 14	 12	 14	 12	 15	

18	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	
	

14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

19	 11	 14	 14	 9	 9	 14	 14	 14	 13	 11	 12	 14	 12	 14	 14	 14	 14	 14	
	

14	 14	 14	 14	 14	 14	 14	 14	 14	 14	 13	 14	 14	 14	 14	 13	 13	 13	 12	 12	 14	 12	 13	 11	 14	

20	 12	 16	 16	 10	 10	 15	 15	 14	 14	 13	 13	 16	 14	 16	 16	 15	 14	 16	 14	
	

16	 16	 16	 16	 16	 16	 16	 16	 15	 14	 16	 15	 15	 15	 15	 15	 15	 13	 13	 15	 13	 15	 12	 16	

21	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	
	

17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

22	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	
	

17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

23	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	
	

17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

24	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	
	

17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

25	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	
	

17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

26	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	
	

17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

27	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	
	

15	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

211	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 15	
	

16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

29	 13	 16	 16	 11	 11	 16	 16	 15	 15	 13	 13	 16	 14	 16	 16	 16	 15	 16	 14	 15	 16	 16	 16	 16	 16	 16	 16	 16	
	

15	 16	 16	 16	 16	 15	 15	 15	 12	 12	 15	 13	 15	 13	 16	

30	 12	 15	 15	 10	 10	 15	 15	 14	 14	 12	 12	 15	 13	 15	 15	 15	 14	 15	 13	 14	 15	 15	 15	 15	 15	 15	 15	 15	 15	
	

15	 15	 15	 15	 14	 14	 14	 11	 11	 14	 13	 14	 12	 15	

31	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	
	

16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	 17	

32	 13	 16	 16	 11	 11	 16	 16	 15	 15	 13	 13	 16	 14	 16	 16	 16	 15	 16	 14	 15	 16	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	
	

16	 16	 15	 15	 15	 12	 12	 15	 13	 15	 13	 16	

33	 13	 16	 16	 11	 11	 16	 16	 15	 15	 13	 13	 16	 14	 16	 16	 16	 15	 16	 14	 15	 16	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	
	

16	 15	 15	 15	 12	 12	 15	 13	 15	 13	 16	

34	 13	 16	 16	 11	 11	 16	 16	 15	 15	 13	 13	 16	 14	 16	 16	 16	 15	 16	 14	 15	 16	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	 16	
	

15	 15	 15	 12	 12	 15	 13	 15	 13	 16	

35	 12	 16	 16	 10	 10	 15	 15	 14	 15	 14	 14	 16	 15	 16	 16	 15	 14	 16	 13	 15	 16	 16	 16	 16	 16	 16	 16	 16	 15	 14	 16	 15	 15	 15	
	

15	 15	 12	 12	 14	 12	 15	 13	 16	

36	 13	 16	 16	 11	 11	 15	 15	 14	 14	 13	 13	 16	 14	 16	 16	 15	 14	 16	 13	 15	 16	 16	 16	 16	 16	 16	 16	 16	 15	 14	 16	 15	 15	 15	 15	
	

16	 12	 12	 14	 12	 15	 12	 16	

37	 13	 16	 16	 11	 11	 15	 15	 14	 14	 13	 13	 16	 14	 16	 16	 15	 14	 16	 13	 15	 16	 16	 16	 16	 16	 16	 16	 16	 15	 14	 16	 15	 15	 15	 15	 16	
	

12	 12	 14	 12	 15	 12	 16	

38	 9	 13	 13	 11	 11	 12	 12	 12	 11	 11	 12	 13	 12	 13	 13	 12	 12	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 12	 12	 12	 12	 12	 12	
	

13	 12	 10	 12	 9	 13	

39	 9	 13	 13	 11	 11	 12	 12	 12	 11	 11	 12	 13	 12	 13	 13	 12	 12	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 11	 13	 12	 12	 12	 12	 12	 12	 13	
	

12	 10	 12	 9	 13	

40	 12	 15	 15	 10	 10	 15	 15	 14	 14	 12	 12	 15	 13	 15	 15	 15	 14	 15	 14	 15	 15	 15	 15	 15	 15	 15	 15	 15	 15	 14	 15	 15	 15	 15	 14	 14	 14	 12	 12	
	

13	 14	 12	 15	

41	 10	 13	 13	 11	 11	 13	 13	 12	 12	 11	 10	 13	 11	 13	 13	 13	 12	 13	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 12	 12	 10	 10	 13	
	

13	 11	 13	

42	 12	 16	 16	 10	 10	 15	 15	 14	 14	 14	 13	 16	 14	 16	 16	 15	 14	 16	 13	 15	 16	 16	 16	 16	 16	 16	 16	 16	 15	 14	 16	 15	 15	 15	 15	 15	 15	 12	 12	 14	 13	
	

13	 16	

43	 11	 13	 13	 9	 9	 13	 13	 12	 13	 12	 11	 13	 12	 13	 13	 13	 12	 13	 11	 12	 13	 13	 13	 13	 13	 13	 13	 13	 13	 12	 13	 13	 13	 13	 13	 12	 12	 9	 9	 12	 11	 13	
	

13	

44	 13	 17	 17	 11	 11	 16	 16	 15	 15	 14	 14	 17	 15	 17	 17	 16	 15	 17	 14	 16	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 17	 16	 16	 16	 16	 16	 16	 13	 13	 15	 13	 16	 13	
	

channels	
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Supplementary	Table	10	Degrees	of	freedom	of	the	paired	t-tests	between	30	months	
and	36	months	in	each	connection.		
	
	
	
	
	
	
	
	
	
	
	
	 	

		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	

1	 	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

2	 21	 	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

3	 21	 21	 	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

4	 21	 21	 21	 	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

5	 21	 21	 21	 21	 	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

6	 19	 19	 19	 19	 19	 	 19	 18	 18	 18	 18	 15	 16	 19	 19	 19	 19	 18	 19	 18	 18	 18	 19	 17	 18	 16	 19	 19	 19	 17	 19	 19	 19	 19	 17	 18	 17	 19	 19	 19	 19	 19	 16	 17	

7	 20	 20	 20	 20	 20	 19	 	 19	 18	 18	 19	 16	 17	 20	 20	 20	 20	 19	 19	 19	 19	 19	 20	 18	 18	 16	 20	 20	 20	 17	 20	 20	 20	 19	 17	 19	 18	 20	 20	 20	 20	 19	 16	 17	

8	 20	 20	 20	 20	 20	 18	 19	 	 17	 18	 20	 16	 18	 20	 20	 19	 19	 20	 18	 19	 20	 19	 20	 18	 18	 16	 20	 20	 19	 17	 20	 19	 19	 18	 17	 19	 18	 20	 20	 20	 20	 19	 15	 16	

9	 18	 18	 18	 18	 18	 18	 18	 17	 	 17	 17	 15	 16	 18	 18	 18	 18	 17	 18	 17	 17	 17	 18	 16	 17	 15	 18	 18	 18	 16	 18	 18	 18	 18	 17	 17	 17	 18	 18	 18	 18	 18	 16	 17	

10	 19	 19	 19	 19	 19	 18	 18	 18	 17	 	 18	 15	 16	 19	 19	 18	 18	 18	 18	 19	 18	 18	 19	 17	 19	 16	 19	 19	 18	 16	 19	 18	 18	 18	 17	 18	 17	 19	 19	 19	 19	 19	 16	 17	

11	 20	 20	 20	 20	 20	 18	 19	 20	 17	 18	 	 16	 18	 20	 20	 19	 19	 20	 18	 19	 20	 19	 20	 18	 18	 16	 20	 20	 19	 17	 20	 19	 19	 18	 17	 19	 18	 20	 20	 20	 20	 19	 15	 16	

12	 17	 17	 17	 17	 17	 15	 16	 16	 15	 15	 16	 	 15	 17	 17	 16	 16	 16	 15	 16	 16	 17	 17	 15	 15	 13	 17	 17	 16	 14	 17	 16	 16	 15	 16	 17	 17	 17	 17	 17	 17	 16	 14	 14	

13	 18	 18	 18	 18	 18	 16	 17	 18	 16	 16	 18	 15	 	 18	 18	 17	 17	 18	 16	 17	 18	 17	 18	 16	 16	 14	 18	 18	 17	 15	 18	 17	 17	 16	 16	 17	 17	 18	 18	 18	 18	 17	 14	 15	

14	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

15	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

16	 20	 20	 20	 20	 20	 19	 20	 19	 18	 18	 19	 16	 17	 20	 20	 	 20	 19	 19	 19	 19	 19	 20	 18	 18	 16	 20	 20	 20	 17	 20	 20	 20	 19	 17	 19	 18	 20	 20	 20	 20	 19	 16	 17	

17	 20	 20	 20	 20	 20	 19	 20	 19	 18	 18	 19	 16	 17	 20	 20	 20	 	 19	 19	 19	 19	 19	 20	 18	 18	 16	 20	 20	 20	 17	 20	 20	 20	 19	 17	 19	 18	 20	 20	 20	 20	 19	 16	 17	

18	 20	 20	 20	 20	 20	 18	 19	 20	 17	 18	 20	 16	 18	 20	 20	 19	 19	 	 18	 19	 20	 19	 20	 18	 18	 16	 20	 20	 19	 17	 20	 19	 19	 18	 17	 19	 18	 20	 20	 20	 20	 19	 15	 16	

19	 19	 19	 19	 19	 19	 19	 19	 18	 18	 18	 18	 15	 16	 19	 19	 19	 19	 18	 	 18	 18	 18	 19	 17	 18	 16	 19	 19	 19	 17	 19	 19	 19	 19	 17	 18	 17	 19	 19	 19	 19	 19	 16	 17	

20	 20	 20	 20	 20	 20	 18	 19	 19	 17	 19	 19	 16	 17	 20	 20	 19	 19	 19	 18	 	 19	 19	 20	 18	 19	 16	 20	 20	 19	 16	 20	 19	 19	 18	 17	 19	 18	 20	 20	 20	 20	 19	 16	 17	

21	 20	 20	 20	 20	 20	 18	 19	 20	 17	 18	 20	 16	 18	 20	 20	 19	 19	 20	 18	 19	 	 19	 20	 18	 18	 16	 20	 20	 19	 17	 20	 19	 19	 18	 17	 19	 18	 20	 20	 20	 20	 19	 15	 16	

22	 20	 20	 20	 20	 20	 18	 19	 19	 17	 18	 19	 17	 17	 20	 20	 19	 19	 19	 18	 19	 19	 	 20	 18	 18	 16	 20	 20	 19	 17	 20	 19	 19	 18	 18	 20	 19	 20	 20	 20	 20	 19	 16	 16	

23	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

24	 19	 19	 19	 19	 19	 17	 18	 18	 16	 17	 18	 15	 16	 19	 19	 18	 18	 18	 17	 18	 18	 18	 19	 	 17	 17	 19	 19	 18	 15	 19	 18	 18	 17	 16	 18	 17	 19	 19	 19	 19	 18	 14	 15	

25	 19	 19	 19	 19	 19	 18	 18	 18	 17	 19	 18	 15	 16	 19	 19	 18	 18	 18	 18	 19	 18	 18	 19	 17	 	 16	 19	 19	 18	 16	 19	 18	 18	 18	 17	 18	 17	 19	 19	 19	 19	 19	 16	 17	

26	 17	 17	 17	 17	 17	 16	 16	 16	 15	 16	 16	 13	 14	 17	 17	 16	 16	 16	 16	 16	 16	 16	 17	 17	 16	 	 17	 17	 16	 14	 17	 16	 16	 16	 15	 16	 15	 17	 17	 17	 17	 17	 13	 14	

27	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

28	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

29	 20	 20	 20	 20	 20	 19	 20	 19	 18	 18	 19	 16	 17	 20	 20	 20	 20	 19	 19	 19	 19	 19	 20	 18	 18	 16	 20	 20	 	 17	 20	 20	 20	 19	 17	 19	 18	 20	 20	 20	 20	 19	 16	 17	

30	 17	 17	 17	 17	 17	 17	 17	 17	 16	 16	 17	 14	 15	 17	 17	 17	 17	 17	 17	 16	 17	 17	 17	 15	 16	 14	 17	 17	 17	 	 17	 17	 17	 17	 16	 17	 16	 17	 17	 17	 17	 17	 15	 15	

31	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 	 20	 20	 19	 18	 20	 19	 21	 21	 21	 21	 20	 16	 17	

32	 20	 20	 20	 20	 20	 19	 20	 19	 18	 18	 19	 16	 17	 20	 20	 20	 20	 19	 19	 19	 19	 19	 20	 18	 18	 16	 20	 20	 20	 17	 20	 	 20	 19	 17	 19	 18	 20	 20	 20	 20	 19	 16	 17	

33	 20	 20	 20	 20	 20	 19	 20	 19	 18	 18	 19	 16	 17	 20	 20	 20	 20	 19	 19	 19	 19	 19	 20	 18	 18	 16	 20	 20	 20	 17	 20	 20	 	 19	 17	 19	 18	 20	 20	 20	 20	 19	 16	 17	

34	 19	 19	 19	 19	 19	 19	 19	 18	 18	 18	 18	 15	 16	 19	 19	 19	 19	 18	 19	 18	 18	 18	 19	 17	 18	 16	 19	 19	 19	 17	 19	 19	 19	 	 17	 18	 17	 19	 19	 19	 19	 19	 16	 17	

35	 18	 18	 18	 18	 18	 17	 17	 17	 17	 17	 17	 16	 16	 18	 18	 17	 17	 17	 17	 17	 17	 18	 18	 16	 17	 15	 18	 18	 17	 16	 18	 17	 17	 17	 	 18	 18	 18	 18	 18	 18	 18	 16	 16	

36	 20	 20	 20	 20	 20	 18	 19	 19	 17	 18	 19	 17	 17	 20	 20	 19	 19	 19	 18	 19	 19	 20	 20	 18	 18	 16	 20	 20	 19	 17	 20	 19	 19	 18	 18	 	 19	 20	 20	 20	 20	 19	 16	 16	

37	 19	 19	 19	 19	 19	 17	 18	 18	 17	 17	 18	 17	 17	 19	 19	 18	 18	 18	 17	 18	 18	 19	 19	 17	 17	 15	 19	 19	 18	 16	 19	 18	 18	 17	 18	 19	 	 19	 19	 19	 19	 18	 16	 16	

38	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 	 21	 21	 21	 20	 16	 17	

39	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 	 21	 21	 20	 16	 17	

40	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 	 21	 20	 16	 17	

41	 21	 21	 21	 21	 21	 19	 20	 20	 18	 19	 20	 17	 18	 21	 21	 20	 20	 20	 19	 20	 20	 20	 21	 19	 19	 17	 21	 21	 20	 17	 21	 20	 20	 19	 18	 20	 19	 21	 21	 21	 	 20	 16	 17	

42	 20	 20	 20	 20	 20	 19	 19	 19	 18	 19	 19	 16	 17	 20	 20	 19	 19	 19	 19	 19	 19	 19	 20	 18	 19	 17	 20	 20	 19	 17	 20	 19	 19	 19	 18	 19	 18	 20	 20	 20	 20	 	 16	 17	

43	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	 15	 14	 14	 16	 16	 16	 16	 15	 16	 16	 15	 16	 16	 14	 16	 13	 16	 16	 16	 15	 16	 16	 16	 16	 16	 16	 16	 16	 16	 16	 16	 16	 	 16	

44	 17	 17	 17	 17	 17	 17	 17	 16	 17	 17	 16	 14	 15	 17	 17	 17	 17	 16	 17	 17	 16	 16	 17	 15	 17	 14	 17	 17	 17	 15	 17	 17	 17	 17	 16	 16	 16	 17	 17	 17	 17	 17	 16	 	

ch
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channels	
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Appendix	B	

	

	

	

	
Supplementary	 Table	 11	 Degrees	 of	 freedom	 related	 to	 the	 difference	 between	
Recognisers	and	Non-Recognisers	in	each	connection.	The	channels	added	with	the	44-
channel	configuration	are	highlighted	in	green.		

	 	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	

1	 	 36	 36	 35	 35	 35	 34	 36	 35	 35	 33	 30	 29	 36	 36	 36	 35	 36	 35	 34	 35	 34	 36	 35	 34	 32	 33	 33	 35	 33	 18	 17	 18	 17	 17	 15	 16	 18	 17	 17	 15	 15	 14	 17	

2	 36	 	 38	 35	 35	 36	 35	 38	 35	 35	 35	 32	 31	 38	 38	 38	 37	 38	 36	 36	 37	 36	 38	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

3	 36	 38	 	 35	 35	 36	 35	 38	 35	 35	 35	 32	 31	 38	 38	 38	 37	 38	 36	 36	 37	 36	 38	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

4	 35	 35	 35	 	 35	 34	 34	 35	 34	 34	 33	 29	 29	 35	 35	 35	 34	 35	 34	 34	 34	 33	 35	 34	 34	 32	 32	 33	 34	 33	 18	 17	 18	 17	 17	 15	 16	 18	 17	 17	 15	 15	 14	 17	

5	 35	 35	 35	 35	 	 34	 34	 35	 34	 34	 33	 29	 29	 35	 35	 35	 34	 35	 34	 34	 34	 33	 35	 34	 34	 32	 32	 33	 34	 33	 18	 17	 18	 17	 17	 15	 16	 18	 17	 17	 15	 15	 14	 17	

6	 35	 36	 36	 34	 34	 	 35	 36	 35	 34	 33	 31	 30	 36	 36	 36	 35	 36	 35	 34	 35	 34	 36	 35	 35	 33	 33	 33	 35	 33	 19	 18	 19	 18	 18	 16	 17	 19	 17	 18	 16	 16	 14	 18	

7	 34	 35	 35	 34	 34	 35	 	 35	 34	 33	 33	 30	 30	 35	 35	 35	 34	 35	 34	 34	 34	 33	 35	 34	 35	 33	 32	 33	 34	 33	 19	 18	 19	 18	 18	 16	 17	 19	 17	 18	 16	 16	 14	 18	

8	 36	 38	 38	 35	 35	 36	 35	 	 35	 35	 35	 32	 31	 38	 38	 38	 37	 38	 36	 36	 37	 36	 38	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

9	 35	 35	 35	 34	 34	 35	 34	 35	 	 34	 32	 30	 29	 35	 35	 35	 34	 35	 34	 33	 34	 33	 35	 34	 34	 32	 32	 32	 34	 32	 18	 17	 18	 17	 17	 15	 16	 18	 17	 17	 15	 15	 14	 17	

10	 35	 35	 35	 34	 34	 34	 33	 35	 34	 	 32	 29	 29	 35	 35	 35	 34	 35	 34	 33	 34	 33	 35	 34	 33	 31	 32	 32	 34	 32	 17	 16	 17	 16	 16	 14	 15	 17	 16	 16	 14	 14	 14	 16	

11	 33	 35	 35	 33	 33	 33	 33	 35	 32	 32	 	 30	 30	 35	 35	 35	 35	 35	 34	 35	 35	 34	 35	 34	 34	 32	 32	 33	 33	 33	 18	 17	 17	 17	 17	 15	 17	 18	 15	 18	 15	 15	 14	 17	

12	 30	 32	 32	 29	 29	 31	 30	 32	 30	 29	 30	 	 30	 32	 32	 32	 32	 32	 31	 31	 32	 31	 32	 31	 31	 29	 29	 29	 30	 29	 18	 17	 17	 17	 18	 16	 17	 18	 15	 18	 15	 15	 14	 17	

13	 29	 31	 31	 29	 29	 30	 30	 31	 29	 29	 30	 30	 	 31	 31	 31	 31	 31	 30	 31	 31	 30	 31	 30	 31	 29	 28	 29	 29	 29	 18	 17	 17	 17	 17	 15	 17	 18	 15	 18	 15	 15	 14	 17	

14	 36	 38	 38	 35	 35	 36	 35	 38	 35	 35	 35	 32	 31	 	 38	 38	 37	 38	 36	 36	 37	 36	 38	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

15	 36	 38	 38	 35	 35	 36	 35	 38	 35	 35	 35	 32	 31	 38	 	 38	 37	 38	 36	 36	 37	 36	 38	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

16	 36	 38	 38	 35	 35	 36	 35	 38	 35	 35	 35	 32	 31	 38	 38	 	 37	 38	 36	 36	 37	 36	 38	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

17	 35	 37	 37	 34	 34	 35	 34	 37	 34	 34	 35	 32	 31	 37	 37	 37	 	 37	 36	 36	 37	 36	 37	 36	 35	 33	 34	 34	 35	 34	 19	 18	 18	 18	 18	 16	 18	 19	 16	 19	 16	 16	 15	 18	

18	 36	 38	 38	 35	 35	 36	 35	 38	 35	 35	 35	 32	 31	 38	 38	 38	 37	 	 36	 36	 37	 36	 38	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

19	 35	 36	 36	 34	 34	 35	 34	 36	 34	 34	 34	 31	 30	 36	 36	 36	 36	 36	 	 35	 36	 35	 36	 35	 34	 32	 33	 33	 35	 33	 18	 17	 18	 17	 17	 15	 17	 18	 16	 18	 16	 16	 14	 17	

20	 34	 36	 36	 34	 34	 34	 34	 36	 33	 33	 35	 31	 31	 36	 36	 36	 36	 36	 35	 	 36	 35	 36	 35	 35	 33	 33	 34	 34	 34	 19	 18	 18	 18	 18	 16	 18	 19	 16	 19	 16	 16	 15	 18	

21	 35	 37	 37	 34	 34	 35	 34	 37	 34	 34	 35	 32	 31	 37	 37	 37	 37	 37	 36	 36	 	 36	 37	 36	 35	 33	 34	 34	 35	 34	 19	 18	 18	 18	 18	 16	 18	 19	 16	 19	 16	 16	 15	 18	

22	 34	 36	 36	 33	 33	 34	 33	 36	 33	 33	 34	 31	 30	 36	 36	 36	 36	 36	 35	 35	 36	 	 36	 35	 34	 32	 33	 33	 34	 33	 18	 17	 17	 17	 17	 15	 17	 18	 15	 18	 15	 15	 14	 17	

23	 36	 38	 38	 35	 35	 36	 35	 38	 35	 35	 35	 32	 31	 38	 38	 38	 37	 38	 36	 36	 37	 36	 	 37	 36	 34	 35	 35	 36	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

24	 35	 37	 37	 34	 34	 35	 34	 37	 34	 34	 34	 31	 30	 37	 37	 37	 36	 37	 35	 35	 36	 35	 37	 	 35	 34	 35	 34	 35	 35	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

25	 34	 36	 36	 34	 34	 35	 35	 36	 34	 33	 34	 31	 31	 36	 36	 36	 35	 36	 34	 35	 35	 34	 36	 35	 	 34	 33	 34	 34	 34	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

26	 32	 34	 34	 32	 32	 33	 33	 34	 32	 31	 32	 29	 29	 34	 34	 34	 33	 34	 32	 33	 33	 32	 34	 34	 34	 	 32	 32	 32	 33	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

27	 33	 35	 35	 32	 32	 33	 32	 35	 32	 32	 32	 29	 28	 35	 35	 35	 34	 35	 33	 33	 34	 33	 35	 35	 33	 32	 	 32	 34	 33	 18	 17	 17	 17	 17	 15	 16	 18	 15	 17	 14	 14	 14	 17	

28	 33	 35	 35	 33	 33	 33	 33	 35	 32	 32	 33	 29	 29	 35	 35	 35	 34	 35	 33	 34	 34	 33	 35	 34	 34	 32	 32	 	 33	 34	 19	 18	 18	 18	 18	 16	 17	 19	 16	 18	 15	 15	 14	 18	

29	 35	 36	 36	 34	 34	 35	 34	 36	 34	 34	 33	 30	 29	 36	 36	 36	 35	 36	 35	 34	 35	 34	 36	 35	 34	 32	 34	 33	 	 33	 18	 17	 18	 17	 17	 15	 16	 18	 16	 17	 15	 15	 14	 17	

30	 33	 35	 35	 33	 33	 33	 33	 35	 32	 32	 33	 29	 29	 35	 35	 35	 34	 35	 33	 34	 34	 33	 35	 35	 34	 33	 33	 34	 33	 	 20	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

31	 18	 20	 20	 18	 18	 19	 19	 20	 18	 17	 18	 18	 18	 20	 20	 20	 19	 20	 18	 19	 19	 18	 20	 20	 20	 20	 18	 19	 18	 20	 	 19	 19	 19	 19	 17	 18	 20	 17	 19	 16	 16	 15	 19	

32	 17	 19	 19	 17	 17	 18	 18	 19	 17	 16	 17	 17	 17	 19	 19	 19	 18	 19	 17	 18	 18	 17	 19	 19	 19	 19	 17	 18	 17	 19	 19	 	 18	 19	 18	 16	 17	 19	 17	 18	 15	 15	 14	 18	

33	 18	 19	 19	 18	 18	 19	 19	 19	 18	 17	 17	 17	 17	 19	 19	 19	 18	 19	 18	 18	 18	 17	 19	 19	 19	 19	 17	 18	 18	 19	 19	 18	 	 18	 18	 16	 17	 19	 17	 18	 16	 16	 14	 18	

34	 17	 19	 19	 17	 17	 18	 18	 19	 17	 16	 17	 17	 17	 19	 19	 19	 18	 19	 17	 18	 18	 17	 19	 19	 19	 19	 17	 18	 17	 19	 19	 19	 18	 	 18	 16	 17	 19	 17	 18	 15	 15	 14	 18	

35	 17	 19	 19	 17	 17	 18	 18	 19	 17	 16	 17	 18	 17	 19	 19	 19	 18	 19	 17	 18	 18	 17	 19	 19	 19	 19	 17	 18	 17	 19	 19	 18	 18	 18	 	 17	 17	 19	 16	 18	 15	 15	 14	 18	

36	 15	 17	 17	 15	 15	 16	 16	 17	 15	 14	 15	 16	 15	 17	 17	 17	 16	 17	 15	 16	 16	 15	 17	 17	 17	 17	 15	 16	 15	 17	 17	 16	 16	 16	 17	 	 16	 17	 14	 16	 14	 14	 14	 16	

37	 16	 18	 18	 16	 16	 17	 17	 18	 16	 15	 17	 17	 17	 18	 18	 18	 18	 18	 17	 18	 18	 17	 18	 18	 18	 18	 16	 17	 16	 18	 18	 17	 17	 17	 17	 16	 	 18	 15	 18	 16	 16	 15	 17	

38	 18	 20	 20	 18	 18	 19	 19	 20	 18	 17	 18	 18	 18	 20	 20	 20	 19	 20	 18	 19	 19	 18	 20	 20	 20	 20	 18	 19	 18	 20	 20	 19	 19	 19	 19	 17	 18	 	 17	 19	 16	 16	 15	 19	

39	 17	 17	 17	 17	 17	 17	 17	 17	 17	 16	 15	 15	 15	 17	 17	 17	 16	 17	 16	 16	 16	 15	 17	 17	 17	 17	 15	 16	 16	 17	 17	 17	 17	 17	 16	 14	 15	 17	 	 16	 14	 14	 14	 16	

40	 17	 19	 19	 17	 17	 18	 18	 19	 17	 16	 18	 18	 18	 19	 19	 19	 19	 19	 18	 19	 19	 18	 19	 19	 19	 19	 17	 18	 17	 19	 19	 18	 18	 18	 18	 16	 18	 19	 16	 	 16	 16	 15	 18	

41	 15	 16	 16	 15	 15	 16	 16	 16	 15	 14	 15	 15	 15	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	 16	 16	 14	 15	 15	 16	 16	 15	 16	 15	 15	 14	 16	 16	 14	 16	 	 16	 14	 16	

42	 15	 16	 16	 15	 15	 16	 16	 16	 15	 14	 15	 15	 15	 16	 16	 16	 16	 16	 16	 16	 16	 15	 16	 16	 16	 16	 14	 15	 15	 16	 16	 15	 16	 15	 15	 14	 16	 16	 14	 16	 16	 	 14	 16	

43	 14	 15	 15	 14	 14	 14	 14	 15	 14	 14	 14	 14	 14	 15	 15	 15	 15	 15	 14	 15	 15	 14	 15	 15	 15	 15	 14	 14	 14	 15	 15	 14	 14	 14	 14	 14	 15	 15	 14	 15	 14	 14	 	 15	

44	 17	 19	 19	 17	 17	 18	 18	 19	 17	 16	 17	 17	 17	 19	 19	 19	 18	 19	 17	 18	 18	 17	 19	 19	 19	 19	 17	 18	 17	 19	 19	 18	 18	 18	 18	 16	 17	 19	 16	 18	 16	 16	 15	 	
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