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Abstract 

Observers are able to make generally accurate judgments of the time-to-collision (TTC) of 

approaching stimuli. Traditional theories have emphasized the role of optical cues about the 

expansion of the retinal image in this ability. Recent work, however, has further emphasized 

the role of semantic information about the object. Here we investigate the role of semantic 

information in TTC judgments by presenting a range of real-world objects, which varied 

widely in size, weight, and hardness. Our results show that the physical characteristics of 

looming stimuli predict observers’ TTC estimations. Bigger, heavier, and harder objects were 

underestimated more, relative to smaller, lighter, and softer objects. As expected, actual 

TTC and stimulus size were also significant predictors of TTC judgments. In estimating the 

arrival time of looming stimuli, observers automatically take into account several 

characteristics of the stimuli, even though these characteristics are completely task 

irrelevant. This suggests that semantic properties of seen objects and the consequences of 

their impact on the observer’s body are processed automatically. 
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Introduction 

To promptly react to approaching objects, observers need to be able to estimate their 

arrival time. According to the ecological optics approach (Gibson, 1966; 1979; Lee, 1976; 

McLeod & Ross, 1983) information specifying time-to-collision (TTC) is directly available 

through the changing optic array at the eyes of the observer.  On this view, TTC is specified 

by the relative rate of expansion of the retinal image over time that is the relative rate of 

increase in separation between any two points on the surface of the target object. Even if the 

rate of the expansion unambiguously specifies the arrival time of looming objects, several 

studies have found that participants consistently underestimate TTC (McLeod & Ross, 1983; 

Schiff & Oldak, 1990; Neuhoff, 2001). This underestimation has been interpreted by the 

“margin of safety” theory (Neuhoff, 1998; 2001) as an adaptive response that allows the 

observer to have enough time to engage in an appropriate response to approaching objects. 

Indeed, precise perceptual processes allow the organisms to survive. However, responding 

too late to a looming stimulus is far more dangerous than responding too early, therefore, in 

this case, an anticipatory bias modulated by the motor abilities of the observer can be 

advantageous for the survival of the organisms (Haselton & Nettle, 2006). 

Recent studies have demonstrated that TTC judgments can also be modulated by the 

semantic content of the approaching stimulus (Brendel et al., 2012; Vagnoni et al., 2012). For 

example, we recently showed that the TTC underestimation bias is modulated by the specific 

fears of the observers, such as of snakes or spiders (Vagnoni et al., 2012; 2015, 2017). 

Specifically, the more fearful of the approaching objects (e.g., spiders) the participants are, 

the more they underestimate the arrival time of the looming objects. This stronger 

underestimation bias in spider-fearful participants has also been replicated by another group 

of research with a similar paradigm (Brendel et al. , 2014). These findings are in line with the 
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‘margin of safety’ theory. Indeed, if the underestimation of looming stimuli has an adaptive 

advantage, this becomes especially true when the stimulus approaching our body is 

represented by a dangerous object. Moreover, it seems that having a specific fear for the 

approaching stimulus prompts the use of a more conservative margin of safety.  

Snakes and spiders may represent evolutionarily-privileged categories (Isbell, 2009), 

based on possibly innate perceptual mechanisms (Rakison & Derringer, 2008; Deloache & 

LoBue, 2009). Therefore, the semantic modulation of TTC by these categories of stimuli may 

be advantageous for the observer from an evolutionary point of view. It is, therefore, possible 

that the semantic modulation of TTC judgments we have found in our previous studies 

(Vagnoni et al., 2012, 2015, 2017) is limited to particular categories which may have a source 

of predation during human evolution. There is, however, a wide range of semantic knowledge 

about surrounding objects that not only pertains their dangerousness but to more general 

information regarding their physical characteristics. For example, we have stored 

representations of the real-world size of objects as well as other properties of familiar stimuli 

that we experience in everyday life, like weight or hardness. In the current study, we 

investigated whether these physical characteristics influence TTC judgments of approaching 

stimuli.  

Interestingly, existing evidence shows that some physical characteristics of objects 

seem to be accessed by the observers automatically. For example, Konkle and Oliva (2012) 

reported a familiar size Stroop effect, finding that observers are faster at indicating which of 

two stimuli is bigger on the screen when the difference in the real-world size of the objects is 

congruent with the difference in displayed size. Crucially, this task does not require taking 

into account the real-world size of the objects. This effect suggests that people access the 

familiar size of objects without the intention of doing so, demonstrating that real-world size 
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is an automatic property of object representation (Konkle & Oliva, 2012). The effect of familiar 

size has also been investigated with the TTC paradigm, and TTC errors are reduced for 

standard-sized familiar objects (Delucia, 2005) or increased when the objects are presented 

off-sized (Hosking & Crassini 2011). López-Moliner, Field, & Wann (2007) propose that 

observers use information about the known size to determine the threshold optic expansion 

rate at which interceptive actions should be initiated. Indeed, the visual angle of an object 

projected onto the retina decreases with distance and this information can be combined with 

the stored representation of the object's size to determine the absolute depth of the object. 

Therefore, prior knowledge can be combined with information about the angle the object 

subtends on the retina to determine its absolute depth in a scene.  

Several pieces of evidence suggest that multiple sources of information may be used 

as cues for TTC (Hosking & Crassini, 2011; DeLucia, 2004; DeLucia, 2013; Tresilian, 1995; van 

der Kamp et al., 1997). For example, according to DeLucia (2005), the TTC judgments are 

based both on heuristics and invariants. Numerous studies have shown the use of invariants, 

such as tau, in TTC judgments (Wann, 1996). Tau is an optical invariant which does not require 

the knowledge of object speed or distance in determining the TTC (Lee, 1976). The heuristics 

that influence the TTC judgments are represented by relative size, height in field, occlusion, 

and motion parallax (DeLucia, 2013) and binocular information sources such as changing 

disparity (e.g., Regan & Beverley, 1978; Rushton & Wann, 1999). The rate of expansion is an 

invariant and is immediately accessible, but observers base their TTC judgments also on 

heuristics, as shown by the size-arrival effect in which observers report shorter TTC judgments 

for bigger stimuli (DeLucia, 1991; DeLucia & Warren, 1994; Hosking & Crassini, 2011). 

In our previous studies (Vagnoni et al., 2012; 2015; 2017), we have used a TTC 

paradigm and presented threatening and non-threatening stimuli looming towards the 
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participants. The images were presented on the screen at two different sizes (400 and 500 

pixels). In all of our experiments we have found a significant effect of the size of the images 

presented on the screen with the arrival time of bigger images being underestimated more 

relative to the arrival time of smaller ones. The size-arrival effect is an effect that has been 

replicated several times and has been found in both collision avoidance and interception 

paradigms. For example, in the work of DeLucia and Warren (1994) participants were asked 

to jump over an approaching object in a computer simulation. The authors showed that 

participants jumped later for small objects, relative to bigger objects, approaching from the 

same distance at the same speed and positioned at the same heights (DeLucia & Warren, 

1994). Similarly, in the work of van der Kamp and colleagues (1997) participants were 

required to catch an approaching ball. The authors showed that the larger the balls the earlier 

the hand was opened and closed, and the catch was completed (van der Kamp et al., 1997). 

Together these results seem to suggest that the size of an object is used as an important cue 

for depth perception; however, the mechanism underlying the effect has not been 

unequivocally determined, apparent size-distance relationships, optical size, and optical 

expansion rate have been mentioned as possible candidates (DeLucia, 1991; DeLucia & 

Warren, 1994; Hosking & Crassini, 2011). 

Here we hypothesized that not only the actual stimulus size but also the stored 

semantic information about an object’s size, weight, and hardness in real-world will influence 

TTC estimates. It is intuitive, and in line with “margin of safety theory” (Neuhoff, 1998; 2001), 

to expect a stronger underestimation when the approaching stimulus is represented by a 

stimulus that is known to be physically big, hard, or heavy in the real world. Indeed, the 

consequences of colliding with something big, like a refrigerator, are more drastic relative to 

the consequences of colliding with something small, like an apple. Accordingly, we asked 
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participants to judge the TTC of a range of objects, varying widely in size, weight, and 

hardness. We then asked an independent group of raters to judge the semantic 

characteristics of each object. We then investigated how these semantic properties related 

to TTC judgments. 
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Method 

Participants 

Thirty-two members of the Birkbeck community (19 female) between 18 and 59 years 

of age, mean age 33.4, participated in the time-to-collision task. Participants reported normal 

or corrected-to-normal vision. Procedures were approved by the local ethics committee. 

 An additional ten members of the Birkbeck community (5 female) between 20 and 

35 years of age, mean age 27.4, rated the images for payment or course credit. Participants 

reported normal or corrected-to-normal vision. Procedures were approved by the local 

ethics committee. 

 

Stimuli, Design and Procedure 

We selected 296 images from the internet, 4 exemplars from each of 74 categories of 

familiar, everyday objects (see S1 File, Figure 1). We asked ten participants to rate the images 

according to three dimensions: real-world size, hardness, and weight. The categories were 

chosen to reflect a wide range across all three dimensions. Images were cropped and resized 

using Adobe Photoshop CS5 (Adobe Systems, San Jose, CA). This resulted in images (300 pixels 

wide, 300 pixels high) in which the object took up the entire image. Backgrounds from the 

original photographs were replaced with a homogenous white colour (identical to the 

background of the experimental script). The rated stimuli were then used in the TTC task. 
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Figure 1: Examples of the type of images used, representing six of the categories we used (clockwise 
from top-left): refrigerator, apple, barbell, feather, anvil, and pillow. The categories were chosen to 
reflect a broad range of sizes, weights, and degrees of hardness. Due to copyright restrictions, the 
actual images used cannot be displayed here, but these images are representative. 
 

TTC Task 

The TTC task was similar to that used in previous experiments in our lab (Vagnoni et 

al., 2012; 2015; 2017). Participants in the TTC task sat at a table, without a chin-rest, 

approximately 40 cm in front of a 19-inch monitor (75 Hz refresh rate). The height of the 

monitor was adjusted to be aligned with the participant’s eye level. Stimulus presentation 

and data collection were controlled by a custom MATLAB (Mathworks, Natick, MA) script. On 

each trial, the stimulus increased in size across 75 frames (i.e., one second), consistent with 

one of five time-to-collisions (2.0, 2.4, 2.8, 3.2, and 3.6 s after the onset of the first frame). 

The width of the stimulus on the first frame was 300, 350, 400, 450 or 500 pixels (11, 13, 15, 
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17, 19° visual angle). Starting image size was manipulated so that actual TTC was not perfectly 

correlated with the size of the image on the final frame. After the 75th frame, the image was 

replaced by a white background. 

There were a total of 296 trials (one involving each image), divided into 5 blocks of 50 

trials each and 1 block of 46 trials. Each block included two repetitions of each combination 

of time-to-collision (5 levels) and initial image size (5 levels) apart from the last block where 

the repetition of the trials was not the same for each TTC level due to the smaller number of 

trials. The order of trials within each block was randomized. The 296 images from the 74 

categories were randomly assigned to trial types, and each image was used exactly once for 

each participant. After the participant responded on each trial, the next trial began after a 

random inter-trial interval of 300-500 ms.  

Participants were instructed that they would see objects expanding in size as if they 

were approaching and that after some time, the image would disappear. They were told that 

their task was to imagine the object continuing to approach at the same rate and to press the 

button on the keyboard when they judged that the object would have made contact with 

their body. The stimuli are perceived as approaching through their expansion. The stimuli, 

obviously, never moved on a horizontal plane, and the different time-to-collisions were set 

through a script that controlled the stimuli’s rate of expansion. 

 

Rating Task 

In the rating task, we asked the participants to rate each of the 296 images three 

times. In the first block, they rated each image for the real world size dimension from 1 to 

100 (the low extreme anchor was represented by the word “pea” while the high extreme 

anchor was the word “elephant”). In the second block for the hardness dimension (the low 
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extreme was represented by the words “cotton ball” while the high extreme anchor was the 

word “steel”). In the third block for the weight dimension (the low extreme anchor was 

represented by the word “feather” while the high extreme anchor was the word “car”). On 

each trial, one image was presented, and the participant was asked to type in their numerical 

judgment. The scale, including both the low and high anchors, was visible on the screen 

throughout the block. Stimulus presentation and data collection were controlled by a custom 

MATLAB script. 

 

Analysis 

The aim of the analysis was to identify significant predictors of TTC judgments. We 

directly manipulated two of the predictors (the actual TTC and the initial size) while three 

predictors (real-world size, hardness, and weight) varied across the 74 object categories and 

were quantified based on judgments made by an independent pool of participants. For each 

participant in the rating task, we calculated the Z-score for each object rating relative to the 

mean of all ratings of a given dimension (i.e., size, weight, hardness), to remove individual 

differences linked to idiosyncratic differences in how raters used the given scales. We then 

calculated the mean Z-score across raters for each of the 296 objects for each of the three 

dimensions (see S1 File). These mean values were then used as predictors of the TTC 

judgments. 

Regarding the time-to-collision judgments, for each participant, Z-scores were 

calculated for time-to-collision judgments, separately for each level of actual time-to-

collision. Trials with Z-scores greater than +3 or less than −3 were considered outliers and 

excluded from analyses (<1% of trials). 
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We used linear mixed-models (Baayen, Davidson, & Bates, 2008) using the lme4 

toolbox for R (Bates, Mächler, Bolker & Walker, 2015). We first conducted an analysis without 

including any information about semantic content to assess the effects of stimulus size. We 

then conducted analyses, including the three semantic features (size, weight, hardness) 

individually and collectively. All models included random intercepts for participants and 

models, including semantic information included by-participant random slopes for the effect 

of each semantic variable. The significance of each variable was assessed using model 

comparison (Barr, Levy, Scheepers, & Tily, 2013). 

 

Results 

We first investigated the effects of actual TTC and starting image size on TTC 

judgments, without including semantic information in the model. There was a clear effect of 

actual TTC (β = 0.796 ms / ms, SE β = 0.016), χ2 (1) = 2236.50, p < 0.0001. This effect shows 

that participants were able to perform the task meaningfully. On average, judged TTC 

increased by 796 ms for each second of increased actual TTC. There was also a clear effect 

of initial image size (β = -1.406 ms / pixel, SE β = 0.127), χ2(1) = 122.53, p < 0.0001. For every 

pixel of increased linear dimensions of the starting size of the image, judged TTC decreased 

by 1.4 ms, an effect consistent with previous results (Brendel et al., 2012; DeLucia, 1991; 

DeLucia & Warren, 1994; Hosking & Crassini, 2011; Vagnoni et al., 2012, 2015, 2017). 

The key question here concerned the three categories related to the physical 

characteristics of the depicted objects: size, weight, and hardness. We first conducted 

separate linear mixed-model analyses to investigate the effect of these three dimensions on 

judged TTC. In each model, we included actual TTC and initial image size as covariates and 

included random intercepts for participants and by-participant random slopes for the effect 
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of the semantic feature. Figure 2 shows the estimated effects of each of the three semantic 

features. There was a clear effect of object size (β = -75.767 ms / SD, SE β = 17.489), χ2 (1) = 

14.76, p < 0.0002. That is, a change of one standard deviation in semantic ratings of object 

size predicted a 76 ms decrease in judged TTC. There were also clear effects of object weight 

(β = -84.652 ms / SD, SE β = 17.241), χ2 (1) = 17.96, p < 0.0001, and object hardness (β = -

66.088 ms / SD, SE β = 16.781), χ2 (1) = 12.65, p < 0.0005. Thus, the semantic features of size, 

weight, and hardness were all strong predictors of TTC. Increases of ratings of an object on 

each dimension were linked to reductions of judged TTC.  

 

Figure 2: Mean coefficients for each of the three semantic categories from linear mixed model 
analyses conducted separately for each feature. In each case, actual TTC and initial image size were 
included as covariates. Error bars are one standard error. All three semantic features were strong 
predictors of TTC judgments. Bigger, heavier, and harder objects were judged as arriving sooner than 
smaller, lighter, and softer objects. 

 

While each of the three semantic features we investigated was a clear predictor of 

TTC judgments, the preceding analysis does not show that each is an independent predictor, 

nor that each (or indeed any) has a causal influence on TTC judgments. Indeed, the 

dimensions of size, weight, and hardness are highly correlated. Big objects are often also 
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heavy and hard. Judgments of these three properties in our stimulus set were strongly 

related, with strong correlations between size and weight, r(294) = 0.941, p < 0.0001, 

between size and hardness, r(294) = 0.461, p < = 0.01, and between weight and hardness, 

r(294) = 0.623, p < 0.0001.  

  We, therefore, conducted a further analysis in which all three semantic features were 

simultaneously included in the model, along with actual TTC and initial image size as 

covariates. Figure 3 shows the estimated effects of each of the three semantic features. There 

was a significant effect of object weight (β = -132.998 ms / SD, SE β = 38.424), χ2 (1) = 11.84, 

p < 0.001. A one SD increase in object weight predicted a decrease in TTC judgments of 133 

ms. In contrast, there were no effects of object size (β = 55.888 ms / SD, SE β = 36.208), χ2 (1) 

= 2.38, p = 0.123, or of object hardness (β = -4.122 ms / SD, SE β = 18.144), χ2 (1) = 0.05, p = 

0.820. Thus, while object size, weight, and hardness all predict TTC judgments when 

considered individually, only weight appears to have an independent effect over and above 

the effect common to all three categories. 
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Figure 3:  Mean coefficients for each of the three semantic categories from linear mixed model 
analyses conducted simultaneously on all three features. Actual TTC and initial image size were 
included as covariates. Error bars are one standard error. Only weight was an independent predictor 
of TTC judgments over and above the effect common to all three features. 
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Discussion 

People judge big, heavy, and hard objects as approaching more quickly than small, 

light, and soft objects. Ratings on the real-world size, hardness, and weight were used 

together with the actual TTC and initial images size on the screen of the stimuli, as predictors 

of TTC judgments. Each of these dimensions significantly predicted TTC judgments. However, 

given that size, weight, and hardness ratings were mutually inter-correlated, only the effect 

of weight remained as an independent effect when the effect of the other dimensions was 

controlled.  

Traditionally, looming has been viewed as a purely optical cue for time-to-collision, 

without any consideration of the identity or features of the approaching object (e.g., Schiff, 

Caviness, & Gibson, 1962). The present results add to emerging literature showing that the 

semantic content of the approaching object modulates TTC judgments (e.g., Brendel et al., 

2012; Vagnoni et al., 2012). Critically, however, our results show that it is not only specifically 

threat-related categories (e.g., snakes, spiders) that affect TTC judgments, but also basic 

semantic information about the physical characteristics of everyday objects.  

Our results are in line with the ‘margin of safety’ theory (Neuhoff, 1998; 2001), given 

that it is adaptive to underestimate more the arrival time of bigger and heavier stimuli 

because a collision with them would result in a more negative outcome relative to a collision 

with smaller and lighter stimuli. Previous results have found that the bias to judge categories 

which are commonly considered threatening (e.g., spiders) as arriving sooner than non-

threatening categories (e.g., butterflies) is related to the specific fears of participants 

(Vagnoni et al., 2012, 2015, 2017; Brendel et al., 2014). The present results show similar 

semantic modulation of TTC judgments by simple physical attributes of common objects, 
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which are unlikely to be the object of specific fears of our participants. This suggests that 

semantic modulation of TTC judgments is not limited to a particular class of fear-related 

stimuli, but rather may be a general characteristic of our interactions with objects in our 

environment. 

Actual TTC was a very strong predictor of TTC judgments, suggesting that participants 

were able to use information about the rate of optical expansion of stimuli as a basis for their 

responses. The additional semantic features of the stimuli were entirely irrelevant to the 

participant’s task, but nevertheless affected responses, suggesting that they were processed 

automatically. Such automatic processing of task-irrelevant features is unsurprising in cases 

where specifically threatening stimuli such as spiders or snakes are presented (Vagnoni et al., 

2012), but is more striking for basic physical characteristics of common objects. These findings 

are consistent with the familiar-size Stroop effect described by Konkle and colleagues (Konkle 

& Oliva, 2012; Long & Konkle, 2017), which provided clear evidence for automatic processing 

of real-world size, even when entirely task-irrelevant. Analogous results have also been 

described in other contexts, such as judgments of numerical value (Gabay et al., 2013). The 

current results suggest that in addition to real-world size, characteristics such as weight and 

hardness are similarly accessed in an automatic way, and are used to make judgments of the 

arrival time of looming stimuli. Some recent studies have suggested that certain mid-level 

characteristics of objects (e.g., curvature) may be perceptual cues for real-world size (Long et 

al., 2016; Long & Konkle, 2017). It is plausible that there may be analogous features for object 

hardness or weight. It is possible that it may be such mid-level features, rather than physical 

characteristics per se that are driving our effects. This is an intriguing question for future 

research. 
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While all three tested semantic dimensions predicted TTC judgments when 

considered individually, they were strongly inter-correlated, making it difficult to determine 

what the critical semantic cues are that affect judgments. Weight was the only dimension that 

we found to have an independent effect when controlling for the other dimensions. This 

finding is intriguing, as research on naïve physics has found that the perceived weight of an 

object is known to influence expectations regarding object motion (Kozhevnikov & Hegarty, 

2001). Nevertheless, caution is required in interpreting the independent effect of weight. 

There are numerous other semantic dimensions that we might have measured, which would 

have affected whether or not an independent effect of weight was obtained. It would be 

interesting in future research to assess a broader set of semantic features to try to identify 

which specific semantic features of object shape perception of object approach.  

In addition to the effects of real-world size, we replicated the size-arrival effect related 

to the displayed size of the object on the monitor (e.g., Vagnoni et al., 2012; Brendel et al., 

2012; Caird & Hancock, 1994; DeLucia & Warren, 1994; Hahnel & Hecht, 2012; Hosking & 

Crassini, 2011; Michaels et al., 2001; Smith et al., 2001; van der Kamp et al., 1997). Indeed, 

the size of the image displayed on the screen influenced the TTC judgments with big stimuli 

judged as arriving sooner relative to small ones. Even if the size-arrival effect has been widely 

replicated there is no consensus on the mechanism underlying it. Indeed, apparent size-

distance relationships, optical size, and optical expansion rate are all considerate plausible 

candidates (DeLucia, 1991; DeLucia & Warren, 1994; Hosking & Crassini, 2011). According to 

DeLucia (2004), the size-arrival effect is due to the fact that observers rely on the visual angle 

of approaching objects to infer their distance from the viewpoint. In contrast, according to 

Hosking and Crassini (2011), relative TTC judgments based on the rate of expansion would 
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also produce size-dependent TTC errors given that under many conditions a larger object has 

a greater rate of expansion than a smaller object. 

When considered individually, real-world size, weight, and hardness were all 

significant predictors of TTC judgments. However, the ratings on three dimensions were not 

independent, but strongly inter-correlated. This is a basic feature of the statistical distribution 

of the real-life objects we encounter in our daily lives. Objects that are big also tend to be 

hard and heavy. For this reason, three regressions were performed, including only one of the 

ratings as predictor together with actual TTC and initial size.  When controlled for the 

multicollinearity artefact in this way, also the real world size and hardness ratings predict the 

TTC judgments. It seems, therefore, that the effect of weight was covering the effect of real-

world size and hardness. 

Previously looming effect has been investigated as a purely optical phenomenon (e.g., 

Schiff et al., 1962). Indeed, the rate of the expansion on the retina gives immediately the 

information about the TTC of the stimulus. However, from the present findings, it seems that 

when observers have to make TTC judgments, they take into account the characteristics and 

the consequences of the stimulus impact on their body. 
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