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Abstract: Taxonomic identification of fossils based on morphometric data traditionally relies on the 

use of standard linear models to classify such data. Machine learning and decision trees offer 

powerful alternative approaches to this problem but are not widely used in palaeontology. Here, we 

apply these techniques to published morphometric data of isolated theropod teeth in order to 

explore their utility in tackling taxonomic problems. We chose two published datasets consisting of 

886 teeth from 14 taxa and 3020 teeth from 17 taxa, respectively, each with five morphometric 

variables per tooth. We also explored the effects that missing data have on the final classification 

accuracy. Our results suggest that machine learning and decision trees yield superior classification 

results over a wide range of data permutations, with decision trees achieving accuracies of 96% in 

classifying test data in some cases. Missing data or attempts to generate synthetic data to overcome 

missing data seriously degrade all classifiers predictive accuracy. The results of our analyses also 

indicate that using ensemble classifiers combining different classification techniques and the 

examination of posterior probabilities is a useful aid in checking final class assignments. The 

application of such techniques to isolated theropod teeth demonstrate that simple morphometric 

data can be used to yield statistically robust taxonomic classifications and that lower classification 
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accuracy is more likely to reflect preservational limitations of the data or poor application of the 

methods.

Key words: machine learning, discriminant analysis, decision trees, classification, Theropoda, teeth.

The use of non-linear analytical techniques (Table 1) that draw upon the rapidly expanding field of 

machine learning and decision trees has remained mostly unexplored with respect to characterizing 

fossil vertebrate morphology (Monson et al. 2018). By contrast, other disciplines have rapidly 

embraced machine learning techniques to undertake classification, prediction and various modelling 

tasks (Christin et al. 2019). Applications range from ecological modelling (Džeroski 2001; Cutler et al. 

2007), population monitoring (Britzke et al. 2011), automated taxonomic classification by phenotype 

(Hoyal Cuthill et al. 2019), medical image analysis (Ker et al. 2018), financial modelling and 

prediction (De Spiegeleer et al. 2018; Ma and Lv 2019), psychology (Holden et al. 2011; Finch et al. 

2014) and bioinformatics (Chen and Ishwaran 2012; Couronné et al. 2018) to the digitisation of 

natural history collections (Schuettpelz et al. 2017). Automated and semi-automated approaches of 

data modelling have also been used for taxon identification and dietary inference from tooth surface 

morphology (Evans et al. 2007; MacLeod 2007, 2015, 2017; Wilson et al. 2012; Melstrom and Irmis 

2019) and are commony used in the analysis of earth observation data (Onojeghuo et al. 2018; Son 

et al. 2018; MacLeod 2019).

Here we test the suitability of these methods for the taxonomic identificiation of fossils, using 

isolated non-avian theropod dinosaur teeth as a case study. Previously, standard linear classification 

models have been used to classify these specimens based on shape data (see below). Here we apply 

several alternative approaches to this problem and assess their comparative performance based on 

analysis of two datasets of isolated theropod tooth measurements. 

The regular shedding of functional teeth (Currie et al. 1990; Farlow et al. 1991), plus their resistance 

to abrasion and chemical alteration (Argast et al. 1987), results in the recovery of
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abundant, isolated dinosaur teeth in many Mesozoic terrestrial deposits (e.g., Evans and Milner 

1994; Fiorillo and Currie 1994; Metcalf and Walker 1994; Rauhut 2002; Sankey et al. 2002; Knoll and 

Ruiz-Omeñaca 2009; Larson and Currie 2013; Gates et al. 2015). These teeth represent the vast 

majority of dinosaur material recovered from microvertebrate localities, and often represent the 

only source of information for interpretations of dinosaur species-richness and palaeoecology from 

such sites (e.g., Williamson and Brusatte 2014; Wings et al. 2015; Larson et al. 2016). A reliable, 

repeatable framework for assessing the taxonomic identity of isolated teeth would therefore be 

useful in providing more accurate assessments of the faunal compositions of both microvertebrate 

localities and other localities where skeletal material is rare or uncommon. Historically, three 

positions have been taken on the taxonomic utility of isolated dinosaur teeth (Heckert 2002): (1) 

that teeth are almost entirely non-diagnostic at generic or specific level and have little or no 

taxonomic value (e.g., Charig and Crompton 1974; Ostrom and Wellnhofer 1990; Dodson and 

Dawson 1991); (2) that teeth have some diagnostic value, but in the absence of other skeletal 

material the use of isolated teeth in diagnosing taxa to higher taxonomic levels is questionable (e.g., 

Currie, et al. 1990; Padian 1990; Sereno 1991; Larson and Currie 2013); and (3) that dinosaur teeth 

can be taxonomically diagnostic and bear synapomorphies that can be used to erect valid taxa or 

assign isolated teeth to known existing taxa (e.g., Thulborn 1973, 1992; Hunt and Lucas 1994; 

Heckert 2002, 2004; Hendrickx et al. 2020). Recent work based on detailed character descriptions, 

morphometric analyses, or a combination of these approaches indicates that at least some 

diagnostic value can be extracted from dinosaur teeth (e.g., Smith 2005; Smith et al. 2005; Larson 

and Currie 2013; Barrett et al. 2014; Hendrickx and Mateus 2014; Boyd 2015; Hendrickx et al. 2015, 

2019; Ősi et al. 2016; Strickson et al. 2016). Nevertheless, as tooth morphology can vary 

ontogenetically, positionally (within the jaws of the same animal) and between individuals, as well as 

taxonomically (Coombs 1990; Hendrickx et al. 2019), there is still disagreement regarding the most 

appropriate method for assigning isolated teeth to defensible, recognizable morphotaxa, which 

could then form a basis for further investigation. Indeed, Hendrickx et al. (2015, 2020) have 
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suggested that morphometric data alone are sub-optimal for classification and that far better results 

can be obtained using detailed descriptions of morphological characters and cladistic analyses based 

on a dentition-based data matrix.

Currie et al. (1990) and Farlow et al. (1991) were the first to apply a morphometric approach to 

isolated dinosaur teeth in a systematic fashion to aid taxonomic identification and examine the 

functional significance of different tooth crown morphologies. Smith (2005) and Smith et al. (2005), 

building on previous work (e.g., Chandler 1990; Currie et al. 1990; Farlow et al. 1991; Baszio 1997), 

provided a preliminary framework for the taxonomic identification of theropod dinosaur teeth by 

applying multivariate statistical methods to standard morphometric measurements. Following this 

work a generic approach applying principle component analysis (PCA) and linear discriminant 

analysis (LDA) has become the ‘standard’ quantitative methodology for the identification of isolated 

theropod teeth (e.g., Samman et al. 2005; Fanti and Therrien 2007; Larson 2008; Larson and Currie 

2013; Williamson and Brusatte 2014; Torices et al. 2014; Hendrickx et al. 2015; Gerke and Wings 

2016; Young et al. 2019). Similar methodologies have been applied to ornithischian dinosaurs 

(Becerra et al. 2013) and isolated teeth from other extinct taxa, such as sharks (Marramà and Kriwet 

2017) and archosauriforms (Hoffman et al. 2019).

However, caution is warranted when applying this methodology. The use of PCA alone is not suitable 

to assess between-group differences and can mask differences when the group structure is 

embedded within variables exhibiting lower variances (MacLeod 2018), or when group differences 

are assessed on a limited number of principle components by simply plotting PC1 against PC2. It is, 

however, useful as a dimensionality reduction transformation where there is a requirement to 

reduce the number of predictor variables while retaining the embedded information content, or as 

an investigative tool to explore data structures (Jolliffe 2002; MacLeod 2018). LDA is commonly used 

as either a follow-on classifier from PCA – by submitting the retained PCA eigenvectors to the LDA 

model – or as a classifier applied directly to the raw data. Most applications of LDA assume that the 
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data under investigation meets the requirements of the technique, but do not always check that this 

is the case. This is important, as LDA can be adversely affected by small or widely unequal group 

sizes, data outliers, unequal covariance matrices and non-Gaussian distributions, and the method 

works more effectively when the smallest group has significantly more cases than predictor 

variables. The effects of these caveats may be marginal in practice (Feldesman 2002) but thus far 

these issues have not received detailed discussion in this context. If the data under consideration do 

violate these assumptions it calls into question the results obtained from such analyses, especially in 

the absence of verification by other methods (e.g., Whitenack and Gottfried 2010; Fraser and 

Theodor 2011; Hendrickx et al. 2015, 2019; Milla Carmona et al. 2016; Corentin and Salvador 2018). 

The algorithms employed in these analyses (Table 2) belong to a category of supervised classifiers 

known as ‘eager-learners’, where a model is generated from a set of training data before being applied 

to an ‘unknown’ dataset. The function of a supervised classifier is to build a model that then enables 

correct assignment of a future object described by predictor variables to a known class (Rausch and 

Kelley 2009; Maugis et al. 2011). Eager-learners often take a long time to construct a model but can 

make predictions quickly. It is also possible to use some of these techniques, such as random forests, 

in unsupervised mode to assess and detect meaningful structures in a dataset and to classify objects 

to groups that are not known a priori (Shi and Horvath 2006; Criminisi et al. 2012; Afanador et al. 

2016). Although we have employed these techniques on fairly simple morphometric measurements, 

there is no reason why the techniques discussed below could not be employed on more complex 

morphological datasets such as 3D-shape data or digital images. Below we include a short introduction 

to the techniques we applied, including the use of ensemble model classifiers.

Linear models

Linear discriminant analysis. Linear discriminant analysis (LDA), a technique that identifies linear 

combinations of predictor variables to maximise the multivariate distance between groups (Fisher 

1936; Welch 1939), is perhaps the most widely used method for classification. The functions are 

Page 5 of 93

Palaeontology

Palaeontology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



calculated in such a way that the first function captures as much of the group differences as possible, 

with subsequent functions each representing group differences not captured by previous functions.  

The combinations of predictors and prior probabilities are then used to calculate the posterior 

probability distribution for each case. Group membership is assigned by selecting the group with the 

highest posterior probability for each case. For LDA to function appropriately two underlying 

assumptions regarding the data are made:  that the data is multivariate normal; and that the group 

covariance matrices for the predictor variables are equal (Feldesman 2002; Hastie et al. 2009a). LDA 

is also sensitive to highly-correlated predictors and is dependent on the ability to invert the 

covariance matrix, requiring more samples than predictors per group.

Logistic Regression. Logistic regression (LR), although commonly used to solve two-class problems, 

can be extended to a multi-class scenario and uses a linear predictor function to assess the likelihood 

of a particular class outcome. LR uses the log of the odds of being in one group compared to the 

others as the basis of its prediction. No assumptions are made regarding the distribution of the 

predictor variables entered into the model, nor does it assume equal covariance matrices and 

therefore no additional data pre-processing is required (Rausch and Kelley 2009; Kuhn and Johnson 

2013a; Finch et al. 2014).

Non-linear models

Mixture Discriminant Analysis. Mixture discriminant analysis (MDA) is a non-linear extension of LDA 

whereby each class is modelled as a mixture of multiple multivariate normal distributions, i.e., each 

class can contain an unobserved number of sub-classes (Hastie and Tibshirani 1996; Kuhn and 

Johnson 2013a; Finch et al. 2014). Unlike LDA, there is no assumption of equal covariance matrices 

across groups for MDA. In a biological classification of taxa such sub-classes are particularly relevant, 

especially when classifying data to higher taxonomic levels.  MDA has been applied with some 

success in other fields and often exhibits high predictive accuracy (Rausch and Kelley 2009; Britzke et 

al. 2011; Finch et al. 2014). 
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Naïve Bayes. Naïve Bayes (NB) is a non-linear machine learning approach to group classification 

(Russell and Norvig 2009; Marsland 2015) that is known to work well with small group sample sizes 

(MacLeod 2018). The model assumes that all the predictors are independent of each other which 

results in relatively quick computational times (Kuhn and Johnson 2013a).  

Decision trees

The final methodologies we explore are a departure from the standard linear or non-linear families 

of classification models. Both random forests and C5.0 are decision tree-based techniques that 

expand on the seminal work of Breiman et al. (1984), which introduced classification and regression 

trees. 

Before exploring the detail of the two techniques it is useful to understand the basics of a decision 

tree. Decision trees are used in everyday life to make decisions based on a series of criteria. A simple 

example would be to decide on which train to catch to reach a certain destination at a preferred 

time without changing stations. In order to reach this decision we effectively run through a series of 

steps, each step is a question and the answer to the question dictates a path that the decision can 

follow. A suitable decision tree for such a choice is shown in Figure 1. Every decision tree is a nested 

hierarchy of questions and answers (or if/then statements). For the example of catching a train to 

London Victoria station, the following hypothetical decision tree (one of many possible trees) might 

be followed: 

If the final destination of the train is Brighton, then it is the wrong train

or

If the final destination of the train is London, and the station is London Bridge, then it is the wrong 

train

or
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If the final destination of the train is London, and the station is Victoria, and it is a not direct train, 

then it is the wrong train

or

If then final destination of the train is London, and the station is Victoria, and it is a direct train, and 

it arrives between 08:00 and 08:15, then it is the correct train.

A decision tree is essentially a flowchart of questions or rules that leads down a path to a prediction. 

Data is inputted into the root node of the tree. The decision tree algorithm then progressively 

divides the data into smaller and smaller groups based on the splitting criteria until the point at 

which the dataset can either be split no more or it reaches a rule that orders the splitting to finish. 

Decision trees can either be regression trees where the predicted outcome is a value (e.g., a house 

price) or classification trees where the predicted outcome is categorical (e.g., a taxon). The concepts 

of decision trees and random forests are similar. A decision tree is effectively built upon the entire 

dataset to produce one tree. A random forest combines many decision trees into a single model, 

where each of the trees in the model is generated on random subsets of observations and variables. 

The major advantages of decision trees over techniques such as LDA or logistic regression are that: 

1) they can accommodate missing data; 2) there is no need for the data to conform to a normal 

distribution, as the techniques are non-parametric; 3) outliers have little effect on the final 

classification as they will rarely define a splitting node; 4) they can use both categorical and 

numerical data as predictor variables; and 5) transformed predictor variables (e.g., log transforms) 

have no effect on the tree structure (Feldesman 2002). A drawback with decision tree methods is 

that of overfitting the data. This occurs when a tree is grown that perfectly predicts the classification 

pattern of the training data by defining terminal nodes (or leaves) that fit particular idiosyncrasies of 

the training process, i.e. that are relevant to that particular dataset only. Tree-based methods are 
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also prone to bias if some classes dominate the data and care needs to be taken to account for this 

prior to fitting.

Random Forests. Random forests (RF) is an ensemble learning method where a large number of 

uncorrelated decision trees are aggregated to form a final classification (Breiman 2001). This final 

classification is based on either an average of all the individual tree estimates (for regression trees) 

or a simple majority vote (for classification trees). The decision trees are built by randomly selecting 

predictors and observations to create individual trees. This random selection process increases the 

diversity in the forest and leads to a more robust prediction. Random predictors (i.e., variables) are 

used at each split in the tree which de-correlate the trees forming the forest. The number of 

predictors used is controlled by a parameter setting (mtry) which Kuhn and Johnson (2013a) and 

Breiman (2001) recommend setting to the square root of the number of predictors. RF classifications 

are sensitive to the number of trees used to build the forest with error rates reducing with 

increasing numbers of trees. Random forests tend to be stable and produce good predictive 

performance. However, they do have a number of disadvantages: even though some parameters are 

controllable, such as the number of trees or the number of predictors available at each split, the 

actual make up of each tree and therefore the forest is random and the forest itself (not the 

prediction) is less easy to interpret than a single decision tree; training a large number of trees can 

have higher computational overhead than a simple single decision tree. 

C5.0. The C5.0 rule-based decision tree classifier is an updated version of the C4.5 model of Quinlan 

(1993) where the splitting criterion is based on information theory to choose the most informative 

variables for classifying the training set (Kuhn and Johnson 2013a; Mehta and Shukla 2015). As with 

decision trees in general, each sub-set resulting from the initial split is then re-split (usually on a 

different field) with the process repeating until no more splitting is possible. Each split can be either 

binary or multi-branched.  C5.0 then tries to reduce the effects of overfitting by undertaking a 

pruning (winnowing) process on the lower level splits to remove those that do not contribute to the 
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final model and produce simpler and more accurate trees. Unlike random forests the C5.0 tree is 

built by default on the entire dataset using all the variables and cases. The winnowing process 

attempts to uncover predictor variables that have a relationship to the desired model outcome with 

the final model only built using those variables. The C5.0 algorithm also allows for the 

implementation of adaptive boosting, which generates multiple classifiers rather than one with the 

final prediction resulting from majority voting across the classifiers. Unlike random forests, which 

creates multiple random trees, the C5.0 adaptive boosting trees are linked back to the classification 

errors generated from the first tree or ruleset. The first classifier will usually make mistakes on some 

groups. A second classifier is then generated that focusses on the misclassified data from the first 

tree in an attempt to improve the misclassification rate. Errors from the second tree are passed to a 

third and so on. The process continues for a user pre-defined number of iterations (trials).  For a 

more detailed description of both C4.5 and C5.0 methods see Kuhn and Johnson (2013a). 

Ensemble models

Ensemble learning methods take a series of classifier models and combine the predictions to 

produce a final classification (Dietterich 2001; Roli et al. 2001). A key to a good ensemble model is 

that the individual classifier techniques should be diverse to create a stronger overall prediction. 

There are a number of different methods to combine the results of the models making up the 

ensemble such as bagging, boosting and stacking (Dietterich 2001), here we use majority-voting and 

model stacking to arrive at the final classification. Majority voting simply takes the majority rule of 

the predictions from each classifier as the final classification result, for example if two classifiers 

predict a case to be ‘class 1’ and one classifier predicts the case as ‘class 2’ then the ensemble 

classification for that case is ‘class 1’. Model stacking is where a single training dataset is run through 

multiple models. The predictions from these models are then used as the input to a second-level 

model from which the final classification is drawn.
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MATERIALS AND METHODS

Here we describe the datasets used for the analysis and the data preparation steps involved. We also 

discuss how we dealt with common issues found in multivariate datasets used for classification 

models, such as class balancing and missing data. In addition, we examine how the choice of prior 

probabilities and the resultant classification posterior probabilities affect the models.

We used two published datasets that include multiple linear measurements for isolated theropod 

teeth and that were used as the basis for prior morphometric analyses (Hendrickx et al. 2015; Larson 

et al. 2016). These each include a wide range of theropod taxa, with broad spatial and temporal 

distributions. Each specimen has five measured morphometric variables that are simple 2D linear 

distances (or representations thereof) between repeatable landmarks on the tooth crowns (Fig. 2): 

crown base length (CBL), length of the base of the crown measured along its mesiodistal axis; crown 

base width (CBW), width of the base of the crown measured along its linguolabial axis perpendicular 

to the CBL; crown height (CH), height of the crown measured from the tip of the tooth to the base of 

the enamel; number of denticles per millimetre along the midpoint of the anterior carina (ADM); and 

number of denticles per millimetre along the midpoint of the posterior carina (PDM) (Currie et al. 

1990; Smith et al. 2005; Larson and Currie 2013). These datasets comprise human-selected and hand 

measured morphometric data rather than measurements derived from photographic or other digital 

sources of information (such as CT-data) that have also been used in machine learning classifications 

(e.g. Hoyal Cuthill, et al. 2019). As such, it is inevitable that some degree of error will be introduced 

into the measurement process. However, given that the classification of isolated theropod teeth is a 

common requirement in vertebrate palaeontology, and the currently available datasets are all hand 

measured morphometric data, we feel there is value in applying such techniques to this data.

The Hendrickx et al. (2015) dataset consists of 995 individual cases belonging to 62 taxa from 19 major 

theropod clades (e.g., Megalosauridae, Tyrannosauridae, Dromaeosauridae, Abelisauridae) ranging in 
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age from the Pliensbachian to the Maastrichtian with a global distribution. We analysed the data at 

two different taxonomic levels: a genus-level grouping of 680 cases and 32 classes and a higher-level 

clade aggregation comprising 886 cases and 14 classes. The dataset of Larson et al. (2016) comprises 

3,104 maniraptoran theropod teeth from 18 lithostratigraphic units ranging in age from the 

uppermost Santonian (Milk River Formation) through to the Maastrichtian (Hell Creek Formation) of 

western North America. We analysed these data at two different taxonomic levels: a generic-level 

grouping containing 3020 cases and 17 classes; and a higher-level aggregation containing 3020 cases 

and four classes (Dromaeosauridae, Troodontidae, Richardoestesia and cf. Aves). We did not 

undertake a species level analysis due to the lack of species-level data with enough complete cases.

Data preparation

Prior to analysis we undertook a series of data exploration and general preparation steps. Each 

published dataset reports individual specimens at different taxonomic levels. For example, Hendrickx 

et al. (2015) list specimens at the generic level, whereas Larson et al. (2016) use species, with some of 

the latter split into stratigraphic units. To compare different models across both datasets, we 

aggregated groups of specimens to increasingly higher taxonomic levels. We removed any cases where 

it was unclear from the literature that a zero value in the data indicated a true zero (e.g., no anterior 

denticles) or represented missing data and, as some of the techniques applied require no missing data 

in the predictor variables, we removed all incomplete cases. Some classification techniques, such as 

LDA, are sensitive to the number of cases comprising individual groups in relation to the total number 

of predictor variables (Kuhn and Johnson 2013a; Zavorka and Perrett 2014) and require more cases 

per group than predictor variables. In addition, MacLeod (2018) noted that true group structures can 

be masked when the number of variables is greater than the number of cases. This is caused by having 

insufficient numbers of data points per group to describe the group structures correctly. At each 

taxonomic level tested, we therefore removed entire groups where the total number of group 

members was less than or equal to the number of predictor variables. As no dataset exhibited a 
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multivariate normal distribution, the predictor variables were log-transformed with a constant value 

of one added prior to transformation to allow the log of true zero values. 

For each taxonomic level tested we split the data into training and testing samples with a 80:20 ratio 

using the R package Caret (Kuhn 2008) which attempts to balance the class distributions within the 

training and testing sets. To optimise our models we undertook k-fold cross validation on the training 

set. Cross validation reduces the problems of underfitting, not capturing enough information in the 

model to accurately predict new data, and overfitting where the model performs well on the training 

set but does not generalise enough to perform well on new data (Hastie et al. 2009a). K-fold cross 

validation randomly divides the original data into k equally-sized subsamples. In this case we used a 

k-value of 10, so that the original training dataset is randomly divided into 10 subsamples. Nine 

subsamples are used as the training set and one as the testing set. This is then repeated 10 times such 

that each case forms part of a training set k-1 times and a testing set once. The model effectiveness is 

then averaged over each repeat to give a single overall model accuracy. We additionally ran the 

subsequent models on the retained testing samples, i.e., the samples not used to create the 

classification model, to provide more accurate assessments of the predictive accuracy of each model 

on unknown data.

Some of the models require specific parameters or preparation: for Naïve Bayes, in order to 

compensate for the non-independence of variables in our test data, we used PCA scores as input into 

the model rather than the original data; for random forests, our models used 2000 trees (to ensure 

model stability) and a range of mtry values from two to five; for C5.0, we ran models both with and 

without winnowing and set the model to stop the boosting process at 100 trials. We also generated a 

classifier ruleset for each model comprising simple if-then rules for the predicted class based on the 

input predictor variables. 

 All analyses were performed using R version 3.6.0 (R Core Team 2019) in R Studio (RStudio Team 

2016) with the Caret package (Kuhn 2008) used for model generation. The following R packages were 

Page 13 of 93

Palaeontology

Palaeontology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



used for specific models or processes: UBL for synthetic data generation (Branco et al. 2016); 

missForest to introduce random missing data (Stekhoven and Buehlmann 2012; Stekhoven 2013); 

mice for data imputation (van Buuren and Groothuis-Oudshoorn 2011); MASS, C5.0 and randomForest 

for specific classification models (Liaw and Wiener 2002; Venables and Ripley 2002; Kuhn et al. 2018); 

and ggplot, gridextra, cowplot and ggalluvial for plotting functions (Wickham 2016; Auguie 2017; 

Brunson 2019; Wilke 2019).

Data balancing

A common issue with published datasets on tooth linear measurements is the unequal distribution 

of group members between distinct groups within the dataset. For example, the Larson et al. (2016) 

dataset contains 3020 specimens broken down into 17 generic groups. The distribution of group 

membership within these data ranges from 1176 individual cases to only six cases. As previously 

noted, groups defined by small numbers of cases suffer from the inability for the cases to correctly 

define the group structure. This imbalance also causes the performance of machine learning 

classifiers to be degraded as there is a bias towards the majority classes in an attempt to reduce the 

overall classification error. There are various methods that can be used to balance a dataset, all of 

which involve either the addition or removal of data points. Undersampling works on the majority 

classes, reducing the number of cases in each class in turn to create a more balanced dataset. This 

has the negative effect of removing informative data about these classes. Oversampling works on 

the minority classes by increasing the number of observations by replication. Whilst this does not 

result in information loss the implicit assumption is that the minority class structures are adequate 

to define those classes. We employed a methodology, Synthetic minority oversampling technique 

(SMOTE), that shifts the learning bias towards minority classes by generating synthetic data in these 

classes (Chawla et al. 2002). SMOTE oversamples the minority classes by creating new data points in 

feature-space randomly along a line joining an existing point to its nearest neighbours. We tested 

two scenarios to balance the training dataset to see if this resulted in a more accurate classification 
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overall. First, random undersampling (i.e., removal) of the most populated classes combined with 

oversampling (by synthetic data generation) of the least populated classes to create a new dataset 

containing approximately the same number of overall cases as the original. Second, oversampling of 

the least populated classes to create an enlarged dataset with no undersampling of the most 

populated classes. We created these synthetic datasets based on the Larson et al. (2016) data at two 

different taxonomic levels running a number of different classifier models across the synthetic data 

to compare results to the original.

Dealing with missing data

Fossil datasets commonly contain incomplete morphometric information due to the nature of their 

preservation. Parts of a specimen may be missing due to breakage or wear, distortion as a result of 

geological processes may result in a measurement being suspect and therefore excluded, and the 

presence of host matrix can obscure particular features. The problem of missing data can be 

overcome either by deleting cases with missing values, using a variety of techniques to predict 

missing values based on the overall dataset, or by using a technique that is not reliant on complete 

cases. The first two techniques are problematic: deleting cases can remove useful information from 

the dataset, and replacing values with either mean substitution or values imputed from multiple 

regression has a tendency to distort the dataset and therefore the resultant classification (Schafer 

1997; Feldesman 2002). Here we test different scenarios using the C5.0 tree-based classifier, which 

is not reliant on complete data. To look at the effects of missing data we used the Larson et al. 

(2016) dataset, which was edited to contain only complete cases. We then generated five new 

training datasets (Fig. 3) from this where we introduced increasing proportions of randomly 

generated missing data into the predictor variables (at 5, 10, 20, 30 and 50% levels) using the 

missForest package (Stekhoven and Buehlmann 2012; Stekhoven 2013). C5.0 classification models 

were then built for each of these new training datasets and applied to the retained testing data each 

time, allowing us to model changes in classification accuracy as the amount of missing data in the 
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training set varied. We examined the effect of predicting missing values for each of the new training 

sets where we had previously introduced missing data using the MICE package (van Buuren and 

Groothuis-Oudshoorn 2011). For each training set containing missing data we created five imputed 

data sets that differ only in imputed missing values. We then built C5.0 classification models for each 

of these imputed datasets and stacked the results together to generate a training set containing 

imputed data. The imputed training set was fed into a secondary C5.0 model to provide the final 

classification (Fig. 3). Finally, we generated a C5.0 model using the original, complete Larson et al. 

(2016) dataset where we retained cases with missing data.

Prior and posterior probabilities

Bayesian classifiers use a prior probability distribution of group membership to calculate the 

posterior probability distribution, i.e., the resultant classification. The prior is essentially the 

probability that an observation comes from a particular group. There are three ways of defining 

prior probabilities: the prior probabilities are equal for all the groups, such that there is an equal 

chance that an observation can come from any group; the probabilities of group membership are 

proportional to the training dataset group observations; or the true group distribution is known 

(irrespective of the current dataset) and the priors can be defined explicitly to match this. The choice 

of prior will affect the outcome of classifications, especially when some group populations may be 

rare due to either unequal sampling or are a true reflection of the population under study (Zavorka 

and Perrett 2014). We modelled the effects of defining both equal and proportional priors on the 

final classification result.

Understanding how the final class assignment is made by a classifier is also important before any 

value can be attached to the result. Classifiers base their decisions on final class values on the 

calculated posterior probability for each class on a case-by-case basis. Classifiers that use ensemble 

techniques to arrive at a final result will still use posterior probability to assign classes within each of 

the models before creating the ensemble. The class assigned to a particular case is simply the class 
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with the highest posterior probability. In some cases the results are fairly unequivocal, but in others 

a degree of caution is required. Take a simple example of a three class problem and two cases. Case 

one reports posterior probabilities of: Class A = 0.8, Class B= 0.1 and Class C = 0.1. Case two reports 

posterior probabilities of: Class A = 0.34, Class B = 0.33 and Class C = 0.33. Both cases are assigned to 

class A on the basis of the highest posterior probability, but it is clear from the results that the 

strength of the classification in case two is weak. Here we look at how the posterior probability 

varies on a case-by-case basis for a classification derived from an MDA model.

Ensemble classifier

For our ensemble classifier we combined the logistic regression, MDA and RF models as these 

employ differing techniques, with MDA and RF generally achieving the highest individual model 

accuracy (see Results, below). We used majority-voting and model stacking to combine the 

individual classification results and generate the final classification.

RESULTS

Comparison of classification models

Table 2 shows the overall accuracies of our models as applied to both the Hendrickx et al. (2015) and 

Larson et al. (2016) datasets. The top performers in each case are the non-linear MDA model and the 

decision tree based random forests and C5.0 models. Linear models (LDA and LR) perform poorly 

across both datasets as does the non-linear naïve Bayes model. Overall classification accuracy, 

irrespective of the model employed, increases as the number of classes decreases (Table 2). This 

increase in accuracy is as a result of true group structures being correctly described by having 

sufficient numbers of datapoints per group.

Using the Hendrickx et al. (2015) dataset we ran the classifiers at two taxonomic levels, the first a 

genus level with 32 classes and 680 cases and the second at a higher (family) taxonomic level with 14 
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classes and 886 cases. The 32-class model accuracies range from 59.2% (naïve Bayes) to 77.4% 

(MDA) accuracy. The 14-class models show an overall increase in classification accuracy with 

accuracies for the two highest performing models (random forests and C5.0) at around 80%. 

Compared to the equivalent Hendrickx et al. (2015) classification using LDA, the tree based models 

increase the overall accuracy of the prediction by around 10% from 70.9% as reported by Hendrickx 

et al. (2015) to 80.4% from the RF classifier. Our LDA model based on these data similarly boosts the 

overall accuracy to 76.7%. Figure 4 depicts the normalised confusion matrix for the Hendrickx et al. 

(2015) 14-class dataset from LDA, MDA, RF and C5.0 classifiers showing per-clade accuracies for each 

model. Two dimensional scatterplots of canonical variates obtained from MDA for the Hendrickx et 

al. (2015) dataset are shown in Figure 5A, which visually depict the group separations in discriminant 

space. The random forest classifier (Fig. 5B) demonstrates the decrease in error rates both overall 

and for most individual clades as the number of trees in the model increases. We ran all random 

forest models with 2,000 trees: however, the results indicate that little improvement in model 

performance is reached after 1,000 trees. The models used three randomly selected predictors (mtry 

value) for the 32-class dataset and two for the 14-class dataset. Figure 6 depicts the overall C5.0 

model accuracies for the Hendrickx et al. (2015) dataset at a range of boosting iterations and using 

both winnowing and no winnowing. Across both taxonomic levels tested the overall accuracy settles 

down at around 25–30 boosting iterations. For the 32-class dataset the rules-based model using no 

winnowing improves the predictive accuracy slightly, for the 14-class dataset the rules-based model 

again shows a slight improvement in predictive accuracy irrespective of the use of winnowing. 

Results from analysis of the Larson et al. (2016) dataset, again at two different taxonomic levels, 

broadly reinforce the previous analysis (Table 2). Decision trees and MDA return the highest 

classification accuracies with LDA performing relatively poorly. The difference between accuracies 

narrows as the number of groups in the data decreases and the numbers of cases making up each 

class increases. Accuracy for the 17-class dataset models ranges from 69.7% (LDA and NB) to 75% 

(RF) when applied to the testing data, with the 4-class dataset accuracies ranging from 93.3% (NB) to 
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96.3% (MDA). As with the previous dataset, the accuracy of classification increases as data is 

aggregated to higher and higher taxonomic levels. This increase in accuracy is reflective of the 

increasing certainty of the taxonomy, an increase in the number of cases making up the training 

groups and the removal of misclassification errors between closely related clades such as 

Richardoestesia gilmorei and R. isosceles, which have a tendency to classify to each other. Figures 7 

and 8 depict the normalised confusion matrices for the 17- and 4-class Larson et al. (2016) datasets 

from the LDA, MDA, RF and C5.0 classifiers. Group separations in discriminant space obtained from 

the MDA classifier are shown in Figure 9A, the first two canonical variates are plotted that together 

account for around 93% of the total variation in each case. The random forest classifiers (Fig. 9B) 

again demonstrate the decrease in error rates as the number of trees in the model increases. The 4-

class model overall accuracy and the accuracy of Troodontidae and Dromaeosauridae show little 

change after 250 trees but Aves and Paronychodon are unstable to around 1,000 trees. The 17-class 

model is noisier but again settles down at around 1,000 trees. Figure 10 depicts the overall C5.0 

model accuracies and Figure 11 visualises one of the decision trees for the 4-class model. Across 

both taxonomic levels tested the tree-based model outperforms the rules based model although the 

difference between the two is minimal especially at the 4-class level. Winnowing of the predictor 

variables has a negative impact on the accuracy at 17 classes but little if any effect at the 4-class 

level. Boosting iterations settle at around 25 for the 4-class model and 50 for the 17-class model.

Data balancing

Figure 12A and Table 3 depict the changes in classification accuracy for LDA, MDA, RF and C5.0 

models as we generated synthetic data in an attempt to balance the number of cases per class. The 

results show that attempting to balance class membership by either a combination of undersampling 

and oversampling (balanced results) or by oversampling alone produces significantly worse accuracy 

than no balancing. 

Missing data
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Table 4 summarises the results of introducing missing data at various percentage levels into the 

Larson et al. (2016) dataset and then using imputation to replace missing values. The classification 

accuracies decrease as the amount of missing data increases, with the 17-class model accuracy 

dropping off at a sharper rate than the 4-class model. The results indicate that the C5.0 classifier 

copes reasonably well with up to 20% missing data in some scenarios (Fig. 12B). The 4-class model 

accuracy decreases from 96.2% with no missing data to 93.9% with 20% missing data. Data 

imputation has a positive effect on the classification accuracies in the 4-class scenario with 

imputation at the 5% level slightly outperforming the original (no missing data) classifier. In the case 

of the 17-class models imputation has little effect on the classification accuracy with most imputed 

models showing a slightly lower accuracy rate than the models developed with missing data. 

Prior and posterior probabilities

The effects of changing prior probabilities are summarised in Table 5 for LDA and MDA classifiers. 

Equal prior probabilities have the effect of increasing the bias towards smaller and potentially unstable 

groups reducing the overall accuracy of the model when compared to proportional priors. This is seen 

most markedly for the MDA classifier.

Posterior probabilities from the MDA classifier for 10 cases of the Larson et al. (2016) dataset are 

shown in Table 6. For most of the cases the classifier results in unambiguous predicted classes such as 

for cases 2–4 where the probability of the case classifying to Dromaeosauridae is 1.0. In other cases 

there is a degree of ambiguity as to the final class prediction. This is demonstrated by cases 1 and 8 

where the final class prediction is only weakly supported (probabilities of 0.57 and 0.55, respectively).

Figure 13 shows the posterior probability mapping for the Larson et al. (2016) 17-class dataset. It is 

apparent from the overall map that clades such as Richardoestesia and Troodon have well supported 

final class prediction compared to Acheroraptor and Bambiraptor.

Ensemble classifiers
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Table 7 summarises the accuracy achieved by stacking three different models to create an ensemble 

classifier and the accuracy of the majority vote ensemble. The stacking ensemble increases the 

overall classification accuracy in all cases with the exception of the Hendrickx et al. (2015) 32-class 

model. The increase in accuracy ranges from 0.5% for the Hendrickx et al. (2015) 14-class model to 

1.1% for the Larson et al. (2016) 4-class data. The majority voting ensemble increases the overall 

model accuracy for the Larson et al. (2016) 4-class data to 97.5% (a similar level to the stacked 

ensemble) but is less successful for the other data analysed with either the individual classifiers or 

the stacked ensemble outperforming. Figure 14 shows how the classification of the Larson et al. 

(2016) dataset changes as a result of using different classifiers (LR, MDA, RF) and a majority vote 

ensemble classification based on all three individual classifiers. Clades such as Pectinodon, Zapsalis, 

Paronychodon and Aves have a relatively consistent classification outcome across all classifiers. This 

contrasts with many of the other dromaeosaurids which cross-classify depending on the chosen 

classification algorithm. Figure 14 also depicts an ‘unknown’ group in the final majority voting 

ensemble. This is where none of the constituent classifiers agreed on a final class and is an indication 

that there may be a sub-group present in the data that was incorrectly assigned a class in the 

training data. 

DISCUSSION

Our results demonstrate that the non-linear and machine learning techniques we applied to hand-

measured morphometric data derived from isolated theropod teeth consistently outperform LDA. 

When applying similar tests to anthropological data, Feldesman (2002) found that there was little 

difference between LDA and classification trees with LDA outperforming tree-based methods in 

some cases, whereas other authors (e.g., Holden et al. 2011; Finch et al. 2014) found LDA (and LR) to 

be the worst performers across a range of scenarios. This obviously raises the question of how to 

choose the most appropriate classifier to apply to a dataset. As pointed out by Feldesman (2002), 
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unless the data meet all of the theoretical conditions of the technique in question then there must 

be a lack of confidence in the predictions delivered. At a minimum, therefore, we would stress the 

importance of applying more than one technique to test the classification. In most studies, decision 

trees such as RF and C5.0 have been shown to be among the best performers and have few (if any) 

prior assumptions regarding data structures. We therefore recommend that a decision tree 

approach (or MDA, another strong classifier) be either the primary classifier or at least used to test 

the classification returned from the chosen primary classifier. Ensemble classifiers can increase the 

predictive power over a single classifier and also offer the opportunity to reduce the risk of choosing 

the ‘wrong’ classifier and, where possible, we advocate their usage also (Dietterich 2001). 

We also demonstrate that the choice of prior probability can affect the outcome of the classification. 

As the true population distributions of fossil taxa are unknown, and sampling of taxa is essentially 

opportunistic, a reasonable assumption is that the probability of a random observation coming from 

a particular group is equal across the groups under investigation. We accept that a choice of equal 

prior probabilities can increase the bias towards smaller and potentially unstable groups and reduce 

the overall accuracy of the model (Table 5). Nonetheless, we would recommend using equal priors, 

as with fossil taxa the true population is unknown and therefore the sample population cannot 

reflect reality. Rigorous data preparation to reduce the number of small unstable groups can help, 

but there is then a trade-off between overall model accuracy and the potential that a group may 

need to be excluded from the model. Datasets that contain missing data within the predictor 

variables complicate matters, as traditional LDA algorithms will not use incomplete cases. Our results 

indicate that imputing data as an alternative to deleting incomplete cases degrades the classifier 

accuracy substantially (Table 4; Fig. 12B). As decision trees can handle missing data we would 

recommend them over other alternatives as a first choice where the analysis of cases with missing 

data is a requirement. Class-imbalanced data biases the prediction towards majority groups and 

some techniques such as LDA perform badly with class imbalances. Our results suggest that using 

methods such as SMOTE to address this, by balancing class ratios via either synthetic case 

Page 22 of 93

Palaeontology

Palaeontology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



generation or under-sampling, degrades the classifier accuracy substantially (Fig. 12A). Blagus and 

Lusa (2013), however, concluded that whereas SMOTE was ineffective for discriminant analysis 

classifiers it may be of some benefit for other classifiers, such as decision trees. Although we would 

not rule out using synthetic data generation to balance classes, the effects of doing so need to be 

clearly understood (for example driving a bias towards the original minority classes) and the results 

tested against other classifiers using the imbalanced data. We would strongly recommend that 

posterior probabilities are checked as part of the process to verify the final classification.

Recent studies, such as Hendrickx et al. (2019), suggest that apomorphic character-based 

morphological data is potentially a more useful tool for distinguishing isolated theropod tooth 

crowns than morphometric data. However, we show that the careful application of machine learning 

techniques using the frameworks discussed in this study demonstrate that continuous quantitative 

morphometric data can also discriminate isolated theropod teeth with taxonomic accuracy of up to 

96% in the specific datasets we used. The use of appropriate multiple classifiers coupled with a 

considered approach and understanding of the effects of missing data, initial group sizes and class 

imbalances are an improvement on the current commonly used techniques and yield rapid and 

statistically robust group predictions. Classification of isolated teeth in this manner will improve with 

better data, namely more cases per clade, to train the classifiers on. The careful addition of new 

measurement variables may also improve classification accuracies. As machine learning techniques 

have already been shown to be able to successfully classify taxa even with evolutionary convergence 

(e.g., Hoyal Cuthill et al., 2019) it is likely that even highly heterodont theropod clades and clades 

exhibiting dental morphological convergence could be accurately distinguished given the right 

amount of data and careful pre-processing of the data. It is probable that in some circumstances a 

combination of a dentition-based cladistic analysis and morphometric analysis may achieve the best 

results. The taxon-level grouping that is chosen will have an impact on the overall accuracy of the 

model simply because this controls the number of cases per group which in turn impacts on the 

ability of the classifier to accurately describe that group. An attempt to classify at a species level 
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where each species is described by, for example, four individual teeth will be less accurate than a 

genus level classification where each genus is represented by several hundred teeth.

CONCLUSIONS

In order to assess the performance of machine learning techniques on basic morphometric data 

derived from isolated theropod dinosaur tooth crowns a comparative study was undertaken using 

two published datasets. Various machine learning procedures were applied to each dataset in order 

to test the predictive accuracy under a range of different conditions. The results presented here, 

although specific to the tested datasets, demonstrate several important points:

1. Although LDA was generally the poorest performer in terms of accuracy, its predictive 

capability improved with larger class sizes.

2. Data subjected to predictive classification techniques needs to be rigorously assessed prior 

to classification for normality, missing data, class imbalances and class size. If data fail these 

tests then alternatives to LDA need to be considered.

3. Decision tree techniques such as random forest and C5.0 consistently outperformed other 

methods and we would advocate their usage for such classification problems.

4. Attempts to balance classes either by synthetic data generation, or by over- or 

undersampling of classes, significantly degraded the classification accuracy and care must be 

taken before employing these techniques.

5. Increasing percentages of missing data and the use of imputation to correct for this caused 

steep decreases in the predictive accuracy of those classifiers designed to handle such data 

(e.g., C5.0).

6. Different classifiers will assign the same case to different classes. The use of ensemble 

classifiers and an assessment of the resultant posterior probabilities helps to reduce the 

possibility of the ‘wrong’ technique being chosen. 
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As a result of this study we would recommend the use of decision trees as an alternative 

approach to LDA.  The final aim of the analysis should guide the choice of random forest or C5.0. 

If the goal is to predict the taxon that a tooth falls into then random forests are a good choice. If 

the aim is to classify and to be able to see how the classification is built within the tree structure 

then C5.0 should be used. In practice we would recommend corroboration of any results by 

checking predictions with another technique, preferably via the use of ensemble classifiers. The 

use of such techniques on isolated theropod teeth demonstrates that high levels of predictive 

taxonomic accuracy are possible from simple morphometric data as long as care is taken to 

understand the structure of the data in question and the assumptions that various techniques 

require. 
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TABLE CAPTIONS

TABLE 1. Glossary of terms used in machine learning and classification.

TABLE 2. Classification results for different models using the Hendrickx et al. (2015) and Larson et al. 

(2016) datasets. Accuracies are shown for both the classification model and the testing data. LDA, 

linear discriminant analysis; LR, logistic regression; MDA, mixture discriminant analysis; NB, naïve 

Bayes; RF, random forests; C5.0, rule-based decision tree.

TABLE 3. Classification accuracy results for synthetic data generation (SMOTE) compared to 

unbalanced data for LDA, MDA, RF and C5.0 classifiers. Accuracy based on Larson et al. (2016) data.

TABLE 4. C5.0 classifier results on missing and imputed data for Larson et al. (2016) dataset.

TABLE 5. Effect of different prior probabilities on model accuracy.

TABLE 6. Posterior probabilities for 10 cases selected at random from the MDA classifier using the 

Larson et al. (2016) 4-class dataset.

TABLE 7. Ensemble model accuracy using model stacking. Accuracies are shown for both the 

individual models that make up the ensembles and the stacked and majority vote ensembles.
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FIGURE CAPTIONS

FIG. 1. Hypothetical decision tree for the example of catching a train to London Victoria station.

FIG. 2. Tooth measurements used in this study. ADM, anterior denticles per millimetre; CBL, crown 

base length; CBW, crown base width; CH, crown height; PDM, posterior denticles per millimetre.

FIG. 3. Workflow for looking at the effect of missing data on predictive accuracy. A. Generating new 

datasets with missing data inserted at random. For this exercise we added missing data into the 

predictor variables at 5, 10, 20, 30 and 50% levels. B. Replacing missing data with substituted values. 

For the sake of clarity we have only shown the workflow for one of the training datasets containing 

missing data. This dataset was derived from workflow A.

FIG. 4. Normalised confusion matrices for LDA, MDA, RF and C5.0 classification models based on the 

Hendrickx et al. (2015) 14-class dataset. Reference classes are plotted on the x-axis and predicted 

classes on the y-axis.

FIG. 5. Hendrickx et al. (2015) 14-class dataset A. MDA canonical variates showing group separations 

in discriminant space. B. Random forest error rate per taxon and overall (OOB) classification error 

rate. For the sake of clarity only five taxa are shown on the RF plot. 

FIG. 6. C5.0 accuracy plots for Hendrickx et al. (2015) data showing the effects of winnowing 

predictor variables and the rules vs. tree based models at different boosting iterations. A. 32-class 

model. B. 14-class model.

FIG. 7. Normalised confusion matrices for LDA, MDA, RF and C5.0 classification models based on the 

Larson et al. (2016) 17-class dataset. Reference classes are plotted on the x-axis and predicted 

classes on the y-axis. Pmx: pre-maxillary tooth.
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FIG. 8. Normalised confusion matrices for LDA, MDA, RF and C5.0 classification models based on the 

Larson et al. (2016) 4-class dataset. Reference classes are plotted on the x-axis and predicted classes 

on the y-axis.

FIG. 9. A. MDA canonical variates plots for Larson et al. (2016) data showing group separations in 

discriminant space. B. Random forest error rate for Larson et al. (2016) 4-class model. Pmx: pre-

maxillary tooth.

FIG. 10. C5.0 models for Larson et al. (2016) data showing the effects of winnowing predictor 

variables and the rules vs. tree based models at different boosting iterations. A. 17-class model. B. 4-

class model.

FIG. 11. Extract from the decision tree classifier Larson et al. (2016) data. Each node shows: the 

predicted class; the predicted probability of each class; the percentage of observations in each node.

FIG. 12. A. C5.0 classifier accuracy for synthetically generated class balanced datasets B. C5.0 

classifier accuracies for missing and imputed data at different levels. Horizontal dotted lines show 

the C5.0 model accuracy with no missing or imputed data.

FIG. 13. Posterior probability heatmap. MDA classifier, Larson et al. (2016) 17-class dataset. A. Entire 

test dataset. B. First 30 cases. Each block on the x-axis represents one case. Pmx: pre-maxillary 

tooth.

FIG. 14.Classification changes at the clade level using LR, MDA, RF classifiers and a majority vote 

ensemble classifier for the Larson et al. (2016) 17-class data. Vertical bars represent the clade 

predictions for each classifier, flows between the bars represent changes in prediction between the 

different classifiers. The ensemble classifier has an additional ‘unknown’ class where none of the 

individual classifiers were in agreement with a prediction. Pmx: pre-maxillary tooth.
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Training data.

New data sets with missing data inserted by 
random replacement of original training data.

C5.0 classifiers trained on each new data set.

Final predictions.
Each classifier produces an individual prediction.

Training data. 
Data set with randomly inserted missing data.

New data sets with missing data replaced by
imputed data. Here we imputed five times to
create five new data sets from the original 
training data.

Primary classification.  
C5.0 classifiers trained on each imputed data set.

Primary predictions.
Each classifier produces a prediction based on its
imputed training data set.

Aggregation stage.
All the primary model predictions are combined.
A secondary C5.0 classifier is trained using the 
aggregated data as input.

Final predictions.

A

B
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FIG. 12. A. C5.0 classifier accuracy for synthetically generated class balanced datasets B. C5.0 classifier 
accuracies for missing and imputed data at different levels. Horizontal dotted lines show the C5.0 model 

accuracy with no missing or imputed data. 

209x296mm (300 x 300 DPI) 
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Term Meaning Reference(s)

Bagging Also known as bootstrap aggregating. Used 
to reduce the variance of a decision tree 
classifier by creating training sample subsets 
on which to train the tree. A form of 
ensemble learning.

(Kuhn and Johnson 2013b)

Boosting A process whereby many weak classifiers are 
combined into a strong classifier.

(Valiant 1984; Kuhn and 
Johnson 2013b)

C4.5 An algorithm used to create decision trees. (Quinlan 1993; Salzberg 1994)
C5.0 An algorithm used to create decision trees. 

The successor to C4.5.
(Kuhn et al. 2018)

Decision trees A supervised learning technique. (Kuhn and Johnson 2013b)
Ensemble learning Combining a group of classifier models to 

produce a final prediction.
(Hastie et al. 2009b)

Linear discriminant 
analysis (LDA)

A linear model for classification that seeks to 
find a combination of predictor values to 
categorise samples into groups. Also known 
as discriminant function analysis (DFA).

(Fisher 1936; Welch 1939)

Linear model A model in which the terms that describe the 
model form a linear equation.

(Riffenburgh 2012)

Logistic regression 
(LR)

A linear model for regression and 
classification.

(Finch et al. 2014)

Machine learning A method of data analysis in which the 
model learns from new data.

Mixture discriminant 
analysis (MDA)

A non-linear extension to linear discriminant 
analysis.

(Hastie and Tibshirani 1996)

Naïve Bayes (NB) A non-linear machine learning technique for 
group classification.

(Russell and Norvig 2009)

Non-linear model A model in which the terms that describe the 
model do not form a linear equation.

(Riffenburgh 2012)

Posterior probability The probability that a case can be assigned 
to a particular class after classification.

(Kuhn and Johnson 2013c)

Principle component 
analysis (PCA)

A technique to reduce the dimensionality of 
data whilst minimizing information loss.

(Jolliffe 2002)

Prior probability In Bayesian statistics the prior distribution of 
the event i.e. the known or expected 
probability of an observation coming from a 
particular group before the classification is 
run.

(Kuhn and Johnson 2013c)

Pruning (winnowing) A process to reduce overfitting of a model 
generated using the C5.0 algorithm. 

(Kuhn et al. 2018)

Random forests (RF) An algorithm used to create a series of 
uncorrelated decision trees which are 
combined into one model.

(Kuhn and Johnson 2013a)

Synthetic data Data generated programmatically that does 
not exist in the original dataset. 
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Hendrickx, et al. (2015) Larson, et al. (2016)

680 cases, 32 
classes

886 cases, 14 
classes

3020 cases, 17 
classes

3020 cases, 4 
classes

Accuracy

Model Testing 
data

Model Testing 
data

Model Testing 
data

Model Testing 
data

LDA 0.645 0.690 0.752 0.767 0.705 0.697 0.958 0.942

LR 0.687 0.730 0.753 0.759 0.721 0.726 0.962 0.951

MDA 0.745 0.774 0.803 0.796 0.732 0.734 0.965 0.963

NB 0.647 0.592 0.755 0.750 0.698 0.697 0.930 0.933

RF 0.742 0.758 0.786 0.804 0.748 0.750 0.965 0.962

C5.0 0.710 0.749 0.775 0.802 0.741 0.746 0.962 0.957
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17-class 4-class

Accuracy

Balanced Oversampled None Balanced Oversampled None

LDA 0.588 0.614 0.697 0.925 0.934 0.942

MDA 0.599 0.624 0.734 0.930 0.958 0.963

RF 0.654 0.681 0.750 0.942 0.960 0.962

C5.0 0.621 0.686 0.746 0.952 0.963 0.957
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17-class 4-class

Accuracy

Missing data Imputed data Missing data Imputed data

Percentage data 
missing / 
imputed

0 0.741 0.741 0.962 0.962

5 0.721 0.716 0.953 0.963

10 0.696 0.685 0.945 0.956

20 0.645 0.650 0.939 0.941

30 0.599 0.598 0.909 0.932

50 0.523 0.515 0.873 0.891
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Hendrickx, et al. (2015) 14-class 

model

Larson, et al. (2016) 17-class model

Accuracy

equal priors proportional 
priors

equal priors proportional 
priors

Model

LDA 0.767 0.774 0.697 0.708

MDA 0.796 0.841 0.734 0.746
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Case

Taxon 1 2 3 4 5 6 7 8 9 10

Aves 0.57 0.00 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.00

Dromaeosaruidae 0.00 1.00 1.00 1.00 0.00 0.00 1.00 0.55 1.00 0.02

Paronychodon 0.42 0.00 0.00 0.00 0.02 0.98 0.00 0.00 0.00 0.00

Troodontidae 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.98
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Hendrickx, et al. (2015) Larson, et al. (2016)

Accuracy

32 class 14 class 17 class 4 class

LR 0.685 0.733 0.731 0.958

MDA 0.749 0.785 0.733 0.963

RF 0.745 0.791 0.751 0.960

Ensemble stack 0.620 0.796 0.759 0.974

Majority vote 0.743 0.779 0.737 0.975
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Comments from the Editor

- Reviewer 1 points out that the language and description of the study and in particular of the 
methodology is very technical and difficult to digest for non-experts. Where possible I suggest 
simplifying the description or providing a short, less technical summary to each step/section. In 
addition, you can think about adding a glossary to cover the most important technical terms.

Response: We have added a glossary of terms to the Introduction (Table 1, new) and have 
simplified some of the technical descriptions – especially around the use of decision trees 
and random forests. The detail of this is included below in the specific responses to each 
reviewer. We have highlighted changes in red.

- Both reviewers would like to see more explanation and discussion with regards to the data set and 
its acquisitions. Reviewer 1 would like you to include R scripts for analysis in the dryad 
repository/supplementary information and include details of steps to perform the analysis.

Response: We have added more information and discussion around the dataset (see below 
in the specific responses) and will upload R-scripts to dryad as requested.

- Please also see comments from the technical editor regarding formatting and figure quality. If your 
data set has been changed/adapted from the published source, think about whether it will be 
possible/appropriate to provide the data files used for the study.

Response: We have uploaded the R scripts. As the data has not changed from the published 
source we have not provided this. All formatting and quality issues with the figures have 
been addressed (see below).

Comments from the technical editor

*  Please respond directly to all referee comments, including the technical comments
below. It is particularly important that you explain your reasoning if you have not
followed any of the suggestions made in the reports.

Response: Done

*  Please upload your response to the reviewers as a separate document designated as a
‘Supplementary File’ with the other submission files. This will pull it into the
automatically generated proof that is available to all reviewers.

Response: Done

*  If either of your co-authors has an ORCiD identifier, please ensure that this is included
with their affiliation information on the manuscript. Ideally, we would prefer these to be
linked through their ScholarOne accounts (as you have for the submitting author) so
that their ORCiD accounts can be automatically updated with details of any published
paper. However, we can add a link to the paper even without this.

Response: Done
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*  If you re-order your reference list as part of your revision, or add any references, please
take care to check any use of ditto marks (---). We do not actually need these at all in
your submitted manuscript (full author names will be inserted and tagged, with ditto
mark styling automatically added later as part of our production process). It does not
matter whether you add or remove them from the existing list, but I would recommend
including all names for any new reference.

Response: Done

*  Referee 1 suggests restyling ‘et al.’ citations, but this would be done automatically as
part of our production process.

Response: Noted

*  Please supply all of your figures at a resolution of 600 dpi; preferably in tif format using
LZW compression. Embedded photographs are fine at 300 dpi, but if any labelling is
included the overall figure will require 600 dpi for printing. Please do not use jpg
compression at any stage. Final widths should be either single column (80 mm), 2/3
page width (110 mm) or double column (166 mm). Please see the attached figure
guidelines.

Response: Done. Please note that in order to clarify some of the text we have added one 
new figure (Fig. 1) and therefore have incremented the numbering on the figures listed below i.e. 
old Fig. 1 is now Fig. 2 etc. We have altered the caption numbering in the manuscript to reflect this.
We have used pdf where appropriate to preserve resolution.

*  Please view your figures at their final intended size on screen and check that all labels
are in proportion and clearly legible. Generally, text sizes should be in a range
equivalent to 6–10 pt Arial (viewed at 100%) although 6 pt size should not be used for
critical text. However, this should be assessed by eye rather than relying on set font
sizes as the absolute size of text will vary if the figure is resized. Please note that part
labels (A, B, C…) on all figures are re-done by our typesetter to set them in a standard
font at a height of 2 mm. It can look odd if other text is much larger than this.
*  File size can also be reduced by using LZW compression and an 8-bit colour depth (VGA).
*  Please confirm the final intended width of each figure (166 mm = full page; 110 mm =
2/3 page; or 80 mm = single column) by adding this to the file name (add 166, 110 or
80).

Response: Done

*  Fig. 1: We will need a higher resolution original file for this image, even if it is intended
to be set at single column width. At the current resolution, the text and arrows are
clearly pixelated. Please do not scale up from this file as it will not result in a sufficient
improvement in final quality. If you have an anti-aliasing option when exporting the
image, this might help the appearance of the text and arrows.

Response: Done as pdf. This is now Fig. 2. A new Fig.1 is additionally supplied as pdf.

*  Fig. 2: I would not recommend a landscape format for any image; it isn’t convenient for
readers either onscreen or on the page (especially if they are reading from a pdf format
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article). The text on this image is too small for full page width, and I would recommend
having it larger eve if this was intended for landscape format (although the supplied file
is not high enough resolution for that). Can you redesign this into a portrait format by
rotating all elements through 90 degrees? (And then increase the relative size of the
text?)

Response: Redesigned as full page portrait and simplified. This is now Fig. 3

*  Fig 3, 6: Again, this needs adjusting so that all text is clearly visible when the figure is
viewed at 166 mm wide in a portrait format. Does setting all 4 images vertically help at
all? The resolution of the file is slightly under 600 dpi at full page width.

Response: These are now Figs. 4 & 7. We have reset the individual elements of the figure 
and removed the in-figure text for clarity.

*  Fig. 4: The layout of this figure works much better, but the axis labels (particularly the
numbering, but also the labels and legend) on the lower part are too small. We will need
a higher resolution file.

Response: This is now Fig 5. We have reset the text as requested.

*  Fig. 5: We will need a higher resolution file to set at full page width.

Response: This is now Fig. 6. Supplied as pdf

*  Fig. 7: The images work better at full page width, but the axis label text needs to be
relatively larger. The resolution of the file is slightly under 600 dpi at full page width.

Response: This is now Fig.7. We have reset the text as requested. Supplied as pdf.

*  Figs 8, 9: The text on these figures is much better proportioned at full page width, but
we will need a higher resolution file.

Response: These are now Figs. 9 & 10. Reset and supplied as pdf

*  Fig. 10: The resolution of this file is plenty for full page width, and the text is clear.
Please use leading zeros for all decimal numbers (e.g. 0.03).

Response: This is now Fig. 11. Reset text as requested.

*  Fig. 11:
Response: This is now Fig. 12. No changes

*  Fig. 12:

Response: This is now Fig. 13. Reset for clarity.

*  Fig. 13: this figure should work at full page width if you could increase the relative size
of the text.

Response:  This is now Fig. 14. Reset as requested.
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Referee: 1 (Christophe Hendrickx)

In their paper “Learning to see the wood for the trees: machine learning, decision trees and the 
classification of isolated theropod teeth”, Wills and colleagues introduce new techniques to identify 
isolated theropod teeth more accurately using quantitative data. According to these authors, 
machine learning and decision trees offer better alternatives over principle component (PCA) and 
discriminant analyses (DFA), which are the standard quantitative methodologies to identify theropod 
teeth. This is a very technical contribution to the world of dental identification and I admittedly got 
lost many times reading the text due to my limited knowledge of computer analysis (something 
probably shared with my colleagues working on theropod teeth). 

Consequently, I am unable to comment on the technicality of the paper and the robustness of the 
methods they present. Given their expertise, I, however, have little doubt that the new approaches 
presented by Wills and colleagues are sound and should be used in the future in combination with 
those used by most authors (i.e., DFA, cluster and cladistic analyses). That being said, I think that the 
paper can be presented in a less technical way and should certainly provide additional information 
on how to use these new methods in a much clearer and straightforward way for novices like me. I 
would, therefore, recommend the publication of this work with moderate revision, urging the 
authors to consider the following points before resubmitting their MS.

1)      As previously said, the main problem I have with this contribution is its technicality. Some 
sections, such as those explaining the random forests and C5.0 techniques, were particularly 
difficult to follow and after reading them several times, I am still not sure I understood them 
properly. I understand that these sections are needed but wonder if the authors can not make 
them less complex to read, or if they could not move any sections that are particularly technical to 
the appendices. The abstract, for instance, introduces many terms I have never heard before while 
this section should be written in a comprehensive way to anyone interested in the field (which is 
definitely my case). I would for instance suggest to precise what are the standard linear models 
(PCA and DFA for instance, something I understood later) and define in a brief way what are 
“machine learning”, “decision tree” and “posterior probabilities”. Otherwise, many readers will be 
lost from the very first lines of this paper. 

Response: We have added a glossary of terms to the Introduction and have added the new section 
(copied below) as a more general introduction to decision trees and random forests as this seemed 
to be the area causing most difficulty:

“Decision trees

The final methodologies we explore are a departure from the standard linear or non-linear families 
of classification models. Both random forests and C5.0 are decision tree-based techniques that 
expand on the seminal work of Breiman et al. (1984), which introduced classification and regression 
trees. 

Before exploring the detail of the two techniques it is useful to understand the basics of a decision 
tree. This is something we use in everyday life to make decisions based on a series of criteria. A 
simple example would be what train to catch to get to a certain destination preferably without 
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changing stations. In order to get to this decision we effectively run through a series of steps, each 
step is a question and the answer to the question dictates a path that the decision can follow. A 
suitable decision tree for such a choice is shown in Figure 1. Every decision tree is a nested hierarchy 
of questions and answers (if … then statements). For the example of catching a train to London 
Victoria station, the following hypothetical decision tree (one of many possible trees) might be 
followed:

If the final destination of the train is Brighton, then it is the wrong train

or

If the final destination of the train is London, and the station is London Bridge, then it is the wrong 
train

or

If the final destination of the train is London, and the station is Victoria, and it is a not direct train, 
then it is the wrong train

or

If then final destination of the train is London, and the station is Victoria, and it is a direct train, and 
it arrives between 08:00 and 08:15, then it is the correct train.

A decision tree is essentially a flowchart of questions or rules that leads down a path to a prediction. 
Data is inputted into the root node of the tree. The decision tree algorithm then progressively 
divides the data into smaller and smaller groups based on the splitting criteria until the point at 
which the dataset can either be split no more or it reaches a rule that orders the splitting to finish. 
Decision trees can either be regression trees where the predicted outcome is a value (e.g., a house 
price) or classification trees where the predicted outcome is categorical (e.g., a taxon). The concepts 
of decision trees and random forests are similar. A decision tree is effectively built upon the entire 
dataset to produce one tree. A random forest combines many decision trees into a single model, 
where each of the trees in the model is generated on random subsets of observations and variables. 

The major advantages of decision trees over techniques such as LDA or logistic regression are that: 
1) they can accommodate missing data; 2) there is no need for the data to conform to a normal 
distribution, as the techniques are non-parametric; 3) outliers have little effect on the final 
classification as they will rarely define a splitting node; 4) they can use both categorical and 
numerical data as predictor variables; and 5) transformed predictor variables (e.g. log transforms) 
have no effect on the tree structure (Feldesman 2002). A drawback with decision tree methods is 
that of overfitting the data. This is when a tree is grown that perfectly predicts the classification 
pattern of the training data by defining terminal nodes (or leaves) that fit particular idiosyncrasies of 
the training process, i.e. that are relevant to that particular dataset only. Tree-based methods are 
also prone to bias if some classes dominate the data and care needs to be taken to account for this 
prior to fitting. ”

Random Forests. Random forests (RF) is an ensemble learning method where a large number of 
uncorrelated decision trees are aggregated to form a final classification (Breiman 2001). This final 
classification is based either on an average of all the individual tree estimates (for regression trees) 
or a simple majority vote (for classification trees). The decision trees are built by randomly selecting 
predictors and observations to create individual trees. This random selection process increases the 
diversity in the forest and leads to a more robust prediction. Random predictors (i.e. variables) are 
used at each split in the tree which de-correlate the trees forming the forest. The number of 
predictors used is controlled by a parameter setting (mtry) which Kuhn and Johnson (2013) and 
Breiman (2001) recommend setting to the square root of the number of predictors. Random forest 
classifications are sensitive to the number of trees used to build the forest with error rates reducing 
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with increasing numbers of trees. Random forests tend to be stable and produce good predictive 
performance. However, they do have a number of disadvantages: even though some parameters are 
controllable, such as the number of trees or the number of predictors available at each split, the 
actual make up of each tree and therefore the forest is random and the forest itself (not the 
prediction) is less easy to interpret than a single decision tree; training a large number of trees can 
have higher computational overhead than a simple single decision tree.” 

2)      Because the main goal of this article is to introduce new techniques that the authors want 
people like me to use in the future, I strongly recommend them to provide, in the supplementary 
information, a modus operandi that precisely explains how to perform MDA, NB, RF and C5.0. This 
should include details on how the datamatrix has to be written and what steps to follow to get the 
final results. I am for instance surprised that the authors did not provide any files such as the R 
script and the different datamatrices used in their analysis. Please provide all these files and 
explain how they have to be used by authors who wish to use these new technique to identify 
theropod teeth. Likewise, the authors use two datasets to test the potential of each methodology 
to identify theropod teeth, but never explain what to do if one is interested in identifying a single 
theropod tooth.

Response: We have uploaded sample R-scripts to dryad which can be used with any data. We have 
included simple instructions in these files to allow other researchers to run the models. 

3)       The paper has a whole section dedicated to missing data but do not seem to tackle other 
issues inherent to the theropod dentition, i.e., heterodonty and dental similarity in closely related 
species. What I wish to know is how MDA, NB, RF and C5.0 are going to perform with larger 
dataset on theropod crown measurements, which will include a larger number of taxa, and teeth 
from a wider distribution along the jaw (i.e., more mesial and lateral teeth, which are quite 
different morphometrically). Will it increase or decrease the success rate of their techniques? 
Likewise, is it more interesting for these new methods to include a larger number of measurement 
variables such as the extension of the mesial carina and the crown length and width at mid-
crown? I always favored cladistic analysis based on a dentition-based datamatrix to identify 
isolated theropod teeth over any morphometric techniques using quantitative data mainly 
because I have the strong feeling that the more theropod crowns from a wider range of taxa and a 
wider distribution along the tooth row will be included in a dataset, the weaker any morphometric 
techniques will perform. It would be great if the authors could give their opinion on the matter in 
the discussion section. 

Response: We have expanded the Discussion to address these points, with the addition of the 
following text:

“Classification of isolated teeth in this manner will improve with better data, namely more cases 
per clade, to train the classifiers on. The careful addition of new measurement variables may 
also improve classification accuracies. As machine learning techniques have already been shown 
to be able to successfully classify taxa even with evolutionary convergence (e.g. Hoyal Cuthill et 
al., 2019) it is likely that even highly heterodont theropod clades and clades exhibiting dental 
morphological convergence could be accurately distinguished given the right amount of data 
and careful pre-processing of the data. It is probable that in some circumstances a combination 
of a dentition-based cladistic analysis and morphometric analysis may achieve the best results.”
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4)      If the conclusions summarize relatively well the results of their evaluation of the different 
techniques to classify isolated teeth the best possible way, I m still confused on the best methods 
to apply on large sized datasets of theropod crown measurements, i.e., those that in the future 
will include a large range of taxa with a wider distribution along the tooth row. Can the authors 
state precisely in the conclusion what are the morphometric techniques they recommend, 
following what procedure, under what precise conditions, favoring what measurement variables, 
and using what taxon-level grouping (i.e., species, genus, “subfamily-level”, “family-level”, or 
“superfamily-level” taxa). This will summarize the core of their paper and provide the information 
that everyone in the field really wants to know.

Response: We have expanded the Discussion and Conclusions to address this.

Addition to Discussion: 

“The taxon-level grouping that is chosen will have an impact on the overall accuracy of the 
model simply because this controls the number of cases per group which in turn impacts on the 
ability of the classifier to accurately describe that group. An attempt to classify at a species level 
where each species is described by (say) four individual teeth will be less accurate than a genus 
level classification where each genus is represented by several hundred teeth.”

Addition to Conclusion: 

“As a result of this study we would recommend the use of decision trees as an alternative 
approach to LDA.  The final aim of the analysis should guide the choice of random forest or C5.0. 
If the goal is to predict the taxon that a tooth falls into then random forests are a good choice. If 
the aim is to classify and to be able to see how the classification is built within the tree structure 
then C5.0 should be used. In practice we would recommend corroboration of any results by 
checking predictions with another technique, preferably via the use of ensemble classifiers. The 
use of such techniques on isolated theropod teeth demonstrates that high levels of predictive 
taxonomic accuracy are possible from simple qualitative data as long as care is taken to 
understand the structure of the data in question and the assumptions that various techniques 
require.”

I wish I could review in a better may the methodology followed and new techniques presented by 
the authors but my expertise simply prevent me to do so. I provided minor suggestions and 
corrections in a pdf of the MS. I mainly wish the authors to use, in some references, more recent 
works instead of papers published dozens of years ago. And I also believe that “xxx, et al. (year)” 
should be written “xxx et al. (year)” with no comma.

Response: We have revised the references where appropriate.

Line by line comments by reviewer 1 and our response to them can be found in the attached 
commented pdf file. 

Referee: 2 (Jennifer Hoyal Cuthill)
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I found this to be a well written, thorough and informative study testing some interesting methods 
and I support its publication with minor revisions to the text (detailed below).

My one qualm about the study, in response to which I would like to see a brief justification added to 
the introduction and/or discussion is in the basic approach to data selection. Why should anyone 
want to do machine learning on human-selected and presumably hand-measured (please clarify that 
point somewhere) morphometric data, when you could instead do machine learning and taxonomic 
classification directly on primary data such as photographs (e.g. Hoyal Cuthill et al 2019 Science 
advances 5.8 (2019): eaaw4967)? 

I can think of a couple of possible reasons, for example you might want to use morphometric 
measurements where there was a very strong a priori reason for studying a particular variable/s, or 
where it was essential that you know exactly which variables had contributed (and to what extent) 
to the classification or if data sample sizes were very strongly limited (which doesn’t seem to the 
case here as they seem to have quite a large sample of teeth), or as a first step in method-testing 
designed to make the process as comparable as possible to previous studies. However, these 
motivations seem to me in general like they would be pretty secondary given the enormous 
advantages of direct data analysis such as removing the necessity to have prior knowledge of 
informative variables and saving huge amount of human labour by fully automating the 
measurement and analysis process (Hoyal Cuthill et al 2019). 

Response: We have added a justification in the Methods and cited the relevant Hoyal Cuthill 
et al. (2019) paper.

Addition to Material and Methods:

“The datasets comprise human-selected and hand measured morphometric data rather than 
measurements derived from photographs or other digital sources of information (such as CT 
data) which are also used in machine learning classifications (e.g. Hoyal Cuthill et al., 2019). 
As such, it is inevitable that some degree of error will be introduced into the measurement 
process. However, given that the classification of isolated theropod teeth is a common 
requirement in vertebrate palaeontology, and the currently available datasets are all hand 
measured morphometric data we feel there is value in applying such techniques to this 
data.”

I note that I still think the authors have made a worthwhile contribution to method testing, but I 
think the MS would benefit from a brief, balanced explanation of when their methods might be 
useful and when they might not be.  

Response: We have expanded the discussion and conclusion sections to address this.

Addition to Discussion: 

“The taxon-level grouping that is chosen will have an impact on the overall accuracy of the 
model simply because this controls the number of cases per group which in turn impacts on the 
ability of the classifier to accurately describe that group. An attempt to classify at a species level 
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where each species is described by (say) four individual teeth will be less accurate than a genus 
level classification where each genus is represented by several hundred teeth.”

Addition to Conclusion: 

“As a result of this study we would recommend the use of decision trees as an alternative approach 
to LDA.  The final aim of the analysis should guide the choice of random forest or C5.0. If the goal is 
to predict the taxon that a tooth falls into then random forests are a good choice. If the aim is to 
classify and to be able to see how the classification is built within the tree structure then C5.0 should 
be used. In practice we would recommend corroboration of any results by checking predictions with 
another technique, preferably via the use of ensemble classifiers. The use of such techniques on 
isolated theropod teeth demonstrates that high levels of predictive taxonomic accuracy are possible 
from simple qualitative data as long as care is taken to understand the structure of the data in 
question and the assumptions that various techniques require.”

1. There seem to be a very large number of figures, most of which could probably be moved to 
supplementary material should space be an issue.

Response: as there has been no objection from the technical editor we have left these in.

Line by line comments:

2. Abstract: Could you briefly state the sample sizes somewhere in the abstract e.g. x 
morphometric measurements, from y teeth, from z specimens of b species.

Response: Done as below in abstract.

We chose two published datasets comprising 886 teeth from 14 taxa, and 3020 teeth from 
17 taxa each with five morphometric variables per tooth.

3. As I believe these morphometric data were taken from a published study could you note this in 
line 32 e.g. …published ‘morphometric data’. 

Response: Done

4. Please state/summarise the various method classification accuracies in the abstract.

Response: We have reworded part of the abstract (below) to add some information, but as 
the analyses were run over a wide range of scenarios and are summarised in Table 2 in the 
main text we do not think it appropriate to place all the results in the abstract.

“Our results suggest that machine learning and decision trees yield superior results over a 
wide range of data permutations with decision trees achieving accuracies of 96% in 
classifying test data in some cases.”

5. Intro, p2, lines 8-21. In the citations of demonstrated uses of machine leaning for classification 
tasks, no mention of automated taxonomic classification by phenotype is made, although this is 
directly relevant to this study, and the authors may find it helpful to cite our neontological 
precedent here:
Hoyal Cuthill, Jennifer F. et al. "Deep learning on butterfly phenotypes tests evolution’s oldest 
mathematical model." Science advances 5.8 (2019): eaaw4967).
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Response: Done

“The use of non-linear analytical techniques that draw upon the rapidly expanding field of machine 
learning and decision trees has remained mostly unexplored with respect to characterizing fossil 
vertebrate morphology (Monson et al. 2018). By contrast, other disciplines have rapidly embraced 
machine learning techniques to undertake classification, prediction and various modelling tasks 
(Christin et al. 2019). Applications range from ecological modelling (Džeroski 2001; Cutler et al. 
2007), population monitoring (Britzke et al. 2011), automated taxonomic classification by phenotype 
(Hoyal Cuthill et al., 2019), …”.

6. P5 line 3 ‘the algorithms employed in these analyses’ please list in brackets the specific 
algorithms referred to.

Response: rather than listing here (as we feel it breaks the flow), we have put a reference in 
to Table 1 which contains this information.

7. Lines 25-26 ‘pixel based data’ – photographs are a particularly obvious data choice for direct 
machine learning, is this what you mean by pixel-based data? It’s a slightly odd phrasing do you 
perhaps instead mean either photographs or secondary data generated from them? If so can you 
briefly unpack this.  

Response: we have changed this to 'digital images' rather than pixel-based data or 
photographs.

“Although we have employed these techniques on fairly simple morphometric 
measurements, there is no reason why the techniques discussed below could not be 
employed on more complex morphological datasets such as 3D-shape data or digital 
images.”

8. P 7 line 19, ‘ingest’? Slightly unusual word usage, maybe [use] instead.

Response: Done

9. P 9 line 58 and following page line 27. Can you clarify whether you did species level 
classifications or any other level below genus for at least one of the dataset.  In general, I would 
expect species to be a better level than genus for ML classification if the data are available 
(because it allows for the possibility of informative variation between species within a genus). 

Response: added an explanation 

We did not undertake a species-level analysis due to the lack of species-level data with 
enough complete cases. This has now been made clear in the text.

10. P 15 line 45 Please specify the taxonomic levels you refer to.

Response: Done

Using the Hendrick, et al. (2015) dataset we ran the classifiers at two taxonomic levels, the 
first a genus level with 32 classes and 680 cases and the second at a higher (family) 
taxonomic level with 14 classes and 886 cases.

11. P19 31 please briefly reiterate that you analyse morphometric measurements of teeth (i.e. not 
photographs or anything else) for any reader who goes straight to that section.

Response: Done
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“Our results demonstrate that the non-linear and machine learning techniques we applied to 
hand measured morphometric data of isolated theropod teeth classification consistently 
outperform LDA.”

12. P 21 line 9 please clarify what you mean by character versus qualitative data here. I was under 
the impression from the methods that all the data used were continuous, quantitative 
measurements. Correct? So what do you mean by qualitative data?

Response: This was a drafting error and qualitative should have read quantitative. We have 
corrected the relevant passage below to avoid confusion.

“Recent studies such as Hendrickx et al. (2019) suggest that apomorphic character-based 
morphological data is potentially a more useful tool for distinguishing isolated theropod 
tooth crowns than the use of morphometric data.”

13. Line 13-18 ‘We feel however that the careful application of machine learning techniques using 
the frameworks discussed in this study demonstrate that qualitative morphometric data can be a 
useful discriminator for the classification of isolated theropod teeth.’ Please rephrase this 
subjective statement to an objective summary of your results e.g. something like: However, we 
show that [whatever sort of] morphometric measurements can discriminate isolated theropod 
teeth with taxonomic accuracy up to y%.

Response: We have re-phrased this section as below

“However, we show that the careful application of machine learning techniques using the 
frameworks discussed in this study demonstrate that continuous quantitative morphometric 
data can also discriminate isolated theropod teeth with taxonomic accuracy of up to 96% in 
the specific data we used.”

14 .Line 25. I don’t believe your study in itself justifies your statement that the methods used 
could likely cope with convergence so you should either cut this or you could make a more general 
statement that ML methods have been shown to be able to successfully classify taxa even with 
evolutionary convergence e.g. Hoyal Cuthill et al 2019 which demonstrates successful subspecies 
classification of butterflies with extensive mimicry – however we used a different ML method of 
deep learning on photographs.

Response: We have re-phrased this section as below

“Classification of isolated teeth in this manner will improve with better data, namely more 
cases per clade, to train the classifiers on. The careful addition of new measurement 
variables may also improve classification accuracies. As machine learning techniques have 
already been shown to be able to successfully classify taxa even with evolutionary 
convergence (e.g., Hoyal Cuthill et al., 2019) it is likely that even highly heterodont theropod 
clades and clades exhibiting dental morphological convergence could be accurately 
distinguished given the right amount of data and careful pre-processing of the data. It is 
probable that in some circumstances a combination of a dentition-based cladistic analysis 
and morphometric analysis may achieve the best results.”
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The following new references have been added to the manuscript and are highlighted in the revised 
version.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. 2009b. Ensemble learning. In HASTIE, T., TIBSHIRANI, R. 
and FRIEDMAN, J. (eds). The elements of statistical learning. Springer-Verlag, New York,  745 pp.

HENDRICKX, C., TSCHOPP, E. and EZCURRA, M. D. 2020. Taxonomic identification of isolated 
theropod teeth: The case of the shed tooth crown associated with Aerosteon (Theropoda: 
Megaraptora) and the dentition of Abelisauridae. Cretaceous Research, 108, 104312. doi: 
10.1016/j.cretres.2019.104312

HOYAL CUTHILL, J. F., GUTTENBERG, N., LEDGER, S., CROWTHER, R. and HUERTAS, B. 2019. Deep 
learning on butterfly phenotypes tests evolution’s oldest mathematical model. Science Advances, 5, 
eaaw4967. doi: 10.1126/sciadv.aaw4967

KUHN, M. and JOHNSON, K. 2013b. Classification trees and rule-based models. In KUHN, M. and 
JOHNSON, K. (eds). Applied predictive modelling. Springer-Verlag, New York,  600 pp.

KUHN, M. and JOHNSON, K. 2013c. Measuring performance in classificaiton models. In KUHN, M. 
and JOHNSON, K. (eds). Applied predictive modelling. Springer-Verlag, New York,  600 pp. 

RIFFENBURGH, R. H. 2012. Chapter 19 - Modeling Concepts and Methods. In RIFFENBURGH, R. H. 
(ed.) Statistics in Medicine (Third Edition). Academic Press, San Diego,  690 pp.                                                                                                                                                      

SALZBERG, S. L. 1994. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann 
Publishers, Inc., 1993. Machine Learning, 16, 235–240.

VALIANT, L. 1984. A theory of the learnable. Communications of the ACM, 27, 1134–1142.
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