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Abstract

Motivation: We present flexible Modeling of Alternative PolyAdenylation (flexiMAP), a new beta-regression-based
method implemented in R, for discovering differential alternative polyadenylation events in standard RNA-seq data.

Results: We show, using both simulated and real data, that flexiMAP exhibits a good balance between specificity
and sensitivity and compares favourably to existing methods, especially at low fold changes. In addition, the tests
on simulated data reveal some hitherto unrecognized caveats of existing methods. Importantly, flexiMAP allows
modeling of multiple known covariates that often confound the results of RNA-seq data analysis.

Availability and implementation: The flexiMAP R package is available at: https://github.com/kszkop/flexiMAP.
Scripts and data to reproduce the analysis in this paper are available at: https://doi.org/10.5281/zenodo.3689788.

Contact: i.nobeli@bbk.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative polyadenylation (APA) is the selection of alternative
cleavage and polyadenylation sites during transcription of eukaryotic
genes, resulting in isoforms with distinct lengths. APA has been
shown to be prevalent in mammalian transcripts and alternative iso-
forms are linked to different stages of development, cell types and dis-
ease status (Elkon et al., 2013; Szkop et al., 2017). APA events can be
identified on a genome-wide scale using 30 end-focused sequencing
[e.g. QuantSeq (Moll et al., 2014)] or, more recently, long-read
sequencing [Iso-seq (Anvar et al., 2018) and nanopore-based sequenc-
ing (Garalde et al., 2018)]. However, as these methods are still not
widely used and many legacy transcriptome surveys were carried out
using standard RNA-seq sequencing instead, it would be useful to
have computational methods that can identify differential APA in
RNA-seq data. A few such methods exist already (Xia et al., 2014;
Grassi et al., 2016; Ha et al., 2018; Ye et al., 2018; Arefeen et al.,
2018) but they have caveats (Szkop and Nobeli, 2017). For example,
all methods must solve the problem of how to deal with biological
replicates; some test the replicates individually, losing the advantage
of having replicates in the first place; others, average values from rep-
licates, effectively losing track of the within-group variability. In
designing a method for differential APA analysis, we considered the
following: (i) the reconstruction and quantification of the individual
isoforms is both challenging and not strictly necessary for this task;

(ii) the errors in modeling RNA-seq read counts are neither normal
nor Poisson-distributed; (iii) multiple covariates can affect APA.

Inspired by the use of Generalized Linear Models (GLMs) in
differential gene expression (Robinson et al., 2010; Love et al., 2014)
we present here a regression-based method and associated pipeline
(flexible modeling of APA or flexiMAP) that satisfactorily addresses
the above requirements. We show, using simulated data, that the
method is both sensitive and specific across a range of fold changes
and numbers of samples and that its performance is superior to two
alternatives [DaPars (Xia et al., 2014), and APAtrap (Ye et al., 2018)]
in most tests we carried out. FlexiMAP is also outperforming both
these methods and Roar (Grassi et al., 2016), when additional covari-
ates confound changes to the isoform ratios. Tested on real RNA-seq
data, flexiMAP is slightly less specific than the other methods tested
but outperforms all methods when the Matthews Correlation
Coefficient is used as the measure of performance, indicating a better
overall balance between specificity and sensitivity.

The method is available as an R package from: https://github.
com/kszkop/flexiMAP

2 Materials and methods

Our method can be applied to all pairs of polyadenylation sites in a
gene, where one site is considered ‘distal’ (i.e. located furthest away
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from the end of the coding region) and one is ‘proximal’
(Supplementary Fig. S1). Given a list of sites provided to the pro-
gram, pairs of sites will be considered in turn, the most downstream
site of the transcript being the distal site in all pairs. The proximal
site separates the 30 UTR into two regions: the ‘short’ region, start-
ing at the end of the coding region and ending at the proximal site,
and the ‘long’ region starting at the proximal site and ending at
the end of the transcript (Supplementary Fig. S1). Assuming the
separation of samples into groups based on the condition of interest,
the question we want to answer is: given a total number of reads

falling in the 30 UTR, is the proportion of reads falling in the long
region dependent on the sample group membership?

We count RNA-seq reads falling in the ‘long’ and ‘short’ regions
of the 30 UTR (Nlong

ij and Nshort
ij, respectively), and define the ratio,

R, for gene i in sample j as:

Rij ¼
Nlongij

Nshortij þNlongij

(1)

Fig. 1. flexiMAP detects differential polyadenylation events with a good balance of specificity and sensitivity. (A) Receiver operating characteristic (ROC) curves representing

the accuracy of detecting differential APA events using flexiMAP, DaPars, APAtrap and Roar. DaPars and APAtrap make their own prediction of polyadenylation sites, not al-

ways agreeing with the annotated sites used in this study. To avoid inflating the error rate of these programs by including sites that do not map the annotation (and hence, dif-

ferential events called at these sites would be automatically considered as false positives), only transcripts where the polyadenylation site was correctly predicted by DaPars

and APAtrap are included in this plot. FlexiMAP clearly outperformed DaPars, APAtrap and Roar by perfect specificity and improved sensitivity in this simulated experiment.

Although application of the DaPars’ PDUI (Percentage of Distal polyA site Usage Index) post hoc filter (dark blue) and APAtrap’s PD (Percentage Difference) filter (dark red)

corrected the false positives problem of these methods, they did so at a heavy cost on sensitivity. (B) Venn diagram showing the overlap of ‘true’ differential polyadenylation

events in the MAQC samples PolyA-seq data (as called by DEXSeq; grey) with predictions from all four methods tested here: flexiMAP (orange), DaPars (light blue), APAtrap

(pink) and Roar (green). (C) Example from the imbalanced simulated dataset of a situation where a covariate of no interest (in this case, sex) affects the ratio of reads assigned

to short and long isoforms. Male samples display much higher expression of the short region of transcript NM_003613 compared with female ones, regardless of the condition

group samples belong to. In addition, the dataset is imbalanced, with more males present in condition 1 than condition 2. The mean expression for condition 1 is thus higher

than the mean for condition 2, but the effect is due to the covariate sex, not the condition to which the samples belong to. (D) DaPars, APAtrap and Roar report a large number

of false positives for an imbalanced simulated dataset. In contrast, flexiMAP reports only one false positive in this case, highlighting its main advantage over alternative

approaches
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Reads falling in the long region can only originate from
transcripts using the distal site, whereas reads falling in the short
region may come from transcripts using either the distal or the prox-
imal site. The ratio Rij is the proportion of reads falling in the long
region and is thus strictly contained in the interval [0,1]. We note
that the extreme value of zero is only encountered in the complete
absence of a long isoform, whereas values greater than 0.5 would be
observed only in cases where the long region is longer than the short
region, or where strong 30 biases in the read coverage are observed.

Our initial tests modeling APA events using logistic regression
with quasi-binomial error distribution (within the GLM framework)
showed that this approach was not sensitive enough for small num-
bers of samples or small fold changes. To allow more flexibility in
modeling errors, we adopted instead a model where the response
variable is assumed to be beta-distributed. This beta-regression
model was implemented using the betareg package in R (Cribari-
Neto et al., 2010). In addition, the quasi-binomial GLM is imple-
mented in our software and used for transcripts where the number
of reads falling in the long region is zero, as the ratio in these cases
falls outside the permitted values for modelling with beta regression.

Finally, our method incorporates two filtering steps to improve
accuracy, employing TIN (Transcript Integrity Number) values
(Wang et al., 2012, 2016) to filter on transcript integrity and remov-
ing transcripts with too few reads mapping to the short region
(see Supplementary Methods for details).

3 Results

We compared flexiMAP to three existing methods for APA analysis
[DaPars (Xia et al., 2014), Roar (Grassi et al., 2016) and APAtrap
(Ye et al., 2018)] using simulated data we produced with the polyes-
ter R package (Frazee et al., 2015) (see Supplementary Methods for
details). In these tests, our method is specific (none of the transcripts
with no APA events are predicted as having such events) and outper-
forms in sensitivity DaPars and APAtrap up to a fold change of four
(Fig. 1A, Supplementary Fig. S2). For larger fold changes, all meth-
ods appear to perform equally well. Surprisingly, the application of
post-detection filters recommended by the developers of both
DaPars and APAtrap appear to remove the majority of significant
events across all fold changes, which renders questionable the use-
fulness of these filters (Supplementary Fig. S2). In these simulations,
Roar is more sensitive than flexiMAP at small fold changes but it is
also the least specific, having the largest number of false positives of
all methods compared. We note that the performance of Roar is
dependent on the parameter value that controls the filtering of
significant events (nUnderCutoff; set here to 50%) and that the
specificity of the method can be improved by increasing this param-
eter, albeit at a great cost in sensitivity at low fold changes
(Supplementary Fig. S2).

All methods, including flexiMAP, were sensitive to the expres-
sion level of the transcript tested for differential polyadenylation
(Supplementary Fig. S3). APA events that were missed originated in
transcripts of lower overall expression but the beta-regression ap-
proach displayed improved sensitivity over all of the other methods,
except Roar. Unlike methods that average across samples from the
same condition, the performance of flexiMAP depends on the num-
ber of samples available in each group, as expected for a method
that needs to model the variance within each group (see
Supplementary Fig. S4). However, flexiMAP is much more sensitive
than the GLM-quasi-binomial method at small sample sizes (<6),
often encountered in RNA-seq datasets. Finally, flexiMAP’s sensitiv-
ity does not seem to be affected by the length of the 30 UTR
(Supplementary Fig. S5).

Although simulated datasets are important for benchmarking
tests, eventually methods are only useful if they can be applied to
real data. The dataset we used here is the same used by both DaPars
and APAtrap in their respective publications and contains RNA-seq
data from the Human Brain Reference and the Universal Human
Reference MAQC samples (Bullard et al., 2010). 30 sequencing data
(PolyA-seq) for the same samples was downloaded from the UCSC
genome browser [processed with an independent method, DEXSeq

(Anders et al., 2012), to call the ‘true’ differential polyadenylation
events, as described in Supplementary Methods]. The results of
applying all methods to this dataset (Fig. 1B) demonstrate that all
four miss a large number of events called by DEXseq but flexiMAP
is the most sensitive method as well as the one with the highest
Matthews Correlation Coefficient [MCC; 0.27 for flexiMAP as
compared with 0.23 (Roar), 0.15 (APAtrap) and 0.1 (DaPars)].
FlexiMAP’s specificity is lower in this dataset compared with other
methods but remains over 0.9. Given these results, we believe that
although filters or more conservative cut-offs for significance could
reduce the number of false positive events called by flexiMAP, they
may only be useful in practice when very high specificity is required.

The development of flexiMAP was primarily driven by the need to
model multiple known covariates in APA analysis. Indeed, flexiMAP
successfully discriminates between the effect of the condition of inter-
est and that of an additional covariate in a simple simulated scenario
of imbalanced datasets, where APA originates from the sex attribute
of the samples rather than the condition of interest (Fig. 1C and D).
Similar results are obtained with a more complex simulated dataset
with two covariates (see description in Supplementary Methods and
results in Supplementary Fig. S6). Clearly, this is still an artificially
simple scenario and one would expect more false positives in real data
where at least some of the batch effects might be unknown and hence
not included in the modelling. In addition, many real RNA-seq data-
sets still do not have enough samples to allow successful modelling of
multiple covariates so flexiMAP’s accuracy as measured in these simu-
lations is likely to be lower with real data. However, it is clear that
methods that are not designed to take into account multiple covariates
will naturally misinterpret the origin of the variation, resulting in
increased false positive rates.

4 Conclusion

We presented here flexiMAP, a beta-regression-based method for
detecting APA events in RNA-seq data, given a list of putative poly-
adenylation sites. Our method is both sensitive and specific, even
when small numbers of samples are used, and has the distinct advan-
tage of being able to model contributions from known covariates
that would otherwise confound the results of APA analysis.
FlexiMAP compares favourably with existing alternatives in tests
involving simulated datasets. Importantly, these tests have high-
lighted some hitherto overlooked caveats of existing methods. Real
datasets remain a challenge for all methods, not least because it is
difficult to define objectively the ground truth, but flexiMAP is still
outperforming other methods, when both specificity and sensitivity
are taken into account using the Matthews Correlation Coefficient.
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