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Abstract

The problem of assessing symmetry about an unspecified center of the one-dimensional

marginal distribution of strictly stationary random processes is considered. A well-known

U -statistic based on data triples is used to detect deviations from symmetry, allowing the

underying process to satisfy suitable mixing or near-epoch dependence conditions. We

suggest using subsampling for inference on the target parameter, establish the asymptotic

validity of the method in our setting, and discuss data-driven rules for selecting the size of

subsamples. The small-sample properties of the proposed inference procedures are exam-

ined by means of Monte Carlo simulations and an application to time series of real output

growth is also presented.
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1 Introduction

Assessing whether a probability distribution is symmetric about a specified or unspecified

center is a problem that has attracted considerable attention. This is not surprising in view

of the fact that symmetry plays a fundamental role in many statistical inference and model

identification procedures. A variety of nonparametric and robust inference procedures rely

heavily on the (often untested) assumption of symmetry and tend to perform rather poorly

under deviations from this assumption (see, e.g., Staudte and Sheather (1990)). Symmetry

is also important in terms of the definition and estimation of location since the center of

symmetry of a distribution is its only natural location parameter – and is a location pa-

rameter that can be estimated robustly or even adaptively (see, e.g., Beran (1978)). Some

well-known problems, such as, for instance, detecting time-reversibility of a random process

(Chen et al. (2000), Psaradakis (2008)) or evaluating the lack of a treatment effect through

paired comparisons (e.g., Lehmann and Romano (2005, Sec. 6.8)), may be reduced to that of

assessing distributional symmetry of appropriately transformed data. In the context of sta-

tistical model building, detecting possible deviations from symmetry of the one-dimensional

marginal distribution of the data is a useful model checking tool since asymmetry implies that

certain families of parametric models are not valid candidate models. For example, the use

of linear autoregressive moving average (ARMA) models or nonlinear Markovian models with

skew-symmetric autoregressive functions (Pemberton and Tong (1981)), whose independent

and identically distributed (i.i.d.) driving noise has a symmetric distribution, is inappropriate

when the marginal distribution of the underlying random process is asymmetric. Assessing

symmetry may also be useful as a way of evaluating the empirical validity of different hy-

potheses and theoretical models to the extent that the latter rely on or imply distributional

symmetry, as is the case, for example, with many option and asset pricing models, rational

expectations models, and dynamic stochastic general equilibrium models found in the eco-

nomics and finance literature. Psaradakis (2016) provides examples from this literature in

which the question of whether or not the marginal distribution of economic and financial time

series is symmetric is of theoretical interest.
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The present paper focuses on assessing symmetry of the one-dimensional marginal dis-

tribution of dependent data. Specifically, we consider using a U -statistic involving triples of

observations to detect deviations from symmetry, without specifying or estimating the center

of symmetry. Such statistics, which may be thought of as estimators of a measure of skewness

of the underlying distribution, have been previously used by Davis and Quade (1978) and

Randles et al. (1980) to develop tests for symmetry under the assumption that the observed

data are realizations of i.i.d. random variables. Our objective in this paper is to extend

triples-based procedures to the case of strictly stationary sequences of weakly dependent ran-

dom variables, thus expanding considerably the range of data sets with which such procedures

may be validly used.

Alternative approaches to detecting asymmetry of the marginal distribution of depen-

dent data (in the case of an unspecified location) include, among others, approaches based

on moment conditions (Bai and Ng (2005), Psaradakis (2016)), distribution distance mea-

sures (Psaradakis (2003), Maasoumi and Racine (2009)), the characteristic function (Leucht

(2012)), and order statistics (Psaradakis and Vávra (2015)). In a recent study, Psaradakis

and Vávra (2019) investigated the properties of tests for symmetry based on some of these

approaches, as well as of tests which have been designed for i.i.d. data. As a way of ro-

bustifying tests to deviations from the assumption of independence and/or controlling their

levels for a fixed sample size, they explored the possibility of using resampling procedures

appropriate for dependent data to construct critical regions for the tests. In a comparison of

twenty well-known tests for symmetry, the majority of them developed under i.i.d. conditions,

a bootstrap-assisted version of a test based on a U -statistic involving data triples was found

to be a serious competitor to all other tests in the presence of serial correlation in the data,

providing the best overall performance in terms of finite-sample level accuracy and power.

The analysis of Eubank et al. (1992), under i.i.d. assumptions, also suggests that the triples

test is the test of choice against unimodal asymmetric alternatives. The focus in the present

paper on triples-based inference procedures is motivated in part by these findings.

Under suitable regularity conditions, the triples U -statistic is shown to have a Gaussian

asymptotic distribution for a large class of strictly stationary random processes that includes

absolutely regular processes, strongly mixing processes, and near-epoch dependent function-

als of absolutely regular processes. However, unless the infinite-dimensional distributions of
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such processes are fully specified, the asymptotic variance of the triples statistic is unknown.

Rather than relying on the Gaussian asymptotic approximation for inference purposes, we

suggest to use the model-free subsampling methodology of Politis and Romano (1994a) to

approximate the distribution of the triples U -statistic, estimate its asymptotic variance, and

construct confidence intervals and/or hypothesis tests for the target parameter. The basic

idea of subsampling is to treat overlapping blocks of adjacent observations as replicates of the

original data structure, compute the statistic of interest (in our case the triples U -statistic)

over such ‘subsamples’, and use the subsample replicates of the statistic to approximate its

distribution or estimate its variance nonparametrically. As is clear from the thorough review

of subsampling by Politis et al. (1999), the method has wide applicability, is easy to implement

in practice, and its asymptotic validity often requires little more than the statistic of interest

having a nondegenerate asymptotic distribution (when suitably normalized).

The remainder of the paper is organized as follows. Section 2 introduces the U -statistic

based on triples and obtains its asymptotic distribution for large classes of weakly dependent

random processes. Section 3 details how subsampling may be used to construct confidence

intervals and/or hypotheses tests for the parameter of interest, establishes the asymptotic

validity of the method, and discusses data-driven rules for selecting the subsample size. Sec-

tion 4 examines the finite-sample properties of the proposed inference procedures by means

of Monte Carlo experiments. Section 5 presents a real-data example. Section 6 summarizes

and concludes. Proofs are collected in Appendix A.

2 Triples Statistic and its Asymptotic Distribution

Let Xn := {X1, X2, . . . , Xn}, n ∈ N, be an observable segment of a real-valued, strictly

stationary random process X := {Xt, t ∈ Z} with continuous one-dimensional distribution

function F (x) := P(X0 6 x), x ∈ R. The objective is to assess whether F is symmetric about

some unspecified centre µ ∈ R, that is,

F (µ− x) + F (µ+ x) = 1, x ∈ R, (1)

or, equivalently, that X0−µ and µ−X0 are identically distributed. (As usual, R, Z, N0, and

N are used throughout to denote the sets of real numbers, integers, nonnegative integers, and
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positive integers, respectively).

Similarly to Randles et al. (1980), we consider identifying departures from (1) by means

of the U -statistic

Tn :=
6

n(n− 1)(n− 2)

∑∑∑
16t1<t2<t36n

ψ(Xt1 , Xt2 , Xt3), n > 3,

with kernel ψ : R3 → R given by

ψ(x1, x2, x3) := 1
3 {sgn(x1 + x2 − 2x3) + sgn(x1 + x3 − 2x2) + sgn(x2 + x3 − 2x1)} ,

where sgn(x) := x−1 |x| for x 6= 0 and sgn(0) := 0. An equivalent formulation was considered

by Davis and Quade (1978). If X is an i.i.d. sequence, then E(Tn) = E[ψ(X1, X2, X3)] = 0

whenever F satisfies (1).

In the sequel, we relax the independence assumption maintained in Davis and Quade

(1978) and Randles et al. (1980), and allow X to be a weakly dependent process satisfying

suitable mixing conditions. As measures of the degree of dependence, we use the Rozanov–

Volkonskii coefficients of absolute regularity

β(k) := E

(
sup
A∈F∞k

∣∣P(A|F0
−∞)− P(A)

∣∣) , k ∈ N,

and Rosenblatt’s strong-mixing coefficients

α(k) := sup
(A′,A)∈F0

−∞×F∞k

∣∣P(A′ ∩A)− P(A′)P(A)
∣∣ , k ∈ N,

where F0
−∞ and F∞k denote the σ-fields generated by {Xt, t 6 0} and {Xt, t > k}, respectively.

The (strictly stationary) process X is said to be absolutely regular if β(k) → 0 as k → ∞,

and strongly mixing if α(k)→ 0 as k →∞. Under suitable conditions, the strictly stationary,

causal solutions of many commonly used time-series models are known to be absolutely regular

or strongly mixing (often with geometrically decaying mixing coefficients); examples include

ARMA models, nonlinear models with an ergodic Markovian structure, linear state space

models, autoregressive conditionally heteroskedastic models, and stochastic volatility models

(see, e.g., Doukhan (1994, Sec. 2.4)). Because β(k) > 2α(k) for all k ∈ N, if X is absolutely

regular, then it is also strongly mixing (and, hence, ergodic). The case where X is a q-

dependent process, for some q ∈ N0, is a special case in which β(k) = α(k) = 0 for all

k > q.
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In addition to absolutely regular and strongly mixing processes, we also consider the

case where X is a near-epoch dependent (two-sided) functional of a mixing sequence. More

specifically, for a real-valued, strictly stationary random process V := {Vt, t ∈ Z} and a

measurable function f : RZ → R, let X be such that Xt = f({Vt+j , j ∈ Z}) for each t ∈ Z.

If X0 is integrable and there exists a sequence of nonnegative constants {ξ(m),m ∈ N0} such

that ξ(m)→ 0 as m→∞ and

E(|X0 − E(X0|Gm−m)|) 6 ξ(m), m ∈ N0,

where Gm−m denotes the σ-field generated by {Vt,−m 6 t 6 m}, then X is said to be near-epoch

dependent on V (in L1-norm), or an 1-approximating functional of V, with approximation

constants {ξ(m)}. Restricting f in this fashion so that it can be sufficiently well approximated

by a finite-variate function is an idea that goes back to Ibragimov (1962). Under suitable reg-

ularity conditions, the strictly (and/or second-order) stationary, causal solutions of many

time-series models are near-epoch dependent, including ARMA models, autoregressive condi-

tionally heteroskedastic models, nonlinear autoregressive models, and nonlinear models that

admit a Volterra series expansion, as are observables that arise in many dynamical systems

(see Borovkova et al. (2001) and Davidson (2002), inter alia). Near-epoch dependence has

the advantage of holding in cases where absolute regularity or strong mixing may not. For

example, a causal linear process with absolutely summable coefficients and zero-mean i.i.d.

noise is near-epoch dependent on the noise sequence; in comparison, absolute regularity ad-

ditionally requires the process to be invertible and the one-dimensional marginal distribution

of the noise to admit a sufficiently smooth Lebesgue density (cf. Doukhan (1994, Theorem 2,

p. 79)). In what follows, {β̃(k), k ∈ N} denote the coefficients of absolute regularity of the

underlying process V (defined analogously to those of X), and it is assumed that β̃(k) → 0

as k →∞ at an appropriate rate. Hence, the near-epoch dependent process X is ergodic and

strictly stationary but need not be absolutely regular or strongly mixing.

In view of the boundedness of the kernel ψ, the strong law of large numbers for U -

statistics due to Aaronson et al. (1996, Theorem U) ensures that, under absolute regularity

of X, Tn is a strongly consistent estimator for the parameter

θ := E[ψ(Y1, Y2, Y3)] = P(Y1 + Y2 − 2Y3 > 0)− P(Y1 + Y2 − 2Y3 < 0),
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where Y1, Y2, Y3 are independent random variables, independent of X, with common distri-

bution function F . This is also true if X is strongly mixing or near-epoch dependent on an

absolutely regular process, provided F is such that the points of discontinuity of ψ form a

negligible set with respect to the distribution of the vector (Y1, Y2, Y3). Note that Tn is not nec-

essarily unbiased for θ in the presence of dependence; for example, E(Tn) = θ+O((9n)−1/2) if

β(k) = O(k−%) for some % > 1 (cf. Han (2018, Theorem 3.2)). The expectation of ψ(Y1, Y2, Y3)

may be thought of as a measure of skewness for F . Although θ = 0 does not necessarily imply

symmetry of F , θ = 0 for any F satisfying (1).

In order to consider the asymptotic distribution of Tn, it is useful to define a function

ψ1 : R→ R by

ψ1(x) := E[ψ(x, Y2, Y3)]− θ =

∫ ∞
−∞

∫ ∞
−∞

ψ(x, y2, y3)dF (y2)dF (y3)− θ,

and put

τ :=

∞∑
h=−∞

Cov[ψ1(X0), ψ1(Xh)].

The two-sided series above is convergent to some τ > 0 under appropriate conditions on F

and on the dependence structure of X. Such conditions can be found in Theorem 1 below,

which gives the limiting distribution (as n → ∞) of the centered and normed transform

Sn :=
√
n(Tn − θ). Summability of the coefficients of absolute regularity of X is sufficient

for Sn to be asymptotically normal. Under the weaker strong-mixing condition, a suitable

polynomial rate of decay of the mixing coefficients, finiteness of some related absolute moment

of F , and some smoothness of ψ with respect to F are required. More specifically, it will be

assumed that there exist positive constants M , M ′, κ0 and κ′0 such that, for every κ ∈ (0, κ0)

and κ′ ∈ (0, κ′0), and any triple of integers (t1, t2, t3) such that −∞ < t1 < t2 < t3 <∞,

E

(
sup

‖(x1,x2,x3)−(Y1,Y2,Y3)‖6κ
|ψ(x1, x2, x3)− ψ(Y1, Y2, Y3)|

)
6Mκ, (2)

E

(
sup

|xt1−X
′
t1
|6κ′

∣∣ψ(xt1 , Xt2 , X
′
t3)− ψ(X ′t1 , Xt2 , X

′
t3)
∣∣) 6M ′κ′, (3)

E

(
sup

|xt1−X
′
t1
|6κ′

∣∣ψ(xt1 , Xt2 , Xt3)− ψ(X ′t1 , Xt2 , Xt3)
∣∣) 6M ′κ′, (4)

where ‖·‖ denotes the Euclidean vector norm and {X ′t, t ∈ Z} are i.i.d. random variables that

are independent of X and have distribution function F . The regularity conditions (2)–(4) are
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analogous to the variation conditions of Denker and Keller (1986) and may be understood

as a form of Lipschitz continuity of ψ with respect to the distribution of X0 (cf. Fischer

et al. (2016)). These variation conditions are also required under near-epoch dependence,

along with suitable polynomial rates of decay for the approximation constants and for the

coefficients of absolute regularity of the basis process.

Theorem 1. Suppose one of the following sets of conditions is satisfied:

(i) X is absolutely regular with
∑∞

k=1 β(k) <∞;

(ii) X is strongly mixing, E(|X0|γ) < ∞ for some γ > 0, α(k) = O(k−η) for some η >

(2γ + 1)/γ, and (2)–(4) hold;

(iii) X is near-epoch dependent on an absolutely regular process V, β̃(k) = O(k−ν) and

ξ(m) = O(m−ν−2) for some ν > 1, and (2)–(4) hold.

Then, if τ > 0, Sn/σ → N (0, 1) in distribution as n→∞, where σ := 3
√
τ .

Remark 1. As an absolutely regular process may be considered to be near-epoch dependent

on itself, with ξ(m) = 0 for all m ∈ N0, part (iii) of Theorem 1 contains a version of part

(i). The reason for considering the absolutely regular case separately is that the central limit

theorem for Tn can be obtained under weaker conditions than it is possible under the more

general assumption of near-epoch dependence.

If τ = 0 under the conditions of Theorem 1, then it is easily verified that Sn → 0 in

probability as n → ∞. In the nondegenerate case where τ > 0, although the distribution of

Sn is asymptotically normal, inference about the parameter θ based on hypotheses tests or

confidence sets is complicated by the fact that the asymptotic variance σ2 is unknown and

depends on the correlation structure of the underlying process X. We discuss next how these

difficulties may be overcome by using suitable nonparametric estimators based on subsamples.

3 Subsampling-Based Inference

In this Section, we consider the use of subsampling to estimate the distribution function and

asymptotic variance of Sn and to construct confidence intervals (and hypotheses tests) for θ.
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We establish the asymptotic validity of subsampling in our setting and discuss data-driven

procedures for selecting the subsample size.

3.1 Subsampling Estimators and Asymptotic Validity

For a fixed sample size n and an integer ` := `(n) satisfying n > ` > 3, let

T`,i :=
6

`(`− 1)(`− 2)

∑∑∑
i6t1<t2<t36i+`−1

ψ(Xt1 , Xt2 , Xt3), i ∈ {1, 2, . . . , n− `+ 1},

so that, for each i, T`,i is a replicate of Tn based on the subsample {Xi, Xi+1, . . . , Xi+`−1}. The

subsampling estimator of the distribution function of Sn is given by the empirical distribution

function associated with
√
`(T`,1 − Tn), . . . ,

√
`(T`,n−`+1 − Tn), i.e., by

Hn,`(x) :=
1

n− `+ 1

n−`+1∑
i=1

1
{√

`(T`,i − Tn) 6 x
}
, x ∈ R,

where 1{A} denotes the indicator of A. The asymptotic variance of Sn may be estimated by

σ̂2
n,` :=

∫ ∞
−∞

x2dHn,`(x)−
(∫ ∞
−∞

xdHn,`(x)

)2

=
`

n− `+ 1

n−`+1∑
i=1

T 2
`,i − `

(
1

n− `+ 1

n−`+1∑
i=1

T`,i

)2

.

These estimators are consistent under suitable dependence conditions, provided the

subsample size ` diverges to infinity with n but does so more slowly than n. The following is

true when X is absolutely regular or strongly mixing.

Theorem 2. Suppose conditions (i) or (ii) of Theorem 1 are satisfied, n−1`(n) + `(n)−1 → 0

as n→∞, and τ > 0. Then: (a) supx∈R |Hn,`(x)− P (Sn 6 x)| → 0 in probability as n→∞;

(b) σ̂2
n,` → σ2 in probability as n→∞.

Remark 2. Without invoking the asymptotic normality of Sn in Theorem 1, it can be shown

that σ̂2
n,` → σ2 in quadratic mean as n→∞, provided α(k)→ 0 as k →∞, E(S2

n)→ σ2 > 0

as n → ∞, {S4
n, n > 3} is uniformly integrable, and n−1`(n) + `(n)−1 → 0 as n → ∞ (cf.

Fukuchi (1999, Theorem 1(a))).

The subsampling estimators Hn,` and σ̂2
n,` are also consistent when X is near-epoch

dependent on an absolutely regular process, as long as, for every fixed x ∈ R, the indicator
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random variables U`,i(x) := 1{S`,i 6 x}, i ∈ {1, 2, . . . , n− `+ 1}, are such that

1

n− `+ 1

n−∑̀
h=0

|Cov[U`,1(x), U`,1+h(x)]| → 0 as n→∞, (5)

where S`,i :=
√
`(T`,i− θ) is a replicate of Sn based on the subsample {Xi, Xi+1, . . . , Xi+`−1}.

Theorem 3. Suppose conditions (iii) of Theorem 1 are satisfied, n−1`(n) + `(n)−1 → 0 as

n→∞, (5) holds, and τ > 0. Then, the conclusions of Theorem 2 hold true.

Remark 3. Condition (5) requires the autocovariances of the subsample quantities {U`,i(x)},

viewed as a process indexed by i, to be strongly Cesàro-convergent to zero. Since near-epoch

dependence is not necessarily preserved by measurable transformations, obtaining sufficient

conditions for (5) in terms of more primitive conditions on the near-epoch dependence char-

acteristics of X is not as straightforward as it is under strong-mixing or absolute regularity.

However, if the subsample replicates {T`,i, 1 6 i 6 n − ` + 1} of Tn, viewed as a process in-

dexed by i, retain the near-epoch dependence on V, then, for a fixed ` and each fixed x ∈ R,

{U`,i(x)} is itself near-epoch dependent on V, provided the indicator functions of intervals

(−∞, x] in R satisfy some suitable continuity condition with respect to the distribution of

S`,1. It suffices, for example, to assume that the indicator function of (−∞, x] satisfies, uni-

formly in x ∈ R, an 1-continuity condition (cf. Borovkova et al. (2001, Proposition 2.11))

or a variation condition (cf. Wendler (2011, Lemma 3.5)) with respect to the distribution

of S`,1; these conditions hold under continuity and Lipschitz continuity, respectively, of the

distribution function of S`,1. The covariance inequality in Lemma 2.18(i) of Borovkova et al.

(2001) then ensures that |Cov[U`,1(x), U`,1+h(x)]| → 0 as h → ∞, from which (5) follows by

the convergence lemma of Cesàro sums.

Theorems 2 and 3 justify the use of quantiles of Hn,` to construct asymptotically cor-

rect subsampling confidence intervals for θ. More specifically, for any given δ ∈ (0, 1), an

(approximate) level-(1− δ) equal-tailed, two-sided confidence interval for θ is given by

C(1)
n,`(δ) :=

[
Tn − n−1/2H−1

n,`(1− δ/2), Tn − n−1/2H−1
n,`(δ/2)

]
, (6)

where ϕ−1(u) := inf{x : ϕ(x) > u} for an arbitrary nondecreasing function ϕ : R → [0, 1].

Alternatively, an (approximate) level-(1 − δ) symmetric, two-sided confidence interval for θ
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can be obtained as

C(2)
n,`(δ) :=

[
Tn − n−1/2H̄−1

n,`(1− δ), Tn + n−1/2H̄−1
n,`(1− δ)

]
, (7)

where H̄n,` is the subsampling estimator of the distribution function of |Sn| given by

H̄n,`(x) :=
1

n− `+ 1

n−`+1∑
i=1

1
{√

` |T`,i − Tn| 6 x
}
, x ∈ [0,∞).

Symmetric confidence intervals are known to enjoy improved coverage in many circumstances

and can be shorter than equal-tailed confidence intervals (see Politis et al. (1999, Ch. 10)).

The following result shows that the subsampling confidence intervals defined in (6) and

(7) have asymptotically correct coverage.

Corollary 1. Suppose the assumptions of Theorem 2 or Theorem 3 are satisfied. Then, for

any δ ∈ (0, 1) and s ∈ {1, 2}, P(C(s)
n,`(δ) 3 θ)→ 1− δ as n→∞.

Another possibility for constructing a confidence interval for θ is to rely on the sub-

sampling variance estimator σ̂2
n,` and the Gaussian asymptotic approximation to the distri-

bution of Sn, exploiting the fact that, under the conditions of Theorem 2 or Theorem 3,

Sn/σ̂n,` → N (0, 1) in distribution as n → ∞. A two-sided confidence interval for θ, with

asymptotic coverage 1− δ, may thus be obtained as

C(3)
n,`(δ) :=

[
Tn + n−1/2σ̂n,`Φ

−1(δ/2), Tn − n−1/2σ̂n,`Φ
−1(δ/2)

]
, (8)

where Φ denotes the distribution function of a N (0, 1) random variable.

Remark 4. An alternative estimator of σ2 that may be used in place of σ̂2
n,` to construct a

‘Gaussian’ confidence interval like (8) is

σ̃2
n,ω := 9

n−1∑
h=1−n

K(ω−1 |h|)

n−1

n−|h|∑
t=1

ψ̃1(Xt)ψ̃1(Xt+|h|)

 ,

where K : [0,∞) → R is a bounded weight function with K(0) = 1, ω := ω(n) > 0 is a

bandwidth parameter such that n−1/2ω(n) + ω(n)−1 → 0 as n→∞, and ψ̃1 is the empirical

analogue of ψ1 given by

ψ̃1(x) := n−2
n∑

t2=1

n∑
t3=1

ψ(x,Xt2 , Xt3)− n−3
n∑

t1=1

n∑
t2=1

n∑
t3=1

ψ(Xt1 , Xt2 , Xt3), x ∈ R.
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Estimators of this type were shown by Dehling et al. (2017) and Fischer (2017) to be consistent

(under near-epoch dependence conditions stronger than those in Theorem 1). Their practical

use requires an appropriate choice of bandwidth ω for a fixed sample size n, a problem not

too dissimilar to choosing the subsample size ` for the estimator σ̂2
n,`. Since we are interested

in subampling-based inference on θ, we will not consider weighted-autocovariances estimators

like σ̃2
n,ω here.

Remark 5. (i) Although our discussion focuses primarily on confidence intervals for θ (be-

cause, unlike tests, they are informative about the degree of uncertainty associated with a

point estimate of θ), tests of hypotheses about θ can be easily constructed using (6), (7)

and (8). By the familiar duality between hypothesis tests and confidence sets, an asymp-

totically level-δ equal-tailed test for testing the null hypothesis θ = 0 versus the alternative

θ 6= 0 rejects if, and only if, C(1)
n,`(δ) does not contain zero, i.e., if

√
nTn < H−1

n,`(δ/2) or
√
nTn > H−1

n,`(1−δ/2). Similarly, an asymptotically level-δ symmetric test rejects if, and only

if, zero is not a member of C(2)
n,`(δ), i.e., if

√
n |Tn| > H̄−1

n,`(1 − δ). The asymptotically level-δ

test corresponding to C(3)
n,`(δ) rejects when

√
n |Tn/σ̂n,`| > Φ−1(1− δ/2).

(ii) A test of θ = 0 versus θ 6= 0 is viewed in Davis and Quade (1978) and Randles et al.

(1980) as a test of the symmetry hypothesis (1) against a general asymmetric alternative

corresponding to F (µ − x0) + F (µ + x0) 6= 1 for some x0 ∈ R. However, since θ = 0 is

necessary but not sufficient for (1) to hold, a test that rejects for large values of |Tn| has

nontrivial power only against alternatives for which θ 6= 0. The difficulty remains when

confidence intervals for θ are used to assess deviations from (1). Randles et al. (1980) argue

that the class of asymmetric distributions for which θ = 0 is small.

3.2 Choice of Subsample Size

An important issue that arises in the use of subsampling techniques in practice is the selection

of a reasonable subsample size ` := `(n) for a given sample size n, a problem akin to that of

selecting the block length for blockwise bootstrap methods (see, e.g., Lahiri (2003, Ch. 7)).

The choice of ` matters because the size of subsamples can affect significantly the perfor-

mance of subsampling estimators in finite samples. Unfortunately, the asymptotic results in

Theorems 2 and 3 give no guidance for the selection of an appropriate subsample size beyond
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the non-restrictive requirement that it grows at a slower rate than n. To circumvent this

difficulty, we consider here two data-driven methods for choosing a subsample size `∗ := `∗(n)

from a collection of candidate subsample sizes Λn := {` ∈ N : 2 < `1(n) 6 ` 6 `2(n) < n},

based on the discussion in Politis et al. (1999, Sec. 9.3), namely a ‘calibration’ method and a

‘minimum volatility’ method.

The basic idea behind the calibration method is to adjust the subsample size so that a

subsampling confidence interval of a fixed nominal level has coverage probability close to the

nominal level in a sample of a given size. The procedure is described formally in Algorithm 1.

Algorithm 1 (Calibration).

1.1 For a largeB ∈ N and some 1 6 l < n, generate pseudo-samples X∗bn := {X∗bn,1, . . . , X∗bn,n},

b = 1, . . . , B, of size n by means of a block-resampling scheme based on Xn, with (ex-

pected) block length l.

1.2 For a given δ ∈ (0, 1), each b ∈ {1, . . . , B} and each ` ∈ Λn, construct a level-(1 − δ)

subsampling confidence interval [I∗bn,`,1, I
∗b
n,`,2] for θ using X∗bn in place of Xn.

1.3 For each ` ∈ Λn, compute π̂n(`) := B−1
∑B

b=1 1{I∗bn,`,1 6 Tn 6 I∗bn,`,2}.

1.4 Set `∗ = arg min`∈Λn |π̂n(`)− (1− δ)|.

There are several block-resampling schemes that may be used to construct pseudo-

samples X∗bn from a model-free approximation to the distribution of Xn (see, e.g., Lahiri

(2003, pp. 25–36)). These are required in order to obtain an estimate π̂n of a calibration

function ` 7→ πn(`), where πn(`) is the coverage probability of a confidence interval for θ

with nominal level 1 − δ based on subsamples of size `. In Sections 4 and 5, we rely on the

resampling scheme associated with the stationary bootstrap of Politis and Romano (1994b).

This amounts to constructing X∗bn from overlapping blocks of adjacent observations from the

periodically extended sequence {Xt(mod n), t ∈ N}, with X0 = Xn, the random length of each

block being geometrically distributed with mean l. Unlike other block-resampling schemes,

the stationary bootstrap produces pseudo-observations X∗bn that are stationary (conditionally

on Xn) and is less sensitive to misspecification of the (expected) block length. The asymptotic

validity of the stationary bootstrap for U -statistics (of degree 2) was established by Hwang
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and Shin (2015) under strong-mixing conditions. In the implementation of the procedure, we

set l−1 = min{|2ρ̂n/(1 − ρ̂2
n)|−2/3n−1/3, 0.99}, where ρ̂n is the lag-1 sample autocorrelation

of Xn (cf. Carlstein (1986, p. 1178)). Since the choice of the expected block length is of

second-order importance in the context of calibration, this approach provides a simple data-

dependent choice for l. In order to keep the cost of computations at a manageable level, we set

B = 100 in the simulations in Section 4, while B = 1, 000 is used for the real-data application

in Section 5.

The minimum-volatility approach to choosing `∗ amounts to constructing subsampling

confidence intervals of a fixed nominal level for different subsample sizes and then identifying

a region where the intervals do not exhibit substantial variability. A formal description of the

procedure in our setting is given in Algorithm 2.

Algorithm 2 (Minimum Volatility).

2.1 For a given δ ∈ (0, 1), a small d ∈ N, and for each integer ` such that 2 < `1(n) − d 6

` 6 `2(n) +d < n, construct a level-(1− δ) subsampling confidence interval [In,`,1, In,`,2]

for θ.

2.2 For each ` ∈ Λn, compute the volatility index

Dn(`) :=
2∑
s=1

 1

2d

d∑
j=−d

(
In,`+j,s − Īn,`,s

)2
1/2

,

where Īn,`,s := (1 + 2d)−1
∑d

j=−d In,`+j,s.

2.3 Set `∗ = arg min`∈Λn Dn(`).

Minimizing the volatility of the endpoints of subsampling confidence intervals, as in

Algorithm 2, is arguably more attractive computationally than the calibration approach in

Algorithm 1, especially in the context of Monte Carlo simulations, because it does not require

the use of a bootstrap procedure to estimate confidence interval coverage. Since the algorithm

is relatively insensitive to the choice of d, we set d = 2 in Sections 4 and 5, following the

recommendation in Politis et al. (1999, pp. 199–200) and Romano and Wolf (2001, p. 1297).

Remark 6. In Algorithms 1 and 2, and in their implementations in Sections 4 and 5, we

consider all integers in the interval [`1(n), `2(n)] as candidate subsample sizes. An appropriate

subset of Λn may alternatively be used in order to reduce the computational burden.
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We conclude this subsection by noting that, under appropriate conditions, the assertions

of Theorem 2(a) and Corollary 1 remain true when a random (data-dependent) subsample

size such as `∗ is used instead of a fixed subsample size. From the proof of Theorem 4.1 of

Politis et al. (2001), it can be seen that, for the consistency results to go through in this case,

it is sufficient that, in addition to the assumptions already needed to guarantee asymptotic

normality of Sn (with σ > 0): (i) Λn is such that, as n→∞, `1(n)→∞ and n−1`2(n)→ 0;

(ii) for each fixed x ∈ R and every ε > 0, the limit, as n→∞, of

(`2(n)− `1(n) + 1) sup
`∈Λn

P

(∣∣∣∣∣ 1

n− `+ 1

n−`+1∑
i=1

Ũ`,i(x)

∣∣∣∣∣ > ε

)
(9)

is zero, where Ũ`,i(x) := 1{S`,i 6 x} − P(S`,1 6 x).

Under absolute regularity or strong mixing of X, the concentration inequality in Bosq

(1996, Theorem 1.3, pp. 25–26) provides an upper bound for (9) that tends to zero as n→∞,

as long as α(k) = O(k−%) for some % > 1 (cf. Politis et al. (2001, Theorem 4.1)). An analogous

bound may be obtained, via a Hoeffding-type exponential inequality, if the random variables

{Ũ`,i(x), 1 6 i 6 n − ` + 1} form a near-epoch dependent sequence on V with suitable

polynomial rates of decay for the approximation constants and for the coefficients of absolute

regularity of V. To see how such an inequality may be established, note that, if {Ũ`,i(x)}

is near-epoch dependent on V, when viewed as a process indexed by i ∈ N at any fixed `

and x, then {Ũ`,i(x),Gi−∞} is a strictly stationary mixingale (in L1-norm), Gi−∞ being the

σ-field generated by {Vt, t 6 i}. Moreover, since Ũ`,i(x) is integrable to any order, the rate of

convergence to zero of the mixingale coefficients of {Ũ`,i(x),Gi−∞} is the same as the slower

of the rates at which the approximation constants of {Ũ`,i(x)} and the coefficients of absolute

regularity of V approach zero (cf. Davidson (1994, Theorem 17.5(i), p. 264)). Therefore,

provided the mixingale decay rate is fast enough for the mixingale coefficients to be summable,

Ũ`,i(x) admits the decomposition Ũ`,i(x) = Wi + Zi − Zi+1, where {Wi,Gi−∞} is a strictly

stationary sequence of martingale differences and {Zi} is a strictly stationary sequence of

integrable random variables (Davidson (1994, Theorem 16.6, p. 250)); furthermore, {Wi} and

{Zi} are uniformly bounded by virtue of the uniform boundedness of {Ũ`,i(x)} (cf. Vaněček

(2006, p. 704)). Hence, arguing as in the proof of Lemma 8 of Vaněček (2006) and using the

Azuma–Hoeffding inequality for martingale differences (e.g., Davidson (1994, Theorem 15.20,
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p. 245)), it can be deduced that there exist constants c1, c2 ∈ (0,∞) such that

P

(∣∣∣∣∣
n−`+1∑
i=1

Ũ`,i(x)

∣∣∣∣∣ > (n− `+ 1)ε

)
6 c1 exp(−c2(n− `+ 1)ε2),

for any ε > 0. Consequently, (9) is bounded above by c′1`2(n) exp(−c′2[n − `2(n) + 1]ε2), for

some c′1 > 0 and c′2 > 0, which tends to zero as n→∞ and n−1`2(n)→ 0.

4 Monte Carlo Simulations

In this section, we report and discuss the results of a simulation study of the finite-sample

properties of confidence intervals for the skewness parameter θ.

4.1 Experimental Design

The experimental design is similar to that in Psaradakis and Vávra (2019), and includes both

linear and nonlinear data-generating mechanisms. Specifically, we consider artificial data

generated according to the following models (t ∈ Z):

M1: Xt = 0.8Xt−1 + εt,

M2: Xt = 0.6Xt−1 − 0.5Xt−2 + εt,

M3: Xt = 0.6Xt−1 + 0.3εt−1 + εt.

M4: Xt = 0.9Xt−11{|Xt−1| 6 1} − 0.3Xt−11{|Xt−1| > 1}+ εt,

M5: Xt = ζtεt, ζ2
t = 0.05 + (0.1ε2

t−1 + 0.85)ζ2
t−1,

M6: Xt = 0.7Xt−2εt−1 + εt.

In each case, {εt} are i.i.d. random variables whose distribution is either N (0, 1) (labelled N in

the various tables) or generalized lambda, with quantile function u 7→ λ1+λ−1
2 {uλ3−(1−u)λ4},

u ∈ (0, 1), recentered at zero and rescaled to have variance 1 (see Ramberg and Schmeiser

(1974)). The values of λ1, λ2, λ3, λ4 used in the experiments, taken from Randles et al. (1980),

can be found in Table 1, along with associated measures of skewness and kurtosis based

on standardized third and fourth cumulants; distributions S1–S3 are symmetric, whereas
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A1–A4 are asymmetric. Models M1–M3 represent ARMA processes, the one-dimensional

distribution of which is symmetric if εt is symmetrically distributed. Models M4, M5 and

M6 represent a self-exciting threshold autoregressive process, a generalized autoregressive

conditionally heteroskedastic process, and a bilinear process, respectively; in all three cases,

the third cumulant of Xt is zero if εt is symmetric about zero (Pemberton and Tong (1981),

Martins (1999)).

Table 1: Noise Distributions

λ1 λ2 λ3 λ4 Skewness Kurtosis

N – – – – 0.0 3.0

S1 0.000000 -1.000000 -0.080000 -0.080000 0.0 6.0

S2 0.000000 -0.397912 -0.160000 -0.160000 0.0 11.6

S3 0.000000 -1.000000 -0.240000 -0.240000 0.0 126.0

A1 0.000000 -1.000000 -0.007500 -0.030000 1.5 7.5

A2 0.000000 -1.000000 -0.100900 -0.180200 2.0 21.2

A3 0.000000 -1.000000 -0.001000 -0.130000 3.2 23.8

A4 0.000000 -1.000000 -0.000100 -0.170000 3.9 40.7

For each design point, 1,000 independent realizations of {Xt} of length 100 + n, with

n ∈ {100, 200}, are generated. The first 100 data points of each realization are discarded

to minimize initialization effects and the remaining n data points are used to compute the

confidence intervals for θ defined in (6), (7) and (8). The subsample size is selected by means

of the bootstrap-based calibration algorithm and the minimum-volatility algorithm described

in Section 3.2, with `1(n) = b(1/2)
√
nc and `2(n) = b(5/2)

√
nc, where bac denotes the largest

integer not exceeding a ∈ R; these values are in line with the recommendation of Romano

and Wolf (2001, p. 1297).

4.2 Simulation Results

The simulation results over all 24 design points under which the distribution ofXt is symmetric

are summarized graphically in Figure 1. This shows boxplots of the estimated coverage

probabilities (in percentage) of various confidence intervals for θ, of nominal level 1−δ = 0.95,
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computed as the percentage of Monte Carlo replications in which each confidence interval

correctly includes θ = 0. The top and bottom of each colored box represent the 25th and 75th

percentiles, respectively, of the estimated coverage probabilities, the black diamond inside the

box indicates the mean value, and the whiskers indicate the 10th and 90th percentiles. The

confidence intervals considered are: the equal-tailed and symmetric subsampling intervals

C(1)
n,`(δ) and C(2)

n,`(δ), and the Gaussian approximation interval C(3)
n,`(δ), with subsample size

determined using the calibration method (labelled C(1)
CA, C(2)

CA and C(3)
CA, respectively, in the

figures and tables); the corresponding intervals with subsample size determined using the

minimum volatility method (labelled C(1)
MV , C(2)

MV and C(3)
MV , respectively). Detailed results for

individual design points can be found in Table 3 in Appendix B.

Figure 1: Monte Carlo results under symmetry; estimated probabilities (in percentage) that

95% confidence intervals contain θ = 0

(a) n = 100 (b) n = 200

It is clear that symmetric subsampling confidence intervals outperform all other com-

petitors when the subsample size is selected by means of the calibration method, having

coverage probabilities which are close to the nominal 0.95 level for the vast majority of design

points. Selecting the subsample size for such intervals by minimizing the volatility of their end-

points generally leads to somewhat lower coverage, but without the magnitude of the coverage

errors making the intervals unattractive for applications. The confidence interval based on

the Gaussian large-sample approximation, used in conjunction with the subsampling variance

estimator σ̂2
n,` and the calibration method, is also a good competitor and often outperforms
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Figure 2: Monte Carlo results under asymmetry; estimated probabilities (in percentage)

that 95% confidence intervals do not contain θ = 0

(a) n = 100 (b) n = 200

equal-tailed subsampling confidence intervals. The latter tend to undercover somewhat, the

problem being more pronounced when the subsample size is determined via the minimum

volatility method.

The simulation results over all 24 design points under which the distribution of Xt is

asymmetric are summarized graphically in Figure 2. This show boxplots of the estimated

probabilities (in percentage) of θ = 0 being excluded from confidence intervals for θ (of

nominal level 0.95), computed as the percentage of Monte Carlo replications in which θ = 0

falls outside each of the confidence intervals. Detailed results for individual design points can

be found in Table 4 in Appendix B. Notwithstanding the fact that θ = 0 is not necessarily

precluded by asymmetry, the simulation results show that the ability of the various confidence

intervals to exclude the value of θ which is typically consistent with symmetry is generally

high, with no particular confidence interval dominating. As expected, improved performance

is observed with increasing skewness and leptokurtosis in the noise distribution, as well as

with an increasing sample size.
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5 Real-Data Example

As an illustrative example, we investigate the distributional symmetry of real gross domestic

product (GDP), a prominent economic variable analyzed in many studies of the asymmetric

behavior of business cycles (see, inter alia, DeLong and Summers (1986), Verbrugge (1997),

Razzak (2001), Narayan and Popp (2009), and Psaradakis (2016)). Our data set consists of

time series on real GDP from 15 OECD countries: Australia (AUS), Belgium (BEL), Canada

(CAN), Finland (FIN), France (FRA), Italy (ITA), Japan (JAP), Korea (KOR), Netherlands

(NLD), Norway (NOR), Portugal (PRT), Spain (ESP), Sweden (SWE), United Kingdom

(UK), and United States (US); these represent approximately 35% of the world real GDP

(measured in constant 2011 US Dollars). All time series are quarterly, seasonally adjusted,

and span the period 1961:1 to 2018:4 (232 observations in total). The data can be downloaded

from the OECD website (https://stats.oecd.org/).

DeLong and Summers (1986) characterized the asymmetry of the business cycle by the

asymmetry of the one-dimensional marginal distribution of the growth rate of a measure of

economic output. This type of asymmetry is typically referred to as ‘growth-rate’ or ‘steepness’

asymmetry (contractions are steeper than expansions, or vice versa), and is an example of

what Ramsey and Rothman (1996) classified as ‘longitudinal’ asymmetry (asymmetry in the

direction of movement of the business cycle). Our analysis is based, therefore, on the growth

rates Xt = 100(Yt/Yt−1 − 1), where Yt is real GDP observed at time t.

For each time series, we compute the subsampling p-value for an equal-tailed test of the

null hypothesis θ = 0 versus the alternative θ 6= 0, defined as P
(1)
n,` := min{2P+

n,`, 2(1− P+
n,`)},

where

P+
n,` :=

1

n− `+ 1

n−`+1∑
i=1

1
{√

`(T`,i − Tn) >
√
nTn

}
,

as well as the subsampling p-value for the corresponding symmetric test, defined as

P
(2)
n,` :=

1

n− `+ 1

n−`+1∑
i=1

1
{√

` |T`,i − Tn| >
√
n |Tn|

}
.

As in the construction of confidence intervals, the subsampling p-values are based on sub-

sample statistics centered at Tn, as recommended by Berg et al. (2010). In each case, the

subsample size ` is determined by calibrating the coverage probability of the corresponding

subsampling confidence interval for θ (of nominal level 0.95) or by minimizing the volatility of
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the endpoints of such an interval (see Section 3.2). The resulting p-values are labelled P
(1)
CA,

P
(2)
CA, P

(1)
MV and P

(2)
MV in Table 2.

Table 2: Empirical Results

P
(1)
CA P

(2)
CA P

(1)
MV P

(2)
MV

AUS 0.000 0.019 0.000 0.005

BEL 0.378 0.443 0.167 0.500

CAN 0.462 0.527 0.151 0.599

FIN 0.391 0.315 0.304 0.253

FRA 0.124 0.230 0.010 0.286

ITA 0.000 0.117 0.028 0.059

JAP 0.027 0.095 0.000 0.014

KOR 0.000 0.014 0.000 0.000

NLD 0.500 0.648 0.352 0.783

NOR 0.201 0.137 0.071 0.096

PRT 0.391 0.489 0.859 0.485

ESP 0.391 0.600 0.201 0.576

SWE 0.161 0.302 0.215 0.306

UK 0.951 0.805 0.995 0.922

US 0.871 0.762 0.709 0.767

On the basis of symmetric subsampling p-values P
(2)
CA, with the subsample size selected

via the calibration method (the best performing combination in our simulations), evidence in

favor of asymmetry in real GDP growth rates, at the conventional 0.05 significance level, is

found only for Australia and Korea; the test rejects for Japan too if p-values P
(2)
CA obtained via

the minimum volatility method are used instead. The subsampling p-values P
(1)
CA for equal-

tailed tests additionally reject for Italy, and also for France if P
(1)
MV are used. We conclude,

therefore, that steepness does not appear to be a universal characteristic of international

business cycles.

We note that Verbrugge (1997) and Razzak (2001) have also used a triples U -statistic to
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test for asymmetry of the business cycle. The former relied on Monte Carlo critical values for

the implementation of the test, assuming that the data-generating mechanism is an ARMA

model with symmetric i.i.d. noise, while the latter treated the data as independent. By

contrast, the subsampling-based tests do not rely on any parametric model of the dependence

structure of the data.

6 Conclusion

This paper has considered using a U -statistic based on data triples to assess symmetry of the

one-dimensional marginal distribution of strictly stationary random processes satisfying suit-

able weak dependence conditions. The results given here allow for absolutely regular processes,

strongly mixing process, and near-epoch dependent processes with an absolutely regular base.

We have discussed how subsampling may be used to draw asymptotically valid inferences

about the target skewness parameter. A simulation study has demonstrated that symmetric

subsampling confidence intervals based on a data-dependent subsample size determined via

calibration have good finite-sample properties and generally outperform equal-tailed subsam-

pling intervals and confidence intervals based on a Gaussian asymptotic approximation. An

empirical illustration using time series of output growth rates has also been discussed. The re-

lated problem of assessing conditional symmetry of a random process around a parametric or

nonparametric function using a triples-based U -statistic is certainly worthy of consideration.

Such an extension is nontrivial, not least because the kernel of the relevant triples statistic

will typically depend on unknown parameters that have to be estimated. We leave this topic

for future research.
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7 Appendix A: Proofs

Proof of Theorem 1: By Hoeffding’s decomposition of a U -statistic (e.g., Serfling (1980,

pp. 177–178)),

Sn =
3√
n

n∑
t=1

ψ1(Xt) +
6√

n(n− 1)

∑∑
16t1<t26n

ψ2(Xt1 , Xt2)

+
6√

n(n− 1)(n− 2)

∑∑∑
16t1<t2<t36n

ψ3(Xt1 , Xt2 , Xt3)

=: R1,n +R2,n +R3,n, (10)

where

ψ2(x1, x2) :=

∫ ∞
−∞

ψ(x1, x2, x3)dF (x3)− ψ1(x1)− ψ1(x2)− θ, x1, x2 ∈ R,

ψ3(x1, x2, x3) := ψ(x1, x2, x3)−
3∑
i=1

ψ1(xi)−
∑∑
16i<j63

ψ2(xi, xj)− θ, x1, x2, x3 ∈ R.

Under (i), and since ψ1 is measurable, {ψ1(Xt)} is a strictly stationary and uniformly bounded

sequence of zero-mean random variables whose coefficients of absolute regularity are bounded

above by those of X. Consequently, τ < ∞ and R1,n → N (0, 9τ) in distribution as n → ∞,

on account of Theorem 18.5.4 in Ibragimov and Linnik (1971, p. 347). Furthermore, noting

that sup−∞<t1<t2<t3<∞ |ψ(Xt1 , Xt2 , Xt3)| <∞ almost surely, we have

E(R2
2,n) =

36

n(n− 1)2

∑∑
16t1<t26n

∑∑
16t3<t46n

E[ψ2(Xt1 , Xt2)ψ2(Xt3 , Xt4)]

6
36

n3

∑∑
16t1<t26n

∑∑
16t3<t46n

|E[ψ2(Xt1 , Xt2)ψ2(Xt3 , Xt4)]| → 0, (11)

as n → ∞, by the bound given in Lemma 3 of Arcones (1995) and an argument similar to

that used in the proof of his Theorem 1. An analogous argument allows us to deduce that

E(R2
3,n)→ 0 as n→∞. (12)

Therefore, by the Bienaymé–Chebyshev inequality, both R2,n and R3,n converge in probability

to zero as n→∞, and the statement of the theorem follows by Slutsky’s lemma.

The stated results under (ii) and (iii) follow as special cases of Theorem 2.3 of Fischer

et al. (2016) and Theorem 2.1 of Fischer (2017), respectively. �
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Proof of Theorem 2: Recalling the decomposition of Sn in (10) and noting that τ < ∞

under the conditions of the theorem, we have

E(R2
1,n) = 9

n−1∑
h=1−n

(
1− n−1 |h|

)
E[ψ1(X0)ψ1(Xh)]→ σ2 as n→∞,

by Kronecker’s lemma. Moreover, in view of Lemma 3 of Arcones (1995), Lemma 4.3 of

Fischer et al. (2016), and the fact that
∑n

k=1 k{α(k)}γ/(2γ+1) 6
∑n

k=1 k
1−ηγ/(2γ+1) = O(n%)

for some 0 < % < 1, the convergence results in (11) and (12) hold under conditions (i) and (ii)

of Theorem 1. Therefore, as n→∞, E[(R2,n +R3,n)2]→ 0 and E[R1,n(R2,n +R3,n)]→ 0, via

the Cr-inequality and the Cauchy–Bunyakovskii–Schwarz inequality, respectively, and, hence,

E(S2
n)→ σ2 as n→∞. Upon noting that the latter result, together with Theorem 1, ensures

that the sequence {S2
n, n > 3} is uniformly integrable (e.g., Serfling (1980, Lemma B, p. 15)),

the stated convergence of Hn,` and σ̂2
n,` follows from Corollary 2 of Tewes et al. (2019). �

Proof of Theorem 3: Since, by Theorem 1 and the continuity of the standard normal dis-

tribution function Φ, supx∈R |P(Sn 6 x)− Φ(x/σ)| → 0 as n→∞, to establish consistency of

Hn,` for the distribution function of Sn it is enough to show that supx∈R |Hn,`(x)− Φ(x/σ)| →

0 in probability as n→∞. Hence, by the same argument as in the proof of Theorem 3.2.1 in

Politis et al. (1999, pp. 70–72), it suffices to verify that, for each fixed x ∈ R, Ūn,`(x) := (n−

`+ 1)−1
∑n−`+1

i=1 U`,i(x) converges in probability to Φ(x/σ) as n→∞. Because E[Ūn,`(x)] =

P(S`,1 6 x) converges to Φ(x/σ) as n→∞, on account of Theorem 1 and the assumption on

`, it remains to show that Var[Ūn,`(x)] → 0 as n → ∞ for each x ∈ R. To this end, observe

that, by the strict stationarity of {U`,i(x)}, viewed as a process indexed by i,

Var[Ūn,`(x)] =
1

(n− `+ 1)2

n−∑̀
h=`−n

(n− `+ 1− |h|)Cov[U`,1(x), U`,1+|h|(x)]

6
1

(n− `+ 1)2

n−∑̀
h=`−n

(n− `+ 1− |h|)
∣∣Cov[U`,1(x), U`,1+|h|(x)]

∣∣
6

2

n− `+ 1

n−∑̀
h=0

|Cov[U`,1(x), U`,1+h(x)]| ,

where, under the assumption in (5), the majorant side converges to zero as n → ∞. Thus,

|Hn,`(x)− Φ(x/σ)| → 0 in probability as n → ∞, for each x ∈ R, from which uniform con-

vergence in probability follows by the continuity of Φ and a standard subsequence argument.
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To prove consistency of σ̂2
n,` for σ2, note that

n∑
k=0

kβ̃(k) +
n∑
k=0

k

(
2
∞∑
m=k

ξ(m)

)1/2

6 C
n∑
k=1

k
(
k−ν + n−(ν+1)/2

)
= O(n%) +O(n2−(ν+1)/2) = O(n%),

for some C > 0 and % > 0. Hence, using Lemma A.2 of Fischer (2017), it is easy to verify that

the convergence results in (11) and (12) hold under the conditions of the theorem. By the

same argument as in the proof of Theorem 2, it then follows that the sequence {S2
n, n > 3} is

uniformly integrable. This, together with the fact that |Hn,`(x)− Φ(x/σ)| → 0 in probability

as n → ∞, uniformly in x ∈ R, ensures the stated convergence of σ̂2
n,` via Theorem 3(iii) of

Tewes et al. (2019). �

Proof of Corollary 1: By virtue of Theorem 1, Theorem 2(a), the continuity of Φ, and

the continuous mapping theorem, we have that, as n → ∞, supx∈R |Hn,`(x)− Φ(x/σ)| → 0

in probability and supx>0

∣∣H̄n,`(x)− (2Φ(x/σ)− 1)
∣∣ → 0 in probability. Hence, as n → ∞,

H−1
n,`(δ) → σΦ−1(δ) in probability and H̄−1

n,`(1 − δ) → σΦ−1(1 − δ/2) in probability, for any

δ ∈ (0, 1), from which the stated asymptotic coverage of C(1)
n,`(δ) and C(2)

n,`(δ) follows readily

using Slutsky’s lemma. �
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Table 3: Monte Carlo Results Under Symmtery

C(1)
CA C(2)

CA C(3)
CA C(1)

MV C(2)
MV C(3)

MV

n DGP N S1 S2 S3 N S1 S2 S3 N S1 S2 S3 N S1 S2 S3 N S1 S2 S3 N S1 S2 S3

100 M1 89.6 84.4 80.6 81.4 95.4 91.6 89.4 88.6 93.2 89.4 86.8 87.6 72.3 72.1 67.2 67.0 89.1 88.1 88.4 86.4 85.3 84.6 82.3 82.4

M2 94.6 92.8 92.2 90.8 94.4 93.0 93.8 92.4 93.8 92.6 94.0 92.8 88.6 86.3 85.0 86.3 93.1 90.9 89.4 90.4 92.5 91.4 89.8 91.7

M3 90.2 88.2 86.2 83.4 95.0 92.0 91.0 90.2 94.6 91.0 90.6 88.4 79.4 80.2 76.9 74.8 90.7 91.2 88.4 87.6 89.4 89.8 86.9 86.6

M4 93.4 93.4 94.6 93.4 93.2 94.6 94.4 93.8 94.6 94.8 94.4 94.2 86.3 86.0 86.7 86.1 90.7 90.3 91.3 89.9 90.8 90.9 91.7 90.6

M5 92.8 91.8 91.6 93.2 95.0 93.2 93.4 95.6 94.6 94.6 93.4 95.4 86.3 84.1 85.0 85.0 91.3 91.0 91.3 90.8 90.9 90.8 91.6 90.6

M6 93.8 90.6 90.0 89.2 94.2 92.2 92.4 91.4 93.8 92.4 92.2 91.4 86.2 85.3 85.0 85.4 92.4 91.2 90.2 91.9 91.0 90.4 90.4 91.0

200 M1 87.0 84.0 83.2 82.2 92.0 92.0 88.8 87.0 90.2 89.8 88.0 84.4 76.9 74.4 73.2 71.9 90.4 88.4 86.4 85.0 87.1 85.8 85.3 83.6

M2 94.0 93.8 94.4 94.4 94.6 93.4 94.8 95.0 94.6 94.0 95.6 95.0 87.5 89.0 89.1 89.1 92.6 92.1 92.8 93.7 92.8 92.7 92.8 92.9

M3 89.4 89.8 87.4 85.0 92.6 92.2 90.2 90.6 91.0 92.2 89.2 90.2 83.8 82.4 83.2 79.0 92.7 91.0 91.6 88.7 92.2 90.5 91.4 88.5

M4 93.2 93.6 92.6 94.0 94.8 94.0 93.2 95.2 94.6 93.8 92.6 95.4 88.7 90.8 87.4 88.8 92.0 92.9 91.8 91.7 92.8 93.3 92.5 91.8

M5 94.2 95.8 93.2 94.4 94.4 95.8 95.0 95.2 94.4 95.8 95.0 94.8 89.1 86.5 88.6 87.6 93.3 91.1 92.7 92.0 93.6 89.7 92.7 91.7

M6 92.2 95.4 93.6 93.0 92.4 95.4 94.4 93.6 92.8 94.8 94.2 94.6 87.5 87.9 87.5 87.5 92.7 92.2 92.0 90.5 92.3 91.9 91.6 90.7

Note: Entries are estimated probabilities (in percentage) that 95% confidence intervals for θ contain θ = 0.
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Table 4: Monte Carlo Results Under Asymmtery

C(1)
CA C(2)

CA C(3)
CA C(1)

MV C(2)
MV C(3)

MV

n DGP A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

100 M1 35.2 31.8 67.2 73.2 31.2 23.2 66.6 73.8 33.6 27.2 68.0 73.6 50.8 45.5 76.8 82.2 38.0 28.2 72.1 78.3 39.3 31.8 73.1 79.0

M2 63.0 33.6 95.2 95.4 55.6 29.8 95.8 95.0 57.2 30.8 95.8 95.2 70.8 43.0 96.6 98.0 62.8 34.8 94.8 96.6 63.1 34.0 94.4 97.2

M3 54.0 35.4 88.2 92.2 48.2 27.8 88.6 93.4 49.6 31.0 89.2 94.2 63.2 46.9 93.9 96.0 53.0 35.4 90.7 94.8 54.3 36.8 90.5 94.3

M4 69.6 32.8 94.4 91.8 59.8 26.2 90.6 89.8 61.6 26.0 91.8 90.0 79.3 44.9 96.7 96.7 70.7 35.4 93.2 93.7 69.4 33.6 93.6 93.5

M5 89.0 48.2 99.8 99.6 89.8 42.6 99.8 100.0 90.6 45.0 99.8 100.0 94.7 60.6 99.6 99.7 92.7 55.4 99.8 99.8 93.2 55.1 100.0 99.9

M6 50.0 26.6 90.0 91.8 50.4 26.6 91.8 94.8 50.8 27.8 91.6 95.2 61.6 41.4 94.9 95.3 57.9 34.1 94.8 95.9 57.7 34.2 94.6 95.0

200 M1 57.6 47.2 93.8 92.4 54.8 40.6 93.6 93.4 53.6 40.0 93.0 92.8 63.8 52.4 92.2 95.0 55.4 42.4 93.1 95.7 57.0 42.9 92.4 95.4

M2 87.4 53.4 100.0 100.0 89.8 51.4 100.0 100.0 89.0 52.4 100.0 100.0 92.2 65.4 100.0 100.0 90.6 57.5 100.0 100.0 89.6 56.7 100.0 100.0

M3 76.4 56.6 99.0 99.4 74.6 50.6 99.0 100.0 75.8 49.6 98.8 100.0 78.5 63.5 99.8 100.0 75.9 55.0 99.7 100.0 76.9 54.2 99.8 100.0

M4 94.0 53.6 99.8 99.6 91.8 49.6 100.0 99.6 91.8 49.8 100.0 99.6 95.2 62.8 100.0 99.9 93.4 55.5 100.0 99.9 93.6 53.6 100.0 99.7

M5 99.0 69.4 99.8 100.0 99.2 70.0 99.8 100.0 99.2 70.4 100.0 100.0 99.9 81.6 100.0 100.0 99.9 79.7 100.0 100.0 99.9 79.9 100.0 100.0

M6 74.4 45.4 99.0 99.6 76.2 46.6 99.4 100.0 75.8 46.6 99.4 100.0 84.4 56.0 99.7 99.7 82.7 52.5 99.8 99.9 81.9 51.2 99.9 99.7

Note: Entries are the estimated probabilities (in percentage) of exclusion of θ = 0 from 95% confidence intervals.
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