BIROn - Birkbeck Institutional Research Online

    The nature of MIS 3 stadial-interstadial transitions in Europe: New insights from model-data comparisons

    Van Meerbeeck, C. and Renssen, H. and Roche, D. and Wohlfarth, B. and Bohncke, S.J.P. and Bos, J.A.A. and Engels, Stefan and Helmens, K.F. and Sanchez-Goni, M.F. and Svensson, A. and Vandenberghe, J. (2011) The nature of MIS 3 stadial-interstadial transitions in Europe: New insights from model-data comparisons. Quaternary Science Reviews 30 , pp. 3618-3637. ISSN 0277-3791.

    Full text not available from this repository.

    Abstract

    15 abrupt warming transitions perturbed glacial climate in Greenland during Marine Isotope Stage 3 (MIS 3, 60-27 ka BP). One hypothesis states that the 8-16 C warming between Greenland Stadials (GS) and Interstadials (GI) was caused by enhanced heat transport to the North Atlantic region after a resumption of the Atlantic Meridional Overturning Circulation (AMOC) from a weak or shutdown stadial mode. This hypothesis also predicts warming over Europe, a prediction poorly constrained by data due to the paucity of well-dated quantitative temperature records. We therefore use a new evidence from biotic proxies and a climate model simulation to study the characteristics of a GS/GI transition in continental Europe and the link to enhanced AMOC strength. We compare reconstructed climatic and vegetation changes between a stadial and subsequent interstadial e correlated to GS15 and GI14 (~55 ka BP) e with a simulated AMOC resumption using a three-dimensional earth system model setup with early-MIS 3 boundary conditions. Over western Europe (12W-15E), we simulate twice the annual precipitation, a 17C warmer coldest month, a 8C warmer warmest month, 1300C-day more growing degree days with baseline 5C (GDD5) and potential vegetation allowing tree cover after the transition. However, the combined effect of frequent killing frosts, <20 mm summer precipitation and too few GDD5 after the transition suggest a northern tree limit lying at 50N during GI14. With these 3 climatic limiting factors we provide a possible explanation for the absence of forests north of 48N during MIS 3 interstadials with mild summers. Finally, apart from a large model bias in warmest month surface air temperatures, our simulation is in reasonable agreement with reconstructed climatic and vegetation changes in Europe, thus further supporting the hypothesis.

    Metadata

    Item Type: Article
    School: School of Social Sciences, History and Philosophy > Department of Geography
    Depositing User: Stefan Engels
    Date Deposited: 13 Jan 2021 17:32
    Last Modified: 13 Jan 2021 17:32
    URI: https://eprints.bbk.ac.uk/id/eprint/41757

    Statistics

    Downloads
    Activity Overview
    0Downloads
    28Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item