BIROn - Birkbeck Institutional Research Online

    Robustness and performance of Deep Reinforcement Learning

    Al-Nima, R. and Han, Tingting and Al-Sumaidaee, S. and Chen, Taolue and Woo, W. (2021) Robustness and performance of Deep Reinforcement Learning. Applied Soft Computing 105 (107295), ISSN 1568-4946.

    Robustness and Performance of Deep Reinforcement Learning.pdf - Author's Accepted Manuscript
    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (3MB) | Preview


    Deep Reinforcement Learning (DRL) has recently obtained considerable attention. It empowers Reinforcement Learning (RL) with Deep Learning (DL) techniques to address various difficult tasks. In this paper, a novel approach called the \emph{Genetic Algorithm of Neuron Coverage} (GANC) is proposed. It is motivated for improving the robustness and performance of a DRL network. The GANC uses Genetic Algorithm (GA) to maximise the Neuron Coverage (NC) of a DRL network by producing augmented inputs. We apply this method in the self-driving car applications, where it is crucial to accurately provide a correct decision for different road tracking views. We evaluate our method on the SYNTHIA-SEQS-05 databases in four different driving environments. Our outcomes are very promising - the best driving accuracy reached 97.75% - and are superior to the state-of-the-art results.


    Item Type: Article
    Keyword(s) / Subject(s): Deep Reinforcement Learning, Genetic Algorithm, Neuron Coverage, Road tracking
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences
    Depositing User: Tingting Han
    Date Deposited: 31 Mar 2021 15:00
    Last Modified: 09 Aug 2023 12:50


    Activity Overview
    6 month trend
    6 month trend

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item