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Detecting Performance Degradation in Cloud
Systems using LSTM Autoencoders

Spyridon Chouliaras and Stelios Sotiriadis

Abstract Cloud computing technology is on the rise as it provides an easy to scale
environment for Internet users in terms of computational resources. At the same time,
cloud providers manage this demand for computational power by offering a pay per
use model for virtualized resources. Yet, it is a challenging issue to administer the
variety of different cloud applications and ensure high performance by identifying
failures and errors on runtime. Distributed applications are error-prone, and creating
a platform to support minimum hardware and software failures is a key challenge. In
this work, we focus on anomaly detection of data storage systems, and we propose
a solution for detecting performance degradation of cloud deployed systems in
real time. We use Long Short-term Memory (LSTM) Autoencoders for learning
the normal representations and reconstruct the input sequences. Then, we used
the reconstructed errors of the LSTM Autoencoders on unseen time series data to
detect abnormal behaviours. We used state-of-the-art benchmarks such as TPCx-
IoT and YCSB to evaluate the performance of HBase and MongoDB systems. Our
experimental analysis shows the ability of the proposed approach to detect abnormal
behaviours in cloud systems.

1 Introduction

Nowadays, cloud computing offers a state-of-the-art technology for organisations
that are looking for scalable application development. In a cloud system, applica-
tions often deployed as virtual machines (VM) that provide customised technical
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characteristics, operating systems and software packages. As the demand is on the
rise, cloud providers are promising cloud elasticity and scalability on their systems
as well as infinite amounts of virtual resources. Cloud scalability is the ability of the
system to accommodate larger loads, while cloud elasticity is the ability of the system
to scale with loads dynamically [1]. In addition, data are becoming massive in terms
of volume, variety and velocity, while different techniques have been implemented
in order to deal with this new phenomenon. A NoSQL (meaning ‘not only SQL’) has
come to describe a large class of databases sufficient to deal with massive amounts of
data, supporting also non-schema structure and real-time analysis [2]. Such systems
can store data from different sources without a specific structure, a characteristic
that makes them powerful for different applications such as e-commerce, navigation
systems, web services and IoT. However, the robustness and the reliability of cloud
systems remains a key problem for information technology companies as cloud sys-
tems could suffer from hardware, software and network failures. Therefore, efficient
ways on detecting abnormalities are more important than ever, since anomalies in
the system can cause performance degradation, unreasonable energy consumption
as well as false scaling estimation from automatised algorithms. The latter, indicates
the importance of finding techniques in order to detect abnormal cases based on real
time usage and develop algorithms able to predict future failures.

We present Long Short-Term Memory (LSTM) Autoencoders for detecting per-
formance degradation in cloud systems. LSTM Autoencoders have been proved
effective for time series learning and anomaly detection [3]. The model trained be-
forehand on normal sequence representations and learned to reconstruct the input
sequence with the lowest possible error. Then, the reconstructed error used as a
score in order to classify future time series as normal or abnormal. New unseen
observations that have lower reconstruction error than a given threshold are being
classified as normal while observations that have higher reconstruction error are
being classified as abnormal. The threshold value of the reconstructed error has been
tuned as a hyper-parameter based on its ability to detect abnormal cases of various
systems.

2 Related Works

Anomaly detection refers to the process of identifying data points, events or obser-
vations that deviate from the normal data distribution. Deep learning based anomaly
detection methods have been proposed in many domains [4, 5, 6, 7]. Amongst them,
authors proposed LSTM networks as powerful sequence learners that promise a
substantial improvement over the conventional Artificial Neural Networks. In exten-
sion to this, we propose LSTM based Autoencoders to detect outliers that indicate
application performance degradation. LSTM Autoencoders combine the ability of
the Autoencoder to extract the most representative information with the advantage
of the LSTM to effectively process sequential data. For that reason, LSTM Au-
toencoders have been applied widely for anomaly detection [8, 9, 10, 11]. In [8]
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authors proposed an LSTM based Encoder-Decoder scheme for Anomaly detection
as an alternative of standard approaches. In their findings, the LSTM Autoencoder
learns to reconstruct normal time-series behaviour and by using the reconstruction
error effectively detects anomalies from predictable, unpredictable, periodic, aperi-
odic and quasi-periodic time series. In [9] authors proposed an LSTM Autoencoder
network-based method combined with a one-class support vector machine algorithm
used for anomaly detection. The LSTM Autoencoder network trained on normal
representations and used to calculate a prediction error vector. Then, the one-class
Support Vector Machine algorithm used to separate the abnormal observations from
normal samples based on these prediction error vectors.

In [10] authors proposed CANolo, an intrusion detection system based on LSTM
Autoencoder to identify anomalies in Controller Area Networks. Their framework
automatically trained on controller area networks streams to build a model based on
the legitimate data sequences. Then the reconstructed error used to detect anomalies
between legitimate sequences and simulated attacks. In [11] authors used mobile
traffic data and proposed an LSTMAutoencoder to reconstruct mobile traffic samples
and an LSTM traffic predictor to predict the traffic of future time instants. In both
cases they analyzed the reconstructed and the predicted error to assess if the mobile
traffic presents anomalies or not.

In this work, we propose LSTM Autoencoders to reconstruct normal sequence
representations of application metric data streamed from MongoDB and HBase
systems. Then unseen observations are being classified as normal or abnormal on
the fly based on the reconstruction error produced by the LSTM Autoencoder.

3 Methodology

A variety of metrics captured over a period of time from monitoring systems to sup-
port our method. Prometheus1 has been used as a monitoring system for MongoDB2

and HBase3 to collect application and system metrics. In addition, Yahoo! Cloud
Serving Benchmark (YCSB) [12] and TPCx-IoT 4 workloads used to execute vari-
ous intensive tasks. Then, under the assumption that YCSB and TPCx-IoT generate
repeatable patterns, we created a dataset to train deep learning models that learn
normal application behaviours. For that purpose an LSTM Autoencoder has been
trained and used for pattern recognition of long-range dependencies and anomaly
detection.

1 https://prometheus.io/

2 https://www.mongodb.com/

3 https://hbase.apache.org/

4 http://www.tpc.org/tpcx-iot/

https://prometheus.io/
https://www.mongodb.com/
https://hbase.apache.org/
http://www.tpc.org/tpcx-iot/
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3.1 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) model is a type of a Recurrent Neural Network
that promises a substantial improvement in sequential data with temporal sequences
and long-range dependencies [13]. An LSTM model contains special units called
memory cells that are organised inside the recurrent hidden layer. Each memory cell
contains an input gate, an output gate and a forget gate. The forget gate has been
subsequently added in order to enable processing continuous input streams that are
not segmented into subsequences [14]. The forget gate gives the ability to LSTM
cell to learn to reset itself at appropriate times and prevent the network to break
down in situations where time series grow arbitrary through time (e.g. continuous
input streams) [15].

An LSTM receives an input sequence G = (G1, G2, G3, ..., G) ) and maps it to
an output sequence H = (H1, H2, H3, ..., H) ) by calculating the following equations
iteratively from t=1 to T:

8C = f(,8GGC +,8<<C−1 +,822C−1 + 18) (1)

5C = f(, 5 GGC +, 5 <<C−1 +, 5 22C−1 + 1 5 ) (2)

2C = 5C � 2C−1 + 8C � 6(,2GGC +,2<<C−1 + 12) (3)

>C = f(,>GGC +,><<C−1 +,>22C + 1>) (4)

<C = >C � ℎ(2C ) (5)

HC = q(,H<<C + 1H) (6)

where the 8 is the input gate that uses the logistic sigmoid function denoted as f
in order to control the information that flows into the cell, 5 is the forget gate that
uses the logistic sigmoid function to decide what information to keep outside the
cell state, > is the output gate that uses the logistic sigmoid function to control the
information that flows out of the cell, 2 is the cell activation vectors, m is the output
activation vector where � is the element-wise product of the vectors, 6 is the cell
input activation function, ℎ is the cell output activation function which is usually the
C0=ℎ function, q is the output activation function of the output sequence H which is
usually the B> 5 C<0G function,, terms denote weight matrices and 1 terms denote
bias vectors.
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3.2 LSTM Autoencoder for Anomaly Detection

Autoencoder is a fundamental paradigm of unsupervised learning with the ability
to reconstruct input features with the least possible amount of distortion [16]. The
Autoencoder consists of an encoder and a decoder. The encoder extracts the hidden
features from the input data and encodes the information into a learned representation
vector. Then, the decoder receives the encoded vector as an input and reconstructs
the original sequence with a reconstruction error.

LSTM Autoencoder combines the ability of the Autoencoder to extract the most
representative informationwith the advantage of the LSTM to process sequential data
with long-range dependencies. We use normal data to train the LSTM Autoencoder
that learns to reconstruct normal univariate time series data while on the contrary
produces high reconstruction error on abnormal time series. Thus, the reconstruction
error used as a score to classify future data points as normal or abnormal. Figure 1
shows the architecture of the LSTM Autoencoder. We use one LSTM layer for the
encoder and one LSTM layer for the decoder. The encoder takes the input sequence
(G1, G2, ..., G=) and encodes the information into an encoded feature vector. Then, the
encoded feature vector is being used as an input for the decoder layer that tries to
reconstruct the original sequence into (Ĝ1, Ĝ2, ..., Ĝ=).

Ĝ1 Ĝ2 Ĝ=

G1 G2 G=

LSTM LSTM LSTM

Encoded Vector LSTM LSTM LSTM

Encoder
Decoder

Fig. 1 Univariate Time Series Data Encoding based on LSTM Autoencoder

The LSTM Autoencoder is trained to minimize the Mean Absolute Error (MAE)
that measures the average of the absolute differences between the observed and the
reconstructed observation as follows

"�� =

∑=
8=1 |G8 − Ĝ8 |

=
(7)

where G8 and Ĝ8 are the actual and the reconstructed observation respectively.
Then, the reconstruction error is used as a score to detect future outliers. Since the
LSTM Autoencoder trained on normal sequences, it produces low reconstruction
error on future normal series while on the contrary generates high reconstruction
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error on abnormal sequences. Thus, new observations are being classified as normal
if the reconstruction error is lower than user’s threshold or abnormal if it is not.

4 Detecting Performance Degradation in Cloud Systems

In this section, experimental scenarios are being discussed and visualized to demon-
strate the effectiveness of our solution. We verify the performance of our method
based on YCSB and TPCx-IoT as real world workload benchmarks that execute in
MongoDB andHBase system respectively. It includes, (a) the experimental setup and
the benchmark analysis, (b) LSTMAutoencoder for anomaly detection of MongoDB
system and (c) LSTM Autoencoder for anomaly detection of HBase system.

4.1 Experimental Setup and Benchmark Analysis

We developed the experiments using two infrastructures to support MongoDB and
HBase deployment. The first environment consists of a single Virtual Machine
(VM) that is running a linux operating system with 2 CPU cores, 8 GB RAM and
512 GB Hard Disk Drive (HDD). The VM hosts MongoDB as a real world NoSQL
application system to be monitored by Prometheus. While YCSB workload executes
a mix of 50/50 reads and writes, Prometheus collects and stores applications metrics
with equally spaced points in time. The second environment consists a cluster of
2 nodes each configured with 2 CPU cores, 8 GB RAM and 256 GB HDD. Each
node consists an HBase server that runs on top of Hadoop Distributed File System
(HDFS). The TPCx-IoT workload used as representative of activities typical in IoT
gateway systems. Similarly, Prometheus collects and stores application metrics in
real time.

4.2 Performance Anomaly Detection of MongoDB System

In this section, we evaluate the performance of LSTMAutoencoder to detect anoma-
lies inMongoDB systembased on application throughput. Figure 2 shows application
throughput under YCSB workload execution. The first wavelet, illustrates the load
phase of YCSB workload where 200,000 records loaded in the database. The sec-
ond wavelet shows the run stage where YCSB uses a mix of 50% read and 50%
write operations. In total, 5 load and 5 run stages have been used alternately to
create 10 representative wavelets. Figure 2 suggest that executing YCSB workload
with the same configurations generate a repeatable application throughput pattern.
Consequently, the LSTM Autoencoder learns to reconstruct normal throughput rep-
resentations by minimizing the loss function, that is, the mean absolute error. The
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reconstruction error has been used as a score to detect future abnormalities in the
throughput.

Fig. 2 Throughput of MongoDB on YCSB workload.

To demonstrate the effectiveness of our method, we used Stress linux package
to introduce additional intensive tasks that impact application performance. Figure
3 shows a continuity of Figure 2 with two additional wavelets that represent the
load and the run stage of YCSB workload. While YCSB executed the load stage
under normal conditions (11th wavelet), in the run stage (12th wavelet) we execute
Stress package as an additional intensive task. The latter, impacts the application
throughput as it creates abnormal patterns shown in Figure 3.

Fig. 3 Throughput of MongoDB on YCSB workload with Stress.

We effectively detect throughput degradation by using LSTMAutoencoder recon-
struction error. Since the LSTMAutoencoder trained to reconstruct normal through-
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put patterns, it produces high reconstruction error on throughput values that deviate
from the normal data distribution. Then we classify throughput observations as nor-
mal or abnormal based on a predefined application threshold. If the reconstructed
error of a given observation surpasses the application threshold, then the observation
is tagged as abnormal. The application threshold consists a tuning parameter based
on application functionality. If the application is resilient in throughput fluctuations,
a high threshold value is suggested to detect only extreme outliers. On the other
hand, if the application is sensitive on throughput changes, a lower threshold will be
less forgiving and more values will be classified as abnormal.

4.3 Performance Anomaly Detection of HBase System

In this section, we demonstrate the ability of the LSTM Autoencoder to detect
abnormal values in IoT sensor data.We deployed anHBase cluster with 2 nodeswhile
TPCx-IoT benchmark used to model sensor data generated by power substations.
Figure 4 shows the throughput of the HBase cluster with 2 nodes while we execute
TPCx-IoT workload. In total the TPCx-IoT workload generated 8 wavelets that
used as a representative normal input sequence for the LSTM Autoencoder. Then,
the LSTM Autoencoder learns to reconstruct the input sequence with the lowest
possible error rate. We use the reconstruction error as a score in order to classify
future throughput values as normal or abnormal.

Fig. 4 Throughput of HBase on TPCx-IoT workload.

Figure 5 is a continuity of Figure 4 that shows the execution of the TPCx-IoT
workload while at the same time network delays introduced in the system. We
demonstrate the ability of the LSTM Autoencoder to detect abnormal throughput
values by artificially injecting two network delays of 200ms into the network system.
The first delay injected between 14:58 and 15:00 while the second delay injected
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between 15:07 and 15:09. As a result, the throughput of the system plummets to zero
between the time window of the injected network delay.

Fig. 5 Throughput of HBase on TPCx-IoT workload with Network Delay.

As Figure 5 shows LSTM Autoencoder successfully detects abnormal cases in-
cluding the throughput values between the network delay timewindows.As discussed
earlier, we classify throughput observations as normal or abnormal based on a pre-
defined application threshold. Thus, observations with a reconstruction error higher
than the threshold were tagged as abnormal. The threshold has been tuned according
to application functionality to detect values that significantly vary from the normal
distribution.

5 Conclusion

In this study, we presented LSTM Autoencoders for detecting performance degrada-
tion in cloud systems.We evaluated the ability of ourmethod by using variousNoSQL
systems and real world workload benchmarks. YCSB workload used to execute read
and write operations in MongoDB that generate repeatable throughput patterns. Ad-
ditionally, to show the ability of our method to adapt in various applications, we
used an HBase cluster and executed TPCx-IoT benchmark that models sensor data.
In our findings, LSTM Autoencoders successfully detected performance outliers in
both systems under different scenarios such as intensive system tasks and network
system delays. The LSTMAutoencoders trained on normal sequence representations
to minimize the reconstruction error. Then, a threshold application parameter used
as an indicator to classify future values as normal or abnormal.

Our method detects abnormal application behaviours under various tasks. We
believe that our accurate and low overhead anomaly detection tool introduces a
real time approach by using application metrics, as strong indicators of application
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overall performance. Detecting degradation of application performance increases the
reliability of cloud systems and promises strong monitoring tools to cloud system
administrators.
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