BIROn - Birkbeck Institutional Research Online

    Microscopic and NanoSIMS characterization of black shale-hosted pre-kinematic pyrites: Possible gold source of the orogenic gold deposits in the Truchas Syncline (Variscan Iberian Massif)

    Gomez-Fern´andez´, F. and Cunningham, John and Caldevilla, P. and Herrero-Hernandez´, A. and Beard, Andy (2021) Microscopic and NanoSIMS characterization of black shale-hosted pre-kinematic pyrites: Possible gold source of the orogenic gold deposits in the Truchas Syncline (Variscan Iberian Massif). Ore Geology Reviews 138 (104344), ISSN 0169-1368.

    [img] Text
    Paper 2 Truchas.pdf - Published Version of Record
    Restricted to Repository staff only

    Download (19MB) | Request a copy


    The Truchas Syncline contains orogenic gold deposits (OGDs), hosted mainly by the Armorican Quartzite Fm. In order to look for the source of gold in these deposits, pre-kinematic sulphides from black shales from the overlying Luarca Fm. were studied using both optical and scanning electron (SEM) microscopy, as well as nanoscale secondary ion mass spectrometry (NanoSIMS). NanoSIMS images allowed the observation of relevant structures (pyrite with high As content nodules) hidden to SEM. Microscopy and 36S, 75As32S, 75As, 75As34S, and 197Au mappings, as well as δ34S analysis (‰ Vienna-Canyon Diablo Troilite) allowed 4 types of pyrite to be characterized. According to their sequence of deposition, the pyrite types identified are the following: (1) framboid nuclei (FmPy), with δ34S between +4.1‰ and +57.5‰; (2) overgrowths (OgPy), with presence of Au, As and δ34S of approximately +20.5‰; (3) pyrite with high As content (AsPy), replacing previous pyrites, with δ34S of approximately +23‰, nodular shapes and non-detected Au; (4) subhedral pyrite (ShPy), with δ34S of approximately +19.7‰ and Au and As distribution showing (a) nuclei, (b) rims with Au and As and (c) structures interpreted as replacements of previous pyrite. Luarca Fm. pyrite framboids reach 75 µm in size, larger than framboids described in most previous NanoSIMS work, with microcrystals sufficiently large to be analyzed without contamination from edge effects. The FmPy formed in early diagenetic conditions by dissimilatory reduction of marine sulphate plus Rayleigh distillation or anaerobic oxidation of methane processes. The first FmPy nuclei formed in the periphery of framboids, and then started to form in the central region until completion of the framboidal structure. Growth of OgPy, AsPy and ShPy corresponded to more advanced diagenetic conditions, although the last stage of ShPy growth followed an aggregation model, in which ShPy metamorphic pyrites grew over ShPy diagenetic pyrites. The sulphur isotopic signature of the four types of pyrite is in good agreement with a source from Ordovician marine sulphate. A hypothesis stating that the source of Au in OGDs in the district could be in Luarca Fm. is supported by the results of the present research. Firstly, a source of Au in the district could have been the replacement of previous pyrites by AsPy and the release of Au to the system, instead of the framboidal to euhedral pyrite recrystallization process observed in other gold deposits. Secondly, by the correspondence between δ34S isotopic signature of the pyrites from Luarca Fm. and those from sulphides in OGDs. However, these results do not rule out other possible sources.


    Item Type: Article
    Keyword(s) / Subject(s): Llamas de Cabrera gold district, Bacterial sulphate reduction, Framboidal pyrite, NanoSIMS maps, Sulphur isotopes Variscan Orogen
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences
    Depositing User: John Cunningham
    Date Deposited: 30 Sep 2021 12:21
    Last Modified: 02 Aug 2023 18:12


    Activity Overview
    6 month trend
    6 month trend

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item