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Abbreviations 
Mtb = Mycobacterium tuberculosis 
MTBC = Mycobacterium tuberculosis complex 
ncRNA = non-coding RNA 
sRNA = short RNA 
asRNA = antisense RNA 
UTR = untranslated region 
nt = nucleotide(s) 
ORF = open reading frame 
RBS = ribosome binding site 
TSS = transcription start site 
TTS = transcription termination site 
 

Abstract 
A definitive transcriptome atlas for the non-coding expressed elements of the members of 
the Mycobacterium tuberculosis complex (MTBC) does not exist. Incomplete lists of non-
coding transcripts can be obtained for some of the reference genomes (e.g. Mycobacterium 
tuberculosis H37Rv) but to what extent these transcripts have homologues in closely related 
species or even strains is not clear. This has implications for the analysis of transcriptomic 
data; non-coding parts of the transcriptome are often ignored in the absence of formal, 
reliable annotation. Here, we review the state of our knowledge of non-coding RNAs in 
pathogenic mycobacteria, emphasising the disparities in the information included in 
commonly used databases. We then proceed to review ways of combining computational 
solutions for predicting the non-coding transcriptome with experiments that can help refine 
and confirm these predictions.  
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Introduction  
A definitive atlas of expressed non-coding elements in pathogenic mycobacteria does not 

exist. The lists available from databases and publications overlap only partially and are only 

available for the reference genomes of key representatives of the Mycobacterium 

tuberculosis complex (MTBC), such as Mycobacterium tuberculosis (Mtb) H37Rv. This gap in 

our knowledge impacts the successful analysis of the copious amounts of genomic and 

transcriptomic data that have become available in the last decade. For example, in the 

absence of a formal annotation of the non-coding transcriptome, the easiest and most 

common approach to call differential expression events is to largely, or entirely, ignore 

information that does not relate to regions currently annotated as coding (CDS); this issue is 

more acute in studies focusing on non-reference Mtb strains or their close relatives, where 

non-coding annotation is scarce or non-existent. In this commentary, inspired by our own 

struggles to compile a definitive atlas of ‘non-coding’ RNA (using the term here to represent 

regulatory RNAs such as short RNAs, antisense RNAs and the untranslated parts of mRNA 

transcripts) in the members of the MTBC, we present a summary of the current information 

from publicly available sources, highlighting the existing gaps in the knowledge and the 

computational approaches used to attempt to uncover this less well understood part of the 

mycobacterial genome.   

 

 

Why pathogenic mycobacteria and why non-coding RNA? 
Prior to the COVID-19 pandemic, mycobacterial disease was the leading cause of death by a 

single pathogen; causing over 1.4 million deaths, and infecting over 10 million people in 2019, 

worldwide (https://www.who.int/news-room/fact-sheets/detail/tuberculosis). The different 

members of the MTBC include both human-adapted (Mtb) and animal-adapted 

(Mycobacterium bovis, Mycobacterium caprae, among others) species which show distinct 

host preference (Brites et al., 2018).  Each of these species is uniquely adapted to cause 

disease within their preferred hosts, and to navigate a complicated lifecycle, which requires 

rapid response to changing environmental conditions. Pathogenic bacteria have different 

programs for invasion, proliferation and survival in particular host environments. The 

pathogen can rapidly and transiently adapt to environmental changes brought about by host 
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defences by regulating the effect and stability of the transcripts through the parsimonious 

action of post-transcriptional regulation (Chakravarty & Massé, 2019).  

 

Though the different members of the MTBC have different tropisms, involving specific 

virulence profiles and metabolic changes made in response to the host environment, nearly 

99% of the genomic sequence is conserved among the MTBC members (Malone & Gordon, 

2017). The minor variations such as deletions and single nucleotide polymorphisms (SNPs) 

that vary among species members of the MTBC, and between species-specific strains, seem 

to have an outsized role determining these preferences (Cheng et al., 2019; Chiner-Oms et 

al., 2019; Dinan et al., 2014; Malone et al., 2018). These variations are not exclusively found 

in coding regions; indeed, (Dinan et al., 2014) have shown that SNPs in promoter regions are 

likely to explain many transcriptional differences between animal-adapted (M. bovis) and 

human-adapted members of the MTBC. It is thus not unreasonable to hypothesise more 

generally, that variations in the genomic sequence of non-coding elements could contribute 

to differential gene expression through both transcriptional and post-transcriptional levels of 

regulation  (Schwenk & Arnvig, 2018).  

 

Advances made in recent years exploring the non-coding genome, especially in the model 

organisms, have shown how flexible and adaptive riboregulation can be. Non-coding RNAs 

are often categorised by their mode of action: ‘cis-acting’ RNAs target or regulate the 

transcripts of genes proximal to the non-coding element, and ‘trans-acting’ RNAs act on 

distant gene targets. But applying these categorisations to the diversity of non-coding RNAs 

known in bacteria is not straightforward. For example, UTRs are typically considered cis-

acting, however, they can be a source of trans-acting sRNAs, as well as containing cis-

regulatory elements (Loh et al., 2009). Antisense RNAs can regulate their complementary 

cognate sequence (usually considered cis-encoded, despite the interaction actually occurring 

between the transcribed elements), but have the potential to act in trans on similar 

sequences elsewhere in the genome. As a full description of ncRNAs is outside the scope of 

this commentary, we present instead a graphical summary to describe the main types by their 

genomic origins, mechanisms of action and targets in Table 1.  There are several recent and 

comprehensive reviews that describe different aspects of the constantly evolving roster of 

non-coding elements in bacterial genomes, but most of them focus on what has been 
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discovered in the model organisms (Table 2). Mycobacteria are different, in genome, 

physiology and lifestyle; and it appears that non-coding regulation in MTBC does not use the 

same accessory proteins or have the same sequence signatures as the model systems. Indeed, 

efforts to find an Hfq or ProQ analog acting as an RNA chaperone in mycobacteria have so far 

been unsuccessful (Gerrick, 2018). These differences impact not only on our ability to transfer 

knowledge from model organisms to the MTBC species, but also on how applicable current 

experimental and computational methods are to discovering new regulators in mycobacteria. 
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Table 1. Origins and targets of non-coding RNA types in bacteria. 

ncRNA Type Description Origin Target/ Mechanism 

sRNA 

 

 
Short structured RNA 
transcripts, 30-300 nt with 
short binding (‘seed’) 
region 

 
Usually, intergenic 
regions, UTRs, or 
antisense strands of 
coding genes; transcribed 
from own promoter, or by 
cleavage of longer 
transcripts 

 
Involved in binding interactions 
with distant gene targets (‘trans-
acting’) to regulate translation, 
including: 
mRNAs of other genes (e.g. UTRs 
of transcription factors), other 
sRNAs (known as ‘sponge sRNAs’ 
or ‘ceRNAs’), and RNA-binding 
proteins 
 

asRNA 

 

 
RNA transcript, 75-10,000 
nt long 

 
Complementary strand of 
UTR or coding sequence of 
regulated gene; 
transcribed from own 
promoter 

 
Cognate RNA strand (‘cis’-
regulatory). Regulates by binding 
to mRNA transcript with perfect 
complementarity, forming duplex 
RNA: altering sensitivity to 
RNases, action of terminators, or 
access to RBS (ribosome binding 
site), can also act in ‘trans’-
regulatory manner with 
complementary sequences 
transcribed elsewhere in the 
genome 
 

5’ UTR 

 

 
5-100s nt long, including 
transcriptional start sites 
(TSS), ribosome binding 
site (RBS), alternative 
transcriptional 
terminators (TTS) and 
cleavage sites  
 
Riboswitches are  
structured 5’ UTRs that 
change secondary 
structure in response to 
ligand binding, controlling 
either transcription or 
translation of downstream 
gene by changing access 
to a ‘regulatory sequence’ 
(R S) which could be an 
anti-terminator sequence 
or RBS 

 
Upstream sequence of 
coding sequence, between 
TSS and start codon 
(alternative TSS may exist 
in gene locus) 

 
Binding interactions with sRNAs, 
proteins, metabolites and second 
messengers (‘cis’-regulation of 
downstream ORF) 

 
Antisense binding with other 
UTRs. Potential source of sRNAs 
that can act on distant RNA 
targets (‘trans’-regulatory) 
 
 
 
 

3’ UTR 

 

 
5-100s nt long, following 
the coding ORF of the 
upstream gene. Can 
include RNase cleavage 
sites, alternative 
transcriptional start sites 
(TSS) and sRNA binding 
sites 

 
Downstream sequence 
between stop codon and 
TTS. Alternative TSS and 
TTS may exist in gene 
locus. 

 
Binding interactions with sRNAs, 
proteins, metabolites and second 
messengers to regulate upstream 
ORF (‘cis’-regulatory) 

 
Antisense binding with other 
UTRs, source of sRNAs (‘trans’-
regulatory) 
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Table 2. Recent reviews of non-coding RNA in bacteria and their focus. 

Author Organism Focus 

Adams and Storz, 

2020 
Model organisms sRNA origins/discovery 

Bossi et al., 2020 Model organisms sRNAs and Rho-dependent termination  

Breaker, 2018 Model organisms Riboswitches and translational control 

Chakravarty and 

Massé, 2019 
Model organisms Regulatory RNA and virulence 

Denham, 2020 Model organisms 
Sponge RNAs (post-transcriptional regulation of 

sRNAs) 

Hör et al., 2018 Model organisms All regulatory RNA, global RNA-seq methods  

Jørgenson et al., 

2020 

Gram positive and negative 

bacteria, including mycobacteria 
sRNA-mediated regulation 

Ostrik et al., 2021 M. tuberculosis Trans-acting regulatory sRNAs in M. tuberculosis 

Schwenk and 

Arnvig, 2018. 
Model organisms and mycobacteria All regulatory RNA, especially in mycobacteria 

Taneja and Dutta, 

2019. 
Mycobacteria 

Focus on sRNAS, and especially those involved 

with pathogenicity and virulence.  

Toledo-Arana and 

Lasa, 2020 
Model organisms 

Overlapping transcripts in transcriptome 

organisation: asRNA, excludons 

 

 

How many functional non-coding RNAs are there in mycobacteria? 

Only a handful of sRNAs have been functionally characterised in the mycobacteria literature 

(Table 3). In most cases, top-down approaches, such as differential expression studies and 

ChIP-seq (chromatin immunoprecipitation with sequencing), have been employed to discover 

Mtb sRNAs, such as the RNAP-associated, Ms1 (Arnvig et al., 2011; Šiková et al., 2019) and 

the PhoP-regulated, Mcr7 (Solans et al., 2014). Verification of the transcript size and 

abundance by Northern blot analysis has also established the stability of many ncRNAs in Mtb, 

but identifying targets and functional associations requires extensive research. It is curious, 

that even among the six well-characterised examples in Table 3, there is one (MrsI) not listed 

in the current official annotation of the reference H37Rv genome, available from the 
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corresponding NCBI annotation (GFF) file (GCF_000195955.2_ASM19595v2_genomic.gff), 

most likely because it was a recent discovery. This annotation file currently includes 20 

features labelled as non-coding RNAs, 15 of which are listed in (Arnvig et al., 2011) and 9 in  

(DiChiara et al., 2010)- 4 are listed in both. It also includes 10 “sequence features” which are 

annotated as fragments of putative small regulatory RNAs (8 matching information from 

DiChiara (DiChiara et al., 2010) and 2 matching information from Pelly (Pelly et al., 2012),  and 

two “misc RNA” including a tmRNA and the ribonuclease P RNA. Although twenty or even 

thirty non-coding elements is almost certainly an underestimate of the total number of 

ncRNAs in Mtb, we note here that the corresponding E. coli reference genome annotation 

(GCF_000005845.2_ASM584v2_genomic.gff) contains currently 72 elements labelled 

ncRNAs, suggesting that either functional non-coding elements are not very common in 

bacteria, or that, even for a well-studied organism, our understanding of non-coding 

regulation is incomplete.  

 

Table 3. Functionally characterised sRNA in mycobacteria. *Annotation according to 

Lamichlane et al., 2013. 

Name  
(H37Rv annotation*, other 
names) 

Mycobacterial organism Genomic 
coordinates 
(H37Rv) 

Citation Pathway / 
targets 

DrrS (ncRv11733, MTS1338) M. tuberculosis 
1960667-
1960783 (+) 

Moores et al., 
(2017) 

DosR regulon / 
unknown 

Mcr7 (ncRv002, 
MTB000067) 

M. tuberculosis 
2692172-
2692521 (+) 

Solans et al., 
(2014) 

PhoP regulon / 
tatC 

MrsI (ncRv11846) M. tuberculosis, M. smegmatis 
2096758- 
2096863 (+) 
 

Gerrick et al., 
(2018) 

Iron-sparing 
response / brfA 

Ms1 (ncRv0036a, MTS2823 
in M.tb) 

M. smegmatis, M. tuberculosis 
4100669-
4100968 (+) 

Šiková et al., 
(2019) 

Transcription 
regulation/ 
RNAP 

6C sRNA (ncRv13660c, B11) 
Mtb, Msmeg, (homologues in all 
GC-rich gram+ bacteria) 

4099386-
4099478 (-) 

Mai et al., 
(2019) 

Growth, 
virulence (ESX-
1) / panD, dnaB 
 

Mcr11 (ncRv11264Ac) M. tuberculosis 
1413227  -  
1413107/8 (-) 

Girardin and 
McDonough, 
(2020) 

Growth, 
metabolism / 
unknown 

F6 (ncRv10243) M. tuberculosis, M.smegmatis 
293604 - 
293705 (+) 
 

Houghton et 
al., (2020) 

SigF regulon /  
unknown 

 

 

Whereas functional characterisation is ultimately needed to create a reliable list of non-

coding RNAs, homology to known families of RNAs from other organisms remains the most 
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popular approach for predicting non-coding RNAs in the absence of experimental evidence. 

The RNA families described in the RFAM database (Kalvari et al., 2021) derive from the 

application of covariance models (and where structure information is not available, Hidden 

Markov Models) representing meticulously curated multiple sequence and secondary 

structure alignments of homologous RNAs. RFAM thus represents some of the most reliable 

predictions for non-coding elements in genomes and its predictions for Mtb H37Rv are 

summarised in Table 4. As conservation of structure is at the heart of RFAM families, non-

coding RNAs with few or no known relatives in other species, and those that do not fold into 

strongly conserved structures, are unlikely to be found in RFAM. Hence, this database too is 

likely to miss elements that are specific to a small number of pathogenic mycobacteria or that 

are too short to fold into a stable structure. In general, homology-based approaches to 

discovering novel non-coding elements will be limited in pathogenic mycobacteria as there 

are few closely-related genomes outside the phyla. One notable exception, 6C sRNA, is well-

conserved among gram-positive bacteria with over-expression leading to altered growth 

phenotypes in M. tuberculosis, M. smegmatis and another GC-rich bacterium, 

Corynebacterium glutamicum. Perhaps as a result, it is one of the few sRNAs for which target 

molecules have been identified and experimentally validated (Mai et al., 2019).  

 

Table 4. Conserved non-coding RNA families and sequence listings from the RFAM database 

(https://rfam.xfam.org).  Ribozymes (Group II catalytic introns and Bacterial RNase P class A), 

tRNAs and rRNAs have not been included in this table. 

RNA Type Family Name Rfam ID Number 
Sequences in 

RFAM 

Length 
(nt) 

Riboswitch Cobalamin (B12) RF00174 2 173-218 

Riboswitch ykok leader/Mbox (Mg+) RF00380 2 169-174 

Riboswitch TPP/Thi-box (thiamine) RF00059 2 110 

Riboswitch ydaO/yuA leader (Cyclic di-
AMP) 

RF00379 1 222 

Riboswitch Glycine RF00504 2 90-97 

Riboswitch S-adenosyl methionine 
(SAM-IV) 

RF00634 1 119 

sRNA Mcr7 RF02671 1 348 

sRNA npcTB_6715 RF02886 2 211 

https://rfam.xfam.org/
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sRNA Ms1 RF02566 1 301 

sRNA ncRv12659 RF02659 1 171 

sRNA ncrMT1302 RF02341 1 108 

sRNA b55 RF01783 1 60 

sRNA/asRNA ASdes RF0781 2 67 

sRNA F6 RF01791 1 57 

sRNA Ms_AS-5 RF02465 1 44 

sRNA/5’UTR 5_ureB_sRNA RF02514 1 294 

asRNA ASpks RF01782 5 68-77 

 
 

 

Expanding our exploration to resources beyond the official NCBI annotation, further 

complicates the question of what is known about functional, non-coding RNAs in 

mycobacteria. Mycobrowser (Kapopoulou et al., 2011), arguably the most popular internet 

resource for the exploration of representative mycobacterial genomes, currently lists 92 non-

coding RNAs, labelled as ‘ncRNA’ (including sRNAs and asRNAs under this moniker) for H37Rv: 

40 overlap the official NCBI GFF annotation and originate from the four key publications listing 

experimentally-verified non-coding RNAs (Arnvig et al., 2011; Arnvig & Young, 2009; DiChiara 

et al., 2010; Pelly et al., 2012) and the remaining 52 overlap the list compiled by DeJesus et 

al. (Dejesus et al., 2017) using their in-house computational tool, BS_finder, applied to RNA-

seq data derived with a small-RNA sequencing protocol. Despite including annotations from 

nine other species and strains, including M. bovis, M. smegmatis and M. tuberculosis 18b, 

non-coding RNAs annotated with the tag “ncRNA” appear in the GFF files of only three 

additional species/strains in Mycobrowser, and only M. tuberculosis 18b has more than two 

ncRNAs listed.  Strikingly, M. bovis, sharing more than >99.95% sequence identify to M. 

tuberculosis, has no other entries for RNAs apart from rRNAs, tRNAs and the same two RNAs 

tagged “misc_RNA” in the Mtb annotation; it is highly unlikely that many of the ncRNAs 

present in M. tuberculosis do not have a counterpart in M. bovis; and thus the list must be 

assumed to be incomplete. In fact, at least 41 of experimentally-verified sRNAs found in 

various mycobacterial species, including in the above studies, can be mapped to the M. bovis 

genome (Dinan et al., 2014) and a sequence comparison (Supplemental Info, Table 1) finds 
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that only three of the listed M. tuberculosis ncRNAs have less than 99.0 % sequence identity 

in M. bovis (and all have greater than 92% similarity). Perhaps more worryingly, the RNase P 

RNA component is alternatively tagged as ncRNA in M. haemophilium and M. orygis, 

RNase_P_RNA in M. tuberculosis 18b and misc_RNA in M. bovis. The lack of standardised tags 

and incomplete listings of non-coding elements (even within the same resource), together 

with the absence of a clear justification for which elements are included and why, likely adds 

to the confusion about non-coding regulation in mycobacteria. A more systematic approach 

to the annotation tags of these elements, similar to approaches suggested for consistent 

naming of non-coding RNA (Lamichhane et al., 2013), could go some way towards eliminating 

this confusion.  

 

Completing the non-coding transcript atlas: computational predictions from genomic and 
transcriptomic data 
The most extensive lists of putative non-coding RNAs in mycobacteria are the result of 

computational predictions based on genomic or transcriptomic data (or sometimes both).  

Computational prediction algorithms have been used with moderate success in other 

bacteria, including Salmonella enterica (Sridhar et al., 2010) and Staphylococcus aureus (Liu 

et al., 2018) and new tools continue to be developed with increasing sophistication. However, 

the utility of these tools is even more limited in their application to mycobacteria. Genomics-

based methods rely on the conservation of non-coding elements across several species and, 

like RFAM, are likely to miss elements specific to a small subset of the genus or unique to a 

species. Such comparative genomics methods are typically enhanced by the search for 

characteristic sequence features and other signals of regulatory RNAs such as promoters, 

terminator structures and transcription-factor binding sites. For example, SIPHT begins with 

conserved intergenic sequences (defined as the sequence between two annotated genes or 

open reading frames (ORFs), on one strand) and looks for characteristic features of sRNAs in 

these regions, such as conserved promoters and rho-independent terminator motifs (Livny et 

al., 2008). Other genomics-based programs rely entirely on sequence features and genomic 

context (ignoring conservation). sRNAScanner determines intergenic sequences using 

genome annotation files and differentiates coding from non-coding sequences using position 

scoring matrices for sequence signals such as RBS and start codons (Sridhar et al., 2010). A 

recently published tool, the Pred-GsRNA feature of the PresRAT server, extracts intergenic 
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sequences, also based on genome annotation, and excludes candidates that have an 8 nt 

sequence found to be depleted in known sRNAs. It scores each predicted sequence with 

weighted Minimum Free Energy scores for predicted paired and loop regions and scores for 

the predicted U-rich consensus sequences typical of intrinsic terminators (Kumar et al., 2020). 

The server offers 405 possible ‘non-genic sRNA’ predictions for the M. tuberculosis H37Rv 

genome (http://www.hpppi.iicb.res.in/presrat/). We compared the predicted sRNA 

coordinates with  the coordinates of the 92 ‘stable’ RNAs in the H37Rv genome on 

Mycobrowser (https://mycobrowser.epfl.ch). There were no PresRAT predicted sRNAs 

overlapping the boundaries of the Mycobrowser listed RNAs, except for low-ranking 

predictions that were over 4000 bp long, indicating that this method has limited power to 

recognise intergenic sRNA elements in mycobacterial genomes.  

 

Relying on the current annotation to define the intergenic search space is problematic given 

that many of the start codons in the current Mtb annotation appear to be misannotated, with 

ribosome occupancy studies suggesting that there are a significant number of unannotated 

proteins encoded at the 5’ ends of annotated genes (Shell et al., 2015; Smith et al., 2019). 

Furthermore, a considerable proportion of transcripts in the mycobacterial genome are either 

‘leaderless’, meaning the transcription start site and the start codon are overlapping and the 

transcripts therefore lack the canonical Shine-Dalgarno sequence used to identify ORF 

boundaries (Cortes et al., 2013; Martini et al., 2019; Sawyer et al., 2021; Shell et al., 2015). 

Programs that search the intergenic regions for conserved sequence features based on sRNAs 

discovered in the model organisms are also less effective in mycobacteria as mycobacteria 

make use of a large number of alternative sigma factors which recognise diverse promoter 

sequences, and many lack a conserved -35 sequence (Newton-Foot & Gey van Pittius, 2013). 

Mycobacterial transcripts, including sRNAs, also often lack the recognisable intrinsic 

terminator motifs at their 3’ ends typical of Hfq-binding sRNAs (Arnvig et al., 2014; DiChiara 

et al., 2010; Moores et al., 2017). Furthermore, identifying regions of high GC-content in order 

to detect RNA secondary structure in the intergenic space is even more challenging in the 

context of the GC-rich genome of mycobacteria. In any compact bacterial genome, tools that 

narrow the search space to strictly intergenic regions that lack no annotated genes on either 

strand, effectively ignore sRNAs and asRNAs generated from coding regions, antisense 

http://www.hpppi.iicb.res.in/presrat/
https://mycobrowser.epfl.ch/
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regions or 5’/3’ UTRs; this may bias our understanding of non-coding regulation in 

mycobacteria. 

 

Transcriptomics-based methods are usually versions of sliding window approaches looking for 

abrupt increases and drops in the expression signal and using such changes to delineate the 

limits of putative non-coding elements. High-throughput RNA sequencing (RNA-seq) has 

uncovered a multitude of short transcripts from intergenic sequences, 5’ and 3’ UTRs and 

antisense to coding regions. Identifying functional transcripts in the conditions examined is 

the main challenge when using these data in non-coding RNA discovery. For example, 

sensitive methods are able to pick up expressed elements in regions of low read coverage; 

this signal may represent true low-abundance transcripts but it can also be the result of either 

technical noise or stochastic gene expression. The more sensitive computational methods will 

therefore inevitably over-predict putative non-coding elements. Ironically, high-depth 

sequencing has magnified this problem (Mao et al., 2015; Tarazona et al., 2011). Non-

fragmented, size-selected libraries, where small transcripts remain intact, are superior for 

discerning between signal and noise for small RNA transcripts (Leonard et al., 2019; Wang et 

al., 2016). For all the reasons discussed above, detecting the existence of sRNAs expressed in 

low levels against very strongly expressed coding genes remains a computational challenge. 

Here, we also suggest caution when using publicly available transcriptomic data, some of 

which dates back to the early use of RNA-seq technologies. In particular, using strand-specific 

cDNA libraries sequencing, where the information about which strand the transcript 

originates from is preserved, is invaluable to the discovery of new ncRNAs. Preservation of 

the strand information avoids mis-mapping asRNAs or other overlapping sRNAs that might 

otherwise be mapped to a coding gene on the opposite strand. 

 

Many labs have developed their own computational pipelines and scripts to map RNA-seq 

data, normalise signals and identify ncRNA transcripts across the genome (Ami et al., 2020; 

Dejesus et al., 2017; Gómez-Lozano et al., 2014; Miotto et al., 2012; Wang et al., 2016), 

whereas others have carried out this process semi-manually  (Arnvig et al., 2011). Progress in 

the field, and an easy comparison between approaches, has been hindered by the fact that 

few of the labs publishing computational predictions have made their code readily available.  

In response to this challenge, several groups have created publicly-available prediction 
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programs or workflows such as Rockhopper (McClure et al., 2013), DETR’PROK (Toffano-

Nioche et al., 2013), ANNOgesic (Yu et al., 2018),  APERO (Leonard et al., 2019) and baerhunter 

(Ozuna et al., 2019). Users of all of these transcriptomics-based methods are required to set 

thresholds for separating background noise (whatever its origin) from signal in the data. 

Indeed, most programs need adjustment to their default parameters in order to respond to 

sequencing depth and signal abundance (Figure 1) but tuning these parameters can be a 

matter of art rather than science.   

 

 

 

The more sophisticated among the transcriptomics-based approaches use a combination of 

sources, such as TSS data or conservation across species, to reduce false positives. DETR’PROK 

is a Galaxy-based workflow, coordinating over 40 publicly-available Galaxy sequence 

comparison tools into a pipeline which streamlines the number of user-defined parameters. 

However, there are still 14 different user inputs, most of which concern filtering to account 

for read depth and transcriptional noise (Toffano-Nioche et al., 2013). The recently published 

ANNOgesic suite of tools utilises multiple third-party software packages, as well as its own 

scripts to analyse RNA-seq data and filter predictions. Although, the suite includes an sRNA-

finder module, using this module in isolation on user-generated alignment files requires 

specific file formats for the alignment (.wig) and several reference annotation files. Multiple 

levels of filtering are possible to identify bona fide ncRNAs, but such filtering requires 

downloading of tools and databases such as RNAfold (Denman, 1993), BSRD (Li et al., 2013)  

and the NCBI nr protein database (NCBI Resource Coordinators, 2014). In the context of 

validating mycobacteria ncRNA predictions, such databases may possibly be less relevant, 

given the lack of homology or shared sequence features between mycobacterial and other 

bacterial ncRNAs. Additionally, fine-tuning cut-off parameters to distinguish signal from noise 

is ultimately still up to the user. Somewhat surprisingly, the added complexity of such 

methods does not always translate into more accurate results: in limited comparisons 

between methods that use additional information and our own simpler, signal-only-based 

method, we found that our naïve approach performs comparatively well, most likely because 

more sophisticated methods often require more tuning of their parameters to take advantage 

of their added complexity (Ozuna et al., 2019). As the responsibility of parameter tuning is 
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left up to the user, it is obvious that methods with fewer parameters, such as Rockhopper, 

baerhunter or APERO, may be less error-prone and, ultimately, more appealing, especially to 

non-computational users looking for quick and easy to implement solutions. Rockhopper is 

an independent, Java-based tool designed for bacterial RNAseq data (McClure et al., 2013). 

To eliminate guesswork by the user to adjust for noise vs. signal, the program normalises for 

read counts using the upper quartile of non-zero gene expression values and generates a 

transcriptional map of the predicted non-coding elements. Baerhunter (Ozuna et al., 2019) 

and APERO (Leonard et al., 2019) are lighter tools to install, both written in R and requiring 

only the most commonly used BAM format alignment files and relevant reference 

annotations. Like Rockhopper, the output of baerhunter is a transcriptional map (in .gff 

format), and can consolidate annotations from multiple samples. APERO exploits 

improvements in sequencing technology by requiring paired-end reads (where each fragment 

is sequenced from both ends, creating two barcoded reads for each fragment) and optimising 

parameters for non-fragmented libraries. The output consists of a set of flat files of the 

predicted transcript 5’ and 3’ ends for each sample that can then be filtered for read counts 

and assembled into a genomic context. 

 

Steps can be taken to lend support to computational predictions of sRNAs and 5’ UTRs in 

mycobacteria. In a recent study to identify differentially expressed, verifiable sRNAs in M. 

tuberculosis, software predictions based on RNA-seq produced over 200 candidate sRNAs 

(Dejesus et al., 2017), 82 of which were differentially expressed by 6-fold in at least one 

experimental condition (Gerrick et al., 2018). Applying additional filters to the 92 ‘stable 

ncRNAs’ listed in Mycobrowser, we compared their 5’ boundaries with a compendium of 

published predicted TSSs (Cortes et al., 2013; Shell et al., 2015), and found 40 with  predicted 

TSS within 10 nucleotides of the annotated 5’ boundary. 62 of the Mycobrowser ncRNAs are 

putative sRNAs originating from the DeJesus et al. study (Dejesus et al., 2017), 25 of which 

have TSSs within 10 nucleotides of the 5’ boundary. We also compared these putative sRNAs 

with the transcripts found to be differentially expressed in Gerrick et al (Gerrick et al., 2018), 

and found 17 putative ncRNAs with both TSSs and differential expression (Appendix 1). 

Mapping RNase cleavage sites in M.tuberculosis, as they were for M.smegmatis, could also 

lend support to the existence of other sRNA candidates cleaved from longer transcripts or 

otherwise processed (Martini et al., 2019). Sequence conservation of non-coding elements in 
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mycobacterial genomes outside the MTBC can help to identify bona fide predictions made by 

RNA-seq methods. A comprehensive analysis of the genomic context, structural conservation 

and expression profiles of non-coding RNA homologues both within the MTBC, and in the 

wider phyla, would be a valuable resource for the mycobacterial research community (but 

outside the scope of this short review). In the absence of such a resource, we have performed 

a sequence similarity search with each of the non-coding RNAs annotated in M. tuberculosis 

in three related genomes: one member of the MTBC (M. bovis), the non-pathogenic strain 

widely used surrogate for Mtb, Mycobacterium smegmatis and a pathogenic species outside 

the MTBC, Mycobacterium abscessus, using the web-based application, fastA (Madeira et al., 

2019) (Supplemental Info, Table 1).  43 of the 92 Mycobrowser ncRNAs have significant (E-

value < 0.01) sequence matches in both M. smegmatis and M. abscessus with sequence 

identities ranging from 52-87%. 18 of these have been experimentally verified by Northern 

blot, but 25 of them were predicted by RNA-seq methods alone. All these approaches may 

lend support to computational findings, but true validation of candidate ncRNAs requires 

experimental confirmation such as using RACE (Rapid Amplification of cDNA Ends) (Frohman 

et al., 1988) to identify transcript boundaries; and Northern blot to confirm the existence and 

size(s) of actual RNA transcripts, and to confirm expression of orthologous transcripts in 

related genomes. As computational tools become more specialised for the mycobacterial 

genome, laboratory resources can be more confidently directed to their predictions. 

 

A further complication in defining the non-coding transcriptome is that putative non-coding 

elements predicted by computational algorithms may actually be (or contain) as yet 

unannotated ORFs; there is no way of asserting from the RNA-seq signal alone whether a 

transcript is coding or non-coding. Early ribosome profiling studies pointed to the presence of 

hundreds of small peptides encoded in the 5’ UTR of mycobacterial transcripts (Shell et al., 

2015), and more recent efforts have shown pervasive translation in Mtb, uncovering over 

1000 novel ORFs (Smith et al., 2019). The majority of these were short ORFs with non-

canonical features that would thus be missed by regular gene prediction algorithms. 

Comparing this list with the annotated ncRNAs listed in Mycobrowser, we found that two of 

the ncRNAs overlap with predicted ORFs (Appendix 1). Although translation of these 

transcripts does not necessarily render them functional, they may constitute a pool of 

peptides that are available to use under the right conditions.  The observation that leaderless 



 16 

transcripts are translated more efficiently under stress conditions (Sawyer et al., 2021) also 

points to the fact that mycobacterial non-canonical ORFs may play increasingly important 

roles in conditions of nutrient starvation or other stresses.  

 

Can we improve the identification of non-coding elements in mycobacteria? 

  
There is limited scope for improving the computational methods used to predict non-coding 

RNA from the currently available mycobacterial genomic and transcriptomic data. In our 

experience, both lack of specificity and sensitivity of current methods can be accounted for 

by the signal (or absence of it) in the raw data. One problem is that in a compact mycobacterial 

genome, overlapping signal from UTRs and ORFs may confuse algorithms and stop them from 

correctly predicting the limits of transcripts. In such cases, some level of manual curation is 

often needed, guided by visualisation on a genome viewer such as Artemis (Carver et al., 

2012) or IGV (Robinson et al., 2011). Another source of problems is the use of short reads in 

the currently most popular sequencing protocol. Typical Illumina RNA-seq fragments are 75-

150 base pairs long and are mapped in overlapping segments, preferentially using paired-

ends, to infer a longer transcriptional unit. Many genes in mycobacteria, including sRNA and 

asRNA, are transcribed as polycistronic transcripts, where multiple sequential genes are 

transcribed into a single mRNA transcript. The individual overlapping transcripts of varying 

lengths are often difficult to detect with standard RNA-seq (Figure 1). The development of 

specialised RNA-seq methods, such as dRNA-seq (Sharma et al., 2010) to enrich for the 5’ end 

of primary transcripts and map TSSs, and Term-seq (D. Dar et al., 2016) to find 3’ termini, 

offers information that can be used to address the issue of overlapping signal from distinct 

transcripts. Moreover, ribosome profiling (Ingolia et al., 2009) will continue to be 

instrumental in resolving ambiguities in annotation of ORFs versus non-coding elements in 

untranslated regions (Shell et al., 2015; Smith et al., 2019). Although such information can 

already be integrated in a subset of computational pipelines (Yu et al., 2018), the 

corresponding data is only available for a limited number of reference mycobacterial strains. 

  

Perhaps one of the most promising new technologies for studying whole transcriptomes are 

based on long-read sequencing. Pac-Bio SMRT or Oxford Nanopore Technologies sequencing 

can achieve reads several thousand nucleotides long, resolving issues associated with errors 



 17 

in the assembly of short reads. The selection of primary RNA transcripts that have not been 

fragmented in cDNA library preparation make it possible to reconstruct an entire 

transcriptome with a high level of confidence. In addition, the ability to sequence full 

polycistronic transcripts allows the surveying of dynamic changes to the structure of bacterial 

operons in response to a change in the conditions of growth (Yan et al., 2018). Nanopore 

sequencing goes one step further in making it possible for native RNA molecules to be 

sequenced, allowing post-transcriptional modifications of individual nucleotides to be 

detected, that would otherwise be lost during reverse transcription to cDNA (Grünberger et 

al., 2020). The technologies are still evolving, but with bioinformatics improvements to 

resolve technical issues of noise from the nanopore and saturation (Soneson et al., 2019), 

long-read sequencing will become a valuable tool for studying transcriptomes. The longer 

reads will certainly improve our mapping of 5’ and 3’ UTRs, as well as our understanding of 

the dynamic nature of bacterial transcriptional units, but issues with discriminating coding 

from non-coding elements, sRNAs from UTRs and identifying original versus processed or 

degraded transcripts will remain a problem.  

 

One, perhaps less obvious, way in which new sequencing technologies may prove 

instrumental in improving the prediction of non-coding RNAs is their role in improving the 

assembly of genomic sequences against which RNA-seq reads are mapped. Currently, Mtb 

transcript mapping relies on the cultured genome, H37Rv, which shows considerable 

differences compared to clinical and field strains, or isolates, that have adapted to different 

environmental pressures (O’Neill et al., 2015; Shockey et al., 2019). As SNPs in promoter 

regions and small insertions/deletions may play a major role in regulating the expression of 

non-coding elements (Dinan et al., 2014), it is clear that using the correct genomic sequence 

is important when analysing transcriptomes of non-reference strains. Sequencing and 

assembly of potentially thousands more strains are being facilitated by technologies offering 

portable sequencing platforms and we can expect the number of available mycobacterial 

genomes to increase manifold in public databases in the next few years, as a result of the 

increase in popularity of such methods.  

 

Having the correct genomic sequence available is important but correct annotation is 

arguably just as important, given how many algorithms rely on the annotation of coding 
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elements to make predictions of non-coding ones. Homologous predicted sRNAs are 

sometimes annotated as protein-coding or non-coding in different genomes, and could, in 

fact, be dual-function sRNAs (Vanderpool et al., 2011). This is especially obvious when trying 

to compare non-coding elements or small ORFs in different lineages of Mtb (Arnvig & Young, 

2012). To improve annotation efforts, the idea of assembling MTBC pangenomes that 

differentiate core genes (including non-coding ones) present in all lineages, from accessory 

genes present in a subset and unique genes present in only one strain or lineage, is an 

appealing one (Vernikos et al., 2015). Although members of the MTBC are assumed to share 

very high sequence identity, this assumption is rooted primarily on comparisons of reference 

sequences and less so on circulating strains. For example, the sequencing of M. bovis strains 

that cannot be classified in current clonal complexes, suggests that diversity within this 

species may be higher than previously thought (Zimpel et al., 2020).  Pangenomic projects to 

date have primarily focussed on identifying differences in antibiotic liability/resistance among 

clinical strains of Mtb (H. A. Dar et al., 2020; Rufai et al., 2020), but whole genome sequencing 

projects of clinical and field strains to assemble lineage-specific pangenomes for both human 

and animal-adapted MTBC members would allow comparisons and provide a more accurate 

picture of the extent of riboregulation and its effect on host-specificity and other phenotypic 

differences (Zimpel et al., 2017).  

 

Finally, it is worth pointing out that the quest for an atlas of the mycobacterial non-coding 

transcriptome may need to be reconsidered in view of the fact that the number of non-coding 

RNAs we discover, just like the number of peptides we discover, is closely linked to the growth 

conditions and the sensitivity of the methods we use. There is likely expression detectable at 

every nucleotide of the genome, if we use a sensitive enough method to detect it. However, 

what transcripts are functional or able to acquire function given a set of conditions is the 

important question here. To answer this, more targeted experiments are needed, but 

computational methods will be crucial in focusing the efforts towards the most promising 

subjects for investigation. 
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Conclusions 

A definitive answer to the question, “How many non-coding RNA elements exist in 

mycobacterial genomes?”, is not yet possible. Although several computational methods have 

been developed to support this area of research, our knowledge is currently limited by the 

availability and quality of raw data. We believe the key to constructing an atlas of the 

mycobacterial non-coding universe is recognising both the diversity of the individual 

genomes, and the dynamic nature of the corresponding transcriptomes. Integration of 

existing and new sequencing technologies and close collaboration between experimental and 

computational groups should allow us to progress faster towards this goal. 
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Figure legend 

Figure 1. Challenges of predicting non-coding expressed elements from transcriptomic 

signal alone. Coverage views from two real and one hypothetical Mtb transcriptomic dataset: 

Illumina high-throughput sequencing datasets from Bioproject accession numbers 

PRJNA278760, sample SRR1917694 (A) and PRJNA390669, sample SRR5689230 (B); 

diagrammatic illustration of long-read sequencing coverage of the same region (C). The two 

RNA-seq samples differ in their sequencing depths: average, non-zero, sequencing depth for 

the region displayed is 55.6 for (A) and 312.8 for (B).  The blue rectangle below the x-axis 

indicates the genomic region covered by DrrS (MTS1338), an annotated M.tb sRNA of 109 nts. 

This stable (and by far most abundant) form is cleaved from longer transcripts found in 

Northern Blots of 160-400+ nts (Moores et al., 2017). Both RNA-seq datasets (A & B) display 

a gradual drop in coverage at the 3’ end. In such cases, automatic computational prediction 

of the correct transcript length is challenging for any algorithm but here the prediction is 

further complicated by the fact that multiple overlapping transcripts of different length most 

likely co-exist in the data. Even in the deeply sequenced sample, where the presence of 

overlapping transcripts could be conjectured, most algorithms would call a single transcript, 

without additional knowledge of transcription start and termination sites for the refinement 

of computational predictions. In the absence of such additional data, long-read sequencing 

might be helpful: as illustrated in diagram (C), long reads whose starts and ends can be 

unambiguously defined should be helpful in identifying the presence of multiple overlapping 

transcripts expressed from a single locus. Image created using the Integrated Genome Viewer 

(Robinson et al., 2011) and BioRender.com.  
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Appendix 1. List of M. tuberculosis 'stable regulatory RNAs created from Mycobrowser (https://mycobrowser.epfl.ch) H37Rv annotation file, release 4 2 

(Mycobacterium_tuberculosis_H37Rv_gff_v4.gff). Presence of a predicted TSSs (Cortes et al., 2013; Shell et al., 2015) within 10 nts of start position and overlap with predicted 3 

sORFs (Smith et al., 2019) are indicated.  *nc Locus ID refers to annotation as Lamichhane et al., (Lamichhane et al., 2013), and missing locus names were assigned based on 4 

mapping coordinates to H37Rv reference sequence (AL12345.3). 5 

Name nc Locus ID Tuberculist Start End Width Str Citation Verif RNA-seq 
Diff 
Expr Rfam TSS sORF 

ncRv10071 ncRv10071 MTB000100 80240 80440 201 + 
DeJesus et al, 

2017  * *  TSS  

ncRv10071c ncRv10071c MTB000101 80254 80344 91 - 
DeJesus et al, 

2017  * *  TSS  

ncRv10128 ncRv10128 MTB000102 156452 156567 116 + 
DeJesus et al, 

2017  * *    

ncRv10128c ncRv10128c MTB000103 156521 156568 48 - 
DeJesus et al, 

2017  * *    

ncRv10150c ncRv10150c MTB000104 177236 177285 50 - 
DeJesus et al, 

2017  * *    

ncRv0179 ncRv0179 MTB000105 209683 209841 159 + 
DeJesus et al, 

2017  * *    

ncRv0186c ncRv0186c MTB000106 218320 218379 60 - 
DeJesus et al, 

2017  * *    

ncRv10243 ncRv10243B MTB000107 293603 293663 61 + 
DeJesus et al, 

2017  * *  TSS  

F6 ncRv10243A MTB000051 293604 293705 102 + 

Arnvig and 
Young, 2009; 
DiChiara et al, 

2010 

Northern 
RLM-
RACE  * RF01791 TSS  

ncRv0441c ncRv0441c MTB000108 530246 530353 108 - 
DeJesus et al, 

2017  *     

ncRv10467 ncRv10467 MTB000109 558815 558884 70 + 
DeJesus et al, 

2017  *   TSS  

mcr19 ncRv0485 MTB000060 575033 575069 37 + 
DiChiara et al, 

2010 Northern      

ncRv0490 ncRv0490 MTB000110 579290 579408 119 + 
DeJesus et al, 

2017  * *  TSS  

ncRv10609 ncRv10609B MTB000111 704185 704246 62 + 
DeJesus et al, 

2017  *  RF01783 TSS  

B55 ncRv10609A MTB000052 704187 704247 61 + 
Arnvig and 

Young, 2009 

Northern
/RLM-
RACE   RF01783 TSS  

ncRv10637 ncRv10637 MTB000112 733361 733459 99 + 
DeJesus et al, 

2017  * *  TSS  

ncRv0638 ncRv0638 MTB000113 734118 734244 127 + 
DeJesus et al, 

2017  * *    

ncRv0641 ncRv0641 MTB000114 736166 736284 119 + 
DeJesus et al, 

2017  * *    

ncRv10666 ncRv10666 MTB000115 759479 759610 132 + 
DeJesus et al, 

2017  * *  TSS  

ncRv10685 ncRv10685 MTB000116 786021 786074 54 + 
DeJesus et al, 

2017  * *    

ncRv10699 ncRv10699 MTB000117 800242 800359 118 + 
DeJesus et al, 

2017  * *    

https://mycobrowser.epfl.ch/
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ncRv0724 ncRv0724 MTB000118 815417 815685 269 + 
DeJesus et al, 

2017  *     

ncRv0810c ncRv0810c MTB000119 905075 905164 90 - 
DeJesus et al, 

2017  *   TSS  

ASdes ncRv0824 MTB000053 918264 918458 195 + 
Arnvig and 

Young, 2009 

Northern
, RLM-
RACE   RF01781 TSS  

ncRv10860 ncRv10860 MTB000120 958459 958509 51 + 
DeJesus et al, 

2017  * *    

ncRv0897 ncRv0897 MTB000121 1000719 1000826 108 + 
DeJesus et al, 

2017  *     

ncRv0952 ncRv0952 MTB000122 1063969 1064101 133 + 
DeJesus et al, 

2017  * *    

ncRv10996 ncRv10996 MTB000123 1113606 1113664 59 + 
DeJesus et al, 

2017  * *    

ncRv11042c ncRv11042c MTB000124 1165548 1165613 66 - 
DeJesus et al, 

2017  * *    

mpr5 ncRv11051 MTB000061 1175225 1175315 91 + 
DiChiara et al, 

2010 Northern    TSS  

ncRv1072 ncRv1072 MTB000125 1197082 1197179 98 + 
DeJesus et al, 

2017  *   TSS  

MTS0858 ncRv1092c MTB000074 1220388 1220487 100 - 
Arnvig et al, 

2011 Northern *   TSS  

ncRv11144c ncRv11144c MTB000126 1271918 1271961 44 - 
DeJesus et al, 

2017  *     

ncRv11147c ncRv11147c MTB000127 1275610 1275674 65 - 
DeJesus et al, 

2017  * *    

mcr10 ncRv1157 MTB000072 1283693 1283815 123 + 
DiChiara et al, 

2010 

Northern
, RLM-
RACE      

ncRv11179c ncRv11179c MTB000128 1313343 1313452 110 - 
DeJesus et al, 

2017  * *  TSS  

ncrMT1234 ncRv11196 MTB000075 1340578 1340625 48 + Pelly et al, 2012 
Cloned 

fragment *     

ncRv11199 ncRv11199 MTB000129 1342888 1342941 54 + 
DeJesus et al, 

2017  * *    

mpr6 ncRv1222 MTB000062 1365274 1365365 92 + 
DiChiara et al, 

2010 Northern      

mcr11, 
MTS0997 ncRv11264c MTB000063 1413094 1413224 131 - 

Arnvig et al, 
2011; DiChiara et 

al, 2010 

Northern
, RLM-
RACE * * RF02341 TSS  

ncRv11264c ncRv11147c MTB000130 1413105 1413227 123 - 
DeJesus et al, 

2017  * *  TSS  

ncRv1298 ncRv1298 MTB000131 1455386 1455461 76 + 
DeJesus et al, 

2017  * *    

ncRv11298 ncRv11298 MTB000132 1455406 1455461 56 + 
DeJesus et al, 

2017  * *    

mcr3 ncRv11315A MTB000064 1471619 1471742 124 + 
DiChiara et al, 

2010 

Northern
, RLM-
RACE  *    

ncRv11315 ncRv11315B MTB000133 1473385 1473503 119 + 
DeJesus et al, 

2017  * *  TSS  

ncRv1329 ncRv1329 MTB000134 1497132 1497220 89 + 
DeJesus et al, 

2017  * *    
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mcr15 ncRv1364c MTB000065 1535417 1535716 300 - 
DiChiara et al, 

2010 

Northern
, RLM-
RACE      

MTS1082 ncRv11373 MTB000076 1547129 1547268 140 + 
Arnvig et al, 

2011 Northern *   TSS  

ncRv1389 ncRv1389 MTB000135 1564297 1564499 203 + 
DeJesus et al, 

2017  * *    

ncRv1501 ncRv1501 MTB000136 1692646 1692731 86 + 
DeJesus et al, 

2017  *   TSS  

ncRv1617 ncRv1617 MTB000137 1816131 1816235 105 + 
DeJesus et al, 

2017  * *    

ncRv1621c ncRv1621c MTB000138 1821646 1821753 108 - 
DeJesus et al, 

2017  *     

G2 ncRv11689c MTB000054 1914962 1915190 229 - 
Arnvig and 

Young, 2009 

Northern
, RLM-
RACE   RF01798 TSS 

1915107-
1915187 

AS1726 ncRv1726c MTB000055 1952291 1952503 213 - 
Arnvig and 

Young, 2009 

Northern
, RLM-
RACE      

MTS1338, 
DrrS ncRv11733A MTB000077 1960667 1960783 117 + 

Arnvig et al, 
2011 

Northern
, RLM-
RACE *   TSS  

ncRv11733 ncRv11733B MTB000139 1960667 1960774 108 + 
DeJesus et al, 

2017  *   TSS  

ncRv11793 ncRv11793 MTB000140 2030986 2031038 53 + 
DeJesus et al, 

2017  * *    

ncRv1821 ncRv1821 MTB000141 2068863 2068962 100 + 
DeJesus et al, 

2017  * *    
ncRv11846, 
MrsI ncRv11846 MTB000142 2096766 2096867 102 + 

DeJesus et al, 
2017  * *  TSS  

AS1890 ncRv1890 MTB000056 2139419 2139656 238 + 
Arnvig and 

Young, 2009 

Northern
, RLM-
RACE      

ncRv12023 ncRv12023 MTB000143 2268164 2268231 68 + 
DeJesus et al, 

2017  * *  TSS  

ASpks ncRv2048 MTB000057 2299745 2299886 142 + 
Arnvig and 

Young, 2009 

Northern
, RLM-
RACE      

mcr5 ncRv2175c MTB000066 2437823 2437866 44 - 
DiChiara et al, 

2010 Northern      

ncRv12220 ncRv12220 MTB000144 2489205 2489252 48 + 
DeJesus et al, 

2017  *     

mcr16 ncRv2243c MTB000073 2517032 2517134 103 - 
DiChiara et al, 

2010 Northern      

mcr7 ncRv0024 MTB000067 2692172 2692521 350 + 
DiChiara et al, 

2010 

Northern
, RLM-
RACE   RF02571 TSS  

ncRv12459 ncRv12459 MTB000145 2762409 2762484 76 + 
DeJesus et al, 

2017  *     

ncRv12557 ncRv12557 MTB000146 2877751 2877808 58 + 
DeJesus et al, 

2017  * *    

mpr11 ncRv12560 MTB000068 2881252 2881320 69 + 
DiChiara et al, 

2010 Northern      

mpr12 ncRv12562 MTB000069 2882185 2882276 92 + 
DiChiara et al, 

2010 Northern      
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ncRv12641 ncRv12641 MTB000147 2966410 2966450 41 + 
DeJesus et al, 

2017  * *    

ncRv12783c ncRv12783c MTB000148 3092761 3092886 126 - 
DeJesus et al, 

2017  * *  TSS  

ncRv2986c ncRv2986c MTB000149 3343113 3343216 104 - 
DeJesus et al, 

2017  *   TSS  

ncRv2993c ncRv2993c MTB000150 3350950 3351074 125 - 
DeJesus et al, 

2017  * *  TSS  

ncRv13003c ncRv13003c MTB000151 3363029 3363152 124 - 
DeJesus et al, 

2017  * *  TSS  

ncRv3220 ncRv3220 MTB000152 3595951 3596059 109 + 
DeJesus et al, 

2017  *     

ncRv13303 ncRv13303 MTB000153 3690941 3691059 119 + 
DeJesus et al, 

2017  * *    

ncRv13418cA ncRv13418Ac MTB000154 3837297 3837458 162 - 
DeJesus et al, 

2017  * *  TSS  

ncRv13418cB ncRv13418Bc MTB000155 3837346 3837458 113 - 
DeJesus et al, 

2017  * *  TSS  

ncRv3461c ncRv3461c MTB000156 3880231 3880294 64 - 
DeJesus et al, 

2017  *     

ncRv3520 ncRv3520 MTB000157 3956291 3956550 260 + 
DeJesus et al, 

2017  *     

mpr17 ncRv13596 MTB000070 4040879 4040938 60 + 
DiChiara et al, 

2010 Northern    TSS  

ncRv3648c ncRv3648c MTB000158 4088267 4088350 84 - 
DeJesus et al, 

2017  * *    

mpr18 ncRv13651 MTB000071 4093468 4093522 55 + 
DiChiara et al, 

2010 Northern      

ncRv13660c ncRv13660c MTB000159 4099384 4099477 94 - 
DeJesus et al, 

2017  *     

B11, 6CsRNA ncRv13660c MTB000058 4099386 4099478 93 - 

Arnvig and 
Young, 2009; 
DiChiara et al, 

2010 

Northern
, RLM-
RACE   RF01066 TSS  

MTS2823, 
Ms1 ncRv13661 MTB000078 4100669 4100968 300 + 

Arnvig et al, 
2011 

Northern
/RLM-
RACE *  RF02566 TSS  

C8, 4.5S RNA ncRv13722Ac MTB000059 4168154 4168281 128 - 

Arnvig and 
Young, 2009; 
DiChiara et al, 

2010 

Northern
/RLM-
RACE    TSS  

ncRv13722c ncRv13722Bc MTB000160 4168192 4168281 90 - 
DeJesus et al, 

2017  *   TSS  

ncRv3804c ncRv3804c MTB000161 4265583 4265765 183 - 
DeJesus et al, 

2017  * *  TSS 
4265642-
4265773 

ncrMT3949 ncRv3842 MTB000079 4314798 4314891 94 + Pelly et al, 2012 
Cloned 

fragment * *    

MTS2975 ncRv13943 MTB000080 4317073 4317165 93 + 
Arnvig et al, 

2011 Northern *   TSS  
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