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Abstract 

Digital transformation is a key strategic issue for countries and regions aiming to boost economic 
growth, job creation, technology development and innovation. With a focus on the Internet of 
Things (IoT) the paper maps the potential of IoT technologies across European regions, using 
textual analysis applied to the description of companies’ activities. Results identify three 
categories of regions (IoT leaders, co-designers and suppliers) capturing their potential to harness 
opportunities in IoT, based on the variety of IoT competences that are present. This mapping can 
support regional policies, particularly in the context of smart specialization strategies building on 
IoT systems.  
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1.  Introduction 

New digital technologies associated with Industry 4.0 – Internet of Things, cloud 
services, big data and analytics (GTAI, 2014; Hermann et al., 2016; Frank et al., 2019) - 
are transforming sectors, value chains and production systems (De Propris and Bailey, 
202; Capello and Lenzi, 2021a, 2021b). These technologies are expected to shape the 
geography of innovation and knowledge production (Balland and Boschma, 2021) and 
create a range of opportunities for those regional economies that are able to exploit them.  

Among the factors that can help regions to harness the potential of Industry 4.0 
(henceforth: I4.0), the presence of a sizeable set of firms providing core elements of the 
technology, or parts of the value chain, is crucial: having firms with the required 
competences can allow the region to lead in technology development, to identify new 
applications of the technology leading to new potential markets, and to diversify into 
related technologies (Cooke and Schwartz, 2008; Boschma and Iammarino, 2009). In 
fact, firms’ current competences strongly influence the possibility of further 
technological advancement along the same technological trajectory (Boschma et al., 
2013; Heimeriks and Boschma, 2013; Kogler et al., 2013), as well as the potential for 
discovering new applications of the technology, which pave the way for market 
expansion (Capello and Lenzi, 2021a). They also provide the building blocks for further 
diversification into related technologies (Boschma and Frenken, 2011; Neffke et al., 
2011), an aptitude that regional policies aim to leverage when they design their regional 
innovation smart specialisation strategies (Balland et al., 2019).  

The territorial mapping of competences in I4.0 can highlight which contexts might 
have opportunities for growth in the new technological and market scenario, and which 
ones might instead experience difficulties in fitting in. Lacking knowledge about the 
competences of the firms present in their territory might prevent policymakers from 
designing comprehensive territorial-based innovation strategies aimed at enhancing local 
competitiveness in I4.0. It also limits the potential of policy instruments designed to 
develop specific competences, or to build on competences that are already present in the 
current ecosystems, both within and across regions (Cooke and Schwartz, 2008; Balland 
and Boschma, 2021; Capello and Lenzi, 2021a). While research has suggested that the 
competences needed to harness the new digital technologies are unevenly spread across 
European regions (Muscio and Ciffolilli, 2020), few attempts have been made to develop 
a regional mapping of competences of I4.0 (De Propris and Bailey, 2020; Capello and 
Lenzi, 2021a, 2021b). A crucial factor that makes it difficult to map the geographical 
distribution of competences in I4.0 technologies is that they do not fit existing industry 
classifications, a problem that is common to most emerging technologies (Feldman and 
Lendel, 2010).  

Some scholars have approached the problem of mapping the geographical 
distribution of I4.0 knowledge by relying on patent data (Balland and Boschma, 2021; 
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Corradini et al., 2021). While these endeavours are certainly valuable, they also present 
some limitations. First, patents capture inventing activities rather than the development of 
actual products and production systems, hence they are most appropriate to uncovering 
where new knowledge about these technologies is generated, rather than the geographical 
location of design and production expertise (Capello and Lenzi, 2021a; 2021c). Second, it 
is well known that not all firms in the digital sector engage in patenting, either because 
they specialise in software development, where patenting opportunities are limited 
(Schohe et al., 2019), or because the solutions proposed to users are often customized, 
and therefore deprived of any patenting potential. Hence, mapping exercises based on 
patents exclude a large share of the firms in the sector. Third, emerging technologies are 
often multi-layered, combining hardware, software and platforms, which cannot be 
captured accurately by patent data. Instead of analysing patents, we look at production 
competences of firms (Capello and Lenzi, 2021a). Focusing on a specific part of the I4.0 
technologies – the Internet of Things (IoT) – we develop an original methodology to map 
the regional distribution of IoT competences in Europe. Our objective is to identify firms’ 
production competences by classifying description of their activities to a finer grain than 
their NACE code, drawing on the textual description of their activities. After identifying 
a set of IoT-related activities, we map their presence in 18 European countries. In 
addition to being important in its own right, geographic mapping allows us to identify 
leading regions, where the entire IoT value chain is present, co-designer regions, where 
companies have extensive IoT expertise, albeit concentrated in some particular activities, 
and supplier regions, where some scattered expertise is present.   

The paper is structured as follows. In section 2, we discuss strands in literature that 
provide a background for our research, and then introduce IoT and its key components. In 
section 3, we provide an overview of technology mapping techniques applied to IoT, 
considering both bibliometric and big data approaches based on web scraping, Section 4 
describes the data and the methodology and discuss the extent to which our methodology 
complements and extends current approaches. In section 5, we present the outcomes of 
the mapping exercise and propose a typology of regions based on the variety of IoT 
competences they feature. Finally, in section 6, we draw some conclusions and suggest 
avenues for future research. The Appendix presents supplementary material. A selection 
of figures in the text (marked with the symbol ) can be browsed online using the Tableau 
Public navigation tool available at https://[anonymised, to be added] 

2. Background: Competitiveness of regions and The Internet of Things 

As it is well known, technologies are not place-neutral. They show important 
territorial roots both in the way they are created and in the way they develop over time. 
The impact that these technologies have on the territory influences the development 
possibilities of the regions (Perez & Soete, 1988). 

Technological inventions and innovations arise in places with specific localised 
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endowments of competences and resources (Jaffe et al., 1993; Capello & Lenzi, 2014; 
Boschma, 2017). The regional knowledge base is the collection of accumulated 
competences and resources present in the region; it results from past choices of firms, 
public policy, and the “information and communication ecology created by face-to-face 
contacts, co-presence and co-location of people and firms within the same industry and 
place or region” (Bathelt, Malmberg and Maskell, 2004, p. 38). Competences and 
resources accumulate over time through different forms of learning (Morgan, 1997) as 
well as spillovers via labour markets, formal, and informal networks (Maskell and 
Malmberg, 1999). Since they depend not only on explicit, but also on tacit and 
cumulative knowledge, competences are very specific to the local context (Frenken and 
Boschma, 2007; Buenstorf and Klepper, 2009). In turn, the future technological 
development of the region is dependent on the regional knowledge base, with a 
cumulative character (Martin & Sunley, 2006). Regions that show strong competences in 
certain technologies are more likely to develop new technologies, related to the previous 
ones, than regions that did not possess the same pre-existing knowledge base (Balland 
and Boschma, 2021). The concept of ‘technological relatedness’ has been used, in fact, to 
explain the technological trajectories of regions (Boschma, 2017). Scholars define 
relatedness “in terms of similarities between activities that capture the cognitive 
dimension of capabilities (and thus implies learning)” (Boschma, 2017, p. 352). Thus, 
activities are related when they require similar knowledge or input (Hidalgo et al., 2018). 
According to Breschi et al. (2003), relatedness occurs when knowledge is cognitively 
close, giving rise to interactive learning, and when the same knowledge is used in not just 
one, but in multiple technologies. Moreover, according to Boschma (2017), relatedness 
also encompasses complementarities – the need to draw together and combine different 
activities, technologies or products to accomplish specific goals (Broekel and Brachert, 
2015).  

The regional knowledge base also influences the way in which innovations and 
inventions - both those developed in the region and those created elsewhere - can be 
applied in the region, giving rise to new productive activities or enhancing existing ones 
(Capello and Lenzi, 2021a; 2021d). This cumulative nature of knowledge and technology 
diffusion at the regional level can lead to an uneven distribution of new technologies and 
their applications, with an increasing distinction between regions rich in knowledge 
and/or innovative productive activities and lagging-behind regions (De Propris and 
Bailey, 2020; Balland and Boschma, 2021; Capello and Lenzi, 2021a). 

Evidence suggests that, also in the case of I4.0 technologies, existing competences 
and resources affect which new activities will be developed in regions (Hidalgo et al., 
2018; Neffke et al., 2011; Ciffolilli & Muscio, 2018; Muscio and Ciffolilli, 2020). I4.0 
technologies are more likely to spread within advanced manufacturing regions where 
there is a greater availability of technological competences related to previous technology 
waves (World Bank, 2017; Balland and Boschma, 2021). This is also true for 
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competences in the IoT, although this technology area - being a bundle of different 
technologies - seems to present a less strong degree of concentration than other I4.0 
technologies (Balland and Boschma, 2021).  

IoT is an enabler of next-generation manufacturing, connecting physical objects to 
the Internet and allowing them to exchange information (McKinsey Global Institute, 
2013; Rong et al., 2015; Trappey et al., 2017). Since the development of any IoT solution 
requires the integration of both hardware and software technologies, as well as additional 
services (de Sousa Jabbour et al., 2018; Li et al., 2017), and because the relevant 
competences are often distributed across several firms of different size, we expect 
different regions to host specific combinations of IoT competences, and thus to exhibit 
various levels of ability to harness the potential of this key enabling technology.  

Although many key enabling technologies – as some consider the IoT to be 
(Küfeoğlu, 2021) – are highly complex and characterised by a high degree of uncertainty 
– in terms of the nature of the key players, the products and processes emergent from 
them, the viable marketing strategies and profitable business models (Srinivasan, 2008) – 
they are very important for regional development (Adner and Levinthal, 2002). In fact, 
having a strong knowledge base in key enabling technologies is linked to a greater 
regional economic performance (Laursen, 2000) and a greater number of new 
technological specialisations, which facilitates the branching out of the regional economy 
into new directions (Montresor and Quatraro, 2017). 

However, regions differ widely in their ability to develop competences in a specific 
enabling technology (Evangelista et al., 2017). Even regions that are known for their 
high-tech capabilities are often very different one from the other, with high tech 
employment, patents and venture capital funding being concentrated in only a few 
industry segments in each region (Cortright and Mayer, 2001). This variety is even 
starker when we move beyond high tech regions and consider regions that are lagging in 
technological capabilities. 

After describing the characteristics of the IoT (section 2.1), we will define the 
theoretical framework we use to classify regions according to their potential for IoT 
development (section 2.2). 

2.1. The Internet of Things 
IoT is a system that involves several complementary technologies, including 

software applications, connectivity and hardware components and devices, which rely on 
sensory, information-processing, communication and networking technologies to provide 
solutions for specific applications (Zhang and Chen, 2020). IoT technologies and 
applications emphasize strong connectivity, strong reliability, security, privacy, 
extremely low latency and the capacity to cope with a huge amount of data (Jiang et al., 
2021; Kim, 2021; Sisinni et al., 2018). Like many other key enabling technologies, IoT 
solutions can be considered as a platform-based ecosystem (Tiwana et al., 2010; Teece, 
2018), specifically targeting various types of applications. While each IoT solution is 
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delivered through a complex set of devices and interconnected systems, and the specific 
features of each solution tend to be unique, IoT solutions architecture is made up of 
several conceptually distinct elements, or layers, that are present in all IoT solutions: 
software, connectivity and hardware. Adapted from Romeo (2016), a view of these 
elements, their functions and the various categories of players is presented in Figure 1. 
This view is widely accepted in the examination of IoT (Atzori et al.,2010; Chou, 2018; 
Navani et al.,2017; Razzaque et al. 2016; Sethi et al., 2017). 

The software layers include IoT middleware software – platform and data – service 
providers. It is the IoT platform (in red) that embeds five essential layers: application 
enablement, data analytics, data management, device management, and connectivity 
management. The connectivity layer (in black) embraces wireless, wired, short-range, 
and long-range connectivity. The hardware layer (in grey) is the set of sensors, actuators, 
gateways, and computer and peripheral devices. The vertical functions of integration and 
security (in green) apply to all layers in specific ways. The implementation of IoT 
solutions also depends on IoT software developers that are specialised in various fields 
and are not totally bound within the IoT solutions architecture.  

Figure 1 - IoT Solution architecture: functions and players, by layer 
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Source: Authors – Adapted from Romeo (2016). 

 
IoT solutions are provided by an array of business organisations and service 

providers, each performing different but complementary functions that, together, can 
produce complex projects (Ikävalko et al., 2018; Ibarra et al., 2018). In general, IoT 
provision relies on complex value chains involving diverse competences across different 
domains, including, among other things, software engineering, telecommunications 
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engineering, information networks management, and the manufacturing of hardware 
devices (Scully and Lueth, 2016; Romeo, 2020), without specific codes in the 
classification of economic activities, such as the NACE codes, that would allow its 
identification across industries. 

2.2. Classifying regions according to their potential for IoT development 
In the domain of emerging digital technologies such as IoT, the complexity and 

interdependence of tasks, skills and competences have frequently been put forward. 
Indeed, complex technological solutions often require an array of competences (Metallo 
et al., 2018). Following the arguments proposed by the literature on technological 
relatedness (Neffke et al 2011; Boschma, 2017; Balland and Boschma, 2021), particularly 
the notion that relatedness builds on complementarities, and not just on the similarities, 
between knowledge bases (Makri et al., 2010), it can be assumed that those regions that 
have a greater variety of competences in IoT at their disposal, should be better able to 
harness the technological and market opportunities created by these technologies, ensure 
the current regional competitiveness and secure the future trajectory of development in 
these technologies.  

To map IoT competences across European regions, and critically assess the ability 
of various regions to harness IoT potential, we consider two dimensions capturing variety 
in IoT competences: variety of IoT-related industrial activities and variety of firm sizes.  

Variety of industrial activities underpins greater potential to capture technological 
opportunities 

There are a number of reasons why having greater variety of industrial activities in 
an enabling digital technology like IoT favours greater potential to harness opportunities 
for technological development in the same, or related, technological domains.  

First, the co-location of firms with different industrial activities supports several 
mechanisms that have been identified as underpinning further technological development 
in the region (Boschma and Frenken, 2011). These are, in particular: (i) the greater 
interdependency among actors positioned along the same value chain, which drives the 
search for innovation throughout the region if new innovations are introduced in one part 
of the system; (ii) the technological complementarity among industries, which enables the 
introduction of major new innovations; (iii) supply relationships, where innovation on the 
supply side drives innovation down the value chain.  

Second, an important effect of new technologies is that the “value” in the value 
chain migrates over time, so that a given technology’s potential to generate innovation 
rents may vanish from part of the value chain, rendering some firms’ business models 
obsolete (Srinivasan, 2008). Regions that have a greater variety of industrial activities 
within their borders are less likely to find themselves shut out of further technological 
development due to this shift in value chain opportunities.  

Third, lagging regions are typically characterised by low levels of knowledge 
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complexity and they also lack the diverse set of capabilities from which to derive their 
own complex technologies (Balland and Rigby, 2017). There are many instances of 
regions following trajectories founded in historical regional strengths that ultimately lead 
to ‘rigid specialisation’ and ‘lock-in’. The more varied the industrial activities around the 
enabling technology, the less likely this lock-in is to occur. 

In our empirical analysis, we will therefore consider the variety of industrial 
activities related to the enabling technology in a region as an indication of that region’s 
potential to capture technological opportunities in that and/or in related technological 
domains. 

Variety of company sizes underpins greater potential to capture market-related 
opportunities 

Another element that can provide an indication of the potential for further 
development of the enabling technology in the region is the type of firms (in terms of 
their specialisation, size and value chains to which they belong) that provide it. We argue 
that a greater variety of firm sizes, including SMEs and large firms, favours greater 
potential to harness opportunities for market expansion. This is so for several reasons.  

First, at the early stages in the technology evolution process, many technologies 
have limited if any functionality, and are suited only for limited, narrow applications. 
Over time, the nature of innovation in the technology changes to applications with 
growing commercial potential. In addition, as the technology develops, uncertainty 
around its performance decreases; the technology is applied to product applications with 
well-defined consumer benefits, and the performance–price ratios improve. Often, though 
not in all sectors or technological contexts, with growing commercial potential of the 
technology, large, established firms concerned about the effects of the new technology on 
their current business models begin to participate in the development of the technology 
(Abernathy and Utterback, 1978). In such contexts, large, well-established firms, become 
crucial players insofar as they can scale up the diffusion of the technology and grow new 
markets in distant locations and applications. Hence, as the technology matures, a 
combination of small and large firms is required to further entrench the industry within 
the region. 

Second, an underlying mechanism that can strengthen the emergence of new 
industries is the creation of markets, for instance, through public procurement (Edler and 
Georghiou, 2007), including in the form of large infrastructure projects. These present a 
stable and sufficiently large market that enables regional firms to pursue new economic 
possibilities that can sustain innovation in the regional economy as a response to a new 
market creation (van den Berge et al., 2020). These projects are likely to require the 
involvement of large established firms, which are able to attract public funds to the 
region and thus strengthen the market for the enabling technology.  

In our empirical analysis, we will therefore analyse the variety of sizes of firms 
involved in IoT in the region as an indication of the region’s potential to capture 
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opportunities for market expansion. 

3. An overview of technology mapping 

Mapping the development of major new technologies, both spatially and according 
to other dimensions (such as scientific fields, technology classes, domains of application), 
is a challenge that has attracted increasing interest from academics, policymakers and 
industry alike (Daim et al., 2006; Jeong and Yoon, 2015; Pinto, 2009). Many mapping 
exercises rely on bibliometric analyses of publications or patents, which can be geo-
referenced on the basis of inventors, applicators or authors’ location to detect the 
dominant countries, regions or clusters in a particular technology (Daim et al., 2006; de 
Miranda Santo et al., 2006; Youtie et al, 2016; Ardito et al., 2018).  

Focusing on Industry 4.0 technologies, the literature has underscored the uneven 
spatial distribution found in Europe. The most active regions are those that were already 
leaders in the third industrial revolution (Ménière et al., 2017; Ciffolilli and Muscio, 
2018; Balland and Boschma, 2021). Using patent data, Balland and Boschma (2021) 
showed that the development of these technologies is path-dependent: as predicted by the 
relatedness framework (Boschma, 2017), new Industry 4.0 technologies tend to develop 
in places where there is a pre-existing base of related technologies. Large urban areas 
with the biggest research and technology transfer infrastructures such as London, Paris, 
Berlin and Madrid have emerged as leaders in artificial intelligence, quantum computers 
and other IT-related technologies. Technologies such as 3D printing have developed in 
the old manufacturing world’s most innovative regions. On the other hand, Capello et al. 
(2020) identified a large number of regions involved in patenting application 
technologies using Industry 4.0 core and enabling technologies within specific 
application contexts. Corradini et al. (2021) conducted an analysis on patents filed 
between 2000 and 2014 to study the diffusion of four Industry 4.0 technologies across 
Europe; they find that cumulated regional technological capabilities, relatedness, 
technological search breadth and spatial proximity to Industry 4.0 invention, all play a 
role in explaining patenting activity in Industry 4.0 technologies at regional level. While 
these approaches are able to capture leading fields and locations of research and 
technological development, their scope is more limited when the mapping focus is not on 
the main inventors that create the new technologies, but on the large population of firms 
that propose other original solutions by integrating these technologies, or that develop 
elements of the technologies like software which are not always patentable.  

Taking a ‘demand-side’ perspective, Capello and Lenzi (2021c) identify the regions 
where Industry 4.0 technologies are applied. Bringing together quantitative evidence and 
findings from case studies in six European countries, they focused on the following broad 
domains: technology invention, technology adoption in manufacturing sectors, 
technology adoption in services, and the ways in which Industry 4.0 transforms regions.  

Other authors have relied on a ‘big data’ approach. For example, NIESR (2013) and 
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Nathan and Rosso (2015) mapped the UK’s digital economy by extracting information 
from company websites about their products and services (using a set of predefined 
keywords), developing new categories of digital products and services, and reclassifying 
NACE sectors based on this new information, thereby uncovering a large number of 
digital companies. By scraping product directories and fan websites, Mateos-Garcia et al. 
(2014) created a more comprehensive list of UK video games companies than would 
have been possible by simply relying on NACE codes. The ‘big data’ approach 
overcomes the limitation of relying solely on outdated codes of economic activity. 
Additionally, it provides an up-to-the-minute picture of company activities, as it builds on 
up-dated information obtained online. On the other hand, this approach is probably 
insufficient to develop comprehensive mapping when the technology under scrutiny is 
complex and identification of individual keywords is insufficient to subsume all the 
relevant companies. In such cases, it might be reasonable to combine several sources 
(e.g., web scraping, text mining, sectoral codes), including expert judgement, to make 
sense of the spatial and organisational features of the new technology. With a focus on 
IoT, our methodology complements and extends current approaches in providing the 
identifications of IoT domains and the regional mapping of companies engaged in those 
domains. 

4. Data and methodology 

4.1 Data source 
To perform our mapping exercise on IoT competences in European regions, we 

started from the Bureau van Dijk (BvD) Amadeus database. In recent years, in addition to 
the usual companies’ balance sheet data, the database also provides textual information 
on the companies’ activities, which are included in the field “overview”.1 We choose this 
database to leverage the opportunities offered by this descriptive field. The description of 
a company’s activity, provided by the company itself on its own website, is potentially a 
very interesting source: we can assume that a company will pay attention to this channel 
of communication with potential customers, in order to showcase what it can do and what 
its strengths are, and that it will ensure that this information is accurate and current. 
Hence, this is a useful and up-to-date information that we propose to analyse using text 
mining techniques in order to detect specific information regarding IoT related activities. 
However, this information is not available for all the companies, but is more than 
adequate to identify the IoT activities associated to the various NACE codes, as we will 
describe in detail below. 

                                                
1  As described by BvD, this field is filled through a ‘supervised’ web scraping procedure on the firms’ 

websites. The supervision consists in the assistance of one of the BvD consultants who indicates which 
fields of the websites are relevant and helps to classify the retrieved information (e.g., main products, 
main customers, company history). 
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4.2 Expert pre-selection: 4-digit NACE codes, 18 European countries 
To extract data from the Amadeus dataset, we pre-selected a number of 4-digit 

NACE Rev.2 codes within the following divisions (excluding those codes that are 
completely unrelated to the production of IoT): 26-Manufacture of computer, electronic 
and optical products; 27-Manufacture of electrical equipment; 61-Telecommunications; 
62-Computer programming, consultancy and related activities; and 63-Information 
service activities. Since there are no specific codes linked to the many diverse IoT-related 
activities in the NACE classification of economic activities, to do this first skimming we 
relied on the opinion of an expert2 in IoT, who is also one of the authors of this paper. 
NACE codes do not reflect the complexity of the IoT solution architecture described in 
Figure 1. However, that architecture could be simplified to meet the nature of the NACE 
codes. An IoT solution architecture can be simplified in a three layers stack. The 
hardware layer composed of devices, sensors, and other machines. The connectivity layer 
encompasses all the telecommunications services needed. The software layer brings 
together a variety of components, from cloud to data analysis, all software-based. That 
has enabled us to associate the NACE codes to a specific part of the IoT solution 
architecture, for example: NACE code 61 (Telecommunications) is associated to the 
connectivity layer of an IoT solution. We identified a set of 28 codes listed in in Table A1 
(Supplementary material). With respect to those codes, we compared the number of 
companies and employees in EU-27 countries plus UK, identifying a group of 18 
countries with a significant presence of companies (Table A2). 

In these countries, the number of companies operating in the preselected 4-digit 
NACE codes are 205,651. The field "full overview" is available only for 17,008 
companies. As shown in Table A3 (Supplementary material), full overview was available 
for 97% of very large companies, 92% of large companies, almost 22% of medium-sized 
companies, and only 1% of small companies. Despite this limitation, we decided to use 
the data for our research analysis, assuming that small companies, each performing a very 
specific activity, are significantly represented in the sample of observations with full 
overview, while medium size and larger companies, which perform a greater variety of 
activities, both within each company and across the set of similar sized companies, are 
well represented by the information coverage in their full overview. 

Our methodology is schematically represented in Figure 2, which highlights issues, 
research strategies, hypotheses, data and the five-step procedure we adopted to address 
the research questions at the core of this paper.  

                                                
2  The expert has an extensive industry experience in the IoT domain and is working with the largest 

consulting firms in the area of emerging technologies. 
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Figure 2 – Methodology: multi-step procedure adopted to map IoT domains in European regions 
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How can we map IoT 
domains in European 
regions?
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dimensional  
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of characteristic 
terms 
of relevant 16 
Nace codes 
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of a new 
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class & 
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domain"

 
 

The multi-step procedure summarized in Figure 2 is described in detail below. 

Step 1 Text analysis of full overview to identify the NACE codes relevant to IoT domains 
We created a corpus (collection of texts) of full overviews (available for 17,008 

companies). It included 54,518 different terms (vocabulary of the corpus) for a total of 
2,128,018 occurrences (size of the corpus). The lexical-textual analysis allowed us to 
extract 7,611 different active terms3 (nouns and adjectives, including 3,781 multi-word 
expressions4) for a total of 635,384 occurrences (i.e., number of times in which active 

                                                
3  By active terms we mean all lexical forms (words) selected for the purpose of the analysis and thus 

contrasted with the terms we can call supplementary. In order to identify the semantic contents of the 
texts and to obtain groups of NACE codes on the basis of semantic contents, we therefore consider as 
active forms all words grammatically recognised as adjectives and nouns. The latter in particular 
represent the objects and subjects of texts and are therefore the central element of the message conveyed 
by a text. Moreover, in order to disambiguate the potentially ambiguous meaning of some words, we 
proceeded with a multiword expressions recognition, which, by linking the simple form to its 
qualification, allows both to improve the clustering process and to facilitate the interpretation process of 
the results. 

4  Multiword-Expressions (MWEs) represent all idiomatic nouns and technical-specialist terms, therefore 
representing the specialised terminology of a sector. The recognition of MWEs was performed by 
applying an information extraction model based on grammatical annotations and the search for 
recurrent syntactic structures (Pavone, 2018). The 20 most recurring MWEs we have found are: 
information technology, data processing, consulting service, provision of computer, computer 
programming service, communication technology, financial service, computer hardware, software 
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terms occur in the text). We then created an Active terms × NACE codes matrix (7611 × 
28) in which we identified the characteristic dictionaries of the 28 pre-selected NACE 
codes by calculating the test-value5 (Lebart et. al, 1998, p. 95) of each active term within 
each NACE code. 

The expert reading of the characteristic dictionary of each NACE code allowed us 
to refine the initial list of codes and select 16 NACE codes (out of 28 identified 
previously) that are relevant to the IoT domain (list available in Table A4, Supplementary 
material).  

Step 2 Identification of IoT domains through expert reading of characteristic NACE code 
dictionaries  

In order to identify specific IoT layers and components in the IoT solution 
architecture (summarized in Figure 1), we used again a text-mining approach. We 
classified the 16 NACE codes with regard to their similarity in terms of IoT content, 
based on the characteristic terms emerging from the analysis of the full overviews. This 
classification was obtained through a correspondence analysis6 of the Relevant to IoT 
NACE Codes × Characteristic Terms (16 × 7,440) matrix. Through a cluster analysis 
applied to the first ten factors resulting from the correspondence analysis, we were able to 
group the NACE codes into clusters based on the similarity of distribution of terms7. This 
clustering phase constituted an unsupervised and unambiguous classification of the 
NACE codes, reflecting the semantic similarity between them, which could then be 
summarised in a category that was not defined a priori but was derived from the analysis. 

This process allowed us to define five clusters of NACE codes that singled out 
specific IoT-related activities which we called ‘IoT domains’. Table A5 (Supplementary 
material) summarises the key characteristics of these domains, which we have labelled on 
the basis of the main activities they encompass. 

IoT domain 1 revolves around software and data processing; it includes 
competences relative to computer programming, designing computer systems, software 
development and software design, among others. These activities correspond to the ‘IoT 
platform’ layers in Figure 1 (highlighted in red). IoT domain 2’s focus is on 
telecommunications. It includes know-how related to the provision of 
telecommunications services, satellites, broadband, radar station operations, satellite 

                                                                                                                                            
development, supporting software, computer system, system integration, designing computer system, 
domestic market, project management, technology solution, data processing facility, provision of 
information, operation of clients, exceptional domain knowledge. 

5  Test-value is a statistical criterion associated with the comparison of two portions (considered context 
and all the other contexts) within the framework of a hypergeometric law. 

6  The correspondence analysis (Benzecri 1973, 1992, Greenacre 1984, 2016) is a factorial technique that 
can be used to obtain a reduced number of variables (or factors) on which to measure the similarity of a 
matrix, by examining row and column profiles. 

7  We applied a mixed clustering (Lebart et al., 1998, p. 95) based on Ward’s aggregation method (1963), 
with Euclidean distance. 
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tracking, networks, and different types of communication-related activities. These 
activities correspond to the connectivity layer (in black) in Figure 1. The next three 
domains correspond to different elements of the hardware layer (in grey) in Figure 1. In 
particular: IoT domain 3 includes competences related to manufacturing of telecom 
equipment, such as antennas, radio equipment, loudspeakers, cordless telephones, 
receivers and others; IoT domain 4 covers competences in manufacturing of electronic 
components, such as cables, fibre optics, connectors, wiring devices and others; lastly, 
IoT domain 5 comprises expertise in manufacturing of measure instruments, such as 
control instruments, sensors, precision tools, calibration, etc. 

The classification of the 16 NACE codes (at 4-digits) allowed us to associate each 
company in the dataset to the five IoT domains. In this way we apply the classification 
made possible by the elaboration of descriptive texts of full overview to all the companies 
in the original dataset. Table 1 presents the data used for further steps in the analysis. 

Table 1 – Number of companies belonging to the 16 identified NACE codes, by IoT domain and company size 

Cluster IoT domains 'NACE n. of companies company size 

 

code Description  Very 
Large 

Large Medium 
sized 

Small 

1  Software and 
Data Processing 

2620 Manuf. of computers and peripheral equipment 

157682 

3872 62 197 812 2801 
6201 Computer programming activities 66514 343 1552 6166 58453 
6202 Computer consultancy activities 48575 307 1531 4448 42289 
6203 Computer facilities management activities 4886 72 228 510 4076 
6209 Other inform. techn. and computer service activities 24720 278 1169 2753 20520 
6311 Data processing, hosting and related activities 9115 107 530 991 7487 

2  Telecommunica-
tion 

6110 Wired telecommunications activities 

12040 

3135 101 298 497 2239 
6120 Wireless telecommunications activities 2075 104 196 289 1486 
6130 Satellite telecommunications activities 252 27 55 40 130 
6190 Other telecommunications activities 6578 249 679 1039 4611 

3  Manufacturing 
Telecom. Equip-
ment 

2630 Manuf. of communication equipment 
4880 

2831 62 231 732 1806 
2640 Manuf. of consumer electronics 2049 23 67 265 1694 

4  Manufacturing 
Electronic Com-
ponents 

2731 Manuf. of fibre optic cables 
1202 

52   9 11 32 
2732 Manuf. of other electr. and electric wires and cables 350 25 55 124 146 
2733 Manuf. of wiring devices 800 9 95 295 401 

5  Manufacturing 
Measur. Instrum. 

2651 Manuf. of instruments and appliances for measuring, 
testing and navigation 8074 8074 156 638 2625 4655 

Total  183878  1925 7530 21597 152826 

 

Step 3: Creation of a new variable for the analysis  
In step 3 we included the company class size in the analysis in order to take the 

variety of company sizes into account in the IoT mapping exercise. Combining each of 
the five IoT domains (identified in step 2) with each of the four company class sizes 
(small, medium-sized, large, very large), we obtained a new variable for the 183,878 
companies in the dataset, namely, IoT domain-and-Company size, with 20 categories 

Step 4: Construction of contingency table 
Based on the new variable, we constructed a contingency table NUTS3 × IoT 

domain-and-Company size (1095 × 20) to allocate companies of each NUTS3 region to 
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the new variable8.  

Step 5 Clustering of NUTS3 regions according to the classes IoT domain-and-Company 
size 

In the last step, we group the NUTS3 regions based on their similarities with 
respect to the new variable created in step 3 and weights provided by the contingency 
table of step 4. Grouping is obtained through a correspondence analysis and cluster 
analysis on the NUTS3 × IoT domain-and-Company size (1,095 × 20) matrix9.  

Our clustering exercise allowed us to identify seven clusters of NUTS3 regions that 
we present in the following sections.10 

5. Results and discussion 

5.1. NUTS3 regions mapping 
With regard to the characteristic categories in the cluster (details in Table A2, 

Supplementary material), we have labelled the seven clusters, identified from the 
mapping exercise as follows: 

cl-1– Software service focus – Small companies 
cl-2 – Mainly telecoms focus – SMEs 
cl-3 – Telecoms and software services focus – Large companies  
cl-4 – Entirely hardware focus – Mainly SMEs 
cl-5 - Largely hardware focus with software services support – All sizes 
cl-6 – Hardware focus with software and telecoms services support- Mainly small  
cl-7 – Hardware and software services focus – All sizes 
 
Figure 3 presents these results.  

                                                
8  Information on NUTS3 is present for 179,887 companies out of the 183,878 in the DB. 
9  Hierarchical clustering was implemented by applying the Ward method (Greenacre, 2016, p.120; 

Murtagh and Legendre, 2014; Ward, 1963) and chi-square distance.  
10  In Figure A2 we report the dendrogram of such cluster analysis. The optimal number of clusters is two, 

distinguishing between the NUTS3 regions characterised by the presence of small companies dedicated 
to software, data processing and telecommunications, and all the other NUTS3 regions. In order to 
obtain more detailed groups of territorial entities, seven groups of NUTS3 regions were selected. 
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 Figure 3 - Map: Clusters of NUTS3 regions according to new IoT domain-and-Company size variable 

     
Source: Authors elaboration based on data from Amadeus, downloaded on 30.09.2019 

Hence, cl-1 (software service focus – small companies), cl-2 (largely telecoms 
focus – SMEs) and cl-4 (entirely hardware focus – mainly SMEs) each specialise in one 
of the relevant layers of the IoT solutions architecture, respectively, software services, 
telecoms (connectivity) and hardware. They are mainly composed of SMEs. Regions in 
cl-3 (telecoms and software services focus – large companies), cl-5 (largely hardware 
focus with software services support – all sizes) and cl-7 (hardware and software services 
focus – all company sizes) feature a greater diversity of competences, with strengths in at 
least two layers of the IoT system. Regions in cl-5 and cl-7 include, respectively, 
software services and hardware competences, the former mainly provided by a mix of 
SMEs and large companies, the latter by SMEs. Regions in cl-3 include connectivity and 
software services, mainly supplied by large companies. Regions in cl-6 (hardware focus 
with software and telecoms services support- mainly small companies) include all 
domains - hardware, connectivity and software - which are mainly provided by SMEs. 

5.2. Focus on countries: selectivity and homogeneity in the cluster of NUTS3 regions 
These results are explored in what follows with a focus on the pattern of regional 

mapping that emerges at country level. We summarise the patterns in terms of selectivity 
and homogeneity of the 18 countries with respect to the cluster of NUTS3 regions. The 
observations emerging from these explorations are then discussed to highlight the 
potential for regional IoT development.  

In Figure 3 we can graphically observe that some countries are fully represented in 
clusters cl-2 and cl-1. Measurement of the extent to which a country is represented in 
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each cluster is given by the selectivity index of the country, i.e., the specialization of the 
country in the cluster. A cluster homogeneity index indicates the weight of the country 
within the cluster. Both indexes are reported in Figure 3. For example, we can see that the 
Netherlands is represented within the cl-1 at 99.8%, and that its weight represents 22.3% 
of the cluster. Other countries present a greater variety of clusters (e.g., Germany, France, 
Italy and the Baltic countries), suggesting greater inter-regional diversity in IoT 
competence profiles within each country. 

Figure 4– Focus on countries: selectivity and homogeneity in the clusters of NUTS3 regions  
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Selectivity* Homogeneity**

cl-1 cl-2 cl-3 cl-4 cl-5 cl-6 cl-7  
*Selectivity indicates the percentage of companies in the NUTS3 regions classified in the cluster. 
**Homogeneity indicates the relative importance of the share of the country within the cluster. 
Source: Authors elaboration based on data from Amadeus, downloaded on 30.09.2019 

The specialised clusters, cl-1 (software service focus – small companies), cl-2 
(largely telecom focus – SMEs) and cl-4 (fully hardware focus – mainly SMEs), are 
present in many regions of France, Italy, Spain, Portugal, Ireland, the Netherlands, 
Belgium, and the Scandinavian and Baltic countries, with many French and Italian 
regions presenting a specialisation in hardware, most Spanish and Irish regions in 
telecoms services, and most Scandinavian, Portuguese, Dutch and Belgian regions in 
software. These regions have less potential for further expansion of technological and 
market capabilities as they are strongly specialised in just one layer of the IoT 
architecture, with the main suppliers being SMEs. Most UK regions, and some French, 
German and Italian regions are in cluster cl-6 (hardware focus with software and 
telecoms services support- mainly small companies), which has greater potential to 
harness technological opportunities in IoT, though again the main suppliers are SMEs. 
Finally, many regions in Germany, France and Italy are in clusters cl-7 (hardware focus 
with software and telecoms services support – mainly small companies) and cl-5 (largely 
hardware focus with software services support – companies of all sizes), which have 
intermediate potential to harness technological opportunities, being specialised in two 
layers of the IoT architecture (hardware and software), with the latter including 
companies of all sizes. This offers greater potential to capture market-related 
opportunities. The map in Figure 3 shows that these competencies are concentrated in 
specific cities or areas within the regions. The number of companies differs widely as 
well, with some cities in the Iberian Peninsula (such as Barcelona, Madrid, Lisbon and 
Porto), Dublin in Ireland, and cities in the Netherlands, Belgium, Sweden and the Baltic 
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countries exhibiting particularly large agglomerations of companies. 
We previously argued that, while NUTS3 regions may have different combinations 

of IoT competences, and regions that concentrate on specific IoT layers potentially being 
highly competitive in their own area of specialisation, when it comes to the capacity to 
harness technological and market opportunities created by IoT, it is the regions that 
include a greater variety of competences and more diverse firm sizes (in particular, 
including a strong presence of large firms) that have the greatest potential. The presence 
of hardware in these areas, alongside other technological domains, points to the capacity 
to leverage the hardware technologies (considered more difficult to acquire) in order to 
expand into other technological IoT domains.  

Table 2 provides a means to classify NUTS3 regions in terms of their potential for 
harnessing further technological and market-related opportunities in the field of IoT. IoT 
System Leaders are regions where the full IoT value chain and a mix of SMEs and large 
companies are present. These regions have the greatest potential to capture technological 
and market-related opportunities. IoT System Co-designers are regions where a 
substantial, but not an entire, IoT value chain is present. These are usually characterised 
by SMEs, although some large firms may also be present. Firms in these regions need to 
collaborate with other firms in other regions to provide complete IoT solutions (as 
complementarity cannot be achieved within the region), giving the regions’ intermediate 
potential for harnessing technological and market-related opportunities. IoT System 
Suppliers are regions where only part of the IoT value chain has a significant presence, 
and where most of the firms are SMEs. Companies in these regions need to rely on extra-
regional connections in order to participate in the provision of IoT solutions. Such 
regions have less potential for harnessing technological and market-related opportunities. 

Table 2 – Potential for regional IoT development (high, intermediate, low) in the 18 countries 

Results built on the relative importance of countries in the clusters of NUTS3 regions (based on the number of companies, 
homogeneity). In grey: countries with a homogeneity index below 20%  

Regional IoT 
Systems 

Description Clusters and countries  
(homogeneity index) 
based on NUTS3 regions classification 

Leaders The entire IoT value chain is present in the 
region. 
Higher potential for technological and 
market capabilities expansion 

cl-3 
UK (70.28); FR (23.57); DE (6.15) 
cl-5 
DE (91.75); FR (5.10) 

Co-designers Substantial part of the IoT value chain is 
present in the region. 
Intermediate potential for technological 
diversification, lower potential for market 
capabilities expansion 

cl-6 
UK (80.14); DE (12.33); IT (4.39); FR (3.13) 
cl-7 
DE (41.80); IT (31.01); FR (19.61); UK (7.58) 

Suppliers Limited part of the IoT value chain is 
present in the region. 
Lower potential for technological and 
market capabilities expansion  

cl-1 
NL (22.32); SE (21.76); BE (13.99); FI (8.12); NO 
(6.38); PT (6.09); EE (5.97); AT (4.01); LV (3.80); 
HR (3.66); LT (2.15); SI (2.13) 
cl-2 
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ES (73.81); IE (15.39) 
cl-4 
IT (81.83); FR (10.91); DE (6.23) 

Source: Authors elaboration based on data from Amadeus, downloaded on 30.09.2019 

5.3. Potential for the development of regional IoT systems 
The analysis of our mapping exercise enabled us to establish a novel, 

comprehensive categorisation of regions with respect to their bundles of industrial 
activities as well as company sizes in IoT domains, and to evaluate their potential for 
harnessing the opportunities presented by IoT. As it is known, much of the potential of 
this technology comes from the fact that this can be considered a key enabling technology 
(Küfeoğlu, 2021). Regardless of the debate about whether this label can be applied to the 
IoT, there is no doubt that this type of technology has a very wide range of applications. 
The world's leading business consultancies have long identified this technology as the 
key to competing in the near future, not least because some of the technologies on which 
it is based are relatively mature (McKinsey, 2013). Moreover, these technologies have 
considerable potential to impact not only industries, products and services, but also 
people's lives (Espada et al., 2011). It is especially in a field such as this that important 
growth spaces open up, not only for those regions that are leaders in inventing these 
technologies, but also for those that are capable of imagining new ways of applying these 
technologies (Evangelista et al., 2017; Montresor and Quatraro, 2019).  

Leading regions, possessing the whole mix of software and hardware, as well as the 
greatest organisational variety, may have important opportunities to identify such 
application possibilities. In co-designer and especially in supplier regions, more effort is 
required - by regional policymakers and others - to build growth potential around these 
technologies. However, suppliers can be islands of innovation that support the 
development of other innovation chains in the region.  

6. Conclusion 

Our study deploys an original mapping methodology combining NACE codes and 
text mining of descriptions of company activities to propose a more accurate depiction of 
regional strengths in individual IoT domains as well as in more complete value chains of 
IoT competences. While other mapping exercises have been published in recent years, 
scholars have tended to focus on activities related to Industry 4.0 more broadly, without 
conducting extensive and precise mapping of IoT in particular. Our study also differs 
from prior work insofar as we deployed an original methodology to respond to the 
challenges that arise when mapping new technologies, which are difficult to grasp within 
the existing classification of economic activities that are not usually suited to respond to 
new needs and cannot be significantly identified by using patent data.  

The study contributes to theory by showing how the competence base of regions 
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underpins their potential to develop and extend their technological bases in emerging 
digital technologies. Our findings have significant policy implications as they can support 
policymakers to identify which regions should be fostered as full IoT value-chain 
providers and which need to specialise further or, alternatively, diversify into new, 
related, complementary domains. 

Our study has also some limitations, which open up avenues for further research. 
The present analysis is limited to 18 European countries, but IoT competences are found 
worldwide. Future research could expand the geographical scope of the analysis and 
additional sources of company information could also be explored since the Amadeus 
database presents some limitations. 

Finally, this paper mainly focused on IoT systems on the ‘supply side’, mapping 
IoT competences at regional level, but the system also consists of the demand side, with 
IoT solutions tailored to customers’ needs. Future studies might focus on the demand side 
to gain a deeper understanding of the IoT area as a whole. Moreover, we may guess that 
the “emergence” of competences in IoT domains stems from related competences already 
found in the region, and that these rely on demand from other regions. The system is thus 
made up of all these varying interconnections. While a preliminary analysis recently 
conducted by the European Commission et al. (2019) outlined the spatial distribution of 
demand for IoT solutions in European regions, as far as we know there has been no 
systematic investigation of all the entities in the system (which companies are present on 
the demand and the supply side, which regulatory agencies and policy actors) to date, nor 
of the relations between these entities.  
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SUPPLEMENTARY MATERIAL 

Appendix 

Table A1 – NACE Rev.2 codes at 2, 3 and 4 digits, used to identify the sample of companies in our IoT compe-
tences database  

Codes Manufacturing 
C261* Manufacture of electronic components and boards 
C2611 Manufacture of electronic components 
C2612 Manufacture of loaded electronic boards 
C2620 Manufacture of computers and peripheral equipment 
C2630 Manufacture of communication equipment 
C2640 Manufacture of consumer electronics 
C2651 Manufacture of instruments and appliances for measuring, testing and navigation 
C2652 Manufacture of watches and clocks 
C2731 Manufacture of fibre optic cables 
C2732 Manufacture of other electronic and electric wires and cables 
C2733 Manufacture of wiring devices 

 
Services 

J61* Telecommunications 
J6110 Wired telecommunications activities 
J6120 Wireless telecommunications activities 
J6130 Satellite telecommunications activities 
J6190 Other telecommunications activities 
J620* Computer programming, consultancy and related activities 
J6201 Computer programming activities 
J6202 Computer consultancy activities 
J6203 Computer facilities management activities 
J6209 Other information technology and computer service activities 
J63* Information service activities 
J6310 Data processing, hosting and related activities; web portals 
J6311 Data processing, hosting and related activities 
J6312 Web portals 
J639* Other information service activities 
J6391 News agency activities 
J6399 Other information service activities n.e.c. 

*This level of NACE classification was considered as some companies in the dataset have no specific 4-digit 
classification in this class 
Source: Eurostat, Ramon, Metadata Download, Statistical Classification of Economic Activities in the European 
Community, Rev. 2 (2008) (NACE Rev. 2) 
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Table A2 - Number of companies in the pre-selected NACE codes (List in Table A1), in European countries 

In bold: the 18 countries under analysis 

 selected 4digit NACE codes (see Table A1) 
European countries industry  

26-27 
services  

61-63 
Total 

United Kingdom 5,963 178,213 184,176 
Germany 6,759 111,090 117,849 
Poland 2,900 90,582 93,482 
Italy 5,039 88,131 93,170 
France 2,284 87,632 89,916 
Netherlands 1,449 73,201 74,650 
Spain 2,333 50,959 53,292 
Sweden 1,545 41,763 43,308 
Czechia 3,247 35,956 39,203 
Hungary 1,211 31,715 32,926 
Belgium 393 28,859 29,252 
Romania 756 18,088 18,844 
Slovakia 1,154 16,841 17,995 
Austria 556 15,618 16,174 
Denmark 535 13,187 13,722 
Portugal 334 12,836 13,170 
Greece 427 11,925 12,352 
Bulgaria 417 10,992 11,409 
Norway 271 10,808 11,079 
Ireland 24 10,650 10,674 
Finland 549 7,757 8,306 
Slovenia 362 7,340 7,702 
Switzerland 1,232 5,303 6,535 
Latvia 181 5,807 5,988 
Croatia 474 5,160 5,634 
Lithuania 137 5,450 5,587 
Estonia 116 4,401 4,517 
Serbia 823 2,824 3,647 
Luxembourg 10 2,070 2,080 
Cyprus 0 1,272 1,272 
Iceland 14 1,205 1,219 
North Macedonia 20 1,144 1,164 
Malta 6 1,017 1,023 
Bosnia and Herzegovina 65 956 1,021 
Turkey 0 0 0 

Source: Authors’ elaboration Eurostat, Annual detailed enterprise statistics - 2017 



29 

 

Table A3 - Companies by size, for the pre-selected NACE codes (List in Table A1), with and without the ‘full 
overview’ field 

 

Full overview yes/no 
absolute values 

 
 

Full overview yes/no 
percentage values 

(by column) 
 

Full overview yes/no 
percentage values 

(by row) 
Company 
size 

no yes Grand   
Total 

 no yes Grand  
Total l 

 no yes Grand  
Total 

Very Large 68 2186 2254 
 

0.04 12.85 1.10 
 

3.02 96.98 100.00 
Large 677 7885 8562 

 
0.36 46.36 4.16 

 
7.91 92.09 100.00 

Medium sized 19484 5523 25007  10.33 32.47 12.16 
 

77.91 22.09 100.00 
Small 168414 1414 169828 

 
89.28 8.31 82.58 

 
99.17 0.83 100.00 

Total 188643 17008 205651  100.00 100.00 100.00 
 

91.73 8.27 100.00 

Source: Authors’ elaboration based on data from Amadeus, downloaded on 30.09.2019 

As shown in the Table above, Full Overview was available for 97% of very large companies, 92% 

of large companies, almost 22% of medium-sized companies, and only 1% of small companies, making a 

total of 17,008 companies, or 8.3%. Despite this limitation, we decided to use the data for our research 

analysis, assuming that small companies, each performing a very specific activity, are significantly 

represented in the sample of observations with full overview, while larger companies, which include a 

greater variety of activities, both within each company and across the set of similar sized companies, are 

well represented by the information coverage in their full overview.  
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Table A4 List of 16 NACE codes resulting from Step 1 - Text analysis of full overview to identify the NACE 
codes relevant to IoT domains  

NACE code NACE Description 
2620 Manufacture of computers and peripheral equipment 
2630 Manufacture of communication equipment 
2640 Manufacture of consumer electronics 
2651 Manufacture of instruments and appliances for measuring, testing and navigation 
2731 Manufacture of fibre optic cables 
2732 Manufacture of other electronic and electric wires and cables 
2733 Manufacture of wiring devices 
6110 Wired telecommunications activities 
6120 Wireless telecommunications activities 
6130 Satellite telecommunications activities 
6190 Other telecommunications activities 
6201 Computer programming activities 
6202 Computer consultancy activities 
6203 Computer facilities management activities 
6209 Other information technology and computer service activities 
6311 Data processing, hosting and related activities
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Table A5 - First 50 characteristic terms of each IoT domain 

[IoT domain number – expert label – characteristic terms sorted by decreasing order of test-value] 

IoT domain 1– Software & data processing 
software, computer, data processing, information technology, provision of computer, computer programming 
service, consulting service, management, computer hardware, modifying, advice, consulting, solution, supporting 
software, writing, provision, expertise, computer system, programming, designing computer system, software 
development, data processing facility, operation of clients, planning, technical, communication technology, 
exceptional domain knowledge, computer programming, information, financial service, service, training, computer 
system design, provision of information, support, finance, computer software design, streaming service, application 
hosting, mainframe facility, professional, modification of custom, hosting, technology solution, insurance, custom 
software, application service provisioning, variety of additional service, business intelligence, consultancy. 

IoT domain 2 - Telecommunication 
provision of telecommunication, voice, telecommunication service, satellite, transmission facility, broadband, radar 
station operation, satellite tracking, communication telemetry, network, data communication, satellite system, 
facility, communication service, internet, communication, telecommunication, fixed, data service, internet access, 
microwave, service, mobile, carrier, provision of communication, transmitting telecommunication, broadband 
internet, receiving telecommunication, call, internet service, transmission of voice, mobile phone, landline, 
terrestrial communication system, wireless broadband, distance, single technology, telecommunication 
applications, worldwide telecom, internet network, local phone, satellite broadband internet, satellite terminal 
station, reselling, maintaining switching, traditional local telephone service, competitive local telephone service, 
digital tv, provision of telephone, combination of technology. 

IoT domain 3 – Manufacturing of telecom equipment 
mechanical accessory, coaxial, gearbox, manufacture, antenna, equipment, radio, product, data communication 
equipment, loudspeaker, accessory, manufacture of communication, cordless telephone, receiving antenna, system, 
router, telephone answering machine, receiver, switching equipment, amplifier, transmitter, television, cable 
television equipment, wire telephone, television studio, broadcasting equipment, audio, mobile communication 
equipment, transmitting, communication equipment, telephone, pager, gateway, cellular phone, production, alarm, 
bridge, wireless communication equipment, component, intercom, television broadcast, speaker, mast, 
telecommunication product, fire, military, lan modem, sale of communication, detector, device. 

IoT domain 4 – Manufacturing of electronic components 
convenience, seal, strict, terminal block, trunking, fiber optics, aluminium, cable, connectors, switch, manufacture, 
electrical, wiring device, conductor, copper, lamp, electric, plug, socket, cord, product, voltage, relay, insulated, 
insulated wire, power cable, power, transformer, electrical equipment, component, cable product, outlet, lighting, 
coaxial cable, fuse, voltage cable, circuit breaker, rubber, production, cutout, connector, telecommunication cable, 
instrumentation cable, bare, panel, cabinet, accessory, control cable, electric wire, cable assembly. 

IoT domain 5 - Manufacturing of measure instruments 
nautical system, measuring, manufacture, instrument, sensor, measurement, equipment, product, temperature, 
gauge, meters, navigation, pressure, water, laboratory, control, valve, instrumentation, gas, manufacture of 
instrument, system, detection, production, measuring instrument, appliance, precision, calibration, analyzer, 
industrial, controlling device, navigational, electromedical, control instrument, component, thermometer, tester, 
probe, laser, heating, navigating, machine, weighing, physical property testing equipment, mechanical, 
aeronautical, meter, vibration, metrology, analytical instrument, test equipment. 
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Table A6– Characteristic categories of variable IoT domain-and-Company-size, by cluster of NUTS3 regions 

Characteristic categories are sorted in decreasing order of test-value within each cluster  

Cluster of NUTS3 regions  
& Characteristic categories 

NUTS3 
regions in 
the cluster 

Test-value % of category 
in the cluster 

Number of compa-
nies in each catego-
ry in the dataset 

Cluster 1 149       
1 Soft. Data process._Large   47.59 20.53 5162 
5 Manuf. Measur. Instr._Mediumsized   37.12 23.02 2602 
5 Manuf. Measur. Instr._Small   33.99 15.77 4559 
3 Manuf. Telecom. equip._Small   31.95 17.13 3427 
3 Manuf. Telecom. equip._Mediumsized   29.64 30.94 989 
1 Soft. Data process_Mediumsized   27.94 8.11 15379 
5 Manuf. Measur. Instr._Large   21.74 28.21 631 
1 Soft. Data process_VeryLarge   20.33 19.14 1139 
3 Manuf. Telecom. equip._Large   15.33 29.55 291 
5 Manuf. Measur. Instr._VeryLarge   11.43 30.52 154 
4 Manuf. Electron. Comp._Small   11.30 15.36 560 
2 Telecommunication_Large   10.46 10.35 1208 
4 Manuf. Electron. Comp._Mediumsized   8.66 13.74 422 
3 Manuf. Telecom. equip._VeryLarge   7.64 27.71 83 
2 Telecommunication_VeryLarge   6.82 10.74 475 
4 Manuf. Electron. Comp._Large   5.36 14.10 156 
2 Telecommunication_Mediumsized   4.07 5.48 1789 
Cluster 2 227       
5 Manuf. Measur. Instr._Small   64.55 26.85 4559 
3 Manuf. Telecom. equip._Small   51.26 24.54 3427 
1 Soft. Data process._Large   23.84 9.09 5162 
2 Telecommunication_Large   18.20 14.24 1208 
5 Manuf. Measur. Instr._Mediumsized   16.51 8.99 2602 
5 Manuf. Measur. Instr._Large   13.25 14.42 631 
3 Manuf. Telecom. equip._Mediumsized   11.65 10.21 989 
4 Manuf. Electron. Comp._Small   8.69 10.18 560 
1 Soft. Data process_VeryLarge   8.33 7.29 1139 
3 Manuf. Telecom. equip._Large   7.89 12.71 291 
2 Telecommunication_Mediumsized   7.33 5.70 1789 
2 Telecommunication_VeryLarge   5.61 7.58 475 
3 Manuf. Telecom. equip._VeryLarge   5.08 15.66 83 
5 Manuf. Measur. Instr._VeryLarge   4.90 11.04 154 
Cluster 3 228       
5 Manuf. Measur. Instr._Mediumsized   66.83 36.82 2602 
5 Manuf. Measur. Instr._Small   48.09 17.24 4559 
5 Manuf. Measur. Instr._Large   21.17 21.87 631 
3 Manuf. Telecom. equip._Small   15.70 6.57 3427 
3 Manuf. Telecom. equip._Mediumsized   14.85 11.32 989 
5 Manuf. Measur. Instr._VeryLarge   10.18 21.43 154 
1 Soft. Data process_Mediumsized   9.62 3.04 15379 
1 Soft. Data process._Large   7.80 3.58 5162 
3 Manuf. Telecom. equip._Large   4.68 6.87 291 
4 Manuf. Electron. Comp._Mediumsized   3.97 5.21 422 
1 Soft. Data process_VeryLarge   3.77 3.69 1139 
4 Manuf. Electron. Comp._Small   3.65 4.46 560 
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Cluster 4 95       
4 Manuf. Electron. Comp._Mediumsized   31.92 41.23 422 
4 Manuf. Electron. Comp._Small   27.94 28.21 560 
3 Manuf. Telecom. equip._Small   23.54 7.24 3427 
3 Manuf. Telecom. equip._Mediumsized   21.38 13.65 989 
5 Manuf. Measur. Instr._Mediumsized   19.14 6.76 2602 
5 Manuf. Measur. Instr._Small   17.06 4.52 4559 
4 Manuf. Electron. Comp._Large   15.57 30.77 156 
3 Manuf. Telecom. equip._Large   12.45 15.12 291 
5 Manuf. Measur. Instr._Large   10.33 7.61 631 
1 Soft. Data process._Large   8.89 2.58 5162 
1 Soft. Data process_Mediumsized   4.94 1.51 15379 
1 Soft. Data process_VeryLarge   3.32 2.28 1139 
Cluster 5 54       
1 Soft. Data process._Large   67.22 26.21 5162 
2 Telecommunication_Large   42.30 37.50 1208 
1 Soft. Data process_VeryLarge   34.35 30.20 1139 
2 Telecommunication_VeryLarge   28.42 41.26 475 
3 Manuf. Telecom. equip._Small   24.28 11.29 3427 
1 Soft. Data process_Mediumsized   15.07 4.62 15379 
5 Manuf. Measur. Instr._Small   14.13 6.47 4559 
2 Telecommunication_Mediumsized   14.06 9.33 1789 
3 Manuf. Telecom. equip._Large   6.47 10.65 291 
5 Manuf. Measur. Instr._Large   4.78 6.18 631 
3 Manuf. Telecom. equip._Mediumsized   3.63 4.65 989 
Cluster 6 105       
2 Telecommunication_Small   54.97 37.86 8030 
2 Telecommunication_Mediumsized   22.81 35.27 1789 
1 Soft. Data process_Mediumsized   17.41 18.73 15379 
Cluster 7 237       
1 Soft. Data process._Small   173.43 85.55 131125 
Total  1095   192974 

Source: Authors elaboration based on data from Amadeus, downloaded on 30.09.2019 
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Table A7 – NUTS3 by IoT systems (leaders, co-designers, suppliers) and cluster  
For each cluster: only NUTS3 with at least 2% weighting are listed 

IoT 
Systems 

Cluster of 
NUTS3 by 
IoT 
domains&size 

NUTS3 % of 
NUT3 in 
the 
Cluster 

leaders cl-3 UKI31 15.67 
FR105 11.04 
FR101 10.13 
UKI32 6.58 
UKJ11 5.45 
UKJ25 4.72 
UKI42 3.70 
UKI43 3.44 
UKI44 3.25 
UKJ37 2.97 
DE712 2.58 
UKD33 2.51 
UKI33 2.27 
UKI75 2.16 

cl-5 DED21 2.95 
DE113 2.61 
ITC33 2.11 

co-
designers 

cl-6 UKH12 4.70 
UKH23 4.30 
UKJ14 2.63 

cl-7 ITC4C 11.68 
ITI43 6.82 
DE300 5.73 
DE212 4.23 
ITC11 3.63 
DE600 3.11 
DE21H 2.59 

suppliers cl-1 SE110 10.52 
FI1B1 4.57 
EE001 4.37 
SE232 3.56 
NL329 3.38 
PT170 3.25 
LV006 2.68 
NL310 2.64 
SE224 2.47 
BE100 2.41 
NO011 2.32 

cl-2 ES300 25.41 
ES511 13.90 
IE061 9.70 
ES523 3.91 
ES618 2.19 

cl-4 ITC4D 5.25 
ITH55 4.99 
ITH36 4.73 
ITC47 4.58 
ITC41 4.01 
ITC46 4.01 
ITH32 3.86 
ITH31 3.60 
ITH54 3.40 
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ITH34 2.88 
ITF47 2.83 
ITH53 2.57 
ITH52 2.16 
ITI32 2.06 

 

Figure A1 –Dendrogram NACE2 codes classification, matrix <28 NACE codes × 7440 Terms> 

 

Figure A2 – NUTS3 regions classification dendrogram of the hierarchical cluster analysis, <NUTS3 × IoTdo-
mains-and-Company size> matrix (1095 x 20) 

  


