
BIROn - Birkbeck Institutional Research Online

Herzog, Nitsa J. and Magoulas, George D. (2022) Machine learning-
supported MRI analysis of brain asymmetry for early diagnosis of dementia.
In: Hassanien, A.E. and Bhatnagar, R. and Snášel, V. and Yasin Shams,
M. (eds.) Medical Informatics and Bioimaging Using Artificial Intelligence.
Studies in Computational Intelligence 1005. Springer, pp. 29-52. ISBN
9783030911034.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/47964/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/47964/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Machine Learning-supported MRI Analysis of 

Brain Asymmetry for Early Diagnosis of Dementia 
 

Nitsa J. Herzog and George D. Magoulas 

 

Abstract   The chapter focuses on the detection of early degenerative processes in 

the human brain using computational algorithms and machine learning classifica-

tion techniques. The research is consistent with the hypothesis that there are 

changes in brain asymmetry across stages of dementia and Alzheimer’s Disease. 

The proposed approach considers the pattern of changes in the degree of asym-

metry between the left and right hemispheres of the brain using structural magnet-

ic resonance imaging of the ADNI database and image analysis techniques. An 

analysis of levels of asymmetry is performed with the help of statistical features 

extracted from the segmented asymmetry images. The diagnostic potential of 

these features is explored using variants of Support Vector Machines and a Con-

volutional Neural Network. The proposed approach produces very promising re-

sults in distinguishing between cognitively normal subjects and patients with early 

mild cognitive impairment and Alzheimer’s Disease, providing evidence that im-

age asymmetry features or MRI images of segmented asymmetry can offer insight 

on early diagnosis of dementia.  
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1 Introduction 

The human brain is examined with a help of advanced modern technology, which 

provides detailed scans of the brain tissues and demonstrates the functional activi-

ty of the brain regions associated with a specific mental or behavioural task. 

     Brain scanning is divided into two large categories: structural imaging and 

functional imaging. The most common structural neuroimaging methods are X-

ray, structural Magnetic Resonance Imaging (sMRI), Diffusion Tensor Imaging 

(DTI), modification of MRI, and Computerized Tomography (CT) (Kimberley 

and Lewis 2007). Well-known functional methods are Electroencephalography 

(EEG), functional Magnetic Resonance Imaging (fMRI), and Positron Emission 

Tomography (PET) (Bunge and Kahn 2009). MRI covers around 50% of imaging 

data used for the diagnosis of brain diseases (Segato et al. 2020). A significant ad-

vantage of MRI over popular CT and X-ray scans is the absence of ionizing radia-

tion during the MRI session. The MRI contrasting agent is less allergic than io-

dine-based substances of CT scans and X-rays. Another advantage of MRI is the 

possibility to provide a high level of soft-tissue contrast resolution compared to a 

CT scan, which is superior at imaging hard anatomical structures. All these factors 

make MRI the method of choice for regular health checks in the population older 

than 60. High-resolution images make a significant impact on the computer-aided 

diagnosis of brain-related disorders.  

     Early dementia, or amnestic Mild Cognitive Impairment (aMCI), belongs to the 

group of neurocognitive disorders and is characterized by some sort of short-time 

memory loss, language difficulties, lack of reasoning and judgment, hardship cop-

ing with daily routines (Janelidze and Botchorishvili 2018). Approximately 10% 

of the world population, aged between 70 and 79, and 25% of the population older 

than 80, are diagnosed with MCI. It is acknowledged that 80% of the patients with 

aMCI develop severe dementia, in the form of Alzheimer’s disease, within 7 

years. The proportion of dementia in the general population is 7.1 %, which is 

roughly 46.8 million people. 

     Neurogenerative disorders, such as Alzheimer’s disease (AD), which is the 

most common, followed by vascular dementia, Lewy body dementia, Frontotem-

poral dementia, Parkinson’s disease and Huntington’s disease, severely affect 

memory and other mental tasks (Agarwal et al., 2021). As amnestic MCI often be-

comes a prodrome of Alzheimer’s disease, it is important to identify this form of 

dementia in the early stage when proper care and treatment can stop or slow down 

the progression of the disease.  

     The diagnosis of MCI is based on neuropsychological testing, blood testing, 

and neuroimaging (ICD-11 2018; DSM-V 2013). Mini-Mental State Examination 

(MMSE), Montreal Cognitive Assessment (MoCA), and Geriatric Mental State 
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Examination (GMS) are the most common cognitive screening assessments. The 

tests usually include groups of questions assessing orientation in place and time, 

short-time memory, attention, recall, and language ability of coherent speaking 

and understanding. For clinical judgment between MCI and AD certain types of 

biomarkers, measured in the cerebrospinal fluid (CSF), are used. Amyloid-beta 42 

(Ab42), total tau (T-tau), and phosphorylated tau (P-tau) globulins are identified in 

the early stage of Alzheimer’s disease, whilst Hippocampal volume and rate of 

brain atrophy finalize the diagnosis. 

     The research presented in this chapter is focused on the early detection and 

classification of dementia using sMRI, when changes in the brain are not obvious 

for radiologists or clinical practitioners, the amyloid-beta deposition may be pre-

sent or not, and the tau globulin is absent. This work involves the segmentation 

and evaluation of asymmetries in the cortex of the brain and the classification of 

dementia using machine learning algorithms. 

2 Literature review 

The two brain hemispheres have slightly different anatomy and function, and a de-

tailed examination of their structure shows a variety of asymmetrical areas. The 

revealed lateralization originates from genetic and epigenetic factors in the evolu-

tionary development of the human brain (Isles 2018). The exposure of the patho-

logical factors during a human life also might cause changes in the lateralization 

of the brain. 

     The evolutionary expansion of the left-hemispheric area is closely connected to 

speech production, perception, and motor dominance. The earliest observations of 

brain asymmetry were reported by the French physician, anatomist and anthropol-

ogist Pierre Paul Broca in the 19th century, and then, 10 years later by German 

neurologist Carl Wernicke. They found that the language of the patient was se-

verely impaired when a stroke or tumor had affected the left-brain hemisphere. 

Broca localized the afflicted area in the anterior left hemisphere, including some 

parts of the inferior frontal gyrus (the so-called “Broca’s area”). The pathological 

process in that area of the brain significantly changed the language production and 

syntactic processing of the patients. Changes in language comprehension, such as 

understanding spoken words, were primarily discovered by Wernicke in the poste-

rior temporal-parietal region (the so-called “Wernicke’s area”). Thus, it was con-

firmed that differences in the anatomical structure of the brain correlate with their 

functional lateralization. The left hemisphere is mostly responsible for language 

processing and logical thinking. The right hemisphere specializes in spatial recog-
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nition, attention, musical and artistic abilities. Emotions and their manifestation 

are also connected to the right hemisphere (Gainotti 2019). 

     Brain asymmetry is closely related to human handedness. An interesting fact is 

that the foetal orientation during the pregnancy is correlated with the handedness 

of a newborn child. These asymmetries are first observed in the 29-31 weeks of 

gestational age. Almost 90% of the human population is right-handed (McManus 

2019). “Petalia and Yakovlevian torque” (Segato et al. 2020) is a term that de-

scribes an overall leftward posterior and rightward anterior asymmetry usually 

presented in right-handed individuals. Around 95% of right-handed persons have 

their speech and language zones in the left hemisphere, while only 5% show the 

language zone representation in the right hemisphere or bilateral. Compared to the 

right-handed people, the left-handed demonstrate a higher ratio of hemispheric 

lateralization.  A strongly dominant right hemisphere lateralization presents only 

in 7% of left-handers. This proportion can vary with age. Up to 85% of left-

handed children have language area dominance in the left hemisphere (Szaflarski 

et al. 2012).  

     Some studies highlight the differences in hemispheric lateralization between 

males and females (Tomasi and Volkow 2012). The distinctions can be noticeable 

in linguistic performance, visuospatial or motor skills. The female brains show 

more symmetries in both cerebral hemispheres. 

     The level of asymmetry also depends on the age of the person. The brain func-

tional hemispheric asymmetry in the frontal lobes of young adults is more lateral-

ized than in elderly healthy persons. The activity reduction of the frontal cortex 

leads to age-related cognitive decline. It is registered by functional neuroimaging 

as changes in the domains of semantic, episodic, or working memory, perception, 

and inhibitory control. Elderly people demonstrate compensatory processes in the 

brain that transform brain lateralization. Sometimes it looks like bilateral hemi-

spheric activity (Cabeza et al. 2004). 

2.1 Brain asymmetry for the diagnosis of brain-related disorders  

The brain regions show a progressive decrease in the degree of asymmetry in pa-

tients with Mild Cognitive Impairment (MCI) and an increase of asymmetry in pa-

tients with Alzheimer’s disease (AD) (Yang et al. 2017). To prove this concept 

Yang et al. used diffusion tensor image tractography to construct the hemispheric 

brain white matter networks. The researchers concluded that the brain white mat-

ter (WM) networks show the rightward topological asymmetry, when the right 

cerebral hemisphere becomes dominant in AD patients, but not in the early phase 
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of the MCI. Left-hemisphere regions are affected earlier and more severely. The 

abnormal hemispheric asymmetry of AD and MCI patients significantly correlates 

with memory performance. 

     The functional cortical asymmetry progressively decreases in patients with 

MCI (Liu et al. 2018). Liu et al.’s research was based on whole-brain imaging. 

They registered and compared the spontaneous brain activity in patients with MCI, 

AD and NC (normal controls) using functional MRI. They discovered that patients 

with MCI and AD have abnormal rightward laterality in the brain compared to 

healthy controls with observed leftward lateralization. At the same time alterations 

in the brain lateralization between patients with MCI and normal controls were 

different from alteration between patients with AD and normal controls. The 

rightward lateralization in the patients with MCI and AD may be reflected as a 

relative increase in brain activation within the right hemisphere or a relative de-

crease in brain activation within the left hemisphere. Patients with MCI showed an 

increase in the activation of several brain regions in the right hemisphere during 

the processing of word memory tasks. Those areas were compensatorily activated 

compared to the activation zones in the left hemisphere of the healthy controls. 

Liu et al. suppose that the reason for the abnormal right-lateralized pattern in pa-

tients with AD might be more complex than in patients with MCI. They think that 

functional results are potentially influenced by structural differences between the 

groups, but they did not investigate the relationship between brain structural 

asymmetry and brain functional lateralization in their research. All participants in 

the study were right-handed. The researchers did not determine whether the same 

right brain lateralization occurs in left-handed persons. They found a significant 

difference in brain functionality between MCI and AD patients. The patients with 

MCI had normal leftward lateralization with some elements of abnormal rightward 

activity. In patients with AD, the normal pattern of left lateralization disappeared, 

and some abnormal right-lateralized pattern was detected. 

     The degree of asymmetry is not the same in the different parts of the brain 

(Kim et al. 2012). Kim et al. tested the hypothesis that individuals with aMCI and 

different stages of AD have reductions of asymmetries in the heteromodal neocor-

tex. They found significant changes in the degree of asymmetry in the inferior pa-

rietal lobe of the brain of right-handed adults. The cortical asymmetry was inves-

tigated using surface-based morphometry (SBM) to measure the cortical thickness. 

Their results show that the neocortical thickness asymmetries of the medial and 

lateral sides of the right and left parts of the brain were different from each other.  

The decrease of asymmetry was registered in the lateral parts of the frontal and pa-

rietal lobes and there was an increase in the temporal lobe. The left perisylvian ar-

eas responsible for language functions, except Broca’s speech area, demonstrated 

leftward asymmetry. Other areas of the brain, which specialized in spatial percep-
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tion, facial recognition, and memory processing, showed rightward asymmetry. 

Kim et al. assumed that the cortical asymmetry shown in healthy controls general-

ly decreases in AD. However, they did not directly examine the changes in corti-

cal asymmetry observed during the AD progression, which gives a clear picture of 

an increase in asymmetry in the case of severe AD.  Also, it is unclear whether 

similar changes in cortical asymmetry can be caused by other degenerative diseas-

es. 

     Wachinger et al. investigated the neurodegenerative processes in the subcorti-

cal brain structures of patients with AD (Wachinger et al. 2016). They proposed a 

measure of brain asymmetry which is based on spectral shape descriptors from the 

BrainPrint. BrainPrint is an ensemble of shape descriptors that represents brain 

morphology and captures shape information of cortical and subcortical structures. 

Progressive dementia is associated with a significant increase in the neuroanatom-

ical asymmetry in the hippocampus and amygdala. The research findings (see Ta-

ble 1 for an overview) prove that shape analysis can detect the progression of de-

mentia earlier than volumetric measures. Shape asymmetry, based on longitudinal 

asymmetry measures in the hippocampus, amygdala, caudate and cortex can be a 

powerful imaging biomarker for the early presymptomatic prediction of dementia.  

Table 1. State-of-the-art neuroscientific methods of registration of brain asymmetry  

Reference Method Conclusion 

Yang et al. (2017) Diffusion tensor image (DTI) trac-

tography to construct the hemi-

spheric brain white matter networks 

Decrease of asymmetry in patients 

with MCI and an increase of 

asymmetry in patients with AD 

Liu et al. (2018) Registration of the spontaneous 

brain activity in patients with MCI, 

AD and NC using functional MRI 

(fMRI) 

The functional cortical asymmetry 

progressively decreases in patients 

with MCI 

Kim et al. (2012) Surface-based morphometry (SBM) 

to measure cortical thickness 

The degree of asymmetry is not the 

same in the different parts of the 

brain 

Wachinger et al. (2016) Measurement of brain asymmetry 

based on spectral shape descriptors 

using BrainPrint 

Progressive dementia is associated 

with an increase in asymmetry in 

the hippocampus and amygdala; 

shape analysis can detect the pro-

gression of dementia earlier than 

volumetric measures 

 



7 

2.2 Classification of Alzheimer’s Disease and early mild cognitive 

impairment using the ADNI database 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu) was launched in 2003 as a public-private partnership led by 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether se-

rial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD) (for up-to-date information, see www.adni-

info.org). Multiple research studies have benefited from MRI data of the ADNI 

database. The rest of this section focuses on machine learning approaches for the 

modelling and classification of neurogenerative disease, including mild cognitive 

impairment and Alzheimer’s Disease, stable and progressive forms of MCI, as 

these are more relevant to this work.  

     A large portion of research in this area consists of machine learning-based di-

agnostic approaches that use features engineering as this has been shown to con-

tribute towards successful modelling. For example, Beheshti et al. (2017) imple-

mented feature-ranking and a genetic algorithm to analyze structural magnetic 

resonance imaging data of 458 subjects. The researchers state that the proposed 

system can distinguish between stable and progressive MCI and to predict the 

conversion of MCI to Alzheimer's Disease from one to three years ahead it will be 

clinically diagnosed. Beheshti et al. (2017) identified atrophic gray matter (GM) 

regions using voxel-based morphometry (VBM). The features were extracted after 

applying a 3D mask and they were ranked according to their t-test scores. Features 

with t-test values higher than 70% were combined into new subsets. A genetic al-

gorithm, with the Fisher criterion function (Welling 2005), evaluated the separa-

tion between the two groups of data and helped to select the most discriminative 

feature subsets for the classification. The classification process was finalized with 

linear SVM (Evgeniou and Pontil 1999), and classification performance was eval-

uated with a 10-fold cross-validation procedure. The calculated accuracy shows 

93.01% for stable MCI and 75% for progressive MCI. The feature selection pro-

cess raised the accuracy from 78.94% to 94.73%. 

     Another group of scientists (Moradi et al. 2015) investigated the conversion of 

MCI to AD. Their algorithm identifies AD in a period between one to three years 

prior to the development of clinical symptoms. The proposed algorithm is based 

on aggregated biomarkers and a random forest (RF) classifier (Breiman 2001). 

The MRI data were preprocessed by removing images with age-related changes in 

the anatomical structure of the brain using a linear regression model. Feature se-

http://www.adni-info.org/
http://www.adni-info.org/
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lection was implemented on AD and NC images by a regularized logistic regres-

sion (RLG) algorithm (Tripepi 2008). The classification stage is performed using a 

semi-supervised low-density separation (LDS) method (the LDS is a two steps al-

gorithm, which relies on the graph-distance kernel and the Transductive Support 

Vector Machine-TSVM learning). At the beginning of this stage, the classifier is 

trained with labelled AD and NC data. Then, unlabeled MCI images are fed into 

the classifier. It helps to separate the stable and progressive MCI and get them la-

belled. In the final stage the output of the LDS classifier, as an input feature, is 

combined with age and cognitive measurements feature vectors into the RF classi-

fier. The aggregated biomarker distinguishes between stable and progressive MCI 

and approximates the probability of conversion of MCI to AD. The testing of im-

age sequences of 825 subjects was done with a 10-fold cross-validation method. 

The results showed that the predictive performance of the aggregated biomarker is 

higher than the performance of single biomarkers. MRI data with a combination of 

cognitive and age measures improves the classification accuracy by 5.5% (from 

76.5% to 82%). 

     Another approach, (Zhu et al. 2017), proposed an algorithm for the Joint Re-

gression and Classification (JRC) problem in the diagnosis of MCI and AD. The 

idea behind this regularization-based method is to consider the related similarity 

of features, samples, and their responses. The features are related to each other if 

their respective weight coefficients are similar. The weight coefficients are linked 

to the response variables via feature vectors and demonstrate the resembling type 

of relation. The same rule is applied to a similar pair of samples and their respec-

tive response values. The regularization method was tested with MRI and PET 

(Positron Emission Tomography) image sequences of 202 subjects (Wong et 

al.2003). The images were separated into 93 regions of interest (ROI) using a vol-

umetric measure of the gray matter of the brain. Structural MRI scans were 

aligned with functional PET images using affine registration. The average intensi-

ty values were calculated for each ROI. Structurally and functionally related to 

each other features were extracted from each ROI and sent to the feature selection 

process using the regularization algorithm. Extracted features were expected to 

predict jointly one clinical label and two clinical scores. Imaging data for clinical 

labelling were classified with SVM. Other types of data obtained from cognitive 

tests were used for training two more Support Vector Regression (SVR) models 

for prediction of clinical scores of AD Assessment Scale-Cognitive Subscale 

(ADAS-Cog) and Mini-Mental State Examination (MMSE) (Nogueira et al. 

2018). The results were obtained using binary classification methods and 10-fold 

cross-validation. In the initial stage of the experiment, the classification and re-

gression tasks were performed without feature selection. The results of this stage 

were considered as a baseline. In the next run, the baseline was compared to sin-
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gle-task results, when the selected features are classified independently, and multi-

task results when the features are classified jointly for the classification and re-

gression models. The proposed joint approach shows the superiority of the single-

task approach by 5.6%. Compared to the baseline, the average accuracy for a sin-

gle task increases by 6%, and for multi-task by 8.8%. The proposed models were 

compared with two state-of-the-art methods: High-Order Graph Matching 

(HOGM) (Duchenne et al. 2011) and Multi-Modal Multi-Task (M3T) (Zhang and 

Shen 2011). The Joint Regression and Classification model outperform their com-

petitors by improving classification accuracy by 5% (vs. HOGM) and 4.7% (vs. 

M3T) for MRI, and 4.6% (vs. HOGM) and 4.2% (vs. M3T) for PET. The highest 

archived accuracy for classification AD vs NC is 95.7%, MCI vs NC is 79.9%. 

     Another stream of research is taking advantage of machine learning methods 

that generate features as part of the training process. These methods employ Arti-

ficial Neural Networks and Deep Learning and have attracted a lot of attention in 

the area of medical image analysis and classification recently. They can process a 

large amount of data and learn in a supervised (labelled) or unsupervised (unla-

belled) mode. Particularly, diagnostic approaches that use Deep Learning in most 

cases do not require complicated, time-consuming image preprocessing and fea-

ture engineering techniques and produce state-of-the-art results.  

     In this setting, the Convolutional Neural Network (CNN) is one of the models 

successfully adapted to classify imaging data (Yamashita et al. 2018). Basaia et al. 

(2019) built and evaluated a CNN algorithm that predicts AD, progressive cogni-

tive mild impairment, and stable cognitive impairment. The architecture of the 

network included 12 repeated blocks of convolutional layers, an activation layer, a 

fully-connected layer, and one logistic regression output layer. The researchers 

used T1-waited structural MRIs of 1409 subjects from the ADNI database. The 

image data was split into training, validation, and testing sets in the proportion of 

90% for the first two, and 10% for the last one. 10-fold cross-validation was ap-

plied. Weights of the CNN used for classification of AD vs HC dataset were ap-

plied as pre-trained initial weights to the other CNNs. This technique reduced the 

training time and increase the network performance. High predictive accuracy was 

achieved in both databases with no significant difference. The highest percentage 

for AD vs HC (healthy control) classification accuracy was: 99% for ADNI. For c-

MCI vs HC, and s-MCI vs HC accuracy was 87% and 76% respectively, while for 

AD vs c-MCI and AD vs s-MCI performance was 75% and 86%, and for c-MCI 

vs s-MCI 75%. 

     Multi-Layer Perceptron and a Convolutional Bidirectional Long Short-Term 

Memory (ConvBLSTM) model were proposed by Stamate et al. in the diagnosis 

of dementia (Stamate et al. 2020). Different clinical sources and protocols of 

1851 participants of the ADNI database were combined. The collected bi-



10  

omarkers consist of 51 input attributes and include baselines demographics data, 

functional activity questionnaire, Mini-Mental State Exam (MMSE), cerebrospi-

nal fluid (CSF) biomarkers, neuropsychological tests, and measurements re-

ceived from MRI, RET and genetic data. The ReliefF method (Robnik-Šikonja 

and Kononenko 2003) and permutation test (Pesarin and Salmaso 2010), includ-

ing 500 permutations of labels, were combined for feature selection and ranking. 

The top-10 ranked features have been sent to classification models. 75 % of the 

data were used for training and the rest for testing. The predictive results were 

obtained using Monte Carlo simulations (Johansen et al. 2010). All models were 

able to accurately predict dementia and mild cognitive impairment. The highest 

accuracy of 86% was achieved with the Multi-Layer Perceptron model. 

     Lastly, another study (Lama et al. 2017) proposed an unsupervised deep 

learning method for the classification of AD, MCI, and NC. The algorithm ex-

tracts the features with PCA (Abdi and Williams 2010) and processes them with 

a Regularized Extreme Learning Machine (RELM) (Ding et al. 2014). RELM is 

based on single hidden-layer feedforward neural network. The investigators 

chose high-level features using the Softmax function (a function that takes a vec-

tor of real numbers as input and normalizes it into a probability distribution). The 

results of RELM are compared with multiple kernel SVM and import vector ma-

chine (IVM) (IVM classifier based on Kernel Logic Regression uses a few data 

points to define the decision hyperplane and has a probabilistic output). The re-

searchers have done 100 tests of imaging data collected from 214 subjects using 

10-fold cross-validation and 10 tests with the leave-one-out method. They sepa-

rated training and testing images with a ratio of 70/30 for the 10-fold cross-

validation, and 90/10 for the leave-one-out validation. The study confirmed that 

RELM improves the classification accuracy of AD and MCI from 75.33% to 

80.32% for binary classification and 76.61% for multiclass classification. 

     The above approaches are summarized in Table 2. 
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Table 2 Methods of diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease, used in 

the literature 

 

Reference Modality Classification 

type 

Method Complexity Best result 

Beheshti et 

al. (2017) 

sMRI Linear SVM Feature ranking 

and genetic al-

gorithm 

Medium Stable MCI 

93.01%, pro-

gressive MCI 

75% 

Moradi et al. 

(2015) 

Aggregated 

biomarkers 

(MRI + age + 

cognitive 

measures) 

Semi-supervised 

low-density sepa-

ration (LDS) + 

Random Forest 

(RF) 

Feature selec-

tion from MRI 

with LDS, final 

result obtained 

with RF 

High Progressive 

MCI 82% 

Zhu et al. 

(2017) 

sMRI, PET, 

cognitive 

measures 

Joint regression 

and classification 

(SVM) 

Alignment of 

structural and 

functional fea-

tures, feature se-

lection with 

regularization 

algorithm 

High AD vs NC 

95.7%, MCI 

vs NC 79.9% 

Basaia et al. 

(2019) 

sMRI CNN Pretrained CNN Low AD vs. NC 

98%, sMCI 

vs. cMCI 75% 

Stamate et 

al. (2020) 

51 aggregated 

biomarkers 

without imag-

ing data 

Multi-Layer Per-

ceptron and a 

Convolutional 

Bidirectional 

Long Short-Term 

Memory (Con-

vBLSTM) model 

Feature selec-

tion and rank-

ing, top 10 fea-

tures are used 

with NN models 

Medium Dem vs MCI 

vs CN 86% 

Lama et al. 

(2017) 

sMRI Unsupervised DL 

(Regularized Ex-

treme Learning 

Machine 

(RELM)) 

Features ex-

tracted with 

PCA and pro-

cess with 

RELM 

Medium AD vs MCI 

vs NC 

76.61%, AD 

vs MCI 

80.32% 
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3 The proposed approach 

The machine learning workflow for early diagnosis of dementia (Fig. 1) includes 

image preprocessing, segmentation of image asymmetries, extraction of statistical 

features and image analysis, and machine learning classification algorithms. The 

visualized differences between the right and the left hemispheres of the MRI slices 

of the brain are used for features extraction. This simplifies the feature engineer-

ing stage because the collected features are already selected from the brain regions 

affected by degenerative processes. The images of segmented asymmetries require 

less storage than original MRIs. This speed up the classification processing of 

large datasets using images as an input. 

     In the last stage of the workflow, different kinds of machine learning algo-

rithms can be applied. This can include two potential pathways: one that exploits 

image asymmetry features and another one that uses images of segmented asym-

metry. Machine learning classifiers, such as Naïve Bayes (NB), Linear Discrimi-

nant (LD), Support Vector Machines (SVMs) and K-Nearest Neighbor typically 

operate on the basis of feature vectors, such as image asymmetry features that can 

be used for training and testing. In contrast, a Deep Network (DN) classifier re-

ceives images of segmented asymmetry and generates its own features through 

training.  

     The data processing pipeline, including image processing and machine learning 

classification, has been implemented in Matlab using affordable and easy to obtain 

commodity hardware: Windows 10 Enterprise, processor – Intel (R) Core (TM), 

i7-7700 CPU@ 3.60GHz, 16 GB RAM. 
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Fig.1 Machine learning workflow including image transformation stages, asymmetry features 

generation and machine learning classification algorithms 

3.1 Image preprocessing and segmentation of image asymmetry 

The preprocessing stage includes image normalization and image resizing proce-

dures. All images are then segmented by implementing a brain segmentation algo-

rithm with an adjusted threshold level of the pixel values (Fig. 2). Brain segmenta-

tion is an important task in the detailed study and analysis of the anatomical 

regions of the brain and their symmetries. It is often the most critical step in many 

medical applications. The manual segmentation step can be replaced with auto-

matic segmentation software (AnalyzeDirect -  https://analyzedirect.com/analyze14/, 

FreeSurfer - https://surfer.nmr.mgh.harvard.edu/, etc.). 

 

Fig.2 The segmentation of 

the brain tissues from the 

skull: original image (left), 

and segmented image of the 

brain (right)  

https://analyzedirect.com/analyze14/
https://surfer.nmr.mgh.harvard.edu/
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     There are many computer vision techniques proposed for the segmentation of 

specific brain areas in accordance with the anatomical atlas (Despotović et al. 

2015). The current study presents an algorithm for the segmentation of the hemi-

spheric asymmetries whose key point is the detection of the vertical axis of sym-

metry between the left and right hemispheres of the brain (Fig. 3). The hypothesis 

being tested in this part of the work is that there is an axis of reflective symmetry 

running through the center of the brain (Liu et al. 2001). The center point of the 

brain is allocated using an image binarization technique and calculating the image 

centroid (Teverovskiy and Li 2006). In the context of image processing and com-

puter vision, the centroid is the weighted average of all the pixels in an image. The 

"weighted" centroid, or center of mass, is always at the exact center and depends 

on the gray levels in the image.  

      The technique of the allocation of an imaging center is accompanied by image 

binarization (Michalak and Okarma 2019), which converts a 256-shaded grayscale 

image to a binary (black and white-colored). The binarization is done according to 

the adjusted level of a threshold. All pixels in the image above the threshold level 

are replaced by the value 1 (white) and other pixels that are below that level, by 

the value 0 (black).  

     The brain center might differ from the center of the whole image including the 

background. If such a case occurs, the brain needs to be translated into the center 

of the image and rotated to the correct angle via the vertical axis. As soon as the 

brain centralization, translation, and rotation techniques are performed the image 

can be flipped or reversed from the left to the right across the vertical axis (Rup-

pert et al. 2011). The mirroring process is finalized by the segmentation of image 

asymmetries. 
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Fig.3 The image transformation stages for detection and segmentation of image 

asymmetries  

 

The last image of this stage (see Fig. 3) is obtained as a result of mirroring of the 

left-brain hemisphere to the right and of the right-brain hemisphere to the left, 

which is followed by subtraction of the hemispheres from each other: 

 

D = (L - R) + (R – L),                                 (1) 

 

where D is an image asymmetry, L is an image matrix of the left hemisphere, R is 

an image matrix of the right hemisphere. 
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Fig.4 An illustrative example of matrix transformation values of a gray-scaled image of size 6-

by-6: initial matrix (left) and Matrix of segmented asymmetry(right), mirrored via the vertical 

axis. The numbers in the cells correspond to the gray level of the pixel values 

 

The symmetrical image areas (Fig. 4) get a value of 0 due to matrix subtraction. 

They are visualized as black areas in the image. The asymmetrical parts of the im-

age are represented as different intensity gray levels from 1 to 255. The algorithm 

was tested on single slices of the brain, but the same idea can be extended and ap-

plied to the whole 3D brain image. 

3.2 Feature engineering and analysis 

Approaches that are based on statistical features for representing image properties 

are well-established in image processing (Di Ruberto and Fodde 2013). The statis-

tical description of the image texture, color or morphological properties generates 

a limited number of relevant and distinguishable features. The proposed machine 

learning workflow uses ten strong and stable statistical features to represent the 

image asymmetries: MSE (Mean Squared Error), Mean, Std (Standard deviation), 

Entropy, RMS (Root Mean Square), Variance, Smoothness, Kurtosis, Skewness, 

IDM (Inverse difference moment). The first feature on the list, MSE, has been cal-

culated directly from the original image and its mirrored version, while the rest of 

them are generated using discrete wavelet transform (DWT) as shown in Figure 5.  

In image processing, a discrete wavelet transform is a technique to transform im-

age pixels into wavelets (Usman and Rajpoot 2017).  
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Fig.5 The DWT schema of the 1-st and the 2-nd level of the image decomposition after applying 

high- and low-pass filters in the horizontal and vertical directions 

 

A brief description of each statistical feature used in this study is provided below. 

3.2.1 Statistical features description 

The features calculated from images or image asymmetries give information about 

the likelihood of gray pixel values in a random position in an image, their orienta-

tion, and interaction with other surrounding pixels. They are defined as follows: 

 

Mean squared error (MSE) The average squared intensity difference in the 

pixel values between the corresponding pixels of 

two images (Wang et al. 2004) 

Mean The texture feature that measures the average value 

of the intensity pixel values (Kumar and Gupta 

2012); represents the brightness of the image. 

Standard deviation (Std) Shows the contrast of gray level intensities; indi-

cates how much deviation or dispersion exists from 

the mean or average (Esmael et al. 2015).  

Entropy Entropy characterizes the image texture and 

measures the randomness of the pixel intensity dis-

tribution (Yang et al. 2012). 

It is the highest when all the pixel probabilities are 

equal.  

Root mean square (RMS) Measures the magnitude of a set of values (Lee et 
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al. 2017); shows how far these values are from the 

line of best fit.  

Variance Measures the image heterogeneity (Yang et al. 

2012); shows how the grayscale values differ from 

their mean. 

Inverse difference moment 

(IDM) 

Inverse difference moment (IDM) indicates the lo-

cal homogeneity of an image (Yang et al. 2012); 

increases when pixel pairs are close in their gray-

scale values. 

Smoothness Smoothness measures the relative smoothness of 

intensity in an image (Malik and Baharudin 2013); 

it is high for an image region of constant intensity, 

and low for regions with large deviations in their 

intensity values. 

Kurtosis Measures the peak of the distribution of the intensi-

ty values around the mean (Ho and Yu 2015); often 

interpreted in combination with noise and resolu-

tion of the image (high kurtosis value is accompa-

nied by low noise and low resolution). 

Skewness Shows the asymmetry of the probability distribu-

tion of the pixel intensity values about the mean 

value (Esmael et al. 2015); reveals information 

about image surfaces (darker and glossier surfaces 

tend to be more positively skewed than lighter and 

matte surfaces); any symmetric data have skewness 

near zero. 

 

3.2.2 Analysis of image asymmetries 

The analysis part is based on an evaluation of the statistical properties of segment-

ed asymmetries.  

     Figure 6 shows averaging normalized (from 0 to 1) statistical data of each ex-

tracted feature from a set of 300 MRI slices of different patients with segmented 

asymmetries equally divided into three classes, those with Alzheimer’s Disease - 

AD, Early Mild Cognitive Impairment - EMCI and Normal Cognitively - NC. 

Comparison of statistical features of AD, EMCI, and NC classes demonstrates the 

differences in their statistical characteristics. 
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Fig.6   Red and blue bars cor-

respond to the statistical 

mean of each image asym-

metry feature for EMCI and 

AD patients: the green line 

shows how the AD and 

EMCI data differ from the 

NC patients  

 
 

 

 

 

Fig.7 Statistical mean of 

asymmetry feature values for 

binary classes: 

AD vs EMCI  

 

 

 

 

 

 

 
 

Fig.8 Statistical mean of 

asymmetry feature values for 

binary classes: 

AD vs NC  

 

 

 

 

 

 

 

Fig.9 Statistical mean of 

asymmetry feature values for 

binary classes: 
EMC vs NC  
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The highest difference between corresponding pixels of two images (MSE feature) 

belong to the AD class, the lowest result is shown for the EMCI class. The small-

est averaging pixel intensity values, variance and standard deviation in the intensi-

ties are discovered in the EMCI class. These findings point to the relatively sym-

metrical object compared to those (AD and NC classes) which have noticeable 

pixel distribution values around the average. Pixels distribution values and proba-

bility around the mean demonstrate some sort of separation of the AD, EMCI and 

NC classes despite the amplitude of these values is less than registered with other 

statistical features. Texture features, such as entropy and IDM, prove the concept 

of variability between image classes. In this way, the features calculated the dif-

ference between original and inverted image matrices clearly indicate that EMCI 

data show more symmetry than NC and AD imaging data. 

     Figures 7-9 illustrate features comparison in three binary datasets: AD vs 

EMCI, AD vs NC, and EMCI vs NC. EMCI class demonstrates more symmetry 

than AD and NC classes in Figures 7 and 9.  In Figure 8, statistical feature data of 

the AD class shows less symmetry than NC data.  

     The MSE feature analysis with a Pareto chart has been performed for male and 

female subjects (Figs. 10-11). The MSE value for each class has been calculated 

from the differences between the original image and its mirrored version for all 

images in classes of AD, EMCI, and NC.      

 

Fig.10 Pareto chart of MSE 

feature analysis for MRI slic-

es of the male subject. The 

total MSE feature value is 

placed in the coloured bars. 

The axis, on the right, indi-

cates the cumulative percent-

age of the total value for each 

class  

 

 

 

 

 



21 

Fig.11 Pareto chart of MSE 

feature analysis for MRI slic-

es of the female subject  

 

 

 

 

 

 

 

 

 

The Pareto bar chart indicates the impact of asymmetry for each class. The highest 

MSE bar is associated with patients of the AD class. It confirms that changes in 

symmetry in the MRI slices of this image group are sizable compared to changes 

in the symmetry of other groups. At the same time, the EMCI image group has 

smaller values. The pattern of changes in male and female subjects does not show 

significant differences; nevertheless, the findings are consistent with the view that 

the female brain is more symmetrical than the male brain. The cumulative line of 

the secondary axis shows the contribution of each bar (image class) in the total 

value as a percentage.  

     A comparison of MSE values of 4 datasets is provided in Figure 12. 

 

 

 

Fig.12 Comparison of MSE feature values between the three classes of MRIs. Numbers, 1,2…4, 

indicate the investigated datasets: #1 refers to a 150-image set of male MRIs in the coronal plane, 

#2 is a 150-image set of female MRIs in the coronal plane, #3 corresponds to a 300-images set of 

male subjects in the coronal plane, and #4 represents a 300-images set of males in the axial plane  
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     Figure 12 illustrates the changes in MSE features between the three image clas-

ses, AD, EMCI and NC, in four completely different image sets. From the figure 

below, we can see the pattern of changes in the symmetry between the original 

and inverted images. The lowest MSE value for all image sets is obtained by im-

ages of the EMCI class.  

     The above analysis (Figs. 6-12) supports the view that image asymmetry de-

creases in the initial stage of the generative process in the brain (Early Mild Cog-

nitive Impairment) and grows when the person develops moderate and severe de-

mentia (Alzheimer’s disease). 

4 Experiments and Results 

In this section, the two diagnostic pathways of the machine learning workflow are 

demonstrated and the robustness of brain asymmetry image and asymmetry fea-

tures for early diagnosis of dementia is verified. To this end, SVMs and DNs are 

used, and the diagnosis problem is formulated as a set of binary classification 

problems. 

     T1-weighted MRIs of subjects aged between 55 and 75 years were used from 

the ADNI database. A total of 600 MRIs of brain asymmetries were generated, 

equally divided into groups of normal cognitively (NC) subjects, early mild cogni-

tive impairment (EMCI) and Alzheimer’s Disease (AD). MRIs were combined in-

to 3 binary datasets: EMCI vs NC, AD vs NC and AD vs EMCI. The datasets con-

sist of images of 2 dimensions (planes): vertical (frontal) and horizontal (axial). 

For the first diagnostic pathway, statistical features collected from image asymme-

tries were enriched with Bag-of-Features (BOF) to get the most detailed image 

“signatures” (Rueda et al. 2012). These were used to feed SVM classifiers with 

cubic and quadratic kernels (C-SVM and Q-SVM). The SVM performance was 

estimated using 10 simulation runs of a 10-fold cross-validation procedure and all 

models were tested on unseen data.  

     For the second diagnostic pathway (cf. Fig. 1), segmented brain asymmetry 

images were used, and features were generated as part of the training process of a 

Convolutional Neural Network (CNN)- a DN architecture that has shown in the 

literature very good performance in image classification tasks. To this end, trans-

fer learning was used by adapting a well-known CNN, the so-called AlexNet 

(Krizhevsky et al. 2017). AlexNet has a total of 8 deep layers: five convolutional 

layers that are used for feature generations and three fully connected layers. The 1-

st layer requires an input image of size 227-by-227-by-3, where 3 is the number of 
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color channels. The last 3 layers of AlexNet were preliminarily configured to 1000 

classes as it was trained to solve a different classification problem, but they were 

replaced with a fully connected layer, a Softmax layer, and a binary classification 

output layer to fit the needs of the diagnosis tasks considered in this study (Fig. 

13). 

 

Fig.13 Adapted AlexNet architecture used in the experiments 

     The performance of the classification models was evaluated in terms of accura-

cy, sensitivity, specificity, and area under the curve (AUC) (Yang and Berdine 

2017).  The best available results obtained with the polynomial SVM classifier (C-

SVM and Q-SVM) (Jakkula 2006) are shown in Table 3. 

Table 3 Best available performance of Q-SVM and C-SVM in binary classification 

 

The highest accuracy was achieved for the sets of EMCI vs NC, and AD vs NC. 

Based on the results, the detection of the EMCI in the early stage of the disease 

with quadratic and cubic SVMs gives an accuracy of 93%. These tests show a sen-

sitivity of 92% and 93%, a specificity of 94% and 93%, and an AUC of 0.97 and 

0.98 respectively.  AD vs NC shows the highest performance equal to 95% of ac-

curacy, 97% of sensitivity, 93% of specificity, and 0.99 of AUC for C-SVM.  

Performance EMCI vs NC 

Q-SVM     C-SVM 

AD vs NC 

Q-SVM     C-SVM 

AD vs EMCI 

Q-SVM     C-SVM 

Accuracy 0.93           0.93 0.93           0.95 0.87          0.86 

Sensitivity 0.92            0.93 0.94           0.97 0.84           0.90 

Specificity 0.94            0.93 0.92         0.93 0.90           0.82 

AUC 0.97            0.98 0.97          0.99 0.94           0.94 
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To verify binary classification performance using brain asymmetry images, CNN 

parameters have been set as follows: 10 epochs, mini-batch size of 128, validation 

data frequency of 50. Before processing, the segmented asymmetry images were 

resized to 227×227×3 and fed into the model with 80% of the images used for 

training, 10% for validation, and 10% for testing. Table 4 summarises the best 

available result of the adapted AlexNet in the testing of the early mild cognitive 

impairment, normal cognitively, Alzheimer’s disease datasets. 

Table 4 Best available performance of CNN (adapted AlexNet) in binary classification 

 

Performance EMCI vs NC AD vs NC AD vs EMCI 

Accuracy 0.76 0.90 0.82 

Sensitivity 0.80 0.91 0.75 

Specificity 0.72 0.89 0.89 

AUC 0.90 0.92 0.88 

 

Satisfactory performance with the CNN is obtained for all datasets by operating 

directly on images of segmented asymmetry without any feature engineering or fi-

ne-tuning prior to the classification. The average performance of CNNs in this 

problem is also promising as shown in (Herzog and Magoulas 2021) and one 

would expect that additional model optimization can improve the performance of 

CNNs further. This is a promising avenue for investigation, but it is considered 

out-of-scope for this chapter, and it will be the focus of our future work. The pre-

sent study has verified the robustness and value of image asymmetries and demon-

strated the operation of the machine learning workflow as a diagnostic tool when 

either image asymmetry features or segmented images of brain asymmetry are 

used.  

5 Discussion and conclusion 

Diagnosis based on an analysis of the changes in brain asymmetry opens a new 

possibility for the classification of mild cognitive impairment and Alzheimer’s 

disease using MRI data. The chapter presented an approach for the analysis of 

brain asymmetries and the generation of image asymmetry features either by fea-

ture engineering or by learning segmented asymmetry MRI images. These find-
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ings confirmed that changes in asymmetries convey important information about 

the progression of the disease. Thus, the segmented asymmetries can be beneficial 

for feature engineering and machine learning classification.  

     The proposed machine learning workflow offers a low-cost alternative for the 

classification of dementia as it does not require special hardware equipment. In 

contrast to other methods in the literature (see Section 2), the proposed image pro-

cessing and feature engineering stages are less complex and take on average 

0.1min per MRI image. This stage is not typically required when Deep Networks 

are applied since these models use the segmented MRI asymmetry slices directly 

as an input and can generate image features during network training.  

     Although optimizing the architecture of the machine learning algorithms can 

potentially increase performance, the accuracy of the models used in this study 

appears comparable with results obtained by more complex methods (see Section 

2) for the ADNI database.  

     The proposed methodology has a perspective to explore the stages of Alzhei-

mer's disease further. This research can be based on longitudinal studies of patient 

data. Changes in the shape of asymmetry and mapping these changes to the brain 

atlas will direct in those brain areas which are affected by the pathological pro-

cess.  

     One more point for investigation is the comparison of asymmetries between the 

gray and white matter of the brain. Additional computer vision segmentation tech-

niques might give a clue to the source of initial tissue deformation, which opens a 

direction for the early prediction and even prevention of the disease.  
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