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Abstract
We aim to determine which temporal instance queries can be
uniquely characterised by a (polynomial-size) set of positive
and negative temporal data examples. We start by consider-
ing queries formulated in fragments of propositional linear
temporal logic LTL that correspond to conjunctive queries
(CQs) or extensions thereof induced by the until operator. Not
all of these queries admit polynomial characterisations but
by restricting them further to path-shaped queries we iden-
tify natural classes that do. We then investigate how far the
obtained characterisations can be lifted to temporal knowl-
edge graphs queried by 2D languages combining LTL with
concepts in description logics EL or ELI (i.e., tree-shaped
CQs). While temporal operators in the scope of description
logic constructors can destroy polynomial characterisability,
we obtain general transfer results for the case when descrip-
tion logic constructors are within the scope of temporal op-
erators. Finally, we apply our characterisations to establish
(polynomial) learnability of temporal instance queries using
membership queries in the active learning framework.

1 Introduction
Constructing queries or, more generally, logical concepts
describing individuals of interest, can be difficult. Pro-
viding support to a user to cope with this problem has
been a major research topic in databases, logic, and knowl-
edge representation. For instance, in reverse engineering of
database queries and concept descriptions (Martins 2019;
Lehmann and Hitzler 2010; Jung et al. 2020), one aims to
identify a query using a set of positively and negatively la-
belled examples of answers and non-answers, respectively;
and in active learning approaches, one aims to identify a
query by asking an oracle (e.g., domain specialist) whether
an example is an answer or a non-answer to the query (An-
gluin, Frazier, and Pitt 1992; Funk, Jung, and Lutz 2021;
ten Cate and Dalmau 2021).

Recently, the unique characterisation of a query by a
finite (ideally, polynomial-size) set of positive and nega-
tive example answers has been identified as a fundamental
link between queries and data (ten Cate and Dalmau 2021).
Namely, we say that a query q fits a pair E = (E+, E−) of
sets E+ and E− of pointed databases (D, a) if D |= q(a)
for (D, a) ∈ E+, and D ̸|= q(a) for (D, a) ∈ E−. Then E
uniquely characterises q within a class Q of queries if q is
the only (up to equivalence) query in Q that fits E.

Unique (polynomial) characterisations can be used to il-
lustrate, explain, and construct queries. They are also a ‘non-
procedural’ necessary condition for (polynomial) learnabil-
ity using membership queries in Angluin’s (1987b) frame-
work of active learning, where membership queries to the
oracle take the form ‘does D |= q(a) hold?’. It is shown by
ten Cate and Dalmau (2021) that, for classes of conjunctive
queries (CQs), it is often a sufficient condition as well.

In many applications, queries are required to capture the
temporal evolution of individuals, making their formulation
even harder. The aim of this paper is to start an investigation
of the (polynomial) characterisability of temporal instance
queries. We first consider one-dimensional data instances of
the form (δ0, . . . , δn), where δi is the set of atomic propo-
sitions that are true at timestamp i, describing the temporal
behaviour of a single individual, and queries formulated in
fragments of propositional linear temporal logic LTL . Al-
though rather basic as a temporal data model, this restric-
tion allows us to focus on the purely temporal aspect of
unique characterisability. We then generalise our results,
where possible, to standard two-dimensional temporal data
instances, in which the δi are replaced by non-temporal data
instances and queries are obtained by combining fragments
of LTL with ELI-concept queries (or tree-shaped CQs),
thereby combining a well established formalism for access-
ing temporal data (Chomicki and Toman 2018) with the ba-
sic concept descriptions for tractable data access from de-
scription logic (Baader et al. 2017).

Our initial observation is that already very primitive tem-
poral queries are not uniquely characterisable. For example1,
consider the query q = ♢r(A∧B) with the operator ♢r ‘now
or later’ (interpreted by ≤ over linearly ordered timestamps).
By the pigeonhole principle, no finite example set E can dis-
tinguish q from a query q′ = ♢r(A∧ (♢rB ∧♢r(A∧ . . . )))
with sufficiently many alternating A and B. Similarly, the
query q = ⃝A with the ‘next time’ operator ⃝ is not distin-
guishable by a finite example set from q′ = (⃝ . . .⃝A)UA
with the strict ‘until’ operator U and sufficiently many ⃝ on
its left-hand side.

Aiming to identify natural and useful classes of tempo-
ral queries enjoying (polynomial) characterisability, in this

1For detailed explanations and omitted proofs, the reader is re-
ferred to the full Arxiv version (Fortin et al. 2022b) of this paper.



paper we consider the conjunctive fragment of LTL. To be-
gin with, we focus on two classes of path CQs: the class
Qp[⃝,♢r] of queries of the form

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ onρn)), (1)

where oi ∈ {⃝,♢r} and ρi is a conjunction of atomic propo-
sitions, and also the class Qσ

p [U] of U-queries of the form

q = ρ0 ∧ (λ1 U (ρ1 ∧ (λ2 U (. . . (λn U ρn) . . . )))), (2)

where λi is a conjunction of atoms or ⊥. The superscript
σ in Qσ

p [U] indicates that queries are formulated in a finite
signature σ, a condition required because of the universal
quantification implicit in U. Our first main result is a syntac-
tic criterion of (polynomial) characterisability of Qp[⃝,♢r]-
queries. In fact, it turns out that the query ♢r(A ∧ B) men-
tioned above epitomises the cause of non-characterisability
in Qp[⃝,♢r]. It follows, in particular, that the restriction
Qp[⃝,♢] of Qp[⃝,♢r] to queries with ⃝ and strict eventu-
ality ♢ = ⃝♢r is polynomially characterisable. Our second
main result is that all Qσ

p [U]-queries with ⊆-incomparable
λi and ρi, for each i, are polynomially characterisable within
Qσ

p [U]. Although we show that all Qσ
p [U]-queries are expo-

nentially characterisable, it remains open whether they are
polynomially characterisable in Qσ

p [U].
The essential property that distinguishes Qp[⃝,♢r] and

Qσ
p [U] from other queries is that they do not admit temporal

branching as, for instance, in ♢A ∧ ♢B. In fact, we show
that even within the class of queries using only ∧ and ♢ and
with a bound on the number of branches, not all queries are
polynomially characterisable. A first step towards positive
results covering non-path queries is made for the case of
queries in which all branches are of equal length.

Our next aim is to generalise the obtained results to 2D
temporal queries combining LTL with the description logic
constructor ∃P of ELI. Our first main result is nega-
tive: even queries of the form ∃P.q1 ∧ · · · ∧ ∃P.qn, in
which qi ∈ Qp[⃝,♢], are not polynomially characterisable.
The situation changes drastically, however, if we consider
queries of the form (1) or (2), in which ρi and λi are ELI-
queries. Indeed, we generalise our polynomial characteris-
ability results for Qp[⃝,♢r] and Qσ

p [U] to such queries using
recent results on the computation of frontiers in the lattice of
ELI-queries (ten Cate and Dalmau 2021) and proving a new
result on split partners in the lattice of EL-queries (where
EL denotes ELI without inverse roles).

Finally, we discuss applications of our results to learn-
ing temporal instance queries using membership queries of
the form ‘does D |= q hold?’. As we always construct ex-
ample sets effectively, our unique (exponential) character-
isability results imply (exponential-time) learnability with
membership queries. Obtaining polynomial-time learnabil-
ity from polynomial characterisations is more challenging.
A main result here is that Qp[⃝,♢r] with ELI-queries is
polynomial-time learnable with membership queries, as-
suming the learner is given the target query size in advance.

2 Related Work
Our contribution is closely related to work on active learn-
ability of formal languages and on learning temporal logic

formulas interpreted over finite and infinite traces. It is
also related to learning database queries and other for-
mal expressions for accessing data. In the former area,
the seminal paper by Angluin (1987a) has given rise to
a large body of work on active learning of regular lan-
guages or variations, for example, (Shahbaz and Groz 2009;
Aarts and Vaandrager 2010; Cassel et al. 2016; Howar and
Steffen 2018). This work has mainly focused on learn-
ing various types of finite state machines or automata using
a combination of membership queries with other powerful
types of queries such as equivalence queries. The use of
two or more types of queries is motivated by the fact that
otherwise one cannot efficiently learn a wide variety of im-
portant languages, including regular languages. In fact, the
main difference between this work and our contribution is
that we focus on queries for which the corresponding formal
languages form only a small subset of the regular languages
and it is this restriction that enables us to focus on character-
isability and learnability with membership queries.

Rather surprisingly, there has hardly been any work on
active learning of temporal formulas over finite or infi-
nite traces; we refer the reader to (Camacho and McIl-
raith 2019), also for a discussion of the relationship be-
tween learning automata and LTL -formulas. In contrast,
passive learning of LTL -formulas has recently received sig-
nificant attention; see (Lemieux, Park, and Beschastnikh
2015; Neider and Gavran 2018; Fijalkow and Lagarde 2021;
Fortin et al. 2022a) and, in the context of explainable AI,
also (Camacho and McIlraith 2019) for an overview.

In the database and KR communities, there has been ex-
tensive work on identifying queries and concept descrip-
tions from data examples. For instance, in reverse engi-
neering of queries, the goal is typically to decide whether
there is a query that fits (or separates) a set of positive
and negative examples. Relevant work under the closed
world assumption include (Arenas and Diaz 2016; Bar-
celó and Romero 2017) and under the open world assump-
tion (Gutiérrez-Basulto, Jung, and Sabellek 2018; Funk et
al. 2019). Related work on active learning not yet discussed
include the identification of EL-queries (Funk, Jung, and
Lutz 2021) and ontologies (Konev, Ozaki, and Wolter 2016;
Konev et al. 2017), and of schema-mappings (ten Cate, Dal-
mau, and Kolaitis 2013; ten Cate et al. 2018). Again this
work differs from our contribution as it focuses on learning
using membership and equivalence queries rather than only
the former. The use of unique characterisations to explain
and construct schema mappings has been promoted and in-
vestigated by Kolaitis (2011) and Alexe et al. (2011).

Combining LTL and description logics for temporal con-
ceptual modelling and data access has a long tradition (Lutz,
Wolter, and Zakharyaschev 2008; Artale et al. 2017). For
querying purposes, sometimes description logic concepts
have been replaced by general CQs. Our restriction to ELI-
concepts instead of general CQs is motivated by results
of (ten Cate and Dalmau 2021) showing that only CQs that
are acyclic modulo cycles through the answer variables are
polynomially characterisable within the class of CQs. Hence
very strong acyclicity conditions are needed to ensure poly-
nomial characterisability. We conjecture that our results can



be extended to this class.
The class of queries in which no ∃P is within the scope

of temporal operators was first introduced by (Baader, Borg-
wardt, and Lippmann 2015; Borgwardt and Thost 2015) in
the context of monitoring applications. The lcs and msc in
temporal DLs are considered by Tirtarasa and Turhan 2022.

3 Preliminaries
By a signature we mean any finite set σ ̸= ∅ of atomic
concepts A,B,C, . . . representing observations, measure-
ments, events, etc. A σ-data instance is any finite sequence
D = (δ0, . . . , δn) with δi ⊆ σ, saying that A ∈ δi happened
at moment i. The length of D is max(D) = n and the size
of D is |D| = Σi≤n|δi|. We do not distinguish between D
and its variants of the form (δ0, . . . , δn, ∅, . . . , ∅).

We access data by means of queries, q, constructed from
atoms, ⊥ and ⊤ using ∧ and the temporal operators ⃝, ♢, ♢r
and U. The set of atomic concepts occurring in q is denoted
by sig(q). The set of queries that only use the operators
from Φ ⊆ {⃝,♢,♢r,U} is denoted by Q[Φ]; Qσ[Φ] is the
restriction of Q[Φ] to a signature σ. The size |q| of q is the
number of symbols in q, and the temporal depth tdp(q) of q
is the maximum number of nested temporal operators in q.

Q[⃝,♢,♢r]-queries can be equivalently defined as tree-
shaped conjunctive queries (CQs) with the binary predicates
suc, <, ≤ over N, and atomic concepts as unary predicates.
Each such CQ is a set Q(t0) of assertions of the form A(t),
suc(t, t′), t < t′, and t ≤ t′, with a distinguished variable t0,
such that, for every variable t in Q(t0), there exists exactly
one path from t0 to t along the binary predicates suc, <, ≤.

The set of Q[⃝,♢,♢r]-queries with path-shaped CQ
counterparts is denoted by Qp[⃝,♢,♢r]. Such queries q
take the form (1), where oi ∈ {⃝,♢,♢r} and ρi is a con-
junction of atoms (the empty conjunction is ⊤). Similarly,
Qp[U]-queries take the form (2).

Given a data instance D = (δ0, . . . , δn), the truth-relation
D, ℓ |= q, for ℓ < ω, is defined as follows:

D, ℓ |= A iff A ∈ δℓ, D, ℓ |= ⊤, D, ℓ ̸|= ⊥,

D, ℓ |= q1 ∧ q2 iff D, ℓ |= q1 and D, ℓ |= q2,

D, ℓ |= ⃝q iff D, ℓ+ 1 |= q,

D, ℓ |= ♢q iff D,m |= q, for some m > ℓ,

D, ℓ |= ♢rq iff D,m |= q, for some m ≥ ℓ,

D, ℓ |= q1 U q2 iff there is m > ℓ such that D,m |= q2

and D, k |= q1, for all k with ℓ < k < m.

Note that D, n |= ♢⊤∧⃝⊤∧ (qU⊤) as (δ0, . . . , δn, ∅) is a
variant of D. We write q |= q′ if D, ℓ |= q implies D, ℓ |= q′

for any D and ℓ. If q |= q′ and q′ |= q, we call q and q′

equivalent and write q ≡ q′. Since ⃝q ≡ ⊥Uq, ♢q ≡ ⊤Uq
and ♢q ≡ ⃝♢rq, one can assume that Q[⃝,♢] ⊆ Q[U],
Q[♢] ⊆ Q[⃝,♢r] and Q[⃝,♢r] = Q[⃝,♢r,♢].

4 Unique Characterisability
An example set is a pair E = (E+, E−) with finite sets E+

and E− of data instances that are called positive and nega-
tive examples, respectively. A query q fits E if D+, 0 |= q

and D−, 0 ̸|= q, for all D+ ∈ E+ and D− ∈ E−. We say
that E uniquely characterises q within a class Q of queries if
q fits E and q ≡ q′ for any q′ ∈ Q that fits E. If all q ∈ Q
are characterised by some E within Q′ ⊇ Q, we call Q
uniquely characterisable within Q′. Further, Q is polynomi-
ally characterisable within Q′ ⊇ Q if there is a polynomial
f such that every q ∈ Q is characterised within Q′ by some
E of size |E| ≤ f(|q|), where |E| = ΣD∈(E+∪E−)|D|. Let
Qn be the set of queries in Q of size at most n. We say that
Q is polynomially characterisable for bounded query size if
there is a polynomial f such that every q ∈ Qn is charac-
terised by some E of size ≤ f(n) within Qn.

Observe that (polynomial) characterisability is anti-
monotone: if a query q is (polynomially) characterisable
within Q and Q′ ⊆ Q, then q is (polynomially) char-
acterisable within Q′. In counterexamples to characteris-
ability, we therefore only provide the smallest natural class
of queries within which non-characterisability holds. The
following examples illustrate (non-)characterisability within
the classes Qp[♢r] and Qp[⃝,♢r].
Example 1. (i) Recall from Section 1 that ♢r(A ∧B) is not
uniquely characterisable within Qp[♢r]. The same argument
shows non-characterisability of ♢(A ∧B) within Qp[♢r,♢].
On the other hand, the query ♢(A ∧ B) is characterised
within Qp[♢,⃝] by the example set with positive exam-
ples (∅, {A,B}) and (∅, ∅, {A,B}) and negative examples
(∅, {A}) and (∅, {B}).
(ii) The conjunction of atoms does not always lead to

non-characterisability within classes of queries with ♢r. For
example, q = ♢r(A ∧ ⃝(A ∧ B)) is characterised within
Qp[⃝,♢r] by E = (E+, E−) in which E+ contains two
data instances ({A}, {A,B}) and (∅, {A}, {A,B}) and E−

also two instances:
(∅, ∅, {A,B}), (∅, {A}, {A}, {B}, {A,B}).

The intuition here is that some instances from E− have to
satisfy the query ♢r(A ∧ ⃝(B ∧ ♢r(A ∧B))) as well as the
query ♢r(A ∧ ⃝(A ∧ ♢r(A ∧B))).
(iii) While the query ♢r(A ∧ B) from (i) is not charac-

terisable, there is a polynomial f such that, for all n ∈ N,
it is characterisable within Qn

p [⃝,♢r] by some En of size
≤ f(n). Namely, we take E+ = {({A,B}), (∅, {A,B})}
and E− = {({A}, {B}, . . . , {A}, {B}︸ ︷︷ ︸

n times

)}.

Observe that one can always separate q ∈ Q[⃝,♢r] from
any other q′ ∈ Q[⃝,♢r] with sig(q′) ⊋ sig(q) = σ using
the positive example (σ, . . . , σ) with tdp(q)+1-many copies
of σ. One can therefore focus on characterisability within
the relevant class of queries over the same signature as the
input query. However, this is not the case for Q[U]:
Example 2. The query q = ⊥ U A ≡ ⃝A is not uniquely
characterisable within Qp[U]. Indeed, suppose q fits E and
σ comprises all atoms occurring in E. Then D, 0 |= C UA
iff D, 0 |= ⃝A, for all D in E and C ̸∈ σ, and so E
does not characterise q. On the other hand, for the signature
σ = {A,B}, the query q is characterised within Qσ

p [U] by
the example set (E+, E−) in which E+ = {(∅, {A})} and
E− = {(σ, {B}, {A})} as A UA ≡ (A ∧B) UA ≡ ⃝A.



As noted in Section 1, ⊥ U A is not uniquely character-
isable within Q{A}[U] because of nested U-operators on the
left-hand side of U. This observation prompts us to consider
the subclass Qσ

−[U] of Qσ[U]-queries q in which any sub-
query q′ U q′′ does not contain occurrences of U in q′. Note
that Qσ

p [U] ⊆ Qσ
−[U]. We show that Qσ

−[U] is uniquely char-
acterisable. To simplify notation, we give σ-data instances
as words over the alphabet 2σ using the standard notation
of regular languages. Instead of D, 0 |= q we simply write
D |= q. By the semantics of U, for any q ∈ Qσ

−[U], we have

σd ̸|= q for d ≤ tdp(q), σd |= q for d > tdp(q) (3)

where σd is a word with d-many σ. Note also that there are
finitely-many, say Nd < ω, pairwise non-equivalent queries
of any depth d < ω in Qσ

−(U).
Lemma 3. If q, q′ ∈ Qσ

−[U] are of depth d and q ̸|= q′, then
there is D such that max(D) ≤ Nd, D |= q and D ̸|= q′.

Proof. Consider D of minimal length such that D |= q and
D ̸|= q′. Let tp(i) comprise all of the subqueries s of q and
q′ with D, i |= s. By the choice of D, we have tp(i) ̸= tp(j)
for any distinct i, j ∈ [0,max(D)] (otherwise we could cut
the interval [i, j) out of D to obtain a shorter instance sepa-
rating q from q′). It follows that max(D) ≤ Nd. ❑

Theorem 4. For any σ, Qσ
−[U] is uniquely characterisable.

Proof. Any q ∈ Qσ
−(U) is uniquely characterised by E with

E+ = {D |= q | max(D) ≤ Ntdp(q)},
E− = {D ̸|= q | max(D) ≤ Ntdp(q)}.

Indeed, let q′ ∈ Qσ
−(U) fit E. Then tdp(q′) = tdp(q) by

(3), and so q ≡ q′ by Lemma 3. ❑

It follows from the proof that Q[⃝,♢] is uniquely charac-
terisable as well.

5 Characterisability in Qp[⃝,♢r]
In this section, we prove a criterion of (polynomial) unique
characterisability of queries within Qp[⃝,♢r]. The crite-
rion is applicable to Qp[⃝,♢,♢r]-queries in a normal form,
which is defined and illustrated below.
Example 5. It is readily checked that the Qp[⃝,♢r]-query
q = ⃝♢r⃝♢r(A∧B∧C∧♢r(B∧♢r(B∧C))) is equivalent
to the Qp[⃝,♢,♢r]-query qnf = ♢♢(A ∧B ∧ C).

We define the normal form for Qp[⃝,♢,♢r]-queries rep-
resented as a first-order CQ by a list of atoms. For example,
the query qnf above is given by the CQ

qnf(t0) = t0 < t1, t1 < t2, A(t2), B(t2), C(t2)

with one free (answer) variable t0 and existentially quanti-
fied t1 and t2. In general, any q ∈ Qp[⃝,♢,♢r] is repre-
sented as a CQ

ρ0(t0), R1(t0, t1), . . . , ρn−1(tn−1), Rn(tn−1, tn), ρn(tn),

where ρi is a set of atoms, ρi(ti) = {A(ti) | A ∈ ρi} and
Ri ∈ {suc, <,≤}. We divide q into blocks qi such that

q = q0R1q1 . . .Rnqn (4)

with Ri = Ri
1(t

i
0, t

i
1) . . . R

i
ni
(tini−1, t

i
ni
), for Ri

j ∈ {<,≤},

qi = ρi0(s
i
0)suc(si0, s

i
1)ρ

i
1(s

i
1) . . . suc(siki−1, s

i
ki
)ρiki

(siki
)

and siki
= ti+1

0 , tini
= si0. If ki = 0, the block qi is primi-

tive. A primitive block qi = ρi0(s
i
0) with i > 0 and |ρi0| ≥ 2

is called a lone conjunct of q.
Example 6. The query ♢r(A ∧ B) in Example 1(i), whose
CQ representation is t0 ≤ t1, ρ1(t1), for ρ1 = {A,B}, has
a lone conjunct ρ1(t1). In ♢r(A ∧ ⃝(A ∧B)) from Exam-
ple 1(ii), represented as t0 ≤ t1, A(t1), suc(t1, t2), ρ1(t2),
the conjunct ρ1(t2) is not lone.

Now, we say that q given by (4) is in normal form if the
following conditions are satisfied:
(n1) ρi0 ̸= ∅ if i > 0, and ρiki

̸= ∅ if i > 0 or ki > 0 (thus,
of all the first/last ρ in a block, only ρ00 can be empty);

(n2) each Ri is either a single ti0 ≤ ti1 or a sequence of <;

(n3) ρiki
̸⊇ ρi+1

0 if qi+1 is primitive and Ri+1 is ≤;

(n4) ρiki
̸⊆ ρi+1

0 if i > 0, qi is primitive and Ri+1 is ≤.
The queries in Example 6 are in normal form with two
blocks each; the query qnf above is in normal form with two
blocks q0 = ⊤(t0) and q1 = A(t2) ∧B(t2) ∧ C(t2).
Lemma 7. Every query in Qp[⃝,♢r] is equivalent to a
query in normal form that can be computed in linear time.

A query q ∈ Qp[⃝,♢] is safe if it is equivalent to a query
q′ ∈ Qp[⃝,♢] in normal form not containing lone con-
juncts. We are now in the position to formulate the criterion.
Theorem 8. (i) A query q ∈ Qp[⃝,♢r] is uniquely charac-
terisable within Qp[⃝,♢r] iff q is safe.
(ii) Those queries that are uniquely characterisable

within Qp[⃝,♢r] are actually polynomially characterisable
within Qp[⃝,♢r].

(iii) The class Qp[⃝,♢r] is polynomially characterisable
for bounded query size.

(iv) The class Qp[⃝,♢] is polynomially characterisable.

Proof sketch. A detailed proof is given in the full version.
Here, we define a polysize example set E = (E+, E−)
characterising a query q in normal form (4), which does not
contain lone conjuncts. Let b be the number of ⃝ and ♢ in q
plus 1. For each block qi in (4), we take two words

q̄i = ρi0 . . . ρ
i
ki
, q̄i ⋊⋉ q̄i+1 = ρi0 . . . (ρ

i
ki
∪ρi+1

0 ) . . . ρi+1
ki+1

.

The set E+ contains the data instances given by the words

– Db = q̄0∅b . . . q̄i∅bq̄i+1 . . . ∅bq̄n,
– Di = q̄0∅b . . . q̄i⋊⋉ q̄i+1 . . . ∅bq̄n if Ri+1 is ≤,
– Di = q̄0∅b . . . q̄i∅ni+1 q̄i+1 . . . ∅bq̄n otherwise.

Here, ∅b is a sequence of b-many ∅ and similarly for ∅ni+1 .
The set E− contains all data instances of the form

– D−
i = q̄0∅b . . . q̄i∅ni+1−1q̄i+1 . . . ∅bq̄n if ni+1 > 1;

– D−
i = q̄0∅b . . . q̄i⋊⋉ q̄i+1 . . . ∅bq̄n if Ri+1 is a single <,

and also the data instances obtained from Db by



(a) removing a single atom from some ρij ̸= ∅ or removing
the whole ρij = ∅, for i ̸= 0 and j ̸= 0, from some q̄i;

(b) replacing q̄i = ρi0 . . . ρ
i
lρ

i
l+1 . . . ρ

i
ki

(ki > 0) by q̄′
i∅bq̄′′

i ,
where q̄′

i = ρi0 . . . ρ
i
l , q̄

′′
i = ρil+1 . . . ρ

i
ki

and l ≥ 0;

(c) replacing some ρil ̸= ∅, 0 < l < ki, by ρil∅bρil;
(d) replacing ρiki

(ki > 0, |ρiki
| ≥ 2) with ρiki

\ {A}∅bρiki
,

for some A ∈ ρiki
, or replacing ρi0 (ki > 0, |ρi0| ≥ 2) with

ρi0∅bρi0 \ {A}, for some A ∈ ρi0;
(e) replacing ρ00 ̸= ∅ with ρ00 \ {A}∅bρ00, for some A ∈ ρ00,

if k0 = 0, and with ρ00∅bρ00 if k0 > 0.

The size of E is clearly polynomial in |q|. It is readily seen
that D |= q for all D ∈ E+. To continue the proof sketch,
note that D |= q iff there is a homomorphism h from the
set var(q) of variables in q to [0,max(D)], i.e., h(t0) = 0,
A(h(t)) ∈ D if A(t) ∈ q, h(t′) = h(t) + 1 if suc(t, t′) ∈ q,
and h(t)Rh(t′) if R(t, t′) ∈ q for R ∈ {<,≤}. Using the
assumption that q is in normal form, one can show that there
is no homomorphism witnessing D |= q, for any D ∈ E−.

Suppose now that q′ ∈ Qp[⃝,♢r] in normal form is given
and q′ ̸≡ q. If Db ̸|= q′, we are done as Db ∈ E+. Other-
wise, let h be a homomorphism witnessing Db |= q′. Then
one can show that either the restriction of h to the blocks of
q′ is an isomorphism onto the blocks of q or there exists a
data instance D obtained using one of the rules (a)–(e) such
that a suitably modified h is a homomorphism from q′ to D.
In the latter case, we are done as D ∈ E− and D |= q′.
In the former case, q and q′ coincide with the exception of
the sequences of ♢ and ♢r between blocks. Then q can be
separated from q′ using the examples Di and D−

i . ❑

6 Polynomial Characterisability in Qσ
p [U]

LTL -queries with U do not correspond to CQs (because of
the universal quantification in its semantics), and so require
a different approach. We view them as defining regular lan-
guages. With each Qσ

p [U]-query of the form (2) we associate
the following regular expression over the alphabet 2σ:

q = ρ0λ
∗
1ρ1λ

∗
2 . . . λ

∗
nρnλ

∗
n+1 (5)

where λn+1 = ∅ and ⊥∗ = ε. We regard the words of the
language L(q) over 2σ as data instances. Clearly, D′ |= q iff
there is D ∈ L(q) such that D ⋐ D′, i.e., D = (δ0, . . . , δk)
and D′ = (δ′0, . . . , δ

′
k), for some k < ω, and δi ⊆ δ′i, for

all i ≤ k. The language Lq of all σ-data instances D |= q
(regarded as words over 2σ) can be given by the NFA Aq

below, where each →α, for α ̸= ⊥, stands for all transitions
→β with α ⊆ β ⊆ σ (note that ⊥ /∈ σ):

0start 1 . . . n n+ 1
ρ0 ρ1

λ1

ρn−1 ρn

λn

∅

Without loss of generality we assume that all our q are min-
imal in the sense that by replacing any λi ̸= ⊥ with ⊥ in q
we obtain a query that is not equivalent to q. For example, in
minimal q, ρj ⊇ · · · ⊇ ρi ⊇ λi and λl = ⊥ for all l ∈ (j, i)
imply ρj ̸⊆ λj as otherwise λjU(ρj∧(⊥U. . . (λiUφ) . . . ))

is equivalent to ⊥U(ρj∧(⊥U . . . (λiUφ) . . . )). Using stan-
dard automata-theoretic techniques, one can show:
Theorem 9. Any Qσ

p [U]-queries q ̸≡ q′ can be separated
by some D with max(D) ≤ O((min{tdp(q), tdp(q′)})2).

Using Theorem 9 in the proof of Theorem 4 we obtain:
Corollary 10. The class Qσ

p [U] is exponentially character-
isable within Qσ

p [U].
The following examples illustrate difficulties in finding

short unique characterisations of Qσ
p [U]-queries, namely,

that in general, data instances of different shapes and forms
are needed to separate Qσ

p [U]-queries. To unclutter notation
we omit {} in singletons like {A}.
Example 11. (a) The shortest data instance separating

q = X∅∗A⊥∗B⊥∗AB∗AA∗B∅∗,
q′ = X∅∗A⊥∗BA∗AB∗A⊥∗B∅∗

is D = XABABBAAB with D |= q and D ̸|= q′ (e.g.,
XABABAAB satisfies both q and q′).

(b) For l > 0, let ql = (AB∗)l−1AA∗BB∗. Then

XA∗ql1ql2 . . . qlk
X∅∗ ̸≡ X⊥∗ql1ql2 . . . qlk

X∅∗,
XA∗ql1ql2 . . . qlk

A∅∗ ≡ X⊥∗ql1ql2 . . . qlk
A∅∗.

If 1 < l1 ≤ · · · ≤ lk, the former inequivalence is wit-
nessed by the instance XAl1BAl2B . . . AlkBAlkBX . Less
generally, XA∗q2q3X∅∗ ̸≡ X⊥∗q2q3X∅∗ can be shown
by XAABAAABAAABX or by XAABABAABABX
(spot the difference and see (n2) below).

Here, we consider the class Pσ[U] of peerless queries
given by (5), in which, for any i, either λi = ⊥ or the sets λi

and ρi are incomparable with respect to ⊆. Our main result
is that Pσ[U] is polynomially characterisable within Qσ

p [U].
We start with a general observation. Consider two queries

q = ρ0λ
∗
1 . . . λ

∗
nρn∅∗ and q′ = ρ0µ

∗
1 . . . µ

∗
nρn∅∗. We say

that λi ̸= ⊥ subsumes µj ̸= ⊥ if either i = j and µj ⊆ λi,
or j < i and µjρj . . . ρi−1 ⋐ ρj . . . ρi−1λi, or j > i and
ρi . . . ρj−1µj ⋐ λiρi . . . ρj−1. In the last two cases,

µj ⊆ ρj ⊆ · · · ⊆ ρi−1 ⊆ λi, µj ⊆ ρj−1 ⊆ · · · ⊆ ρi ⊆ λi,

respectively. Note that, for peerless q, the last inclusion is
impossible. If λi and µj subsume each other, in which case
λi = µj , we call (λi, µj) a matching pair. Observe also that,
for Di

q = ρ0 . . . ρi−1λiρi . . . ρn, if Di
q |= q′, then λi sub-

sumes some µj : ρ0 . . . ρn∅ ⋐ Di
q means that λi subsumes

µn+1 = ∅, and ρ0 . . . µj . . . ρn ⋐ Di
q that λi subsumes µj .

The proof of the next lemma is given in the full version:
Lemma 12. For any queries q and q′ as above, either (i)
each λi ̸= ⊥ subsumes µj occurring in some matching pair
(λk, µj) or (ii) q and q′ are separated by a data instance
of the form Di

q or Dj
q′ . Also, if q is peerless, λi can only

subsume µj in the matching pair (λi, µj) with i ≥ j, in
which case µj = ρj = · · · = ρi−1 = λi.

Note that the number of data instances of the form Di
q′ for

all possible Qσ
p [U]-queries q′ can be exponential in |σ|. The

following example indicates how to overcome this issue.



Example 13. Let σ = {A,B,C,D,X}. To separate the
query X{C,D}∗A∅∗ from any Xλ∗A∅∗ with A,D /∈ λ,
we can use D = Xσ \ {A,D}A.
Theorem 14. The class Pσ[U] is polynomially characteris-
able within Qσ

p [U].

Proof sketch. We show that any q = ρ0λ
∗
1ρ1λ

∗
2 . . . λ

∗
nρn∅∗

in Pσ[U] is characterised by the example set E = (E+, E−)
where E+ contains all data instances of the following forms:

(p0) ρ0 . . . ρn,
(p1) ρ0 . . . ρi−1λiρi . . . ρn = Di

q ,

(p2) ρ0 . . . ρi−1λ
k
i ρi . . . ρj−1λjρj . . . ρn = Dj

i,k, for i < j
and k = 1, 2;

and E− has all instances that are not in L(q) of the forms:

(n0) σn and σn−iσ \ {A}σi, for A ∈ ρi,
(n1) ρ0 . . . ρi−1σ \ {A,B}ρi . . . ρn, for A ∈ λi ∪ {⊥} and

B ∈ ρi ∪ {⊥},
(n2) for all i and A ∈ λi ∪ {⊥}, some data instance

Di
A = ρ0 . . . ρi−1(σ \ {A})ρiλki+1

i+1 . . . λkn
n ρn, (6)

if any, such that max(Di
A) ≤ (n + 1)2 and Di

A ̸|= q† for
q† obtained from q by replacing λj , for all j ≤ i, with ⊥.
Note that Di

A ̸|= q for peerless q.

By definition, q fits E and |E| is polynomial in |q|. We
prove in the full version that E uniquely characterises q. ❑

One reason why this construction does not generalise to
the whole Qσ

p [U] is that Di
A ̸|= q† does not imply Di

A ̸|= q
for non-peerless q, as shown by the following example:
Example 15. Let q = XA∗AB∗A⊥∗AB∗AA∗BB∗X∅∗.
For any data instance D3

⊥ satisfying (6)—for example,
D3

⊥ = XAAσABABX—we have D3
⊥ |= q.

7 Characterisability in Q[♢]
In the previous two sections, we have investigated charac-
terisability of path-shaped queries. Here, we first justify
that restriction by exhibiting two examples that show how
temporal branching can destroy polynomial characterisabil-
ity in Q[♢]. Both examples make use of unbalanced queries,
in which different branches have different length. We then
show that this is no accident: one can at least partially re-
store polynomial characterisability for classes without un-
balanced queries.

We start by observing that, without loss of generality, it is
enough to consider conjunctions of path queries only:
Lemma 16. For every q ∈ Q[♢], one can compute in poly-
nomial time an equivalent query of the form q1 ∧ · · · ∧ qn
with qi ∈ Qp[♢], for 1 ≤ i ≤ n.

The first example showing non-polynomial character-
isability is rather straightforward but requires unbounded
branching and an unbounded number of atoms. We write
queries q ∈ Qσ

p [♢] of the form

q = ρ0 ∧ ♢(ρ1 ∧ ♢(ρ2 ∧ · · · ∧ ♢ρn)) (7)

as words ρ0ρ1 . . . ρn over 2σ (omitting but not forgetting
λ∗
i = ∅∗ from (5)) and also use ρ0ρ1 . . . ρn to denote the

data instance defined by q.
Example 17. Consider qn = s1∧· · ·∧sn, where n ≥ 2 and
each si is a word repeating n times the sequence A1 . . . An

(of singletons) with omitted Ai. Now, consider the queries
qp
n = qn∧p, where p = ♢(Ai1 ∧♢(Ai2 ∧· · ·∧♢Ain)) and

Ai1 . . . Ain is a permutation of A1 . . . An. Then qp
n |= qn

and qn ̸|= qp
n as shown by the data instance si1si2 . . . sin .

Moreover, if D |= qn, D ̸|= p and p′ ̸= p, then D |= p′. It
follows that, in any E = (E+, E−) uniquely characterising
qn, the set E+ contains at least n! data instances.

The class Q≤n[♢] of queries of branching factor at most
n contains all queries in Q[♢] that are equivalent to a query
of the form q1 ∧ · · · ∧ qm with m ≤ n and qi ∈ Qp[♢]. We
next provide an example of non-polynomial characterisabil-
ity that requires four atoms and bounded branching only.
Example 18. Let σ = {A1, A2, B1, B2}, q1 = ∅(sσ)ns,
and q2 = ∅σ2n+1, where s = {A1, A2}{B1, B2}. Consider
the set P of 2n+1-many queries of the form ∅s1 . . . sn+1

with si either {A1}{A2} or {B1}{B2}. Then q1 ∧ q2 ̸|= q
for any q ∈ P and, for any D with D |= q1 ∧ q2, there is at
most one q ∈ P with D ̸|= q (the proof is rather involved).
It follows that q1 ∧ q2 ̸|= q1 ∧ q2 ∧ q for all q ∈ P , but
2n+1 positive examples are needed to separate q1 ∧ q2 from
all q1 ∧ q2 ∧ q with q ∈ P .

We next identify polynomially characterisable classes of
Q[♢]-queries, assuming as before that ρn ̸= ∅ in any q of
the form (1). We call a query q1 ∧ · · · ∧ qn ∈ Q[♢] with
q1, . . . , qn ∈ Qp[♢] balanced if all qi have the same depth;
further, we call it simple if, in each qi given by (1), |ρj | = 1
for all j. Let Qb[♢] denote the class of queries in Q[♢] that
are equivalent to a balanced query.
Theorem 19. (i) The class of simple queries in Qb[♢] is
polynomially characterisable within Qb[♢].

(ii) For any n, the class Qb[♢] ∩Q≤n[♢] is polynomially
characterisable.

Proof sketch. Let q ∈ Qσ
p [♢]. We start with a lemma on

the existence of polynomial-size σ-data instances Dq,k such
that Dq,k ̸|= q and Dq,k |= q′ for all q′ ∈ Qσ

p [♢] with
q′ ̸|= q and tdp(q′) ≤ k. Note that such Dq,k do not exist in
general.

Example 20. Let q = A ∧B. Then A ̸|= q and B ̸|= q but
there does not exist any Dq,0 such that Dq,0 ̸|= q, Dq,0 |= A
and Dq,0 |= B.

In the following lemma, we therefore assume that q does
not speak about the initial timepoint.

Lemma 21. Let q ∈ Qσ
p [♢] be of the form ♢q′ and let

k > 0. Then one can construct in polynomial time a σ-
data instance Dq,k such that Dq,k ̸|= q and Dq,k |= q′ for
all q′ ∈ Qσ

p [♢] with q′ ̸|= q and tdp(q′) ≤ k.

Proof. Assuming that q = ♢(ρ1 ∧ ♢(ρ2 ∧ · · · ∧ ♢ρn)) with
ρi = {Ai

1, . . . , A
i
ni
} for i ≥ 1, we set

Dq,k = σsk1σ · · · skn−1σs
k
n,



where si = σ \ {Ai
1} . . . σ \ {Ai

ni
}. One can show by in-

duction that Dq,k is as required. ❑

Using Lemma 21, for any q ∈ Qσ[♢], one can construct
a polynomial-size set of negative examples as follows. Sup-
pose q = q1 ∧ · · · ∧ qn ∈ Qσ[♢] with

qi = ρi0 ∧ ♢(ρi1 ∧ ♢(ρi2 ∧ · · · ∧ ♢ρni
i
)).

Let ρ =
∧n

i=1 ρ
i
0 and let q−

i be qi without the conjunct ρi0,
so Lemma 21 is applicable to q−

i . Now let E−
q,m contain the

σ-data instances Dq−
i ,m and σ \ {A}σm for all A ∈ ρ.

Lemma 22. (i) For any D ∈ E−
q,m, we have D ̸|= q.

(ii) For any q′ ∈ Qσ[♢] with q′ ̸|= q and tdp(q′) ≤ m,
there exists D ∈ E−

q,m with D |= q′.

It follows from Lemma 22 that non-polynomial character-
isability of Q[♢]-queries can only be caused by the need for
super-polynomially-many positive examples. We now dis-
cuss the construction of positive examples in the proof of
Theorem 19 (ii); part (i) is dealt with in the full version.
Let q = q1 ∧ · · · ∧ qm ∈ Qσ

b [♢]∩Qσ
≤n[♢] with m ≤ n and

qi = ρi0 ∧ ♢(ρi1 ∧ ♢(ρi2 ∧ · · · ∧ ♢ρiN )).

For any map f : {1, . . . ,m} → {1, . . . , N}, construct a σ-
data instance Df by inserting ρif(i) into the data instance σN

in position f(i). Let E+ contain the data instance ρσN for
ρ =

⋃m
i=1 ρ

i
0 and all the data instances Df . One can show

that (E+, E−) characterises q in Qb[♢] ∩Q≤n[♢]. ❑

8 2D Temporal Instance Queries
Now we consider ‘two-dimensional’ query languages that
combine instance queries (over the object domain) in the
standard description logics EL and ELI (Baader et al. 2017)
with the LTL -queries (over the temporal domain) considered
above. Our aim is to understand how far the characterisabil-
ity results of the previous sections can be generalised to the
2D case. A relational signature is a finite set Σ ̸= ∅ of unary
and binary predicate symbols. A Σ-data instance A is a fi-
nite set of atoms A(a) and P (a, b) with A,P ∈ Σ and indi-
vidual names a, b. Let ind(A) be the set of individual names
in A. We assume that P−(a, b) ∈ A iff P (b, a) ∈ A, calling
P− the inverse of P (with P−− = P ). Let S := P | P−.
Temporal instance queries are defined by the grammar

q := ⊤ | ⊥ | A | ∃S.q | q1 ∧ q2 | opq | q1 U q2,

where op ∈ {⃝,♢,♢r}. Such queries without temporal op-
erators are called ELI-queries; those of them without in-
verses P− are EL-queries. A temporal Σ-data instance D
is a finite sequence A0, . . . ,An of Σ-data instances. We set
ind(D) =

⋃n
i=1 ind(Ai). For any ℓ ∈ N and a ∈ ind(D),

the truth-relation D, a, ℓ |= q is defined by induction:

D, a, ℓ |= A iff A(a) ∈ Aℓ,

D, a, ℓ |= ∃S.q iff there is b ∈ ind(Aℓ) such that
S(a, b) ∈ Aℓ and D, b, ℓ |= q,

with the remaining clauses being obvious generalisations of
the LTL ones. An example set is a pair E = (E+, E−)

with finite sets E+ and E− of pointed temporal data in-
stances (D, a) such that a ∈ ind(D). We say that q fits E if
D+, a+, 0 |= q and D−, a−, 0 ̸|= q, for all (D+, a+) ∈ E+

and (D−, a−) ∈ E−. As before, E uniquely characterises q
if q fits it and every q′ fitting E is logically equivalent to q.

We need the following result on the unique characteris-
ability of ELI-queries.
Theorem 23 (ten Cate and Dalmau 2021). The class of
ELI-queries is polynomially characterisable.

Theorem 24 is proved by constructing frontiers in the set
of ELI-queries partially ordered by entailment, where a set
F of ELI-queries is called a frontier of an ELI-query q if
the following hold:
• q |= q′ and q′ ̸|= q, for all q′ ∈ F ;
• if q |= q′′ for some ELI-query q′′, then q′′ |= q or there

exists q′ ∈ F with q′ |= q′′.
Theorem 24 (ten Cate and Dalmau 2021). A frontier F(q)
of any ELI-query q can be computed in polynomial time.

Theorem 23 follows from Theorem 24. For any ELI-
query q, we denote by q̂ the tree-shaped data instance de-
fined by q with designated root a. Then q is characterised
by E with E+ = {q̂} and E− = {r̂ | r ∈ F(q)}.

For any unrestricted temporal query language Q[Φ] and
L ∈ {EL, ELI}, we denote by Q[Φ]⊗ L the set of all tem-
poral instance queries with operators in Φ with (for ELI) or
without (for EL) inverse predicates. We generalise the path-
shaped queries Qp[Φ] as follows: Qp[Φ] ⊗ L denotes the
class of queries q in Q[Φ] ⊗ L such that, for any subquery
q1 ∧ q2 of q, either q1 or q2 do not have an occurrence of
any operator in Φ that is not in the scope of ∃S. To illustrate,
∃S.♢A ∧ ♢∃S.A is in Qp[Φ] ⊗ L, but ♢A ∧ ♢∃S.A is not.
We make two observations about unique characterisability
in these ‘full’ combinations.
Theorem 25. (i)Q[⃝,♢]⊗EL is uniquely characterisable.
(ii) Qp[⃝] ⊗ ELI and Qp[♢] ⊗ ELI are polynomially

characterisable.
Here, (i) is shown similarly to Theorem 4 (it remains open

whether it can be extended to Q[⃝,♢]⊗ELI); (ii) is proved
by generalising Theorem 24 to temporal data instances.

We now show that the application of the DL constructor
∃P to temporal queries with both ⃝ and ♢ destroys polyno-
mial characterisability. Denote by EL(Qp[⃝,♢]) the class
of queries in Qp[⃝,♢]⊗EL that contain no ∃P in the scope
of a temporal operator.
Theorem 26. EL(Qp[⃝,♢]) is not polynomially character-
isable.

Proof sketch. Consider queries qn = ∃P.qn
1 ∧ · · · ∧ ∃P.qn

n,
in which each qn

i corresponds to the regular expression
BB∅∗A︸ ︷︷ ︸

1

. . . BB∅∗A︸ ︷︷ ︸
i−1

∅∗B∅∗A︸ ︷︷ ︸
i

BB∅∗A︸ ︷︷ ︸
i+1

. . . BB∅∗A︸ ︷︷ ︸
n

∅∗

(with omitted ⊥∗ = ε in BB). One can show that any
unique characterisation of qn contains at least 2n positive
examples to separate it from all queries qn ∧ ∃P.s with
s = o1(B∧♢(A∧o2(B∧♢(A∧· · ·∧on(B∧♢A) . . . )))),

where oi is ⃝ or ♢⃝ if i > 1, and blank or ♢ if i = 1. ❑



The situation changes drastically if we do not admit tem-
poral operators in the scope of ∃P . We start by investigating
the class Qp[⃝,♢r](ELI) of queries of the form

q = r0 ∧ o1(r1 ∧ o2(r2 ∧ · · · ∧ onrn)),

where the ri are ELI-queries and oi ∈ {⃝,♢r}. We can
generalise the CQ-representation, the normal form, and the
notion of lone conjunct from Qp[⃝,♢r] to Qp[⃝,♢r](ELI)
in a straightforward way. To formulate conditions (n1)–
(n4), we replace the set inclusions ‘ρi ⊆ ρj’ by entailment
‘ri |= rj’. For example, (n4) becomes

(n4′) ri+1
0 ̸|= riki

if i > 0, qi is primitive and Ri+1 is ≤.
The condition for lone conjuncts now requires that r is not
equivalent to any q1∧q2 with ELI-queries q1, q2 such that
qi ̸|= r for i = 1, 2. Then one can show again that every
Qp[⃝,♢r](ELI)-query is equivalent to a query in normal
form, which can be computed in polynomial time.
Theorem 27. The statements of Theorem 8 (i)–(iv) also
hold if one replaces Qp[⃝,♢r] by Qp[⃝,♢r](ELI).

The proof generalises the example set defined in Theo-
rem 8 using the frontiers provided by Theorem 24 as a black
box. Indeed, in the definition of examples, replace ρi by r̂i,
the data instance corresponding to the ELI-query ri, and re-
place ‘ρ\{A} for A ∈ ρ’ by ‘the data instance corresponding
to a query in F(r)’. We choose a single individual, a, as the
root of these data instances. For example, item (a) becomes:
(a′) replacing some rij by the data instance corresponding

to a query in F(rij) or removing the whole rij = ∅ for
i ̸= 0 and j ̸= 0 from some qi.

Next, consider the class Qp[U](L) of queries of the form

q = r0 ∧ (l1 U (r1 ∧ (l2 U (. . . (ln U rn) . . . )))), (8)

where ri is an L-query and li is either an L-query or ⊥, for
L ∈ {EL, ELI}. For the same reason as in the 1D case,
we fix a finite signature Σ of predicate symbols. Denote by
L(Σ) and Qp[U](L) the set of queries in L and QΣ

p [U](L),
respectively, with predicate symbols in Σ. Aiming to gen-
eralise Theorem 14, we again translate set-inclusion to en-
tailment, so the peerless queries PΣ[U](L) take the form (8)
such that either li = ⊥ or li ̸|= ri and ri ̸|= li.
Theorem 28. Let Σ be a finite relational signature.
Then PΣ[U](EL) is polynomially characterisable within
QΣ

p [U](EL), while PΣ[U](ELI) is exponentially, but not
polynomially, characterisable within QΣ

p [U](ELI).
To prove Theorem 28, we generalise the example set from

the proof of Theorem 14. The positive examples are straight-
forward: simply replace ρi and λi by the data instances cor-
responding to ri and li (and choose a single root individ-
ual). For the negative examples, we have to generalise the
construction of σ, σ \ {A}, and σ \ {A,B}. For σ, this
is straightforward as its role can now be played by the Σ-
data instance AΣ = {A(a), R(a, a) | A,R ∈ Σ} for which
AΣ |= q(a) for all q ∈ ELI(Σ). For σ\{A} and σ\{A,B},
we require split partners defined as follows. Let Q be a finite
set of L(Σ)-queries. A set S(Q) of pointed Σ-data instances
(A, a) is called a split partner of Q in L(Σ) if the following
conditions are equivalent for all L(Σ)-queries q′:

• A |= q′(a) for some (A, a) ∈ S(Q);

• q′ ̸|= q for all q ∈ Q.

Example 29. The split partner of {q = A} in EL(Σ) is
the singleton set containing (A−A

Σ , a) with A−A
Σ defined as

{B(a), R(a, b), R(b, b), B′(b) | B ∈ Σ \ {A}, R,B′ ∈ Σ}.
Theorem 30. Fix n > 0. For any set Q of EL(Σ)-queries
with |Q| ≤ n, one can compute in polynomial time a split
partner S(Q) of Q in EL(Σ). For ELI, one can compute
a split partner in exponential time, which is optimal as even
for singleton sets Q of ELI(Σ)-queries, no polynomial-size
split partner of Q in ELI(Σ) exists in general.

The proof, given in the full version, requires (as does
AΣ) the construction of non-tree-shaped data instances. Our
results for ELI are closely related to the study of gen-
eralised dualities for homomorphisms between relational
structures (Foniok, Nesetril, and Tardif 2008; Nesetril and
Tardif 2005) but use pointed relational structures. The con-
struction of S(Q) for ELI is based on a construction first
introduced in (Bienvenu et al. 2014).

We obtain the negative examples for q of the form (8) by
taking the following pointed data instances (D, a) (assuming
that split partners take the form (A, a) for a fixed a):

(n′0) (An
Σ, a) and (An−i

Σ AAi
Σ, a), for (A, a) ∈ S({ri});

(n′1) (D, a) = (r̂0 . . . r̂i−1Ar̂i . . . r̂n, a) with D, a, 0 ̸|= q
and (A, a) ∈ S({li, ri})∪S({li})∪S({ri})∪{(AΣ, a)};

(n′2) for all i and (A, a) ∈ S({li}) ∪ {(AΣ, a)}, some data
instance

(Di
A, a) = (r̂0 . . . r̂i−1Ar̂il̂

ki+1

i+1 r̂i+1 . . . l̂
kn

n rn, a),

if any, such that max(Di
A) ≤ (n+1)2 and Di

A, a, 0 ̸|= q†

for q† obtained from q by replacing all lj , j ≤ i, with ⊥.

We illustrate the construction by generalising Example 2.

Example 31. For q = ⃝A and any relational signature
Σ ∋ A, we obtain, after removing redundant instances, that
E+ = {(∅{A(a)}, a)} and E− = {(AΣA−A

Σ {A(a)}, a)}
characterise q within QΣ

p [U](EL).
We finally generalise Theorem 19 (ii) (part (i) is not in-

teresting since simple queries do not generalise to any new
class of ELI-queries). Query classes such as Q[♢](EL)
are defined in the obvious way by replacing in Q[♢]-queries
conjunctions of atoms by EL-queries.

Theorem 32. The class Qb[♢](EL) ∩Q≤n[♢](EL) is poly-
nomially characterisable for any n < ω.

Again the positive and negative examples are obtained
from the 1D case by replacing σ by AΣ and σ \ {A} by
appropriate split partners.

9 Applications to Learning
We apply our results on unique characterisability to exact
learnability of temporal instance queries. Given a class Q of
such queries, we aim to identify a target query q ∈ Q using
queries to an oracle. The learner knows Q and the signature
σ (Σ in the 2D case) of q. We allow only one type of queries,



called membership queries, in which the learner picks a σ-
data instance D and asks the oracle whether D |= q holds.
(In the 2D case, the learner picks a pointed Σ-data instance
(D, a) and asks whether D, a, 0 |= q holds.) The oracle an-
swers ‘yes’ or ‘no’ truthfully. The class Q is (polynomial
time) learnable with membership queries if there exists an
algorithm that halts for any q ∈ Q and computes (in poly-
nomial time in the size of q and σ/Σ), using membership
queries, a query q′ ∈ Q that is equivalent to q. By default,
the learner does not know |q| in advance but reflecting The-
orem 8 (iii), we also consider the case when |q| is known
(which is common in active learning).

Obviously, unique characterisability is a necessary condi-
tion for learnability with membership queries. Conversely, if
there is an algorithm that computes, for every q ∈ Q, an ex-
ample set that uniquely characterises q within Qsig(q), then
Q is learnable with membership queries: enumerate Qsig(q)

starting with the smallest query q, compute a characterising
set E for q and check using membership queries whether q
is equivalent to the target query. Eventually the algorithm
will terminate with a query that is equivalent to the target
query. As all of our positive results on unique characteris-
ability provide algorithms computing example sets, we di-
rectly obtain learnability with membership queries. More-
over, if the example sets are computed in exponential time,
then we obtain an exponential-time learning algorithm: in
the enumeration above only |sig(q)||q| queries are checked
before the target query is found. Unfortunately, we cannot
infer polynomial-time learnability from polynomial charac-
terisability in this way.

A detailed analysis of polynomial-time learnability using
membership queries is beyond the scope of this paper. In-
stead, we focus on one main result, the polynomial-time
learnability of Qp[⃝,♢](ELI).
Theorem 33. (i) The class of safe queries in
Qp[⃝,♢r](ELI) is polynomial-time learnable with
membership queries.

(ii) The class Qp[⃝,♢r](ELI) is polynomial-time learn-
able with membership queries if the learner knows the size
of the target query in advance.

(iii) The class Qp[⃝,♢](ELI) is polynomially-time
learnable with membership queries.

Proof sketch. We consider the 1D case without ELI-queries
first. (i) Our proof strategy is to construct a query q′ that
agrees with q on the positive and negative examples for q′

from Theorem 8. The algorithm proceeds by computing a
data instance D. Our aim is to arrive at Db through iterations
of steps, from which the required query can be ‘read off’.

Step 1. First, identify the number of ⃝ and ♢ in q by asking
membership queries of the form σk incrementally, start-
ing from k = 1, and then set b = min{k | σk |= q} + 1
and D0 = σb. Initialise D = D0.

Step 2. Suppose that a data instance D′ is obtained from
D by applying one of the rules (a)–(e) of Theorem 8.
If D′ |= q then replace D with D′. Repeat as long as
possible. One can show that the number of applications

of each rule is bounded by a polynomial in |σ| and the
size of q, and so Step 2 finishes in polynomial time.

Step 3. Suppose D contains ∅bρi0∅b and |ρi0| ≥ 2. Since
rule (a) does not apply, every homomorphism h : q → D
sends some t1, . . . , tl to ρi0, for l ≥ 1. As q does not con-
tain lone conjuncts, q contains singleton primitive blocks
at positions t1, . . . , tl. Suppose ρi0 = {A1, . . . , A|ρi

0|}
and let w = {A1}∅b{A2}∅b . . . {A|ρi

0|}∅
b (the order in

which A1,. . . , A|ρi
0|, the elements of ρi0, are enumerated

does not matter, we fix any one). Let Di
k be obtained

from D by replacing ∅bρi0∅b with ∅b(w)k. Notice that,
for k = |q|, we have Di

k |= q; however, the algorithm
is not given this k. Instead, the algorithm incrementally
iterates starting from k = 1 until Di

k |= q. Since k ≤ |q|,
this takes polynomially-many iterations. Let D′ be ob-
tained from Di

k by removing primitive blocks as long as
D′ |= q. Notice that rules (a)–(e) do not apply to D′.
Replace D with D′. Repeat Step 3 as long as possible.
Since no new lone conjuncts are introduced, the process
finishes after polynomially-many steps.

Step 4. At this point of computation, the algorithm has
identified all blocks of q but not the sequences of ♢ and
♢r between them. They can be easily determined based
on the positive and negative examples Di and D−

i .

The proof of (ii) is similar, with a modified Step 3. Finally,
(iii) is a consequence of (ii) as the size of the query q does
not exceed n = |σ|b.

We obtain a learning algorithm for Qp[⃝,♢r](ELI) by
combining the learning algorithm above with the learning al-
gorithm for ELI-queries by ten Cate and Dalmau (2021) us-
ing the positive and negative examples given in Theorem 27.
Note that the data instance AΣ is now used instead of σ and
that one has to ‘unfold’ such non tree-shaped data instances
into tree-shaped ones. ❑

10 Conclusions
In this paper, we have considered temporal instance queries
with LTL operators and started investigating their unique
(polynomial) characterisability and exact learnability using
membership queries. We have obtained both positive and
negative results, depending on the available temporal oper-
ators and the allowed interaction between the temporal and
object dimensions in queries. The results indicate that find-
ing complete classifications of 1D and 2D temporal queries
according to (polynomial) characterisability and learnability
could be a very difficult task. In particular, interesting open
problems include the polynomial characterisability of full
Qσ

p [U], more general criteria of polynomial characterisabil-
ity for temporal branching queries and other temporal op-
erators, and the polynomial-time learnability of Qσ

p [U] and
2D extensions. From a conceptual viewpoint, it would be of
interest to develop a framework that spells out explicitly the
conditions that non-temporal queries should satisfy so that
their combination with LTL -queries preserves polynomial
characterisability and polynomial-time learnability.
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