
BIROn - Birkbeck Institutional Research Online

Zhao, H. and Zeng, X. and Chen, Taolue and Liu, Z. and Woodcock, J. (2021)
Learning safe neural network controllers with barrier certificates. Formal
Aspects of Computing 33 (3), pp. 437-455. ISSN 0934-5043.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/48301/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/48301/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Under consideration for publication in Formal Aspects of Computing

Learning Safe Neural Network
Controllers with Barrier Certificates
Hengjun Zhao1, Xia Zeng1, Taolue Chen2, Zhiming Liu1 and Jim Woodcock1,3

1School of Computer and Information Science, Southwest University, Chongqing, China
2Department of Computer Science, University of Surrey, UK
3Department of Computer Science, University of York, UK

Abstract. We provide a new approach to synthesize controllers for nonlinear continuous dynamical systems
with control against safety properties. The controllers are based on neural networks (NNs). To certify the
safety property we utilize barrier functions, which are represented by NNs as well. We train the controller-NN
and barrier-NN simultaneously, achieving a verification-in-the-loop synthesis. We provide a prototype tool
nncontroller with a number of case studies. The experiment results confirm the feasibility and efficacy of our
approach.

Keywords: Continuous dynamical systems; Controller synthesis; Neural networks; Safety verification; Bar-
rier certificates

1. Introduction

Controller design and synthesis is one of the most fundamental problems in control theory. In recent years,
especially with the boom of deep learning, there has been considerable research activities in the use of neural
networks (NNs) for control of nonlinear systems [LHP+16, DCH+16]. NNs feature the versatile represen-
tational ability of nonlinear maps and fast computation, making them an ideal candidate for sophisticated
control tasks [PEY01]. Typical examples include self-driving cars, drones, and smart cities. It is noteworthy
that many of these applications are safety-critical systems, where safety refers to, in a basic form, that the
system cannot reach a dangerous or unwanted state. For control systems in a multitude of Cyber-Physical-
System domains, designing safe controllers which can guarantee safety behaviors of the controlled systems
is of paramount importance [BTSK17, RBK18, DJST18a, RAA19, TSYA19, COMB19, CCTS20, YFS20,
ICW+20, TYML+20].

Typically, when a controller is given, formal verification is required to certify its safety. Our previous work
[ZZCL20] has dealt with the verification of continuous dynamical systems by the aid of neural networks.
In a nutshell, we follow a deductive verification methodology therein by synthesizing a barrier function, the
existence of which suffices to show the safety of the controlled dynamical system. The crux was to use neural

Correspondence and offprint requests to: Xia Zeng, e-mail: xzeng0712@swu.edu.cn

2 H. Zhao et al.

networks to represent the barrier functions, spurred by the well-known universal approximation theorem
[LLPS93] which assures the expressibility of NNs.

It is imperative to realize that verification or certification of an existing controller does not lend itself to
effective and efficient construction of controllers, which is the main focus of the current work. Following a
correctness-by-design methodology, we aim to synthesize controllers which can guarantee that the controlled
system is safe. This question is considerably more challenging and perhaps more interesting from a system
engineering perspective. To this end we adopt a data-driven approach for the design of controllers which are
to be represented as an NN. A key issue of controller synthesis is to provide a formal guarantee of the quality
for the obtained controller, of which safety is arguably the most fundamental. A common practice is to first
come up with a controller and then to verify it against desired properties. An interesting innovation of our
work is, however, to integrate the synthesis and verification in a unified, data-driven framework, which is
enabled by our earlier work by using NNs as a certification mechanism. At a high level, our approach for
the controller synthesis will produce two neural networks simultaneously, i.e., one is used to represent the
controller (henceforth referred to as controller-NN), and the other is used to represent the barrier function
(henceforth referred to as barrier-NN). The synergy of the two NNs, supported by an additional verification
procedure to make sure the learned barrier-NN is indeed a barrier certificate, provides the desired safety
guarantee for the synthesized controller.

Our method follows a data-driven framework in the sense that both NNs are trained from datasets. For
that purpose, we generate training sets and propose specifically designed loss functions which are the key
towards the application of standard learning algorithms for NNs. In terms of the learned NN controllers, we
find that they usually respect safety constraints, but may exhibit poor performance in terms of, e.g., stability.
To further improve the synthesized controllers, we propose a number of approaches such as imposing a
larger safety region, stability-aware loss functions, and bounded control inputs (via the Hardtanh activation
function).

In general, the advantages of our approach are threefold: (1) the approach is data-driven, requiring
considerably less control theory expertise; (2) the approach can support non-linear control systems and
safety properties, owing to the representation power of neural networks; and (3) the approach can achieve
verification-in-the-loop synthesis, owing to the co-synthesis of controller and barrier functions, which can be
seamlessly integrated to provide a correctness-by-design controller as well as its certification.

The main contributions of the paper are summarized as follows:

• We put forward a learning-based framework to synthesize controllers as well as the associated safety
certification. This is largely a data-driven approach, with little prior knowledge required, and enjoys
great flexibility to effectively handle nonlinear (beyond polynomial) dynamics of ODEs.

• We instantiate the framework by using new class of activation functions. Moreover, we demonstrate how
to generate training set, and to construct loss functions of neural networks. We also provide practical
methods to formally verify the learnt barrier certificates represented as neural networks.

• We carry out proof-of-concept case studies to showcase the efficacy of the approach.

1.1. Related Work

Our work on learning and verifying NN controllers with barrier certificates is closely related to two categories
of research, i.e. safety critical control by machine learning and formal verification of neural networks. Note
that the discussions below are necessarily non-exhaustive as a reasonably detailed discussion requires an
independent survey.

Safety Critical Control by Machine Learning. Research work in this category has been emerging in
the past years. They differ in: (1) the overall learning framework, e.g., reinforcement learning (RL) or su-
pervised learning; (2) the component to be learned (especially by NN), e.g., the system model, the feedback
control policy, or the safety certificate; (3) the type of safety certificate, e.g., control Lyapunov function
(CLF) or control barrier function (CBF) [ACE+19]. A verification-in-the-loop RL algorithm was proposed in
[DKYP19] to learn safe NN controllers for known system dynamics using CBFs; an end-to-end safe RL archi-
tecture was developed by combining model-free RL control, model-based CBF control, and model learning
in [COMB19]; CLFs and CBFs are integrated into the episodic learning framework and RL framework with
an emphasis on model uncertainties in [TDL+19, TSYA19, CCTS20]; CBFs are integrated with imitation

Learning Safe NN-controllers with Barrier Certificates 3

learning to train safe NN controllers in [YFS20]. For all the above work, CLFs or CBFs are assumed to be
given, at least in a parametric form. For CLFs or CBFs synthesis, a demonstrator-learner-verifier framework
was proposed in [RS19] to learn polynomial CLFs for polynomial nonlinear dynamical systems; a special
type of neural network was designed in [RBK18] as candidates for learning Lyapunov functions; a supervised
learning approach was proposed in [CRG19] to learn neural network Lyapunov functions and linear con-
trol policies; data-driven model predictive control (MPC) exploiting neural Lyapunov function and neural
network dynamics model was proposed in [DJST18a, MGQ+20]. For multi-agent systems, barrier functions
have recently been applied for safe policy synthesis on POMDP models [ASBA19]. The computer science
community has dealt with the issue of safe controller learning in different ways. For example, a proof-based
approach was proposed in [FP18] towards safe RL; a synthesis framework capable of synthesizing determin-
istic programs from neural network policies was proposed in [ZXMJ19] which enables application of formal
verification techniques for traditional software systems can be applied. Compared with the above work, our
approach has the following distinguished features:

• the controller and safety certificate are both represented and learned by NNs of general structure; no
prior knowledge or initial guess is required;

• training data generation is based on state space sampling, and therefore trajectory simulation is not
needed;

Formal Verification of Neural Networks. This has attracted considerable research efforts in recent
years, and the general problem is NP-hard [KBD+17]. A large body of research focuses on the robust-
ness issue of neural networks. In particular, given an input subject to (adversarial) perturbations, one
intends to determine whether the output of the neural network (e.g., the classification result) is invari-
ant to these perturbations. Essentially, this is to estimate the output range of a given neural network
on a compact set. There are now a wide range of methods including constraint-solving based approaches
[KBD+17], optimization based approaches [DJST18b, WZC+18, XTJ18], abstract interpretation based ap-
proaches [PT10, LLY+19], etc. The underlying techniques have also been adopted in the study of continuous
or hybrid systems [SL20, RS10, RS07]. By combing the verification of neural networks and continuous dy-
namical systems, work has been done recently for verification of control systems with neural network feedback
components [DCS19, IWA+19, SKS19, DFG+19, TYML+20]. The main technique is reachability analysis of
the closed-loop system, either by finite-state abstraction [SKS19], or by reachable set approximation based
on interval or other abstract domain [DCS19, IWA+19, TYML+20]. Usually the reachable set computation
can only verify safety up to a finite time horizon, and the approximation error of reachable set may explode.
In contrast, we adopt a deductive approach based on barrier certificate, following and improving the line of
work in [TKID18].

1.2. Outline

The rest of this paper is organized as follows: some preliminary knowledge is provided in Section 2 for
self-containedness; the main steps of our approach is presented in Section 3 with a running example for
demonstration; various improvements of the synthesized controllers are discussed in Section 4; implemen-
tation and experiment details are given in Section 5; the paper is concluded by Section 6. We note that a
preliminary version is accepted by SETTA 2020 as a short paper under the same title [ZZC+20].

2. Preliminaries

Throughout this paper, R denotes the set of real numbers. For any natural number n, let [n] = {1, · · · , n}.

2.1. Constrained Continuous Dynamical System

A continuous dynamical system is modeled by a system of first-order ordinary differential equations (ODEs)
ẋ = f(x), where

4 H. Zhao et al.

• x = (x1, x2, . . . , xn)T ∈ Rn is a column vector, ẋ denotes the derivative of x with respect to the time
variable t, and

• f(x) : Ω→ Rn is a vector field f(x) = (f1(x), · · · , fn(x))T defined on an open subset Ω ⊆ Rn.

We assume that f satisfies the local Lipschitz condition, which ensures that, given x = x0 ∈ Ω, there exists

a time T > 0 and a unique time trajectory x(t) : [0, T) → Rn such that d(x(t))
dt = f(x(t)) for any t ∈ [0, T)

and x(0) = x0. In the sequel, the trajectory is denoted by x(t,x0).
A constrained continuous dynamical systems (CCDS) is represented by Γ = (f , XD, XI , XU), where

• f : Ω→ Rn is the vector field,

• XD ⊆ Ω is an evolution constraint (or system domain),

• XI ⊆ XD is the set of initial states, and

• XU ⊆ XD is the set of unsafe sates.

For CCDSs, the following problem is widely investigated in safety critical applications.

Definition 2.1 (Safety Verification). A CCDS Γ = (f , XD, XI , XU) is safe if for all x0 ∈ XI , there does
not exist t1 > 0 such that

x(t1,x0) ∈ XU and ∀t ∈ [0, t1].x(t,x0) ∈ XD ,

that is, the system’s trajectory never reaches XU from XI as long as it remains in XD.

Remark 2.1. According to Definition 2.1, the case that the system’s trajectory from XI can first leave XD

and then enter XU does not affect the safety property of the system.

2.2. Controlled CCDS

In this paper, we consider a controlled CCDS Γ = (f , XD, XI , XU) with continuous dynamics defined by{
ẋ = f(x,u)
u = g(x)

, (1)

where x ∈ XD ⊆ Rn is the system state, u ∈ U ⊆ Rm is the control input, and f : XD × U → Rn and
g : XD → U are the locally Lipschitz continuous vector field and feedback controller function, respectively.
The problem we considered in this paper is defined as follows.

Definition 2.2 (Safe Controller Synthesis). Given a controlled CCDS Γ = (f , XD, XI , XU) with f de-
fined by (1), design a locally Lipschitz continuous feedback control law g such that the closed-loop system
Γ with f = f(x,g(x)) is safe as per Definition 2.1.

2.3. Barrier Certificate

Given a system Γ, a barrier certificate is a real-valued function B(x) over the states of the system satisfying
the condition that B(x) ≤ 0 for any reachable state x and B(x) > 0 for any state in the unsafe set XU . If
such a function B(x) exists, one can easily deduce that the system can not reach a state in the unsafe set
from the initial set [PJP07]. In this paper, we will certify the safety of a synthesized controller by generating
barrier certificates.

There are several different formulations of barrier certificates without explicit reference to the solutions
of the ODEs [PJP07, KHS+13, DGXZ17, SGTP18]. We will adopt what are called strict barrier certificate
[SPW12] conditions.

Theorem 2.1 (Strict barrier certificate). Given a system Γ = (f , XD, XI , XU), if there exists a contin-
uously differentiable function B : XD → R s.t.

1. B(x) ≤ 0 for ∀x ∈ XI

2. B(x) > 0 for ∀x ∈ XU

3. LfB(x) < 0 for ∀x ∈ {x ∈ XD | B(x) = 0},

Learning Safe NN-controllers with Barrier Certificates 5

Fig. 1. The structure of a multilayer feed-forward artificial neural network

then the system Γ is safe, and such B is a barrier certificate.

Note that in the above third condition, LfB is the Lie derivative of B w.r.t. f , that is, the inner product of
f and the gradient of B:

LfB(x) = (∇B) · f(x) =

n∑
i=1

(
∂B(x)

∂xi
· fi(x)

)
. (2)

Proof. We prove the theorem by contradiction. Suppose that the theorem does not hold, that is, there exists
a function B satisfying the three conditions in the premise but Γ is not safe. Then by Definition 2.1 there
exists x0 ∈ XI and t1 > 0 such that

x(t1,x0) ∈ XU and ∀t ∈ [0, t1].x(t,x0) ∈ XD . (3)

Denote x(t,x0) by x(t) for short for any t ≥ 0. Then by Condition 1 and 2 of Theorem 2.1, we have
B(x(0)) ≤ 0 and B(x(t1)) > 0. Noting that both B and x(t) are continuous, it follows from the Intermediate
Value Theorem that there exists t2 ∈ [0, t1] s.t. B(x(t2)) = 0. Let Z = {t ∈ [0, t1] | B(x(t)) = 0}. Then it is
obvious that Z is a nonempty bounded set since t2 ∈ Z. By the Completeness of Reals, Z has a supremum,
denoted by tsup = supZ. Again by the continuity of B(x(t)), it is not difficult to show that tsup has the
following properties: (i) tsup ∈ [0, t1); (ii) B(x(tsup)) = 0; (iii) B(x(t)) > 0,∀t ∈ (tsup, t1]. Then by (ii)

and (iii) the right-hand derivative of B(x(t)) at tsup, i.e. limh→0+
B(x(tsup+h))−B(x(tsup))

h , is non-negative.
However, according to (i), (ii), (3) and Condition 3 of Theorem 2.1, we have that the derivative of B(x(t))
at tsup equals LfB(x(tsup)) and thus is negative, which is a contradiction. Therefore the theorem holds.

Remark 2.2. The converse of Theorem 2.1 does not hold in general. However, under moderate assumptions,
various converse theorems have been established [WS16, Rat18], which suggests that practically a barrier
certificate does exist for a broad class of safe controlled CCDSs. Thus the crux in applying Theorem 2.1 is
to find the barrier certificate effectively.

2.4. Neural Networks

In this paper, both the synthesized control law g and the barrier certificate B are represented by (feed-
forward) neural networks (NNs). We introduce some basic notions here. A typical NN consists of a number
of interconnected neurons which are organized in a layered structure. Each neuron is a single processing
element that responds to the weighted inputs received from other neurons (cf. Fig. 1.)

In general, an NN represents a function N (x) on the input x and can be represented as a composition
of its layers. We normally reserve 0 and L for the indices of the input and the output layer respectively, and
all of the other layers in between are hidden layers. In this paper, we use superscripts to index layer-specific

variables. In particular, the layer l comprises neurons n
(l)
i for i ∈ [d(l)], where d(l) is the dimension of the

layer l. Neuron n
(l−1)
j of the layer l−1 is connected with neuron n

(l)
i of layer l by a directed edge with weight

w
(l)
ij ∈ R. Each neuron n

(l)
i of layer l ∈ [L] is associated with a bias b

(l)
i ∈ R and an activation function

6 H. Zhao et al.

Fig. 2. The framework of safe neural network controller synthesis

a
(l)
i : R → R. Usually the neurons in the same layer has identical activation functions, denoted by a(l).

Commonly used activation functions include ReLU (rectified linear unit, i.e., max(0, x) for x ∈ R), sigmoid,
hyperbolic tangent, etc.

Denote the input vector to the NN by x ∈ Rd(0) . Let the output vector of the l-th layer be x(l). Then
x(0) = x. We introduce the vector variable z(l) to denote the input vector to the l-th layer for l ∈ [L]. Thus
the forward propagation equations of an NN can be defined as

x(0) = x
z(l) = W(l) · x(l−1) + b(l) for l ∈ [L]
x(l) = a(l)(z(l)) for l ∈ [L]
y = N (x) = x(L)

, (4)

where W(l) is a matrix of dimension d(l) × d(l−1), b(l) is a d(l)-dimensional column vector, and a(l) is taken
as an element-wise function for a vector input.

Training of NNs is usually performed through backward propagation, during which the parameters W’s
and b’s are updated through an optimization algorithm (e.g., stochastic gradient descent, SGD for short)
applied on the training set [GBC16].

3. Methodology

The framework of our safe controller learning approach is demonstrated in Fig. 2. Given a controlled CCDS
Γ = (f , XD, XI , XU), the basic idea of the proposed approach is to represent the controller function g as
well as the safety certificate function B by two NNs, i.e. Nc and Nb respectively. Then we formulate the
barrier certificate conditions as per Theorem 2.1 w.r.t. Nb and the closed-loop dynamics f(x,Nc(x)) into a
loss function, and then train the two NNs simultaneously on a generated training data set until the loss is
reduced to 0. The resulting two NNs are the controller and barrier certificate candidates, which satisfy the
conditions of Theorem 2.1 on the sampled data set. To overcome the limitation of data-driven approaches,
i.e., the generalization issue of the learned NNs on non-sampled data, formal verification (by SMT solvers
in this paper) is performed on the synthesized candidates to show that the barrier certificate conditions are
indeed satisfied. The blue (solid), red (dashed), and green (dotted) arrows in Fig. 2 show the information
flow of forward propagation, backward propagation, and formal verification, respectively.

Next, before giving more detailed steps of our approach, we first introduce a running example.

Example 3.1 (Dubins’ Car [TKID18, DKYP19]). The control objective is to steer a car with constant
velocity 1 to track a path, here the X-axis in the positive direction. The states of the car are the x, y position
and the driving direction θ, which can be transformed to the distance error de and angle error θe between

Learning Safe NN-controllers with Barrier Certificates 7

Fig. 3. States of Dubins’ car: de = y, θe = π
2
−θ Fig. 4. Simulated car trajectories with learned NN controller

the current position and the target path (cf. Fig. 3). The controlled CCDS Γ = (f , XD, XI , XU) is:

f :

[
ḋe
θ̇e

]
=

[
sin(θe)
−u

]
, where u is the scalar control input

• XD: {(de, θe) ∈ R2 | −6 ≤ de ≤ 6,−7π/10 ≤ θe ≤ 7π/10};
• XI : {(de, θe) ∈ R2 | −1 ≤ de ≤ 1,−π/16 ≤ θe ≤ π/16};
• XU : the complement of {(de, θe) ∈ R2 | −5 ≤ de ≤ 5,−π/2 ≤ θe ≤ π/2} in XD.

Figure 4 shows 50 simulated trajectories on the x-y plane from random initial states in XI using our learned
NN controller u. The two red horizontal lines are the safety upper and lower bounds (±5) for y (the same
bounds as de). In the rest of this paper, we will use Example 3.1 to demonstrate our safe controller synthesis
approach.

3.1. The Structure of Nc and Nb

We first fix the structure of Nc and Nb as follows, assuming that in the controlled CCDS Γ, x and u are of
n and m dimension respectively, e.g. n = 2,m = 1 for Example 3.1.

• Input layer has n neurons for both Nc and Nb;

• Output layer has m neurons for Nc and one single neuron for Nb;

• Hidden layer: there is no restriction on the number of hidden layers or the number of neurons in each
hidden layer; for Example 3.1, the structures are fixed such that Nc has one hidden layer with 5 neurons,
and Nb has one hidden layer with 10 neurons;

• Activation function: considering the inherent requirement of local Lipschitz continuity for Nc and the
inherent requirement of differentiability for Nb, and for ease of formal verification, we adopt ReLU, i.e.
a(x) = max(0, x), and Bent-ReLU [ZZCL20], i.e.,

a(x) = 0.5 · x+
√

0.25 · x2 + 0.0001 (5)

as activation functions for hidden layers of Nc and Nb respectively. (The Lipschitz continuity of ReLU is
by [JD20].) The activation function of the output layer is the identity map for both Nc and Nb.

Remark 3.1. According to Remark 2.2, provided that the barrier certificate for the considered system
exists, the success of our approach relies on choosing NN architectures that are sufficiently expressive for
representing the sought controller and barrier functions. The relation between the NN architecture and its
approximation ability is a hard theoretical problem and there has been much recent progress. For example,
it was shown [Tel17] that for any rational function there is a ReLU network of size (number of neurons)
O
(
poly log(1/ε)

)
which is ε-close.

8 H. Zhao et al.

3.2. Training Data Generation

In our training algorithm, training data are generated by sampling points from the domain XD, initial set
XI , and unsafe region XU of the considered system Γ. No simulation of the continuous dynamics is needed.
The simplest sampling method is to grid the super-rectangles bounding XD, XI , XU with a fixed mesh size,
and then filter out those points not satisfying the constraints of XD, XI , XU . For example, we generate a
mesh with 28 × 28 points from XD for Example 3.1. The obtained three finite data sets are denoted by SD,
SI , and SU .

3.3. Loss Function Encoding

Given SI , SU , and SD, the loss function for training Nc and Nb can be expressed as

L(SD, SI , SU) = c1 ·
∑
x∈SI

L1(x) + c2 ·
∑
x∈SU

L2(x) + c3 ·
∑
x∈SD

L3(x) (6)

with

L1(x) = ReLU(Nb(x) + ε1) for x ∈ SI ,
L2(x) = ReLU(−Nb(x) + ε2) for x ∈ SU ,
L3(x) = ReLU

(
LfNb(x) + ε3

)
for x ∈ {x ∈ SD : |Nb(x)| ≤ ε4}

(7)

denoting the sub-loss functions encoding the three conditions of Theorem 2.1, and c1, c2, c3 three positive
constant weight coefficients for the sub-losses L1, L2, L3 respectively. The basic idea is to impose a positive
(resp., zero) penalty to those sampled points that violate (resp., satisfy) barrier certificate conditions. ε1, ε2, ε3
in (7) are three small non-negative tolerances, the role of which is to increase the generalizability of the
learned NNs, i.e., to enforce zero loss on the non-sampled data points. ε4 in (7) is a small positive constant
characterizing a narrow tube around the zero-level set of Nb, since it is hard to sample data on the level set
exactly. Note that in the above expression L3, f is f(x,Nc(x)).

3.4. The Training Process

We adopt a modified SGD optimization technique for training the two NNs Nc and Nb. That is, we partition
the training data sets SD, SI , SU into mini-batches and shuffle the list of batches to gain some randomness
effect, rather than shuffling the whole training data set. For each mini-batch of data, the loss is calculated
according to (6) and the weights and biases of the two NNs are updated by a gradient descent step through
backward propagation. To start the training, we must first specify the ε1 to ε4 in the loss function, as
well as hyper-parameters such as number of restarts nrestart, number of epoches nepoch, number of mini-
batches nbatch, and learning rate lr, etc. For Example 3.1, we set nrestart = 5, nepoch = 100, nbatch = 4096
and lr = 0.1. The choices of ε1 to ε4 will be presented in the following subsection. The training process
terminates when the loss is reduced to 0 on all mini-batches or the number of restarts exceeds nrestart.

3.5. Formal Verification

The rigorousness of the NNs resulted from 0 training loss is not guaranteed since our approach is data-
driven and the learned NNs may lack generalization property, that is, the three conditions in Theorem 2.1
are not necessarily satisfied by Nc and Nb on non-sampled data. Therefore we resort to formal verification to
guarantee the correctness our synthesized controllers. To conduct the verification, we replace the occurrences
of f and B in Theorem 2.1 by f(x,Nc(x)) and Nb, and try to show that the negation of the conjunction of
the three conditions, i.e.

∃x.x ∈ XI ∧Nb(x) > 0
∨ ∃x.x ∈ XU ∧Nb(x) ≤ 0
∨ ∃x.x ∈ XD ∧Nb(x) = 0 ∧ Lf(x,Nc(x))Nb(x) ≥ 0

(8)

Learning Safe NN-controllers with Barrier Certificates 9

Fig. 5. Learned and verified NN controller and barrier certificate for Example 3.1: the inner (green) and outer (red) shaded
areas are the initial and unsafe regions, black arrows in the white area are the closed-loop vector fields f(x,Nc(x)), and the
blue curve surrounding the inner shaded box is the zero-level set of Nb

is UNSATISFIABLE. Due to the high degree of nonlinearity in f andNb of (8), its satisfiability is resolved by the
interval-propagation based, nonlinear SMT solver iSAT3.1 To speed up the verification process, we compute
piecewise linear approximations (with interval error bounds) of Bent-ReLU function and its derivative, and
replace their occurrences in Nb and LfNb by the linear approximations. In this way, the efficiency and
effectiveness of formal verification are relevant to the following three issues:

• The tolerances chosen for loss function encoding in (6) and (7);

• The piece-wise linear approximation error of Bent-ReLU function and its derivative;

• The interval splitting width for iSAT3.

For the third issue, we usually set the minimal splitting width option --msw to 0.001 for iSAT3. The first
and second issues are addressed in the following two sub-sections.

3.5.1. Pre-training and Fine-tuning

The success of synthesis and formal verification heavily relies on the choices of the four constants ε1 to ε4 in
(6) and (7). Generally, small tolerances are preferred for faster training, while larger tolerances are preferred
for formal verification to compensate for the errors caused by activation function linearization and interval
arithmetic computation. In practice, we adopt a pre-training and fine-tuning combination strategy. That is,
we start with small positive ε4 and zero ε1 to ε3 to perform the initial training. If the pre-trained NNs failed
formal verification, they are iteratively refined by gradually increasing the tolerances. For Example 3.1, the
first controller and barrier certificate are synthesized with ε4 = 0.01 and ε1 = ε2 = ε3 = 0, for which the
formal verification fails, while the fine-tuned controller and barrier certificate are successfully verified when
ε3 was increased to 0.01 (cf. Fig. 5).

3.5.2. Adding Normalized Lie Derivative in Loss Encoding

Larger tolerances in the loss function (6) and (7) are not always useful for formal verification. To see this,
consider checking unsatisfiability of the third condition of (8). Note that LfB = ∇B ·f = ‖∇B‖‖f‖ cos θ∇B,f ,
where ‖ · ‖ denotes the Euclidean norm and θ∇B,f denotes the angle between ∇B and f . Fig. 6(a) illustrates
a situation that a point x on the zero-level set of a barrier candidate B has negative Lie derivative, as θ∇B,f
is slightly larger than π

2 at x. Moreover, it can be concluded that LfB(x) < −ε3 for very large ε3 since
‖f‖ is large. However, formal verification of the negative Lie derivative condition would be very hard at x,
where the direction of ∇B has a large approximation error due to piecewise linearization. For instance, if the

approximated ∇B(x) ranges from ∇̃B to ∇B, then formal verification becomes impossible since θ∇B,f <
π
2

1 https://projects.informatik.uni-freiburg.de/projects/isat3/

10 H. Zhao et al.

(a) Negative LfB with large |LfB| (b) Negative LfB
‖∇B‖·‖f‖ with large

|LfB|
‖∇B‖·‖f‖

Fig. 6. The sign of normalized Lie derivative is robust to Bent-ReLU linearization errors

Fig. 7. Simulations of Dubins’ car from (−1,−0.19) with different NN controllers for comparison of stability performance

which makes the Lie derivative positive. The reason for such a phenomenon is that negative LfB does not
necessarily force the span angle of ∇B and f to be large, so the sign of LfB is not robust to approximation
noises of ∇B. The problem can be resolved by introducing additional sub-loss function specifying normalized
Lie derivative into the loss function (6) as follows:

L4(x) = ReLU
(LfNb(x)
‖∇Nb‖·‖f‖ + ε5

)
, for x ∈ {x ∈ SD : |Nb(x)| ≤ ε4} (9)

where ε4 are defined in (7) and ε5 is a non-negative constant. By (9), if a barrier certificate is synthesized
with zero L4 value and sufficiently large ε5, then the angle between ∇Nb and f would be large enough to
tolerant approximation errors, which leads to successful verification (cf. Fig. 6(b)).

4. Improvement of the Learned Controllers

The controller synthesized and verified in the last section is guaranteed to be safe. However, it may perform
poorly regarding properties such as stability. As an illustration, we simulate the Dubins’ car system from
initial state de = −1, θe = −0.19 using the NN controller corresponding to Fig. 5. The changes of de and θe
within 60 time units are shown in Fig. 7 by ∗-marked dashed (de) or solid (θe) lines. It is obvious that the
car has a large distance error although it is still within safety bounds (±5). We therefore propose a series of
ways to improve the performance of synthesized controllers in this section.

Learning Safe NN-controllers with Barrier Certificates 11

Fig. 8. NN controller learned and verified for Example 3.1 with larger safety margin: ε1 = 0.02, ε2 = 0.8, ε3 = 0.01, ε4 = 0.05;
the inner (green) and outer (red) shaded areas are the initial and unsafe regions, black arrows in the white area are the
closed-loop vector fields f(x,Nc(x)), and the blue curve surrounding the inner shaded box is the zero-level set of Nb

4.1. Larger Safety Margin

The first improvement is to gradually increase the safety margin specified by the ε2 constant in the loss
function (6) and (7) by iterative fine-tuning. For example, when ε2 is increased to 0.8, an NN controller Nc

and the corresponding barrier certificate Nb are synthesized and shown in Fig. 8. The simulation performance
of Nc is shown in Fig. 7 by ◦-marked dashed (de) or solid (θe) lines. It is obvious that the distance error is
reduced compared to the controller of Fig. 5.

4.2. Asymptotic Stability

Figure 7 shows that using the NN controller with larger safety margin, the distance error of the Dubins’ car
stabilizes at a value larger than 0.5, which is not desirable. To further reduce the distance error in the long
run, we introduce additional loss terms into the loss function to express asymptotic-stability-like properties.
Suppose that xo is an expected equilibrium point of the system, that is, f(xo,Nc(xo)) = 0. For example, the
system in Example 3.1 is expected to stabilize with 0 distance and angle errors and so xo is (0, 0). Then we
define the sub-loss functions for asymptotic stability as:

L5(x) = ReLU
(
− ‖f(x,Nc(x))‖+ ε6

)
for x ∈ {x ∈ SD : ‖x− xo‖ > ε7} ,

L6(x) = ReLU
(
‖f(x,Nc(x))‖ − ε8

)
for x = xo

(10)

where ε6, ε7, ε8 are three small positive constants. The basic idea of L5, L6 is to impose such constraints that
the closed-loop vector field f(x,Nc(x)) has negligible norm at the asymptotically stable point xo, and strictly
positive norm outside a neighborhood of xo with radius ε7. By choosing ε7 = 0.1, ε6 = 0.05, ε8 = 0.001
we obtain a fine-tuned Nc whose simulation performance is shown in Fig. 7 by �-marked dashed (de) or
solid (θe) lines, which demonstrate good asymptotic stability property. We also fix ε8 = 0.001, ε6 = 0.05
and compare the performances of Nc obtained from different ε7 values. The simulation results are shown in
Fig. 9. It can be roughly concluded that decreasing ε7 will have an effect of increasing the overshoot and
decreasing the settling time of the simulated traces. An intuitive explanation of such effects is that by L5,
shrinking ε7 increases ‖f‖ near xo, and thus trajectories approaches xo quickly but may overshoot.

Comparison with LQR Controllers. To further evaluate the performance of synthesized NN controllers,
we linearize the Dubins’ car system near xo = (0, 0) and then compute the classic LQR (linear quadratic
regulator [Hes18]) controllers for the linearized system. Preliminary experiment shows that for fixed Q and R
matrices in the LQR controller computation, by tuning the values of ε6 and ε7, we can obtain NN controllers
with comparable performances to LQR controllers (cf. Fig. 10).

Remark 4.1. NN controllers are in principle much more expressive than linear controllers such as LQR,

12 H. Zhao et al.

Fig. 9. Comparison of NN controllers learned using L5 and L6 losses with ε6 = 0.05, ε8 = 0.001 for Example 3.1: all simulations
are from initial state (−1,−0.19); dashed and solid lines represent de and θe traces respectively; simulations corresponding to
controllers learned with ε7 = 0.3, 0.1, 0.05 are marked by ∗, ◦, and � respectively

Fig. 10. Simulation of NN and LQR controllers with initial state (−1,−0.19) for Example 3.1: the NN controller is synthesized
with ε6 = ε7 = 0.05, ε8 = 0.001, and the LQR controller is synthesized with Q the 2-dimensional identity matrix and R = 1;
dashed and solid lines represent de and θe traces respectively, and traces simulated with LQR and NN controllers are marked
by ∗ and ◦ respectively

and so it is interesting to investigate better ways of loss function encoding and controller tuning to synthesize
NN controllers superior to linear controllers (e.g., LQR) in future.

4.3. Bounded Control Inputs

In practice, the control input u to system (1) cannot take arbitrary values (cf. Fig. 11(a)) but are bounded
within a compact set U . Therefore it is necessary to consider how to synthesize bounded NN controllers
for practical applications. Actually this can be achieved simply by replacing the identity activation function
in the output layer of Nc (cf. Section 3.1) by any activation with bounded range, say hyperbolic tangent
function. For ease of formal verification, we adopt a piece-wise linear activation Hardtanh for the output

Learning Safe NN-controllers with Barrier Certificates 13

(a) Unbounded NN controller (b) Bounded NN controller

Fig. 11. Plotting of surfaces of unbound or bounded NN controllers for Example 3.1 over XD

layer of Nc, that is,

a(L)(x) = c ·max
(
− 1,min(1, x)

)
with c a positive constant, which restricts the output of Nc to be within [−c, c] for each dimension. For
Example 3.1, by choosing c = 3 we obtained a bounded NN controller as shown in Fig. 11(b). In our
experiment, the Hardtanh activation can either be applied in the pre-training or fine-tuning phase.

5. Implementation and Experiments

Given a controlled CCDS Γ = (f , XD, XI , XU) and generated training data set SD, SI , SU , in the most
general form, the loss function we adopted for training safe NN controllers is:

L(SD, SI , SU) = c1
∑
x∈SI

L1(x) + c2
∑
x∈SU

L2(x) +
∑
x∈SD

(
c3L3(x) + c4L4(x) + c5L5(x)

)
+ c6L6(xo) (11)

where xo is the equilibrium point, L1, L2, L3, L4, L5, L6 are defined in (7), (9) and (10), c1, c2, c3 are defined
in (6), and c4, c5, c6 are non-negative constant sub-loss weights. Thus there are totally 6 sub-loss weights
denoted by c = (c1, c2, . . . , c6) for short; besides, there are 8 tolerances in (11) denoted by ε = (ε1, ε2, . . . , ε8)
for short. Our implementation and experiments are conducted based on (11) and related notations.

5.1. The Training Algorithm

The main algorithm for training a safe NN controller is presented in Algorithm 1, which can be explained
as follows:

• nrestart, nepoch, nbatch and lr are hyper-parameters for training (cf. Section 3.4); in all our case studies,
nrestart and nbatch are fixed at 5 and 4096 respectively;

• nn construct() in Line 1 is to construct the structure of Nc and Nb (cf. Section 3.1); in all our case studies,
Nc has one hidden layer with 5 neurons, and Nb has one hidden layer with 10 neurons;

• data gen() in Line 2 is to generate batches of training data (cf. Section 3.2);

• initialize() in Line 4 is to initialize weights and biases of Nc and Nb by Gaussian distribution;

• compute batch loss() in Line 8 is to compute the loss value on each batch of data using the input c, εεε
(
cf.

Section 3.3 and (11)
)
;

• update() in Line 9 is to update Nc and Nb using gradient descent with step size lr;

• decide success() in Line 11 is to decide the termination condition, which involves checking whether the
epoch loss Lepoch reaches 0.

14 H. Zhao et al.

Algorithm 1 Safe NN-Controller Training Algorithm

Input: Γ = (f , XD, XI , XU), nrestart, nepoch, nbatch, lr, c, εεε;
Output: Nc, Nb;

1: Nc, Nb = nn construct(Γ);
2: data gen(Γ);
3: for i = 1 to nrestart do
4: initialize(Nc, Nb);
5: for j = 1 to nepoch do
6: Lepoch = 0;
7: for k = 1 to nbatch do
8: Lepoch += compute batch loss(c, εεε);
9: update(Nc, Nb, lr);

10: end for
11: if decide success(Lepoch) then
12: return Nc, Nb;
13: end if
14: end for
15: end for

We have implemented a prototype tool nncontroller2 based on the Pytorch3 platform. Given a problem
description and a set of user-specified parameters (cf. Algorithm 1), nncontroller automatically learns a safe
NN controller candidate with an NN barrier certificate, and generates script files as the input to iSAT3 for
formal verification. We have applied nncontroller to a number of cases in the literature [TKID18, DKYP19,
ZXMJ19]. All experiments are performed on a laptop workstation running Ubuntu 18.04 with Intel i7-8550u
CPU and 32GB memory. The details of cases studies are presented in the following sub-section.

5.2. Experiment Results

In addition to the running example, we have synthesized and verified NN controllers using nncontroller for
the following cases.

Example 5.1 (Inverted Pendulum [ZXMJ19]). The controlled CCDS Γ = (f , XD, XI , XU) is:

f :

[
θ̇
ω̇

]
=

[
ω

g
l (θ −

θ3

6) + 1
ml2u

]
,

where m = 1 and l = 1 denote the pendulum mass and length respectively, g = 9.8 is the gravitational
acceleration, u is the scalar control input maintaining the pendulum upright, and

• XD: {(θ, ω) ∈ R2 | −π/2 ≤ θ ≤ π/2, −π/2 ≤ ω ≤ π/2};
• XI : {(θ, ω) ∈ R2 | −π/9 ≤ θ ≤ π/9, −π/9 ≤ ω ≤ π/9};
• XU : the complement of {(θ, ω) ∈ R2 | −π/6 ≤ θ ≤ π/6, −π/6 ≤ ω ≤ π/6} in XD.

Example 5.2 (Duffing Oscillator [ZXMJ19]). The controlled CCDS Γ = (f , XD, XI , XU) is:

f :

[
ẋ
ẏ

]
=

[
y

−0.6y − x− x3 + u

]
,

where u is the scalar control input that regulates the system’s trajectories to (0, 0), and

• XD: {(x, y) ∈ R2 | −6 ≤ x ≤ 6, −6 ≤ y ≤ 6};
• XI : {(x, y) ∈ R2 | −2.5 ≤ x ≤ 2.5, −2 ≤ y ≤ 2};
• XU : the complement of {(x, y) ∈ R2 | −5 ≤ x ≤ 5, −5 ≤ y ≤ 5} in XD.

2 Publicly available at: https://github.com/zhaohj2017/FAoC-tool
3 https://pytorch.org/

Learning Safe NN-controllers with Barrier Certificates 15

(a) The bicycle model (b) The academic 3D model

Fig. 12. Learned and verified NN controllers and barrier certificates for Example 5.3 and 5.4: for both cases, the innermost
cube (green) represents the initial set, the outermost cube (pink) represents the system domain, and the space between the
outermost and the middle cube (grey) is the unsafe region; the irregular surface (yellow) surrounding the innermost cube is the
zero-level set of synthesized NN barrier certificates; the curves (blue) approaching the origin are simulated system trajectories

Example 5.3 (Bicycle Steering [DKYP19]). The control objective is to balance a bicycle. The states
of the bicycle are (x1, x2, x3) which denote the tilt angle, the angular velocity of tilt, and the handle bar
angle with body respectively. The controlled CCDS Γ = (f , XD, XI , XU) is:

f :

[
ẋ1
ẋ2
ẋ3

]
=

 x2
ml
J (g sinx1 + v2

b cosx1 tanx3)
0

+

 0
amlv
Jb ·

cos x1

cos2x3

1

u ,
where u is the scalar control input, m = 20 is the mass, l = 1 is the height, b = 1 is the wheel base, J = mb2

3
is the moment of inertia, v = 10 is the velocity, g = 10 is the acceleration of gravity, a = 0.5 is the distance
between the rear wheel and the line passing through the center of mass, and

• XD: {(x1, x2, x3) ∈ R3 | −π/2.5 ≤ x1 ≤ π/2.5,−π/2.5 ≤ x2 ≤ π/2.5,−π/2.5 ≤ x3 ≤ π/2.5};
• XI : {(x1, x2, x3) ∈ R3 | −π/30 ≤ x1 ≤ π/30,−π/30 ≤ x2 ≤ π/30,−π/30 ≤ x3 ≤ π/30};
• XU : the complement of {(x1, x2, x3) ∈ R3 | −π/3 ≤ x1 ≤ π/3,−π/3 ≤ x2 ≤ π/3,−π/3 ≤ x3 ≤ π/3} in
XD.

By introducing ũ such that u = ũ cos2x3 − 20 cosx3 sinx3, the original f is transformed equivalently into

f̃ :

[
ẋ1
ẋ2
ẋ3

]
=

 x2
30 sinx1 + 15ũ cosx1

ũ cos2x3 − 20 cosx3 sinx3

 .
An NN controller representing ũ was learned and verified for the transformed system (f̃ , XD, XI , XU) (cf.
Fig. 12(a)).

Example 5.4 (Academic 3D [DKYP19]). The controlled CCDS Γ = (f , XD, XI , XU) is:

f :

[
ẋ1
ẋ2
ẋ3

]
=

 x3 + 8x2
−x2 + x3
−x3 − x21

+

[
0
0
1

]
u , where u is the scalar control input

• XD: {(x1, x2, x3) ∈ R3 | −2.2 ≤ x1 ≤ 2.2,−2.2 ≤ x2 ≤ 2.2,−2.2 ≤ x3 ≤ 2.2};
• XI : {(x1, x2, x3) ∈ R3 | −0.2 ≤ x1 ≤ 0.2,−0.2 ≤ x2 ≤ 0.2,−0.2 ≤ x3 ≤ 0.2};
• XU : the complement of {(x1, x2, x3) ∈ R3 | −2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2,−2 ≤ x3 ≤ 2} in XD.

An NN controller was successfully learned and verified for Γ (cf. Fig. 12(b)).

16 H. Zhao et al.

Table 1. Key parameters for pre-training and fine-tuning using nncontroller (cf. Algorithm 1 and Remark 5.1)

E.g. ne lr c εεε cv εεεv

3.1 100 0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.01, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0, 0, 0.01, 0.01, ·, ·, ·, ·)

5.1 100 0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.01, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0.01, 0, 0.02, 0.01, ·, ·, ·, ·)

5.2 100 0.01;0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.05, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.05, ·, ·, ·, ·)

5.3 200 0.01;0.2 (1, 1, 0.1, 0.1, 0, 0) (0, 0, 0, 0.02, 0, ·, ·, ·) (1, 1, 0.1, 0.1, 0.01, 0.01) (0,0,0.35,0.02,0.35,0.1,0.1,0.01)

5.4 200 0.01;0.2 (1, 1, 0.1, 0.1, 0, 0) (0, 0, 0, 0.02, 0, ·, ·, ·) (1, 1, 0.1, 0.1, 0.01, 0.01) (0.01,0.01,0.15,0.02,0.1,0.1,0.2,0.01)

Table 2. Time costs of synthesis and verification by nncontroller and iSAT3 (cf. Remark 5.2)

E.g.
run 1 run 2 run 3 run 4 run 5 learning

avg. cost
verification
costtime nr time nr time nr time nr time nr

3.1 21.11 0 15.04 0 14.98 0 65.25 0 15.37 0 26.35 8.27

5.1 478.29 1 168.75 0 292.96 0 111.55 0 43.89 0 219.09 15.24

5.2 60.59 0 72.47 0 64.64 0 48.08 0 851.49 1 219.45 4.71

5.3 752.63 1 1528.07 2 499.83 0 122.64 0 924.41 1 765.52 1344.50

5.4 240.94 0 301.22 0 2522.14 3 1001.66 1 390.25 0 891.24 6070.83

The key parameters used by nncontroller for our experiments are summarized in Table 1, and the time
costs of synthesis and verification by nncontroller and iSAT3 are summarized in Table 2.

Remark 5.1. In Table 1, ne is a shorthand for nepoch, ·means the corresponding parameter is not applicable,
; means we adopt a self-adaptive learning rate scheduling strategy, and the superscript v means that the
weight coefficients cv and parameters εεεv are for the fine-tuned controllers, which are formally verified.

Remark 5.2. In Table 2, all time costs are measured in seconds; the time cost of NN controller training
is not deterministic since the NN models are initialized randomly and the batches of training data are
shuffled during the training process, and therefore we record the time costs of 5 separate runs of the training
algorithm and compute the averaged cost; nr denotes how many times we restart the algorithm when no NN
controller is learned within the specified number of training epochs, i.e. nepoch; the last column corresponds
to time costs of formal verification for the NN controllers and barrier certificates obtained with the cv and
εεεv parameters in Table 1 for each case.

Remark 5.3. Comparison of time costs of our experiment with related work such as [DKYP19, ZXMJ19] is
not straightforward since we train two NNs simultaneously, while [DKYP19] requires user-provided barrier
functions and [ZXMJ19] requires pre-trained NN controllers as their inputs. However, considering the number
of layers and neurons (we use one hidden layer with 5 neurons and ReLU activations for Nc uniformly), it
can be asserted that our synthesized NN controllers have much simpler structure than [DKYP19, ZXMJ19].

6. Conclusion

We have proposed a new approach to synthesize neural network controllers for nonlinear continuous dynami-
cal systems with control against safety properties. Our approach features in verification-in-the-loop synthesis:
we simultaneously train the controller and its certificate, which we use barrier functions, represented by an
NN as well. We have provided a prototype tool nncontroller with a number of case studies. The experiment
results have confirmed the feasibility and efficacy of our approach.

Future work includes experimenting on different sampling and training strategies to reduce the data set
size and to improve the training efficiency, as well different verification methods/tools other than interval
SMT solvers. In particular, we plan to combine the counter-example-driven framework for program analysis
[NARH17] with our proposed approach. Recently, the counter-example-guided inductive synthesis procedure

Learning Safe NN-controllers with Barrier Certificates 17

(CEGIS) has been employed in NN barrier certificates generation for continuous and hybrid systems with
no control input [PAA20]. We anticipate that these would potentially further improve the scalability of
our approach. We also plan to extend our approach to other properties such as reachability coupled with
cost/reward based optimality as what has been done in optimal control and reinforcement learning.

Acknowledgements. We thank the anonymous reviewers for their valuable comments on the earlier versions of this paper,
and thank Prof. Jyotirmoy V. Deshmukh for the explanation on the bicycle model of Example 5.3. H. Zhao was supported
partially by the National Natural Science Foundation of China (No. 61702425, 61972385); X. Zeng was supported partially
by the National Natural Science Foundation of China (No. 61902325), and “Fundamental Research Funds for the Central
Universities” (SWU117058); T. Chen is partially supported by NSFC grant (No. 61872340), and Guangdong Science and
Technology Department grant (No. 2018B010107004), the Overseas Grant of the State Key Laboratory of Novel Software
Technology (No. KFKT2018A16), the Natural Science Foundation of Guangdong Province of China (No. 2019A1515011689);
Z. Liu was supported partially by the National Natural Science Foundation of China (No. 62032019, 61672435, 61732019,
61811530327), and Capacity Development Grant of Southwest University (SWU116007); J. Woodcock was partially supported
by the research grant from Southwest University.

References

[ACE+19] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and Paulo Tabuada.
Control barrier functions: Theory and applications. In 2019 18th European Control Conference (ECC), pages
3420–3431, 2019.

[ASBA19] Mohamadreza Ahmadi, Andrew Singletary, Joel W Burdick, and Aaron D. Ames. Safe policy synthesis in multi-
agent POMDPs via discrete-time barrier functions. In 2019 IEEE 58th Conference on Decision and Control
(CDC), pages 4797–4803. IEEE, 2019.

[BTSK17] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. Safe model-based reinforcement
learning with stability guarantees. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pages 908–919, Red Hook, NY, USA, 2017. Curran Associates Inc.

[CCTS20] Jason Choi, Fernando Castañeda, Claire J. Tomlin, and Koushil Sreenath. Reinforcement learning for safety-
critical control under model uncertainty, using control Lyapunov functions and control barrier functions. https:
//arxiv.org/abs/2004.07584, 2020.

[COMB19] Richard Cheng, Gábor Orosz, Richard M. Murray, and Joel W. Burdick. End-to-end safe reinforcement learning
through barrier functions for safety-critical continuous control tasks. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 3387–3395.
AAAI Press, 2019.

[CRG19] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural Lyapunov control. In Advances in Neural Information
Processing Systems 32, pages 3245–3254. Curran Associates, Inc., 2019.

[DCH+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 1329–1338. JMLR.org, 2016.

[DCS19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability analysis for neural feedback systems
using regressive polynomial rule inference. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC, pages 157–168, 2019.

[DFG+19] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-
Chanlatte, and Sanjit A. Seshia. VerifAI: A toolkit for the formal design and analysis of artificial intelligence-based
systems. In Computer Aided Verification, pages 432–442. Springer International Publishing, 2019.

[DGXZ17] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. Barrier certificates revisited. Journal of Symbolic Computation,
80:62–86, 2017.

[DJST18a] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Learning and verification of feedback
control systems using feedforward neural networks. IFAC-PapersOnLine, 51(16):151 – 156, 2018. 6th IFAC
Conference on Analysis and Design of Hybrid Systems ADHS 2018.

[DJST18b] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis for deep
feedforward neural networks. In NASA Formal Methods, pages 121–138. Springer International Publishing, 2018.

[DKYP19] Jyotirmoy V. Deshmukh, James Kapinski, Tomoya Yamaguchi, and Danil Prokhorov. Learning deep neural net-
work controllers for dynamical systems with safety guarantees: Invited paper. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–7, 2019.

[FP18] Nathan Fulton and André Platzer. Safe reinforcement learning via formal methods: Toward safe control through
proof and learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 6485–6492. AAAI Press, 2018.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, 2016.
[Hes18] João P. Hespanha. Linear Systems Theory. Princeton University Press, second edition, 2018.
[ICW+20] Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Case study:

verifying the safety of an autonomous racing car with a neural network controller. In HSCC ’20: 23rd ACM
International Conference on Hybrid Systems: Computation and Control, Sydney, New South Wales, Australia,
April 21-24, 2020, pages 28:1–28:7. ACM, 2020.

18 H. Zhao et al.

[IWA+19] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig: verifying safety properties
of hybrid systems with neural network controllers. In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2019., pages 169–178, 2019.

[JD20] Matt Jordan and Alexandros G. Dimakis. Exactly computing the local Lipschitz constant of ReLU networks.
https://arxiv.org/abs/2003.01219, 2020.

[KBD+17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In International Conference on Computer Aided Verification, pages 97–117.
Springer, 2017.

[KHS+13] Hui Kong, Fei He, Xiaoyu Song, William NN Hung, and Ming Gu. Exponential-condition-based barrier certifi-
cate generation for safety verification of hybrid systems. In Proceedings of the 25th International Conference on
Computer Aided Verification (CAV), pages 242–257. Springer, 2013.

[LHP+16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[LLPS93] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861 – 867, 1993.

[LLY+19] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun Zhang. Analyzing deep neural
networks with symbolic propagation: Towards higher precision and faster verification. In Static Analysis, pages
296–319. Springer International Publishing, 2019.

[MGQ+20] Mayank Mittal, Marco Gallieri, Alessio Quaglino, Seyed Sina Mirrazavi Salehian, and Jan Koutńık. Neural Lya-
punov model predictive control. https://arxiv.org/abs/2002.10451, 2020.

[NARH17] ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef, and Michael Hicks. Counterexample-guided approach to
finding numerical invariants. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2017, page 605–615, New York, NY, USA, 2017. Association for Computing Machinery.

[PAA20] Andrea Peruffo, Daniele Ahmed, and Alessandro Abate. Automated and formal synthesis of neural barrier certifi-
cates for dynamical models. https://arxiv.org/abs/2007.03251, 2020.

[PEY01] Alex Poznyak, Sanchez EN, and Wen Yu. Differential Neural Networks for Robust Nonlinear Control. World
Scientific, 2001.

[PJP07] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case and stochastic safety verification
using barrier certificates. IEEE Transactions on Automatic Control, 52(8):1415–1429, 2007.

[PT10] Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of artificial neural net-
works. In Computer Aided Verification, pages 243–257, 2010.

[RAA19] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning.
https://cdn.openai.com/safexp-short.pdf, 2019.

[Rat18] Stefan Ratschan. Converse theorems for safety and barrier certificates. IEEE Transactions on Automatic Control,
63(8):2628–2632, 2018.

[RBK18] Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. The Lyapunov neural network: Adaptive stability
certification for safe learning of dynamic systems. http://arxiv.org/abs/1808.00924, 2018.

[RS07] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by constraint propagation-based abstraction
refinement. ACM Trans. Embed. Comput. Syst., 6(1):1–23, 2007.

[RS10] Stefan Ratschan and Zhikun She. Providing a basin of attraction to a target region of polynomial systems by
computation of Lyapunov-like functions. SIAM Journal on Control and Optimization, 48(7):4377–4394, 2010.

[RS19] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control Lyapunov functions from counterexamples
and demonstrations. Autonomous Robots, 43(2):275–307, 2019.

[SGTP18] Andrew Sogokon, Khalil Ghorbal, Yong Kiam Tan, and André Platzer. Vector barrier certificates and comparison
systems. In Formal Methods, pages 418–437, 2018.

[SKS19] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. Formal verification of neural network controlled autonomous
systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control,
HSCC 2019., pages 147–156, 2019.

[SL20] Zhikun She and Meilun Li. Over- and under-approximations of reachable sets with series representations of evolution
functions. IEEE Transactions on Automatic Control, 2020.

[SPW12] Christoffer Sloth, George J. Pappas, and Rafael Wisniewski. Compositional safety analysis using barrier certificates.
In Proc. of the Hybrid Systems: Computation and Control (HSCC), pages 15–24. ACM, 2012.

[TDL+19] Andrew J. Taylor, Victor D. Dorobantu, Hoang M. Le, Yisong Yue, and Aaron D. Ames. Episodic learning
with control Lyapunov functions for uncertain robotic systems. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6878–6884, 2019.

[Tel17] Matus Telgarsky. Neural networks and rational functions. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 3387–3393. JMLR.org, 2017.

[TKID18] Cumhur Erkan Tuncali, James Kapinski, Hisahiro Ito, and Jyotirmoy V. Deshmukh. Invited: Reasoning about
safety of learning-enabled components in autonomous cyber-physical systems. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pages 1–6, 2018.

[TSYA19] Andrew Taylor, Andrew Singletary, Yisong Yue, and Aaron Ames. Learning for safety-critical control with control
barrier functions. https://arxiv.org/abs/1912.10099, 2019.

[TYML+20] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming Xiang,
Stanley Bak, and Taylor T. Johnson. NNV: The neural network verification tool for deep neural networks and

Learning Safe NN-controllers with Barrier Certificates 19

learning-enabled cyber-physical systems. In Computer Aided Verification, pages 3–17. Springer International Pub-
lishing, 2020.

[WS16] Rafael Wisniewski and Christoffer Sloth. Converse barrier certificate theorems. IEEE Transactions on Automatic
Control, 61(5):1356–1361, 2016.

[WZC+18] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning, and
Inderjit S. Dhillon. Towards fast computation of certified robustness for relu networks. In Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, pages 5273–5282, 2018.

[XTJ18] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and verification for
multilayer neural networks. IEEE Transactions on Neural Networks and Learning Systems, 29(11):5777–5783,
2018.

[YFS20] Shakiba Yaghoubi, Georgios Fainekos, and Sriram Sankaranarayanan. Training neural network controllers using
control barrier functions in the presence of disturbances. https://arxiv.org/abs/2001.08088, 2020.

[ZXMJ19] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. An inductive synthesis framework for verifiable
reinforcement learning. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, pages 686–701, New York, NY, USA, 2019. Association for Computing Machinery.

[ZZC+20] Hengjun Zhao, Xia Zeng, Taolue Chen, Zhiming Liu, and Jim Woodcock. Learning safe neural network controllers
with barrier certificates. In Dependable Software Engineering. Theories, Tools, and Applications, pages 177–185,
Cham, 2020. Springer International Publishing.

[ZZCL20] Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu. Synthesizing barrier certificates using neural networks.
In HSCC ’20, pages 25:1–25:11. ACM, 2020.

