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Abstract 

 
The paper examines the impact of non-pharmaceutical interventions on the initial exponential 
growth of the infected population and final exponential decay of the infected population. We 
employ a Bayesian dynamic model to test whether there is learning, a random walk pattern or other 
type of learning with evolving epidemiological data over time across 168 countries and 51,083 
country-date observations. Although learning might not take place, most policy measures appear 
to assert some effect. In an application we employ the main epidemiological parameters derived 
from the policy learning model to examine their impact on household debt repayments in UK 
within a vector autoregressive system of equations. Results show that higher transmission rate 
would increase household debt repayments, while the recovery rate would have negative impact 
on debt repayment. 
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1. Introduction 

In response to the COVID-19 pandemic, a variety of non-pharmaceutical interventions (NPIs) 

were implemented and adapted over time (see Di Porto, et al. 2022). Whether policymakers across 

the world adapted their interventions based on feedback from epidemiological data is of primary 

interest to curb the pandemic and is also of importance to policy learning literature (Bekker et al. 

2022; Athey & Wager, 2020; Witting, 2017). This paper examines the impact of NPIs on the initial 

exponential growth of the infected population and final exponential decay of the infected 

population. We build on Cooper et al. (2020) to estimate using Bayesian techniques the parameter 

estimates of a model of a system of ordinary differential equations for the number of susceptible 

people (S), the number of infected people (I), and the number of removed persons (R). We call our 

model SIR for simplification of notation. 

 

Though mimicry in NPI implementation across countries is valuable to lowering 

uncertainty (Bekker et al. 2022; Pellegrino et al. 2021; Hosseini-Motlagh et al. 2022;  Jinjarak et 

al., 2020; Sebhatu et al., 2020), the subsequent adaptation of NPIs to emerging epidemiological 

data is important to managing time-varying parameters of exponential growth of the infected 

population and final exponential decay of the infected population are based on feedback from prior 

NPIs.  To observe whether time-varying parameters are driven by NPIs is of importance and it is 

rather complicate exercise to disentangle. Too often policy interventions to combat COVID-19 

could have therefore an increase in taxation to provide funds to an already overstretched healthcare 

system and may affect the household’s finances. Our study is primarily focusing on the impact of 

NPIs over time on exponential growth of the infected population and final exponential decay of 

the infected population so as to assist policymakers who may seek information to support their 

existing beliefs, define problems based on their beliefs, and learn from a limited set of experiences 

(Witting, 2017).  

 

Conversely, providing parameter estimates for the exponential growth of the infected 

population and final exponential decay of the infected population could also improve planning and 

response to limit future waves (Nikolopoulos et al. 2021; Di Porto, et al. 2022). Though 

epidemiological models and literature on policy learning call for calibration of those parameters 

through NPIs the extent of learning among policymakers through diversification in NPIs remains 
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unexplored (Nikolopoulos et al. 2021; Bekker et al. 2022; Hosseini-Motlagh et al. 2022). The 

adaptive process of policymaking during COVID-19 is influenced by search and adaptation to 

limited information to improve understanding of the action-cause-effect associations under noisy 

and rapidly evolving information. In the face of the unfamiliar and non-routine context of setting 

NPI, lowering judgmental errors and improving accuracy in measuring the parameters of 

exponential growth of the infected population and final exponential decay of the infected 

population for the SIR model is essential. 

 

By proposing a novel method, organized around Bayesian analysis of a time-varying 

parameters of the SIR model, we focus on learning-by-policymaking based on how policymakers 

managed time-varying parameters. This is an important question as it is critical for further work 

to understand whether any learning at all is taking place over time, whether policy instruments are 

significant in reducing the impact of COVID-19. Also, in case there is learning whether it is 

optimal (Bayesian) or not. Large deviations from optimal learning would, of course, imply that 

conditional on the policy instruments, it was not possible to estimate accurately the fundamental 

parameters of the SIR model. 

 

The proposed model aims to make the following research contributions. First, prior studies 

have focused on the efficacy of joint and individual NPIs (Bo et al., 2020), diffusion of NPIs across 

countries (Aravindakshan et al., 2020), and the political process of implementation of NPIs (Greer 

et al., 2020; Cantor, et al. 2022). Our model follows from Cooper et al. (2020) and shifts the focus 

to learning from COVID-19 epidemiological data and changes to NPIs over time. The changes to 

parameters, contingent in policy-based learning, influences timing of NPI implementation and 

intensity. Second, we draw on the policy learning literature in economics and political science. 

During pandemic, policy learning is very critical, yet it is marred by uncertainty and incomplete 

information (Pellegrino et al. 2021). By proposing and implementing Bayesian inference in a time-

varying coefficient vector autoregressive model of SIR, learning based on leniency and stringency 

of NPIs is important, especially, given the World Health Organization (WHO) recommendation 

asking countries to learn from evolving country conditions. It should be noted that we use 

international data to gain strength from the panel structure of the data. Third, we focus on 

household debt repayments in the UK. It is worth noting that government interventions have 
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included economic stimulus packages to households such as income support, and debt or contract 

relief (Finck and Tillmann 2021). It is, therefore, of some interest to test whether household debt 

is related to the main epidemiological parameters of our modeling how the latter would affect the 

former. In an empirical application we employ data for the UK.  

 

We find that predictive Bayes factors in favor of Bayesian optimal learning and against the 

type of learning that can be calibrated from the data, dominate the second model which receives 

some support in the data, although the evidence is weak. So, we cannot establish decisively 

whether Bayesian learning takes place or not, although we do have some evidence against it. In 

addition, using the parameter estimates of policy learning we show that higher transmission rate 

would increase household debt repayments, while the recovery rate would have negative impact 

on debt repayment. 

 

In what follows Section 2 presents the SIR model, while Section 3 provides details of the 

data. Sections 4 and 5 provide discussion of the results while the last section offers some 

conclusions and policy implications. 

 

2. Policy learning during COVID-19 

 

Feedback and cues from the environment are drivers of policy learning (Witting, 2017; 

Cantor, et al. 2022). The policy learning environment is not only influenced by the normative needs 

to focus on scientific evidence, but also requires balancing of a variety of political, social, and 

economic factors that add complexity and volatility. Policy learning is bounded by influential 

elites, geographic and domain-specific forces that limit the efficacy of prescriptive learning models 

(Witting, 2017; Bekker et al. 2022; Hosseini-Motlagh et al. 2022). With policymaking under 

COVID-19 occurring under variegated inputs from analysts, scientists, citizens, and interest 

groups. The epistemic diversity in inputs may limit the ability to validate (from different 

information and interest bases) and evaluate (due to evolving COVID-19 context) the action-

effect-cause link.  

  

At the same time, policy learning is ever more critical under COVID-19. Simply adopting 
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and implementing NPIs through mimicry may not be sufficient over time. Calibrating such policies 

against emerging information is important to balance economic and social costs against health 

outcomes. Rooted in the notion of dual learning, policy learning (Sabatier, 1988) is based on 

reliance on heuristic and analytical processing. Though analytical processing is guided by 

emerging epidemiological data, policy experience and the context add less meaningful filters 

through heuristic processing.   

 

In general, optimal learning is Bayesian (Drugowitsch et al., 2019, Jaynes, 2003, Okasha, 

2013; see also Tauber et al., 2017) as the Bayes update of beliefs given the prior and in the light 

of the data, summarizes the new information in the most effective and efficient way Therefore, it 

is a coherent approach to updating beliefs. 

 

In related research, Weible et al. (2010) find the learning potential is greatly reduced when 

individuals segregate into competing advocacy coalitions. In other words, they only maintain ties 

to like-minded others. Understanding the attributes of a learning situation is the second question 

that needs to be addressed to understand how individuals acquire make sense of disseminate 

information. Bayesian learning could be an important learning tool as past heuristics have limited 

benefits and analytical reasoning may not allow for a full balance of economic and social costs 

against health costs. Bayesian learning that allows for reliance on priors based on the confluence 

of analytical and heuristics actions occurring in the respective context. Because the tools of 

instrumental and social learning are seldom present in a pandemic situation, Bayesian learning 

relies on priors that are based on past outcomes and processes driven by a diverse set of inputs, 

interests, and actions based on non-trivial degrees of coordination, collaboration, and conflict. The 

priors reflect convergent processes as policymakers try to make sense of the ambiguous situation, 

where the possibility of informed learning under time pressure is less feasible. Though 

instrumental learning is a norm in policy learning (May, 1992; Sabatier, 1988), we propose a model 

of policy learning. 

 

2.1 The SIR model with time-varying parameters 

As in Cooper et al. (2020) our model nests the number of susceptible people (S), the number 
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of infected people (I), and the number of removed persons (R).1 We call our model SIR for 

simplification of notation. The SIR model is a system of ordinary differential equations as:  

 

 
𝑑𝑆
𝑑𝑡 = −𝛽𝐼(𝑡)𝑆(𝑡), (1) 

 𝑑𝐼
𝑑𝑡 = 𝐼(𝑡)[𝛽𝑆(𝑡) − 𝛾] (2) 

 𝑑𝑅
𝑑𝑡 = 𝛾𝐼(𝑡), (3) 

 

where 𝛽 and 𝛾 are real and positive parameters of the initial exponential growth and final 

exponential decay of the infected population I. where β represents the effective transmission rate 

and γ represents the removal or the recovery rate. γ is defined as the inverse of the duration of 

recovery d (γ = 1/d). 

 

In the first difference form, we have 

  

 𝑆!"# − 𝑆! = −𝛽𝐼!𝑆! , (4) 

 𝐼!"# − 𝐼! = 𝐼!(𝛽𝑆! − 𝛾), (5) 

 𝑅!"# − 𝑅! = 𝛾𝐼! . (6) 

It is well known that managing a SIR epidemic means modifying the constants 𝛽 and 𝛾.  

 

To account for learning, we assume that the parameters 𝛽  and 𝛾  are time-varying. 

However, we have data on several countries and the equations above cannot hold exactly so we 

introduce error terms for country 𝑖 ∈ ℐ = {1,… , 𝑛} and time 𝑡 ∈ 𝒯 = {1,… , 𝑇}. We write (𝑖, 𝑡) ∈

ℐ × 𝒯 ≡ 𝒥.  

Therefore, we have the modified SIR model:  

 

 
1 Following from Cooper et al. (2020), susceptible are the people who are not infected. Note that those people of 
course could become or not infected. Over time and with the various waves of pandemic as more people get infected, 
more people become infectious. Infectious people have been infected by the virus and can transmit it. Lastly removed 
people from the virus are now either immune or dead. 
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 𝑆$,!"# − 𝑆$,! = −𝛽$,!𝐼$,!𝑆$,! + 𝑣$,!,#, (7) 

 𝐼$,!"# − 𝐼$,! = 𝐼$,!(𝛽$,!𝑆$,! − 𝛾$,!) + 𝑣$,!,&, (8) 

 𝑅$,!"# − 𝑅$,! = 𝛾$,!𝐼$,!	∀(𝑖, 𝑡) + 𝑣$,!,' ∈ 𝒥. (9) 

Let the parameters be  

 

 𝜽$,! = B
𝛽$,!
𝛾$,!
C. (10) 

For statistical inference we assume a panel vector autoregressive model for the parameters:  

 

 𝜽$,! = D
𝑎$,#
𝑎$,&F + D

𝑎$,## 𝑎$,#&
𝑎$,&# 𝑎$,&&F 𝜽$,!(# + B

𝒙)$,!(#𝜶#
𝒙$,!(#𝜶&

C D
𝑣$,!,*
𝑣$,!,+F ⇒ (11) 

 𝜃$,! = 𝑎$ + 𝐴$𝜃$,!(# + 𝑿$,!(#𝜶 + 𝑣M$,! , (12) 

 

where 𝒙$,!  are a 𝑘 × 1  pre-determined regressors with coefficients, 𝜶#, 𝜶& ∈ ℝ, , 𝑿$,!(# =

P
𝒙)$,!(#

𝒙)$,!(#
Q , 𝜶 = D

𝜶#
𝜶&F 𝑣M$,! = D

𝑣$,!,*
𝑣$,!,*F, and 𝑣$,!,* and 𝑣$,!,+ are statistical error terms.2  

 

The central question is whether there is learning in dealing with COVID-19. It is well 

known that parameters 𝛽 and 𝛾 depend on social distancing, other government measures, as well 

as underlying fundamental characteristics in 𝑥$,!. The first question we deal with is whether 𝛼# =

𝛼& = 0. 

 

The second and, perhaps, more important question is whether there is any Bayesian 

learning about 𝜽$,! (that is, 𝛽 and 𝛾 over countries and time) or a different type of learning –as 

we know Bayesian learning is the only coherent way of updating beliefs in the light of the data. 

 

There are various posteriors that we can use in this context. First, define 𝜽! =

U𝜽$,!	∀𝑖 ∈ ℐV. One can consider the posterior 𝑝(𝜽!|𝐷!(#) where 𝐷!(# is data up to period 𝑡 − 1. 

Another posterior can be 𝑝(𝜽|𝐷) where 𝐷 denotes the entire data and 𝜽 = [𝜽)!	∀𝑡 ∈ 𝒯]. As 

 
2It is possible to include 𝒙!,# instead of 𝒙!,#$% and, in fact, we test for it. When the interval of observation is short, 
this assumption can be easily defended as it takes actiom to implement announced policy measures.  
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𝑝(𝜽!|𝐷!(#) converges to 𝑝(𝜽|𝐷) this does not allow us to test for Bayesian learning.  

 

2.2. Random walk behavior of the 𝜷 and 𝜸  

Our first test for Bayesian learning is whether 𝜽$,!  follows a random walk with drift 

conditional on the x-,.s, that is whether we have:  

 

 𝐻: 𝑎$,#& = 𝑎$,&# = 0,   for	some	or	all	𝑖	 ∈ ℐ. (13) 

In this case, we would have, from (11), we would have:  

 

 𝜽$,! = D
𝑎$,#
𝑎$,&F + B

𝑎$,## 0
0 𝑎$,&&

C 𝜽$,!(# + B
𝒙)$,!(#𝜶#
𝒙$,!(#𝜶&

C D
𝑣$,!,*
𝑣$,!,+F. (14) 

 

Conditionally on the 𝐱-,.s, β-,. and γ-,. follow random walks with drifts a-,# and a-,&:  

 

 𝛽$,! = 𝑎$,# + 𝑎$,##𝛽$,!(# + 𝒙)$,!(#𝜶# + 𝑢$,!,', (15) 

 𝛾$,! = 𝑎$,# + 𝑎$,&&𝛾$,!(# + 𝒙)$,!(#𝜶& + 𝑢$,!,*. (16) 

 

If, indeed, (13) is correct for some or all i ∈ ℐ, then some policy effects in (𝐱-,.) may be 

significant but conditional on them, no other actions are taken to correct the values of β-,. and γ-,.. 

If (13) is rejected, then one might lean to believe that there are actions based on some type of 

learning that induce other sorts of policy actions to reduce the values of β-,. and γ-,.. How do we 

know this is Bayesian learning, however? The answer is that it comes through formal inference.  

 

2.3. Comparing Bayesian learning with actual learning 

Although Bayesian learning is known to be optimal, there might be other types of learning 

which we can estimate from calibrated time-varying parameters of the SIR model. In the absence 

of learning, we would expect the two parameters of the SIR model to follow random walks. Such 

other types of learning can be compared formally with optimal (Bayesian) learning. The 

comparison is performed formally through Bayes factors based on marginal likelihoods derived 

from Sequential Monte Carlo) also known as particle filtering techniques. 
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This would require other estimates of 𝛽$,! and 𝛾$,! that can be calibrated from the data 

and, in turn, check whether these are “broadly” consistent with (14). Several works calibrate these 

parameters for the whole sample see, for example, Schaback (2020), and Cooper et al. (2020) set 

the parameters of the SIR model by visual inspection. Another approach is setting the model to 

estimate time-varying parameters as follows:  

 𝛽m$,! = 𝑅/,$,!𝛾n$,! , (17) 

 

where 𝑅/  represents the famous “R-zero-index” (reproduction ratio, the average number of 

individuals infected by a single infected individual when everyone else is susceptible). Another 

estimate is: 

  

 𝛽m$,! = 𝑅$,!𝛾n$,! , (18) 

 

where ℛ$,! is the adjusted reproduction number, defined as 𝑅$,! = 𝑅/,$,!
0&,'()
1&

 (the average number 

of individuals infected by a single infected individual when a fraction 0&,'()
1&

 of individuals is 

susceptible) and  

 

 𝛾n$,! =
𝑅$,!"# − 𝑅$,!

𝐼$,!
. (19) 

Perhaps it is more reasonable to set  

 𝛾n$ = 𝑇(#pq
𝑅$,!"# − 𝑅$,!

𝐼$,!
r

2

!3#

, (20) 

 

but this cannot be compared fully with our 𝜽$,! unless we have a steady state which is a strong 

assumption. The estimates in (17) and (19) although noisier, provide at least a good benchmark of 

comparison with (14).  

 

We assume that the error terms  
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 𝒗$,! ∼ 𝒩(0, Σ), (21) 

so, all errors are correlated. Our priors on the parameters are  

 

 
𝑝(𝑎$) ∝ const. ,
𝑝(𝐴$) ∝ const.
𝑝(Σ) ∝ |Σ|('/&,

 (22) 

 

see Zellner (1971, page 225 formula 8.9). For statistical inferences, we use Sequential Markov 

Carlo also known as Particle Filtering (see Technical Appendix A).  

 

3. Data 

We draw on three data sources. The NPI data is from the Oxford COVID-19 Government 

Response Tracker (OxCGRT) (Hale et al., 2020), and country-level controls are from the World 

Bank Development Indicators. The daily COVID-19 case data for the SIR model are from the 

Johns Hopkins University’s Center for Civic Impact. OxCGRT collects publicly available 

information on 19 indicators of government responses related to containment and closure policies, 

economic policies, and health system policies, which are combined into four indices ranging from 

0 to 100. The indices include the number and strictness of government policies and do not indicate 

appropriateness or effectiveness response.  

 

We control for GDP based constant 2010 US dollars, population density, median age, 

proportion of the population aged 65 and older, proportion of population age 70 and older, GDP 

per capita, cardiovascular death rate, diabetes prevalence, hospital beds per thousand people, life 

expectancy, and human development index. We also group the countries by regions due to a greater 

propensity to learn from regional countries: Western Europe, Eastern Europe, Southern Europe, 

Northern Europe, Asia & Pacific, and Americas.  

 

Data on government interventions are from Hale et al., (2020) and concern three main areas 

of interventions: a) containment and closure, b) health system, and c) economic stimulus. All the 

indicators are available on a daily and monthly basis. The containment and closure interventions 

include eight sub-indicators: i) school closing, ii) workplace closing, iii) cancellation of public 

events, iv) restrictions on gatherings size, v) public transport closed, vi) stay at home requirements, 
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vii) restrictions on internal movement, and viii) restrictions on international travel. The second 

area of interventions include health system: i) public information campaigns, ii) testing policy, and 

iii) contact tracing. Since these policies help to cope with the pandemic quicker, they may be also 

discounted in stock prices.  

 

The third area includes economic stimulus packages such as: income support, and debt or 

contract relief for households (Finck and Tillmann 2021). These stimulus affect the economy 

through various channels. For instance, stimulus supports consumption and spending in times of 

distress; hence, they may significantly affect local equity markets. Finally, besides the individual 

measures, we also consider the overall Stringency Index by Hale et al. (2020). The index 

aggregates the data pertaining is re-scaled to create a score between 0 and 100. This index provides 

a synthetic measure of the intensity of different non-medical government interventions during the 

pandemic. Table 1 reports the main descriptive statistics of our sample. 

 

 
Table 1. Descriptive statistics (N = 41,706 country-date observations). 

  
  Mean Std Min Max 
 
Containment and closure policies 

 

School closing 2.0944 1.0303 0 3 
workplace closing 1.5608 0.9575 0 3 
Cancelled public events 1.5505 0.7236 0 2 
Restrictions on gathering 2.7339 1.4338 0 4 
Closed public transport 0.6736 0.7598 0 2 
Stay at home requirements 1.1250 0.9331 0 3 
Restrictions on internal 
movement 

1.0404 0.9053 0 2 

International travel controls 2.8152 1.1213 0 4 
 
Economic policies 

    

Income support 0.9434 0.7694 0 2 
Debt contract relief 1.1162 0.8224 0 2 
Fiscal measures 188 m 9,94 bn -0.01 1,19 bn 
International support 20,7 m 4,09 bn 0 834 bn 

 
Health system policies 

    

Public information campaigns 1.9041 0.3543 0 2 
Testing Policy 1.7896 0.8165 0 3 
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Contact tracing  1.4810 0.6526 0 2 
Emergency investment in 
health care 

5008834 350000000 0 63 bn 

Investment in vaccines 548055.8 44500000 0 7,86 bn 
Facial coverings 2.1056 1.4305 0 4 

 
Indices based on actions 

    

Stringency index 59.4632 22.6222 0 100 
Government response index 54.4140 16.9675 0 89.17 
Government response index 
for display 

54.4140 16.9675 0 89.17 

Containment health index 55.4277 17.4137 0 91.35 
Containment health index for 
display 

55.4277 17.4137 0 91.35 

Economic support index 47.8253 31.1172 0 100 
Economic support index for 
display 

47.8253 31.1172 0 100 

 
Controls 

    

GDP (constant 2010$) 451 bn 1,3 bn 1,17 bn 11,5 bn 
Population density 211.0070 734.0610 1.9800 7915.731 
Median age 31.5465 8.8935 15.1000 48.2000 
Age 65 and older 9.3107 6.3886 1.1440 27.0490 
Age 70 and older 5.9627 4.4289 0.5260 18.4930 
GDP/capita (constant 2010 %)  20833.25 20628.450 661.240 116935.6 
Cardiovascular death rate 253.6085 122.4997 79.3700 724.4170 
Diabetes prevalence 7.7964 3.8890 0.9900 22.0200 
Hospital beds per thousand 3.0014 2.4750 0.1000 13.0500 
Life expectancy  73.8849 6.7793 53.2800 84.6300 
Human development index 0.7323 0.1476 0.3540 0.9530 

Source: Oxford COVID-19 (OxCGRT) (Hale et al., 2020), and country-level controls are from the 
World Bank Development Indicators.  

 

All the changes in government policies are tracked daily and monthly. Therefore, when we 

perform the regressions based on weekly returns, we calculate the weekly averages for the 

considered period. 

 

4. Results 

4.1 Estimates of 𝜷𝒕 and 𝜸𝒕. 

 

Primarily, our modelling would reveal whether there is learning in dealing with COVID-

19. To this end, we provide Bayesian estimates of 𝛽  and 𝛾  and then we test whether these 
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parameters depend on social distancing, other government measures, as well as underlying 

fundamental characteristics in 𝑥$,! in Equations (15) and (16).  

 

In Figures 1 (see Appendix for details regarding estimations) we present results about 

recursive posterior-mean-estimates of filtered (viz. posterior means from SMC/PF) 𝛽! and 𝛾!. In 

detail, Figure 1 presents the plots of 𝛽!  and 𝛾!  by the regions over time. Note that 𝛽!  is the 

parameter estimate of initial exponential growth of the infected population It in Equations (1) and 

(2), while 𝛾! is the parameter estimate of the final exponential decay of the infected population It.  

 

Clearly, our results show that across all regions of the world the magnitude of 𝛽! is much 

higher than that of 𝛾! over the sample period, suggesting that COVID-19 is not diminishing. Also, 

it is worth noting that there is substantial variation of 𝛽!, suggesting some cyclicality, in Asia, 

Europe and North America. This observed variability is expected given that COVID-19 is a SARs 

type of infection that follows a cycle. Somewhat worrying is the fact that both 𝛽! and 𝛾! by the 

regions do not appear to diminish over time. 

 

Figure 1. 𝜷𝒕 and 𝜸𝒕 by the regions. 

  
Note: Authors’ estimations. 
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As above, Figure 2 and Figure 2a presents the time-varying parameters of 𝛽! and 𝛾! over 

time by the selected countries and UK. We also note in those plots variation across different 

countries, specifically for 𝛽!. 

Figure 2. 𝜷𝒕 and 𝜸𝒕 by selected countries. 

 

 
Figure 2a. 𝜷𝒕 and 𝜸𝒕 for UK. 

 
Source: Authors’ estimations. 
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The Figure 3 presents interesting box plots of 𝛽!	and 𝛾!	effects by regions at end of 

sample period. 

Figure 3. Box plots of relative beta 𝜷𝒕	and 𝜸𝒕	effects by regions, end of sample period. 

  
 

 

Note: Authors’ estimations. 

In addition to the above evidence, we are testing whether there is any Bayesian learning 

about 𝛽 and 𝛾 over countries and time or a different type of learning. If Bayesian learning has 

taken place that will be of importance as it would imply that the updating beliefs in the light of the 

data has been also taken place. Although Bayesian learning is known to be optimal, there might 

be other types of learning which we can estimate from calibrated time-varying parameters of the 

SIR model. In the absence of learning, we would expect the two parameters of the SIR model to 

follow random walks. Such other types of learning can be compared formally with optimal 

(Bayesian) learning.  

 

In the absence of Bayesian learning, we would expect the two parameters of the SIR model 

to follow random walks. In Figure 4 we present 𝛽! and 𝛾! by selected countries.  
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Figure 4. Parameter estimates of 𝜷𝒕 and 𝜸𝒕 resulting from a random walk by selected 

countries. 

  

  

Note: Authors’ estimations. 

 

4.2 Estimates of Bayes factors for testing for Bayesian learnings 

 

In addition to the above evidence, we are testing in this section whether there is any 

Bayesian learning by estimating Bayes factors for its simplicity in the interpretation. Figure 5 and 

Figure 5a presents recursive Bayes factors in favor of a random walk. Evidently, the odds in favor 

of random walk behavior in filtered 𝛽! and 𝛾! are great and support the idea of a random walk. 

Therefore, it seems that the is no evidence of Bayesian learning across the world and the UK. This 

is a concern from an epidemiological point of view as the COVID-19 would show persistence over 

time. 
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Figure 5. Recursive Bayes factors in favor of a random walk in both 𝜷𝒕 and 𝜸𝒕. 

Selected regions.   Selected countries 

  

Note: Authors’ estimations. 

 

Figure 5a. Recursive Bayes UK factors in favor of a random walk in both 𝜷𝒕 and 𝜸𝒕. 

 
Note: Authors’ estimations. 

In Figures 6 we provide Bayes factors in favor of the estimates in (18) and (19), and against 

the Bayesian (learning) model. As these predictive Bayes factors are marginal, the Bayesian model 
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receives some support in the light of the data, although the evidence is weak. So, there is little 

(anecdotal) evidence of Bayesian learning on the part of the authorities. 

 

Figure 6. Recursive Bayes factors against Bayesian learning and in favor of calibrated 

time-varying values. 

 

  
Note: Authors’ estimations. 

In Figure 7 we report Bayes factors in favor of restricted time-varying-parameter panel 

VAR and against certain more restricted models which are overwhelmingly rejected by the data 

including as well as panel VAR model without the policy covariates. A random walk model 

without covariates is marginally rejected showing that a random walk hypothesis could be 
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consistent with the data. 

 

Figure 7. Recursive Bayes factors in favor of a model with time-varying and against 

constant but country-specific coefficients 

 

 

Note: Authors’ estimations. 

4.3 Estimates of the effects of covariates of 𝜷𝒕 and 𝜸𝒕 

In Equation (12) we have a plethora of covariate of 𝛽! and 𝛾!. Notably, we have 𝒙$,! that is 

a 𝑘 × 1  pre-determined regressors with coefficients, 𝛼#, 𝛼& ∈ ℝ, . This section presents the 

parameter estimates of the covariates of 𝛽! and 𝛾!. All parameter estimates carry the expected 

sign, for example all containments and closure policies negatively affect 𝛽! while they assert a 

positive effect on 𝛾!. Equivalently, it is true for the remaining covariates.  
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Table 2. The effect of covariates of 𝜷𝒕 and 𝜸𝒕 

Source: Authors’ estimations. 
 

Covariate 𝛽! 𝛾!  𝛽! 𝛾! 
Containment and closure policies Economic policies 

School closing -0.014 0.001 Income support -0.015 -0.001  
  (0.0034) (0.0030)  (0.0050) (0.0007) 

workplace closing -0.020 0.002 Debt contract 
relief 

-0.003 -0.002 
 

(0.0012) (0.0040)  (0.0020) (0.0030) 
Cancelled public events -0.015 0.001 Fiscal 

measures 
-0.006 -0.005 

 
(0.0040) (0.0020)  (0.0011) (0.0016) 

Restrictions on gathering -0.023 -0.002 International 
support 

-0.003 -0.001 
 

(0.0017) (0.0010)  (0.0012) (0.0006) 
Closed public transport -0.005 -0.001     

(0.0013) (0.0003)    
Stay at home requirements -0.004 -0.001     

(0.0012) (0.0001)    
Restrictions on internal 
movement 

-0.032 -0.005    
 

(0.0040) (0.0020)    
International travel controls -0.036 0.000     

(0.0060) (0.0001)    
Health system policies 

  
Action Indices  

Public information 
campaigns 

-0.002 -0.001 Stringency 
index 

-0.005 -0.001 
 

(0.0005) (0.0004)  (0.0013) (0.0004) 
Testing Policy -0.032 -0.005 Government 

response index 
-0.017 -0.002 

 
(0.0050) (0.0010)  (0.0200) (0.0011) 

Contact tracing  -0.004 -0.001 Government 
response index 
for display 

-0.003 -0.001 

 
(0.0100) (0.0004)  (0.0013) (0.0010) 

Emergency investment in 
health care 

-0.035 -0.005 Containment 
health index 

-0.003 0.000 
 

(0.0040) (0.0005)  (0.0010) (0.0014) 
Investment in vaccines -0.004 -0.001 Containment 

health index for 
display 

-0.005 0.000 

 
(0.0010) (0.0012)  (0.0013) (0.0002) 

Facial coverings -0.032 -0.004 Economic 
support index 

-0.002 -0.001 
 

(0.0120) (0.0013)  (0.0003) (0.0007)    
Economic 
support index 
for display 

-0.004 -0.002 

   
 (0.0025) (0.0020) 

 Controls  
  

   
GDP (constant 2010 $) -0.003 -0.002 Cardiovascular 

death rate 
0.002 0.001 

 
(0.0028) (0.0020)  (0.0010) (0.0010) 

Population density 0.004 0.000 Diabetes 
prevalence 

0.004 0.001 
 

(0.0014) (0.0002)  (0.001) (0.0020) 
Median age 0.005 0.000 Hospital beds 

per thousand 
-0.005 -0.001 

 
(0.0100) (0.0030)  (0.0012) (0.0020) 

Age 65 and older 0.003 0.000 Life 
expectancy  

0.005 -0.003 
 

(0.0014) (0.0002)  (0.0012) (0.0030) 
Age 70 and older 0.003 0.000 Human 

Development 
-0.003 -0.001 

 
(0.0005) (0.0002)   (0.0013) (0.0020) 

GDP/capita (constant 2010 $)  0.005 0.004     
(0.0040) (0.0070)    
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Lastly, Table 3 reports additional model hypotheses. These hypotheses confirm results 

above, that is: SIR parameters are time-varying; and they follow a random walk. 

Table 3: Additional model hypotheses testing  

Hypotheses 
 

Bayes factor 
 

H: Covariates jointly significant                                   14.28 1013 

H: Time-invariant SIR with covariates        2.59 10-4 

H: Time-invariant SIR without covariates 3.52 10-7 

H: Policy instruments lagged               4.59 10-4 

H: Second-order panel VAR 3.81 10-5 

H: Omit cross-sectionally different parameters 4.40 10-12 

H: Omit cross-sectional different parameter in panel VAR  
without covariates 5.81 10-9 

H: Random walk without covariates       11.212 
H: Break (change of parameters in the middle of the sample)   2.33 10-6 

Note. Reported are Bayes factors in favor of the various hypotheses H. Bayes factors 

above 100, are considered as providing “decisive evidence” in favor of a hypothesis.  

 

Table 3a reports model hypotheses for UK, showing that SIR parameters are time-varying; 

and they follow a random walk. 

Table 3a: Additional model hypotheses testing 

Hypotheses Bayes factor 

H: Covariates jointly significant                                   2.21 109 

H: Time-invariant SIR with covariates        3.77 10-5 

H: Time-invariant SIR without covariates 4.06 10-6 

H: Policy instruments lagged               2.17 10-7 

H: Second-order panel VAR 2.55 10-6 

H: Omit cross-sectionally different parameters 2.32 10-9 

H: Omit cross-sectional different parameter in panel VAR  
without covariates 2.44 10-7 

H: Random walk without covariates       17.51 
H: Break (change of parameters in the middle of the sample)   4.13 10-5 

Note. Reported are Bayes factors in favor of the various hypotheses H. Bayes factors 

above 100, are considered as providing “decisive evidence” in favor of a hypothesis.  

 

5. Repayment of household debt: the case of UK 

In this section we relate the repayment of household debt in the UK (which is the country 

of interest), denotes 𝐷!, (in logs) with estimates of 𝛽$,! and 𝛾$,!, viz. the main epidemiological 
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parameters using the following panel VAR model: 

 

𝐷$,! = 𝑎/ + 𝑎#𝛽$,!(# + 𝑎&𝛾$,!(# + 𝒙)$,!(#𝜹# + 𝑒$,! ,																																			(23) 

 

where 𝑎/, 𝑎# , 𝑎&  and 𝜹𝟏	 are unknown parameters, 𝒙$,!  has been introduced before the 

epidemiological parameters are lagged once to allow for the hypothesis that households use a one-

month planning horizon and 𝑒$,! is an error term. As the number of monthly observations is small, 

we impose a tight prior on the parameters of (23), viz. the coefficients have normal 𝑁(0,1) priors 

and the error variance follows the standard Jeffreys prior. The posterior means of 𝑎# and 𝑎& are 

respectively -0.0012 (0.002) and 0.0015 (0.000056) so, only the infection rate from infected to 

recovered seems to be statistically significant. All coefficients in 𝜹# are statistically significant. 

In the Figure 8 below we present the plot of actual versus one-step-ahead (dash line) predictions 

of debt repayments. The one step ahead predictions closely follow the actual debt repayments. 

Figure 8. UK household repayment one step ahead predictions. 

 
Note: Authors’ estimations 

 

In Figures 9 we report Impulse Response Functions (IRFs) of the VAR that shows the 

response of the main variable of our analysis household debt repayments to a plethora of COVID-



 
23 
 

19 related shocks. The IRFs concern 8 months ahead of one plus or minus standard deviation shock 

in the corresponding COVID-19 related shock. For example, Figures 9 shows that the response of 

household repayment to a shock in number of COVID-19 cases is positive over the first two 

months, though it is on declining trajectory, thereafter there is a roller coaster type of responses 

prior to convergence in three-month time. Similar patterns in the response of household debt 

repayments are observed to shocks of other variables in the remaining Figures. However, the IRF 

shows that the response of household debt repayments to a shock in international movement 

restrictions is negative in the first two months. This implies that shocks in international movement 

restrictions would negatively affect household debt repayments. So, despite consistency in IRFs 

across all shocks there is also some variability that warrants further analysis. 

 

Figure 9. IRF of response of household repayment to a shock in number of cases. 

  

 

 
Note: Authors’ estimations. 
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Table 4 reports the household repayment data dependance on betas and gammas. There is 

strong statistical and economic significance while the anticipated signs are reported as the gammas 

carries a negative sign while the beta a positive sign. It is worth reminding that where β represents 

the effective transmission rate and as such higher transmission rate would increase household debt 

repayments, while γ representing the recovery rate showing that has a negative impact on debt 

repayment. 

Table 4: Household repayment data dependance on beta and gamma. 
beta gamma 

 Post mean post sd post z Post mean post sd post z 
1 0.006164 0.4796 4.17 -0.5029 0.3195 6.259 
2 0.1981 0.3088 6.476 -0.4398 0.3592 5.568 
3 0.2734 0.04624 43.25 -0.5943 0.4389 4.557 
4 0.2569 0.1073 18.64 -0.1064 0.1397 14.32 
5 0.968 0.09365 21.36 -0.9491 0.008848 226.1 
6 0.8711 0.2007 9.966 -0.6961 0.04072 49.12 
7 0.0007291 0.4888 4.092 -0.3752 0.2378 8.409 
8 0.8706 0.4388 4.558 -0.9815 0.1988 10.06 
9 0.514 0.1453 13.77 -0.3845 0.001744 1147 
10 0.4791 0.02738 73.04 -0.6089 0.4722 4.235 
11 0.7029 0.09446 21.17 -0.225 0.09582 20.87 
12 0.5616 0.03438 58.18 -0.3975 0.06501 30.76 

Note: Authors’ estimations. 

 

6. Concluding remarks 

In this study, we have developed and implemented a time-varying parameter SIR model 

for COVID-19. Though heuristic and analytical learning are less feasible in a pandemic setting, 

aggregation of decisions over the COVID-19 emergence may drive Bayesian learning from 

previous priors. Our estimates of time-varying parameters can be of interest to a wider audience. 

We summarize our main results as follows. First, we find definite evidence that the proposed model 

with time-varying β. and γ. in the panel, VAR is better than a model with constant coefficients, 

conditional on the covariates, and with time-varying β. and γ.in the panel, VAR is not better than 

a random walk model conditional on the covariates. This provides some first evidence against 

Bayesian learning. Second, we find some, but in no way definite, evidence that the proposed with 

time-varying β, γ in panel VAR are better, in the light of the data, compared to a model with 
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calibrated time-varying coefficients. This is weak evidence in favor of Bayesian learning, 

conditional on the covariates. The evidence is weak and therefore not decisive. Finally, from 

figures 1—3, β/γ less than 1 in most cases. Quantitative evidence on time-varying β, γ although 

no better (in a decisive way) than calibrated time-varying values implying that it is doubtful 

whether Bayesian (optimal) learning is taking place on the part of the authorities. In an UK 

empirical application of the parameter estimates of our model, we find that higher transmission 

rate would increase household debt repayments, while the recovery rate showing that has a 

negative impact on debt repayment. 

 

Our findings inform current discussions in policy learning during COVID-19. A more 

primary point of concern is the ability of policymakers to calibrate NPI responses to manage β/γ. 

However, we find that policymakers are unable to adapt their NPI response to flattening the curve. 

Though past research has highlighted that there is diffusion in policy adoption and calls for a focus 

on optimal adoption timing (Sears et al., 2020), our findings show that though adoption may have 

occurred sooner, calibration is not present due to no support for Bayesian learning. Due to the 

inability to calibrate countries may have missed opportunities to fine-tune their NPI response. With 

changes between stringency and relaxation in NPIs, lack of Bayesian learning also implies 

mistiming in such policies. On a more secondary note, politicians taking credit for flattening the 

curve may be remiss on the fact that learning was minimal, if at all.  
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Appendix. MCMC and Particle filtering 

We use a recent advance in sequential Monte Carlo methods known as the particle Gibbs 

(PG) sampler, see Andrieu et al. (2010). The algorithm allows us to draw paths of the state 

variables in large blocks. Particle filtering is a simulation-based algorithm that sequentially 

approximates continuous, marginal distributions using discrete distributions. This is performed by 

using a set of support points called ‘‘particles’’ and probability masses; see (D. Creal, 2012) for a 

review.  

 

The PG sampler draws a single path of the latent or state variables from this discrete 

approximation. As the number of particles M goes to infinity, the PG sampler draws from the exact 

full conditional distribution. As mentioned in (Creal and Tsay, 2015): “The PG sampler is a 

standard Gibbs sampler but defined on an extended probability space that includes all the random 

variables that are generated by a particle filter. Implementation of the PG sampler is different than 

a standard particle filter due to the ‘‘conditional’’ resampling algorithm used in the last step. 

Specifically, for draws from the particle filter to be a valid Markov transition kernel on the 

extended probability space, Andrieu et al. (2010) note that there must be a positive probability of 

sampling the existing path of the state variables that were drawn at the previous iteration. The pre-

existing path must survive the resampling steps of the particle filter. The conditional resampling 

step within the algorithm forces this path to be resampled at least once. We use the conditional 

multinomial resampling algorithm from Andrieu et al. (2010), although other resampling 

algorithms exist, see Chopin and Singh (2015)” (page 339).  

 

We follow D. D. Creal and Tsay (2015). Suppose the posterior is 𝑝(𝜃, Λ#:2|𝒚#:2) where 

Λ#:2  denotes the latent variables whose prior can be described by 𝑝(Λ!|Λ!(#, 𝜃) . In the PG 

sampler we can draw the structural parameters 𝜃|Λ#:2 , 𝒚#:2  as usual, from their posterior 

conditional distributions. This is important because, in this way, we can avoid mixture 
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approximations or other Monte Carlo procedures that need considerable tuning and may not have 

good convergence properties. As such posterior conditional distributions, we omit the details and 

focus on drawing the latent variables.  

 

Suppose we have Λ#:2
(#)  from the previous iteration. The particle filtering procedure consists 

of two phases.  

 

Phase I: Forward filtering (Andrieu et al., 2010).  

• Draw a proposal Λ$,!
(:) from an importance density 𝑞(Λ$,!|Λ$,!(#

(:) , 𝜃),𝑚 = 2,… ,𝑀.  

 

• Compute the importance weights:  

 
 

 
𝑤$,!
(:) =

𝑝(𝑦$,!; 𝛬$,!
(:), 𝜃)𝑝(𝛬$,!

(:)|𝛬$,!(#
(:) , 𝜃)

𝑞(𝛬$,!|𝛬$,!(#
(:) , 𝜃)

,𝑚

= 1,… ,𝑀. 

(A.1) 

 

 

• Normalize the weights: 𝑤�$,!
(:) = ;&'

(+)

∑ ;&'
(+-).

+-/)

, 𝑚 = 1,… ,𝑀.  

 

• Resample the particles {Λ$,!
(:), 𝑚 = 1,… ,𝑀} with probabilities {𝑤�$,!

(:), 𝑚 = 1,… ,𝑀}.  

 

In the original PG sampler, the particles are stored for 𝑡 = 1,… , 𝑇 and a single trajectory is 

sampled using the probabilities from the last iteration. An improvement upon the original PG 

sampler was proposed by Whiteley et al. (2010), who suggested drawing the path of the latent 

variables from the particle approximation using the backwards sampling algorithm of Godsill et 

al. (2004). In the forwards pass, we store the normalized weights and particles, and we draw a path 

of the latent variables as we detail below (the draws are from a discrete distribution).  

 

Phase II: Backward filtering (Chopin & Singh, 2015; Godsill et al., 2004).  
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• At time 𝑡 = 𝑇 draw a particle Λ$,2∗ = Λ$,2
(:).  

 

• Compute the backward weights: 𝑤!|2
(:) ∝ 𝑤�!

(:)𝑝(Λ$,!"#∗ |Λ$,!
(:), 𝜃).  

 

• Normalize the weights: 𝑤�!|2
(:) =

;'|1
(+)

∑ ;'|1
(+-).

+-/)

, 𝑚 = 1,… ,𝑀.  

 
• Draw a particle Λ$,!∗ = Λ$,!

(:) with probability 𝑤�!|2
(:).  

 

Therefore, Λ$,#:2∗ = {Λ$#∗ , … , Λ$2∗ } is a draw from the full conditional distribution. The backwards 

step often results in dramatic improvements in computational efficiency. For example, Creal and 

Tsay (2015) find that 𝑀 = 100 particles are sufficient There remains the problem of selecting an 

importance density 𝑞(Λ$,!|Λ$,!(#, 𝜃). We use an importance density implicitly defined by Λ$,! =

𝑎$,! + ∑ 𝑏$,!?
@3# Λ$,!(#

@ + ℎ$,!𝜉$,!  where 𝜉$,!  follows a standard (zero location and unit scale) 

Student-t distribution with 𝜈 = 5 degrees of freedom. That is, we use polynomials in Λ$,!(# of 

order 𝑃. We select the parameters 𝑎$,! , 𝑏$,! and ℎ$,! during the burn-in phase (using 𝑃 = 1 and 

𝑃 = 2) so that the weights {𝑤�$,!
(:), 𝑚 = 1,… ,𝑀} and {𝑤�!|2

(:), 𝑚 = 1,… ,𝑀} are approximately 

not too far from a uniform distribution.  

 

Chopin and Singh (2015) have analyzed the theoretical properties of the PG sampler and 

proved that the sampler is uniformly ergodic. They also prove that the PG sampler with backwards 

sampling strictly dominates the original PG sampler in terms of asymptotic efficiency.  

 

Alternatively, when the dimension of the state vector is large, we can draw Λ$,#:2 , 

conditional on all other paths Λ($,#:2 that are not path 𝑖. Therefore, we can draw from the full 

conditional distribution 𝑝(Λ$,#:2|Λ($,#:2 , 𝒚#:2 , 𝜃).  

 

 

Implementation and recursive Bayes factors 
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Our implementation relies on 150,000 MCMC iteration with a burn-in length of 50,000 to 

mitigate possible start up effects, and we use 1,000 particles per MCMC iteration. The marginal 

likelihood is a direct by-product of the SMC algorithm so, recursive Bayes factors, which are ratios 

of marginal likelihoods, are easy to compute. The convergence of MCMC is tested successfully 

using the standard diagnostics of Geweke (1992). 

 

To compute the Bayes factor in favor of (18) and (19), and against the Bayesian panel data 

time-varying parameters model, we plug in (7) and (8) the estimates from (18) and (19) into (7) – 

(9). We still estimate the covariance matrix 𝜮 by Bayesian methods so that we can compute the 

marginal likelihood of this model easily using the Laplace approximation (DiCiccio et al., 1997; 

Lewis & Raftery, 1997). As the marginal likelihood of the Bayesian model is a by-product of SMC 

the two can be compared to obtain the Bayes factors. On the (DiCiccio et al., 1997) and Lewis and 

Raftery (1997)approximation, we proceed as follows: Given a likelihood function 𝐿(𝜃; 𝑌) that 

depends on parameters 𝜃 ∈ Θ ⊆ ℝA and data 𝑌, a prior 𝑝(𝜃) and a posterior given by Bayes’ 

theorem 𝑝(𝜃|𝑌) ∝ 𝐿(𝜃; 𝑌)𝑝(𝜃) the marginal likelihood or evidence is a standard way for model 

selection and model comparison in a Bayesian framework. The marginal likelihood is 𝑀(𝑌) =

∫ 𝐿B (𝜃; 𝑌)𝑝(𝜃)d𝜃, viz. the integrating constant of the posterior: 𝑝(𝜃|𝑌) = C(D;F)@(D)
∫ C2 (D-;F)@(D-)AD-

. The 

marginal likelihood can be approximated using the identity (for all 𝜃 ): 𝑀(𝑌) = C(D;F)@(D)
@(D|F)

. 

DiCiccio et al. (1997) propose to approximate the denominator with a normal distribution around 

the posterior mean, 𝜃� , yielding  

 

 𝑀(𝑌) =
𝐿(𝜃�; 𝑌)𝑝(𝜃�)
𝑝(𝜃�|𝑌)

= 𝐿(𝜃�; 𝑌)𝑝(𝜃�)(2𝜋)A/&|𝑉� |#/&, (A.2) 

 

where 𝑉�  is the posterior covariance matrix of 𝜃. Both 𝜃�  and 𝑉�  can be estimated easily using 

MCMC output.  

 

 

 


