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Learning to Explore Distillability and Sparsability:
a Joint Framework for Model Compression

Yufan Liu, Jiajiong Cao, Bing Li, Weiming Hu, Stephen Maybank, Fellow, IEEE

Abstract—Deep learning shows excellent performance usually at the expense of heavy computation. Recently, model compression
has become a popular way of reducing the computation. Compression can be achieved using knowledge distillation or filter pruning.
Knowledge distillation improves the accuracy of a lightweight network, while filter pruning removes redundant architecture in a
cumbersome network. They are two different ways of achieving model compression, but few methods simultaneously consider both of
them. In this paper, we revisit model compression and define two attributes of a model: distillability and sparsability, which reflect how
much useful knowledge can be distilled and how many pruned ratios can be obtained, respectively. Guided by our observations and
considering both accuracy and model size, a dynamically distillability-and-sparsability learning framework (DDSL) is introduced for
model compression. DDSL consists of teacher, student and dean. Knowledge is distilled from the teacher to guide the student. The
dean controls the training process by dynamically adjusting the distillation supervision and the sparsity supervision in a meta-learning
framework. An alternating direction method of multiplier (ADMM)-based knowledge distillation-with-pruning (KDP) joint optimization
algorithm is proposed to train the model. Extensive experimental results show that DDSL outperforms 24 state-of-the-art methods,
including both knowledge distillation and filter pruning methods.

Index Terms—Knowledge distillation, Filter pruning, Structured sparsity pruning, Deep learning.
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1 INTRODUCTION

I N recent years, deep neural networks (DNNs) have achieved
huge success in various fields such as image classification [1],

object detection [2] and video understanding [3]. To solve chal-
lenging problems and pursue high performance, deeper and wider
architectures have been proposed at the expense of increased
storage and computation time. However, these cumbersome DNNs
fail to satisfy the efficiency requirement of edge devices. Model
compression has become a fundamental topic in the search for
greater efficiency. The aim is to obtain a lightweight DNN model
with acceptable performance. In this field, diverse techniques have
been tried, including filter pruning [4], knowledge distillation [5],
low-rank decomposition [6], parameter quantization [7], etc. A-
mong them, filter pruning and knowledge distillation are two
widely explored techniques, because of their hardware-friendly
capabilities and no requirement for special libraries.

For knowledge distillation (KD) methods, a lightweight net-
work (called a student network) is trained to mimic a large network
(called a teacher network) [8]. With the guidance of the teacher
network, the student network can achieve better performance,
compared with the performance obtained by training without the
guidance. However, KD methods only aim to improve the accuracy
of the student network. They ignore the problem of selecting the
architecture. The student’s architecture is pre-defined and fixed
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during training. Recent work [9] shows that the architecture is
crucial to the performance of compressed models.

In filter pruning methods, a cumbersome network is reduced to
a sparse network. The filter pruning methods impose a structured
sparsity regularization of the initial large network. However,
model pruning is only used to obtain a compact architecture.
Current methods do not take full advantage of the knowledge in the
original large model. Some recent works [10], [11], [12] explore
methods for balancing performance and model size, by combining
KD and structured sparsity pruning. Most of the methods are
limited to a straightforward loss combination. In contrast, our
experiments show that dynamical joint learning of these two
aspects is crucial to the final model performance.

We analyze the two aspects of performance and architecture
during compression-aware training. In particular, we find that
there are two important characteristics of the student model, i.e.,
distillability and sparsability. Distillability refers to the density of
useful knowledge that can be distilled from the teacher network. It
measures the performance gain of the student under the guidance
of the teacher. For instance, one student network with higher
distillability obtains higher performance gain compared with that
of another student with lower distillability. Distillability can be
quantitatively analyzed in a layer-wise manner. As illustrated in
Fig. 1-(a), the bar graph shows the cosine similarity between
gradients of KD loss and those of ground truth (GT) loss. A larger
cosine similarity value indicates that the current distilled knowl-
edge is more beneficial to performance. In this way, the cosine
similarity can be a measure of distillability. According to Fig. 1-
(a), distillability increases as the layer becomes deeper. It explains
why common practice usually adds KD supervision only to the last
few layers. Further, the student also has different distillability at
different training epochs, because the cosine similarity changes as
training goes on. Thus, it is necessary to analyze the distillability
in a dynamic layer-wise manner during training.
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Fig. 1. Distillability and sparsability of a DNN. (a) Illustration of distillability. The curves plot the cosine similarity between the KD loss and the ground
truth loss at different blocks, as the training epoch changes. Note that “Our FC layer” represents the results of the DNN trained by our method. (b)
Illustration of sparsability. The bar and line graph depict the pruned ratios that the model can achieve with the same accuracy degradation (i.e.,
0.3%). Each bar represents the compressed model in which only the corresponding layer is pruned. Note that the experiment is conducted on
CIFAR10 using ResNet20.

On the other hand, the sparsability of the student network is a
measure of the number of pruned ratios that can be obtained, under
certain accuracy degradation. Higher sparsability indicates a larger
potential pruned ratio. As depicted in Fig. 1-(b), different layers
show different sparsability. Similar to distillability, sparsability can
be analyzed at the layer-level and the epoch-level. Nevertheless, to
the best of our knowledge, none of the existing methods explore
and analyze both distillability and sparsability as they change
during training. The methods that adopt a fixed training scheme
may fail to obtain an optimal solution.

To overcome the shortcomings of existing methods and prop-
erly utilize distillability and sparsability, we firstly analyze the
training procedure for model compression. Inspired by the re-
sults of the analysis, we propose a dynamically distillability-and-
sparsability learning framework (DDSL) for model compression.
It dynamically integrates KD and structure sparsity pruning and
adjusts the joint training procedure by assessing the distillability
and sparsability of the model. Rather than a “teacher-student”
framework, the proposed DDSL can be described as a “learning-
in-school” framework, which consists of three components: teach-
er, student and dean. The teacher teaches the student as before.
The dean controls the learning intensity and learning manner.
Given the current states of the teacher and the student, the
dean network assesses the distillability and sparsability of the
student network, and then it dynamically balances and controls
the supervision intensities of KD and structure sparsity pruning. To
optimize the proposed DDSL during training, we present an alter-
nating direction method of multiplier (ADMM)-based knowledge-
distillation-with-pruning (KDP) joint optimization algorithm to
update the student network. To optimize the dean network, a meta-
learning-based dean optimization algorithm is presented. Thanks
to the dynamical adjustment of supervision of our method, the
distillation supervision in reverse influences distillability. As can
be seen in Fig. 1-(a), our method delays the downward trend of
the distillability, and even increase the distillability by properly
utilizing the distilled knowledge. To the best of our knowledge,
this paper is the first attempt to explore the distillability and
sparsability of DNN for model compression, and to balance these
two aspects of model performance and pruned architecture. Our
main contributions in this paper are three-fold:

• We explore the attributes of model compression during
training, and obtain several observations which may in-
spire future model compression study. In particular, we

find that distillability and sparsability are two crucial
attributes for model compression.

• We propose a dynamically distillability-and-sparsability
learning framework (DDSL) for model compression,
which dynamically integrates KD and structure sparsity
pruning and adjusts the joint training procedure by assess-
ing the distillability and sparsability of the model.

• We propose an ADMM-based knowledge-distillation-
with-pruning (KDP) joint optimization algorithm and a
meta-learning-based dean optimization algorithm to op-
timize the overall framework.

2 RELATED WORK

2.1 Knowledge distillation
The concept of knowledge distillation is introduced by Hinton

et al. [5] based on a teacher-student framework. This method trans-
fers knowledge from the trained teacher to the student network.
Recently, it has been applied mainly to two areas: model compres-
sion [13] and knowledge transfer [14]. For model compression, a
compact small student model is trained to mimic the pre-trained
cumbersome teacher model.

Most knowledge distillation methods explore distilled knowl-
edge in order to guide the student network, including instance
feature, instance feature relationship and feature space transforma-
tion, etc. For instance feature, the related methods [5], [15] in the
early time distill logits at the end of the network. The logits reflect
the class distribution and contain more information than one-hot
label. In this manner, the student network can be improved by
learning more information. After that, features containing richer
spatial information from intermediate layers [16], [17], [18] are
extracted as the distilled knowledge. For example, FitNet [16]
extracts the feature maps of the intermediate layers as well as
the final output to teach the student network. Zagoruyko et al. [17]
define Attention Transfer (AT) based on attention maps to improve
the performance of the student network. More recently, structural
knowledge [19], [20], [21], e.g., instance feature relationship and
feature space transformation, has been presented, which represents
more comprehensive information. For example, Liu et al. [19] pro-
pose the Instance Relationship Graph (IRG) to represent instance
feature relationship and feature space transformation. It considers
the geometry of the feature spaces and allows for dimension-
agnostic transfer of knowledge. Yim et al. [21] present the Flow
of Solution Procedure (FSP) to transfer the inference procedure of
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the teacher, which can be seen as a feature space transformation
rather than the intermediate layer results.

Though the above methods have reached a milestone in
knowledge distillation, all of them follow a classic single-teacher-
single-student framework. Recently, some works have explored
new frameworks for knowledge distillation. For instance, [22]
and [23] propose a mutual learning framework where multiple
peer networks learn from each other. The papers [24] and [25]
present self-distillation frameworks that enable the network to
distill from itself. Meta learning methods are adopted to design
new frameworks. Jang et al. [26] make use of meta learning
to determine which information should be transferred during
knowledge transfer. Liu et al. [27] directly learn soft targets via
a meta network for self-distillation. However, nearly all of the
previous works perform optimization with a fixed student network.
A better resource-performance trade-off can be achieved, if the
architecture design is considered during training.

2.2 Structured sparsity pruning

In model compression, structured sparsity pruning directly
removes redundant neurons and channels rather than irregular
weights. Thus, it is hardware-friendly and has been widely applied
in recent years. Some works [28], [29], [30], [31], [32] aim
to exploit a criterion of the filter importance and prune the
unimportant filters, while some other works [33], [34], [35], [36]
devote to training the network with additional sparse constraints
and removing the sparse part of the network. For example, Li
et al. [28] consider that the parameters with small L1-norm are
less important. He et al. [29] calculate the geometric median of
the filters within the same layer and prune the filters near the
geometric median. Afterwards, HRank [30] uses rank to assess the
filter importance and pruned filters with low-rank feature maps.
He et al. [31], [32] exploit a measure of the filter importance. The
unimportant filters are pruned in a soft manner. In particular, the
unimportant filters are just set to be zero but they may still be
updated in the next training epoch. In contrast, some works [33],
[34] impose sparse regularization to learn the importance of each
channel. Huang et al. [35] present a scaling factor to scale the
outputs of specific structures and add sparsity constraints on these
factors, so that the structure corresponding to a zero-value scaling
factor can be removed. ThiNet [36] regards filter pruning as an
optimization problem, and prune each filter layer using statistical
information from their next layer.

More recently, some works [37], [38], [39], [40], [41], [42]
learn the sparse allocation of pruning, to meet budget constraints.
For example, Gordon et al. [37] propose a general technique,
i.e., MorphNet, for resource-constrained optimization of DNN
architecture. But the width multiplier that uniformly expands all
layer sizes does not consider the difference among layers so that
the resource allocation may not be optimal. ECC [38] introduces
an energy consumption model to optimize the DNN compression
problem and update the pruned ratio, under an energy constraint.
ADMM is leveraged to solve the gradient-based learning problem.
Besides, some works [39], [40], [41], [42] automatically learn the
pruned ratio of each DNN layer. For instance, AMC [39] uses
reinforcement learning to find a proper sparsity ratio for each
layer. MetaPruning [41] constructs a meta network to directly
generate the weights of the compressed model, given the sparse
allocated ratios. Ning et al. [42] present a differentiable pruning
process to learn the sparse allocation. ADMM is also used for

the budgeted pruning problem. Though these previous works use
complex optimization processes to meet the compression budget,
no extra operation is adopted to enhance the model performance.

Recent works [10], [11], [12] combine knowledge distillation
and model compression to obtain a compact model with high
accuracy. Li et al. [11] first compress a teacher network to obtain a
student network, and then add a 1×1 convolution layer at the end
of each block to make the student mimic the teacher. After that,
they merged the 1 × 1 convolution layer into the previous layer.
Bai et al. [12] combine cross distillation and network pruning by
adding regularization to a loss function. However, these methods
either treat knowledge distillation and model compression as two
independent stages or simply combine the loss functions. Without
a framework-level re-design, it is difficult to achieve an optimal
trade-off between performance and model complexity.

3 EXPLORATION OF DISTILLABILITY AND
SPARSABILITY

We define and explore the distillability and sparsability of
DNN, and analyze the factors that may influence distillability and
sparsability. Several important observations are obtained to inspire
us for model compression. Here, our analysis is based on the
methods in [4], [5] as applied to the CIFAR database. Specifically,
we leverage logits as distilled knowledge and we utilize group
Lasso regularization to achieve structured sparsity.

Definition: Distillability is the density of useful knowledge
that can be distilled from the teacher network. It can be measured
using the cosine similarity between gradients of the KD loss and
those of the GT loss. Sparsability is the probability of the param-
eters being sparse. It can be measured using the number of pruned
ratios that can be obtained, under certain accuracy degradation. It
is hard to directly calculate distillability and sparsability at each
time and in each layer. Thus, it is necessary to analyze these two
characteristics and learn to adapt them.

Our analysis has five aspects, as follows.
Observation 1: Distillability and sparsability are influenced by the
architectures of teacher and student.

Analysis: For distillability, intuitively, larger teacher is sup-
posed to result in higher distillability since there is richer knowl-
edge to be distilled. To verify this, we train the student network
using various teachers with different depths and widths. However,
as Fig. 2 depicted, teachers with larger capacity do not necessar-
ily produce a better student. For example, teacher-student (T-S)
combination {T-S: ResNet20-ResNet20} shows significant higher
performance than that of {T-S: ResNet110-ResNet20} in Fig. 2-
(b). It can be concluded that different teacher-student pairs with
various architectures have different distillability.

For sparsability, we compress different networks with similar
model size by structure sparsity pruning. From Fig. 3, the com-
pressed models have different pruned ratios, even with similar
initial model size and similar accuracy degradation. This indicates
that the model architecture has an influence on sparsability. This
completes the analysis of observation 1.
Observation 2: The distillability and sparsability vary in different
layers.

Analysis: We analyze distillability and sparsability of each
DNN layer shown in Fig. 1. As mentioned in Sec. 1, Fig. 1-
(a) illustrates that different layers have various distillability, and
deeper layers have higher distillability. In Fig. 1-(b), different
layers achieve different pruned ratios, when remaining the same
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Fig. 2. The accuracy curves of the student network ResNet20, which is
trained under the guidance of teacher networks with different capac-
ities. In (a), the teachers vary in width. For example, “x1.0” denotes
the channel number of this teacher is 1.0 time of ResNet20. In (b),
the teachers vary in depth, including ResNet8, ResNet14, ResNet20,
ResNet32, ResNet44, ResNet56 and ResNet110. Note that the orange
dotted lines represent the trendline.
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accuracy degradation. This manifests that sparsability varies in dif-
ferent layers, and similarly, deeper layers have higher sparsability.
This completes the analysis of observation 2. This observation
indicates that layer-wise fine-grained distillability and sparsability
are necessary to improve the model performance.
Observation 3: The distillability and sparsability dynamically
changes when training goes on.

Analysis: For distillability, we find that distillability decreases
as training goes on, and the KD supervision may even harm the
model performance towards the end of training. As shown in Fig.
4, the KD loss has a high correlation with the GT loss at the
early times in the training. As training goes on, the correlation
decreases and may even become negative. This indicates that KD
does help the converge of the GT loss, but towards the end of the
training the KD loss may reduce accuracy, i.e., the “distillability”
is reduced. Furthermore, the smaller the teacher network, the
lower the correlation. Thus, small teachers are not recommended.
During training, it is necessary to adjust the intensity of the
knowledge distillation. To further verify this observation, we
remove KD supervision at the end of training. As reported in
Fig. 5(a), on ImageNet, the students removing KD supervision
in the end (i.e., “ResNet-KD-Partial”) obtain higher performance
than the students that use KD (i.e., “ResNet-KD-Full”) throughout
the training. However, models trained on CIFAR10 have reverse
behavior. This may be because CIFAR10 is a simple database, and
a small student can minimize both the cross entropy loss and the
knowledge distillation loss. In contrast, ImageNet is a challenging
database. The student cannot simultaneously minimize the two
losses, especially when these two losses have a low correlation at
the end of the training.

For sparsability, it has been verified in observation 1 that

different architectures lead to different sparsability. Since the
model architecture changes during the training procedure, it is
obvious that sparsability changes as training goes on. It is inter-
esting to notice that the sparsity loss itself has little or no direct
negative impact on model performance. As depicted in Fig. 4(b),
its correlation with the GT loss is nearly zero. This suggests that
the sparsity loss does not reduce the accuracy. Fig. 5(b) shows
that some pruned networks have a better performance than the
baseline. When the sparsity ratio is increased, the pruned networks
with high sparsity ratios have low accuracy, since they have low
capacities and thus underfit the data. Hence, the factor that affects
the model performance is model capacity, rather than the sparsity
loss. Finally, this completes the analysis of Observation 3.
Observation 4: The intensities of KD and sparse supervision,
which can be adjusted to adapt distillability and sparsability, are
crucial to model performance.

Analysis: We firstly analyze different static values of the
supervision intensity. For knowledge distillation, we use different
coefficients in the KD regularizer to test the student performance.
As can be seen in Fig. 6, different teacher-student pairs have
different optimal coefficients. In the case of structured sparsity,
Fig. 5(b) shows that different sparse regularizer coefficients yield
different accuracy and sparsity ratios. A proper coefficient is
important to balance the model performance and model size. Thus,
the accurate selection of the supervision intensities for both KD
and structured sparsity is crucial to model performance.

Besides static supervision intensity above, the effects of dy-
namically changing the supervision intensities are examined next.
We construct sequences of supervision intensities with various
trends, including increasing trend (i.e., “Sigmoid” and “Cosine”)
, decreasing trend (i.e., “Sigmoid ↓” and “Cosine ↓”) , increas-
ing followed by decreasing (i.e., “Cosine ↑↓”), and decreasing
followed by increasing (i.e., “Cosine ↓↑”). The details are de-
scribed in supplemental material. On embedding these sequences
to control the intensity of the supervision, we obtain different
performances of the model, as shown in Fig. 7. It is clear
that most of the “dynamically” trained models are superior to
“statically” trained model in both KD and sparsity pruning. This
indicates that dynamically adjusting the supervision yields better
performance, compared with the static supervision. However,
these sequences are designed manually and are fixed, thus they
may not be suitable for every student. In contrast, the proposed
method, dynamically adjusting the supervision driven by network
status, achieves a much higher performance gain. Thus, dynamic
training can improve model performance. Observation 4 is verified
experimentally.
Observation 5: The proper combination of knowledge distillation
and sparsity pruning can obtain higher performance.

Analysis: In order to evaluate the effectiveness of direct
combination, we firstly prune a model using [47] and then use
KD [5] to improve the model accuracy. As illustrated in Fig.
8, most pruned models retrained with KD surpass the original
pruned models. This indicates KD can improve the performance
of a pruned model. However, when the pruned ratio reaches to
an extremely large value (e.g., more than 80%), KD degrades the
accuracy of the pruned model. As mentioned in Observation 1 and
Observation 3, the capacity gap may lead to this phenomenon. In
addition, Observation 4 tells us that a fixed KD supervision usually
fails to obtain the best performance. Hence, a direct combination
of KD and pruning is obviously sub-optimal, since it neglects
all the previous observations. It motivates us to propose a better
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combination guided by the previous observations.
Given the above observations, we construct the DDSL frame-

work. It sufficiently considers the information about the teacher
and the student, and adjusts the supervisions in layer wise and time
wise by dynamically assessing the distillability and sparsability.

4 APPROACH

In Sec. 4.1, we review knowledge distillation and structured
sparsity pruning. We introduce the proposed method in Sec. 4.2.
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supervision coefficient is static.

Descriptions of the framework, formulation, optimization and
training procedure are included.

4.1 Background: knowledge distillation and pruning

Knowledge distillation, first presented by Hinton et al. [5],
is an efficient teacher-student learning framework. On distilling
knowledge from a teacher network ΘT to guide a student network
ΘS, the student network can obtain better performance. Knowl-
edge distillation is easily applied to obtain a compact and small
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Fig. 8. Test accuracy improvements of pruned models retrained with
KD, at different parameter pruned ratios. Note that the initial network
is ResNet20, which is regarded as the teacher in KD. The student
networks are the pruned networks at different pruned ratios.

network by learning from a large and powerful teacher. Given the
training data (x,y) ∈ D, where x is the input sample and y is the
corresponding label, the objective of training the student network
is formulated as:

min
ΘS

∑
(x,y)∈D

LCE(F(ΘS,x),y) + λLD(x,ΘT,ΘS), (1)

where F(·) is the deep neural network (DNN) forward function.
LCE is the standard cross entropy loss and LD is the distillation
loss which measures the similarity of the output distributions of
the teacher and student. The distillation loss is usually set to be
the Kullback-Leibler (KL) divergence. The balancing parameter λ
must be tuned manually. This is inconvenient and may not yield
an optimal solution.

Structured sparsity pruning does not focus on improving
the performance of a pre-defined light-weight network. Instead, it
concentrates on obtaining a high compression ratio for a large
existing model with marginal accuracy degradation. Recently,
achieving a target compression ratio is a new requirement. In this
manner, the objective of structured sparsity pruning is formulated
as:

min
Θ

∑
(x,y)∈D

LCE(F(Θ,x),y),

s.t. PRgoal − PR(Θ) ≤ 0.

(2)

Note that PR(·) is the pruned ratio of parameters or FLOPs, and
PRgoal is the target pruned ratio. However, it is not convenient
to directly optimize under the constraint in Eqn. 2. To convert the
original problem (2) to an unconstrained optimization problem, a
structured sparsity regularization R(·) is introduced:

min
Θ

∑
(x,y)∈D

LCE(F(Θ,x),y) + γR(Θ), (3)

where γ is the penalty coefficient. A higher value of γ usually
yields a higher pruned ratio. However, there is no direct relation
between γ and the pruned ratio. This makes it difficult to tune γ to
achieve a specified pruned ratio. To meet the target pruned ratio,
existing methods directly prune the network including the non-
zero parameters, which harms the performance. Thus, the pruned
model needs to be fine-tuned to recover the accuracy.

In summary, knowledge distillation and structured sparsi-
ty pruning achieve model compression in two different ways.
Knowledge distillation improves the accuracy of the compressed
model, while structured sparsity pruning compresses the model
and obtains a proper pruned ratio. The proper integration of these
two tasks has potential prospects.

4.2 Dynamically distillability-and-sparsability learning

Here, we introduce the proposed method, including frame-
work, formulation, optimization and procedure aspects.

4.2.1 Framework

According to the observations in Sec. 3, the choice of a
sequence of supervision intensities is crucial to model perfor-
mance. In addition, it is important to integrate knowledge dis-
tillation and structured sparsity pruning. Therefore, we propose
a dynamically distillability-and-sparsability learning framework
(DDSL) for model compression. This method balances knowledge
distillation and model parameters sparsity, by assessing the distil-
lability and sparsability of the current model and controlling the
supervision intensities accordingly, during the training procedure.
The proposed method takes into account two aspects of model
compression, i.e., accuracy and compressed ratio, to obtain a
smaller but more robust pruned model.

The overall framework is summarized in Fig. 9. Rather than
“teacher-student” framework, it is a “learning in school” frame-
work, containing teacher, student and dean. The “teacher” guides
the “student” to learn the knowledge. At the same time, the
“student” also learns to become slim. The “dean” dynamically
adjusts the curricula that the student learns, taking into account
the current states of the teacher and the student. At the beginning
of the training, a network that needs to be compressed and a dean
module are prepared. Then, the initial network ΘT is regarded
as the teacher, and the network ΘS in the subsequent epochs
is regarded as the student. In each epoch, the dean Φ is fed
with teacher information and student information to assess current
distillability and sparsability. It then controls the intensity of
the supervision by KD and sparsity. In this manner, the student
dynamically learns to be distilled and sparse at each epoch. When
the student has a higher distillability, a stronger KD supervision
signal is imposed (see the pink background in the pruned network
in Fig. 9). In contrast, when the student has a higher sparsability,
a stronger sparse supervision signal is imposed (see the orange
background in Fig. 9).

4.2.2 Formulation

In this subsection, we formulate the proposed method. Based
on Eqn. 1 and 2, the objective of the proposed DDSL is written
as:

min
ΘS

∑
(x,y)∈D

[
LCE(F(ΘS,x),y)

+LKD(x,ΘT,ΘS,Φ) + LSP(ΘS,Φ)
]
.

(4)

Note that LKD is the knowledge distillability loss while LSP is
the sparsability loss. The term Φ is the dean network, which dy-
namically adjusts these two losses. We describe the dean network
and these two losses as follows.
(1) Dean network

Dean network is fed with the features of teacher and the
features of student, from which two signals (i.e., α = {αl}Ll=1

and β = {βl}Ll=1) are obtained to assess current distilability and
sparsability and adjust the supervisions. In detail, αl reflects the
distilability and is used to adjust the KD supervisions from the l-th
layer. The term βl reflects the sparsability and is used to adjust
the sparsity supervisions from the l-th layer. These two signals
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Fig. 9. The overall framework of the proposed method, which contains teacher, student and dean.

can also be regarded as the supervision control signals. They are
computed as:

{α, β} =
L⋃
l=1

F
(
Φl, {hT

g(l),h
S
l }
)
, (5)

where hT
g(l) = Fg(l)(ΘT,x) and hS

l = Fl(ΘS,x) are the
features of the teacher from the g(l)-th layer and that of the
student from the l-th layer, respectively. The term Fl is the l-
th layer output of the DNN forward function. Note that when
the student is the initial network before compression, there is
one-to-one correspondence between the layer indexes of teacher
and that of student: g(l) = l. When the teacher has a different
architecture from the student, g(·) is a linear function that maps
the student layer to the corresponding teacher layer. In the dean
network Φ, each layer corresponds to a dean module Φl. In our
implementation, the l-th dean network Φl is comprised of one
fully-connected (FC) layer followed by a activation function of
Rectified Linear Unit 6 (ReLU6) and a normalization operation.
The ReLU6 and the normalization are used to make the output
distribute in a reasonable range.
(2) Knowledge distillability loss

The knowledge distillability loss LKD is used to promote the
model performance. It is defined by:

LKD(x,ΘT,ΘS,Φ) =
L∑
l=1

αl ·Dist(K(hT
g(l))||K(hS

l )). (6)

Note that αl denotes the distillation supervision control signal at
the l-th layer, which also reflects the knowledge distillability. The
value of αl changes over time. The function Dist(·) measures
the similarity of the teacher and the student. Possible choices for
Dist(·) include the Euclidean distance and the KL divergence. The
term K(·) is the knowledge distilled from the teacher network. It
can take the form of an attention map [17] or a feature distribution.
Here, we use an informative knowledge: the instance relationship
graph (IRG), proposed by [19]. It contains both instance feature

and instance relationship. For simplification, the distance of the
intermediate layer is computed using the IRG edges difference:

Dist(K(hT
g(l))||K(hS

l )) = ||AT
g(l) −AS

l ||22, (7)

in which AT
g(l) and AS

l denote the IRG adjacency matrices of
teacher and student at the l-th layer, respectively. As can be seen,
this distance and corresponding loss (6) are differentiable and can
be easily optimized.
(3) Sparsability loss

The sparsability loss LSP is used to make the model compact.
It is defined by:

LSP(ΘS,Φ) =
L∑
l=1

βl · R(ΘS
l ), (8)

where βl ∈ Rcl denotes the sparsity supervision control signal at
the l-th layer, which also reflects the sparsability. The elements
of βl correspond to cl channels. And cl is the overall number
of channels in the l-th layer. The term R(ΘS

l ) is the sparse
regularization imposed on the network parameters of the l-th layer.
To achieve the structure sparsity, we introduce an `21-norm based
regularization:

R(ΘS
l ) =

∑
j∈C(l)sel

( ∥∥∥(W(l)
j, :)

2D
out

∥∥∥
2

+
∥∥∥(W(l+1)

j, : )2Din

∥∥∥
2

)
. (9)

Note that (W(l))2Dout ∈ Rcl×cl−1k
(l)
1 k

(l)
2 and (W(l))2Din ∈

Rcl−1×clk(l)1 k
(l)
2 denote the matrix-forms of tensor ΘS

l ∈
Rcl×cl−1×k(l)1 ×k

(l)
2 along output and input channels, respectively.

And k
(l)
1 × k

(l)
2 indicates the size of the 2-dimensional spatial

kernel. In addition, C(l)sel represents the set of the selected “unim-
portant” channels that are restricted by the sparse regularization.
In this manner, “unimportant” channels are forced to be zero and
a compact model is thus obtained.

In summary, the pruned ratio can be controlled to meet the
target pruned ratio as follows. We propose a progressively layer-
wise sparsity allocation scheme (see details in the following
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paragraph). In this scheme, to achieve the target pruned ratio, each
layer of the student network is allocated with different sparsity
ratios progressively during training. For each training epoch,
first, the “importance” of each channel is calculated according
to the proposed channel importance metric (described in the
following paragraph). After ranking by this importance metric,
a corresponding ratio of “unimportant” filters is selected (i.e., the
set of C(l)sel). This ratio of each layer is initialized by the target
pruned ratio of the whole network and is updated for each epoch
(see details in Alg. 1). Then, the sparsity regularization is imposed
onto these unimportant filters, whose intensity is controlled by β.
After a training epoch, a part of these filters is forced to be zero
and a new iteration of sparsity allocation is started by selecting
“unimportant” filters from non-zero ones. After several iterations
of sparsity allocations, the student network achieves the target
pruned ratio.

Channel importance metric. As mentioned above, the sparse
constraint is only imposed on certain “unimportant” channels, it is
necessary to select these “unimportant” channels under a metric.
Based on [47], we present a channel importance metric to identify
the “unimportant” channels. In particular, channel importance is
evaluated from two aspects. On one hand, sparsability of the
channel reflects the channel importance. It represents the necessity
that the channel need to be removed, thus higher sparsability cor-
responds to lower channel importance. On the other hand, channel
sensitivity, namely, how much impact on model performance when
removing the channel also reflects the channel importance. Here,
we use cross entropy loss to represent the model performance.
Begin with a single parameter w. If removing it causes a large
change in the cross entropy loss, then the corresponding channel
is important. Thus, the sensitivity Sen(w) of the parameter can be
computed:

Sen(w) = |LCE(F(ΘS
w→0,x),y)− LCE(F(ΘS

w,x),y)|, (10)

where Θw→0 denotes that parameter w tends to 0. On using
Taylor series, the loss function can be approximated by

LCE

(
F(ΘS

w,x),y
)

= LCE(F(ΘS
w→0,x),y)+

∂LCE

(
F(ΘS

w→0,x),y
)

∂w
w +O

(
w2
)
,

(11)

where O
(
w2
)

is a remainder term. Because w is very small,
O
(
w2
)

can be ignored. After substituting Eqn. 11 into Eqn. 10,
we obtain the parameter sensitivity for w. To achieve structured
sparsity, we extend the parameter sensitivity to channel sensitivity:

Sen((W(l)
j, :)

2D
out)

=

∣∣∣∣LCE(F(ΘS

(W(l)
j, :)

2D
out→0

,x),y)− LCE(Θ
S

(W(l)
j, :)

2D
out

,x),y)

∣∣∣∣
≈

∣∣∣∣∣∣∣∣
∂LCE

(
F(ΘS

(W(l)
j, :)

2D
out→0

,x),y

)
∂(W(l)

j, :)
2D
out

(W(l)
j, :)

2D
out

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
cl−1k

(l)
1 k

(l)
2∑

m=1

∂LCE

(
F(ΘS

(W(l)
j, :)

2D
out→0

,x),y

)
∂(W(l)

j, m)2Dout
(W(l)

j, m)2Dout

∣∣∣∣∣∣∣∣ .

(12)

When the output channels are removed in the current layer, the
corresponding input channels in the next layer are also pruned.

Hence, we need to consider channel sensitivity at the next layer:

Sen((W(l+1)
j, : )2Din )

≈

∣∣∣∣∣∣∣∣
clk

(l+1)
1 k

(l+1)
2∑

m=1

∂LCE

(
F(ΘS

(W(l+1)
j, : )2D

in
→0

,x),y

)
∂(W(l+1)

j, m )2Din
(W(l+1)

j, m )2Din

∣∣∣∣∣∣∣∣ .
(13)

Thus, the channel sensitivity of the j-th channel at the l-th layer
can be computed by:

Sen(W(l)
j )

=
∣∣∣cl−1k

(l)
1 k

(l)
2∑

m=1

∂LCE

(
F(ΘS

(W(l)
j, :)

2D
out→0

,x),y

)
∂(W(l)

j, m)2Dout
(W(l)

j, m)2Dout

+

clk
(l+1)
1 k

(l+1)
2∑

m=1

∂LCE

(
F(ΘS

(W(l+1)
j, : )2D

in
→0

,x),y

)
∂(W(l+1)

j, m )2Din
(W(l+1)

j, m )2Din

∣∣∣.
(14)

Note that W(l)
j denotes the parameter tensor of the j-th channel

at the l-th layer.
To summarize, by considering both channel sparsability and

channel sensitivity, we obtain the final channel importance score:

I(W(l)
j ) =

1

βl(j)
· Sen(W(l)

j )

=
1

βl(j)

∣∣∣cl−1k
(l)
1 k

(l)
2∑

m=1

∂LCE

(
F(ΘS

(W(l)
j, :)

2D
out→0

,x),y

)
∂(W(l)

j, m)2Dout
(W(l)

j, m)2Dout

+

clk
(l+1)
1 k

(l+1)
2∑

m=1

∂LCE

(
F(ΘS

(W(l+1)
j, : )2D

in
→0

,x),y

)
∂(W(l+1)

j, m )2Din
(W(l+1)

j, m )2Din

∣∣∣.
(15)

Here, βl(j) is the j-th element of βl. It represents the sparsability
of the j-th channel at the l-th layer. We integrate the channel
sparsability and channel sensitivity by taking βl(j) as the at-
tention weight to adjust Sen(W(l)

j ). After obtaining the channel
importance score of each channel, we identify the “unimportant”
channels by sorting all the channels from large to small. The lower
ranked channels comprise the set C(l)sel and are restricted by the
sparse regularization.

Progressively layer-wise sparsity allocation. Previous works
usually adopt a uniform prior for sparsity allocation, namely, each
layer is optimized with the same sparsity ratio. However, this
usually leads to a sub-optimal architecture, as mentioned in [9].
Therefore, it is crucial to allocate a customized sparsity ratio sr(l)

to each layer. At the beginning of the training, it is difficult to
determine the final sparsity allocations. Thus, a progressive layer-
wise sparsity allocation scheme is proposed to iteratively update
the sparsity ratio sr(l) of each layer during training. In particular,
the sparsity ratio sr(l) is first initialized as PRgoal equally for
each layer. Then, at the beginning of each training epoch, the
channels are divided into two types, namely dead channels which
are zeros, and active channels which are non-zero. The ratio of
dead channels of l-th layer is presented as the actual sparsity ratio
sr

(l)
act and is computed as:

sr
(l)
act =

#Param
(l)
zero

#Param
(l)
total

, (16)

where #Param
(l)
zero is the number of zero parameters and

#Param
(l)
total is the total number of parameters in the l-th layer.
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Algorithm 1: Progressively layer-wise sparsity allocation.

Input: ΘS, PRgoal, current epoch e.

1 if e = 0 then
2 Initilization: (sr

(l)
act)

(0) = 0, l = 1, 2, ..., L;
(srrmng)(0) = PRgoal equally assigned to each layer;

3 else
4 (sr

(l)
act)

(e) =
(#Param(l)

zero)
(e)

#Param
(l)
total

, l = 1, 2, ..., L;

5 (srrmng)(e) = (srrmng)(e−1) equally assigned to each
layer;

6 end
7 repeat
8 Update sparsity ratio:

(sr(l))(e) = (sr
(l)
act)

(e) + (srrmng)(e), l = 1, 2, ..., L;
9 Θ̂S ← Prune each layer of ΘS using ratio sr(l);

10 Search a proper srrmng via a step size, to meet PRgoal:
11 if PR(Θ̂S)>PRgoal then
12 srrmng = srrmng −∆;
13 else if PR(Θ̂S)<PRgoal then
14 srrmng = srrmng + ∆;
15 end
16 until |PR(Θ̂S)− PRgoal|<∆;
17 return {sr(l)}Ll=1;

Note that #Param
(l)
zero changes as training goes on. To meet

PRgoal, it is necessary to determine the remaining sparsity ratio
srrmng. Under the actual sparsity ratio sr(l)act, remaining sparsity
is re-allocated equally to only active channels, namely, srrmng is
the same for each-layer. As training goes on, though remaining
sparsity re-allocation is uniformly performed, the final sparsity
ratio sr(l) of each layer is diverse. Finally, customized layer-
wise sparsity ratios are achieved. The detailed sparsity allocation
procedure is illustrated in Alg. 1. Note that we set the pruned ratio
error ∆ to be 0.001. An error this small is usually negligible in
real-world.

4.2.3 Optimization

In this subsection, we optimize the overall objective in Eqn.
4 to solve the training problem. Based on Eqn. 4, the overall loss
function Ltotal is given by:

Ltotal = LCE + LKD + LSP. (17)

Namely, the goal of the proposed method is to minimize the loss
function Ltotal. In this subsection, the optimization of the student
network and the dean network is introduced. Then, the overall
training scheme is described in the next subsection.
(1) Optimization of the student network.

The goal of the student network is to achieve the optimization
in Eqn. 4, thus obtaining a compact but strong model. However,
the term LSP in Eqn. 17 is not differentiable, thus it is not
possible to use a gradient descent scheme for the optimization.
To mitigate this problem, we introduce ADMM [48].In particular,
we decompose the original optimization problem into two sub-
problems and solve them iteratively. The solutions to small local
subproblems are coordinated to find a solution to a large global

problem. Specifically, for Eqn. 4, we rewrite the overall objective
into ADMM form:

min
θ1,θ2

f(θ1) + h(θ2)

s.t. θ1 − θ2 = 0,
(18)

in which f(θ1) = LCE(F(ΘS,x),y)+LKD(x,ΘT,ΘS,Φ) is
differentiable, and h(θ2) = LSP(ΘS,Φ) is non-differentiable.
Note that θ1 and θ2 both include the student network ΘS.
We convert the original optimization problem into a constrained
convex optimization problem, and decouple this problem into two
subproblems (i.e., f(θ1) and h(θ2)). On exploiting the special
form of f and h, the ADMM algorithm procedure is expressed as:

θt+1
1 := arg min

θ1

(
f(θ1) +

ρ

2
||θ1 − θt2 + ut||22

)
, (19)

θt+1
2 := arg min

θ2

(
h(θ2) +

ρ

2
||θt+1

1 − θ2 + ut||22
)
, (20)

ut+1 := ut + (θt+1
1 − θt+1

2 ), (21)

where ρ is a penalty parameter, and u is the scaled dual variable.
The stopping criteria are:

||θt+1
1 − θt+1

2 ||22 ≤ ε, ||θt+1
2 − θt2||22 ≤ ε, (22)

or the model convergence. Note that ε>0 is a feasible tolerance,
which is commonly set to be 10−3. To conduct the ADMM
algorithm, the two subproblems (19) and (20) are solved. For
subproblem (19), the first term f(θ1) is the sum of a cross entropy
loss and KD loss. The second term can be regarded as an `2
regularizer. Subproblem (19) is differentiable and can be solved
by using stochastic gradient decent. The gradient with respect to
θ1 is expressed as:

∂
(
f(θ1) + ρ

2 ||θ1 − θt2 + ut||22
)

∂θ1

=
∂f(θ1)

∂θ1
+ ρ · (θ1 − θt2 + ut).

(23)

For subproblem (20), the first term h(θ2) is an `21 regularizer
which is not differentiable. To solve this subproblem, we compute
a simple closed-form solution utilizing the subdifferential calculus.
Explicitly, Eqn. 20 can be derived as:

θt+1
2 := Sβ/ρ(θ

t+1
1 + ut), (24)

where S1/ρ is the soft thresholding operator. In particular, the
student network parameters at the l-th layer are updated by:

Sβ/ρ((W(l)
j, m)2D)

=

(W(l)
j, m)2D − βl(j)(W(l)

j, m)2D

ρ||(W(l)
j, :)

2D||2
, if ||(W(l)

j, :)
2D||2 > βl(j)

ρ ,

0 , otherwise.
(25)

Note that (W(l)
j, m)2D is the matrix-form of the student network

parameters at the l-th layer which is obtained after the computation
of (θt+1

1 + ut) in Eqn. 24.
(2) Optimization of the dean network.

The goal of the dean network is to help the student network
achieve high performance. As mentioned above, the outputs of the
dean network are α and β which are regarded as the supervised
intensities. The two parameters and the dean network Φ cannot
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be directly adjusted and updated by the back propagation (BP)
algorithm. Because the solution converges to local optimum, i.e.,
α = 0 and β = 0, if using BP algorithm. It degrades to the
situation that the student is trained from scratch without any
sparsity and KD constraints.

Thus, to optimize the dean network and maximize the per-
formance of the student network, we use the bilevel optimization
framework in meta learning [49], [50]. In particular, our overall
loss function is rewritten as:

Ltotal(Θ
S|x,y,Φ) = LCE(ΘS|x,y)

+ LKD((ΘS|x,Φ)) + LSP((ΘS|x,Φ)).
(26)

For the dean network, the objective is formulated as:

min
Φ
LCE(ΘS∗|xval,yval)

s.t. ΘS∗ = arg min
ΘS

Ltotal(Θ
S|xtrain,ytrain,Φ),

(27)

in which (xtrain,ytrain) and (xval,yval) are a training sample
and a validation sample in the database, respectively. From Eqn.
27, it is usual to calculate∇Φ LCE(ΘS∗|xval,yval) to update Φ.
However, it is hard to directly compute∇Φ LCE(ΘS∗|xval,yval),
because ΘS∗ is an implicit function of Φ and the calculation
has a huge computational cost. Based on a standard approach in
meta learning [50], we obtain our solution for updating the dean
network.

In detail, firstly, we update ΘS to minimize
Ltotal(Θ

S|xtrain,ytrain,Φ):

ΘS∗
t+1 := ΘS∗

t − ζin∇ΘS Ltotal(Θ
S
t |xtrain,ytrain,Φ), (28)

where ζin is the learning rate of the inner-loop optimization. Note
the updated ΘS∗ in the above equation is only used to optimize
Φ. It is not used in the optimization of the student network.

Then, we update Φ to carry out the minimization in Eqn.
27. The distillability control module and the sparsability control
module may influence each other and obstruct the optimization.
To avoid this problem, the distillability control module and the
sparsability control module are decoupled from the dean network,
by dividing the dean into two parts: Φ = {ΦKD,ΦSP} in
which ΦKD is the distillability control module and ΦSP is the
sparsability control module. In this manner, ΦKD and ΦSP are
optimized alternately. The term ΦKD is updated to minimize
LCE(ΘS∗|xval,yval):

Φt+1
KD := Φt

KD − ζout∇ΦKD LCE(ΘS∗|xval,yval). (29)

Note that ζout is the learning rate of the outer-loop optimization.
To summarize, Eqn. 28 is used in the inner-loop of the meta
learning, while Eqn. 29 is used in the outer-loop in which LCE

is regarded as the meta objective to help learn a better student
network. Likewise, for ΦSP, the updated step is:

Φt+1
SP := Φt

SP − ζout∇ΦSP LCE(ΘS∗|xval,yval). (30)

Similar to [26], the proposed dean network Φ has only a small
influence on LCE, through the terms (LKD + LSP). Hence, it is
difficult to update Φ using the single gradient descent step in Eqn.

Algorithm 2: The procedure of DDSL.

Input: Database Dtrain = {xtrain,ytrain}, ΘS, ΘT, Φ,
target pruned ratio PRgoal.

1 For each layer l, initialize the sparsity allocation ratio
sr(l) = sr

(l)
act + srrmng, where sr(l)act = 0 and

srrmng = PRgoal initially;
2 Initialize the “unimportant” channel set C(l)sel = ∅;
3 Initialize ΘS and Φ;
4 repeat
5 Update ΘS using Eqn. 19, 20, 21;
6 For each layer l, calculate the importance score of each

channel: I(W(l)
j ), j = 1, 2, ..., cl via Eqn. 15;

7 Update spasity allocation ratio sr(l) for each layer l via
Alg. 1.

8 For each layer l, sort and truncate the
smallest-dsr(l) ∗ cle of I to identify C(l)sel ;

9 for t = 0 to T − 1 do
10 Update ΘS∗

t using Eqn. 31 and Eqn. 19, 20, 21;
11 end
12 ΘS∗

T+1 ← ΘS∗
T − ζin∇ΘS LCE(ΘS

T |xtrain,ytrain,Φ)
(using Eqn. 31);

13 Update Φ using Eqn. 29, 30;
14 For each layer l, recalculate sr(l);
15 until done;

16 Prune the redundant filters (
∥∥∥W(l)

j, :

∥∥∥
2

= 0) and return the
compressed network with acceptable accuracy.

29 and Eqn. 30. To increase the influence of Φ, we update ΘS∗ T
times and modify the update step of Eqn. 28 to:

ΘS∗
T+1 := ΘS∗

T − ζin∇ΘS LCE(ΘS
T |xtrain,ytrain,Φ),

ΘS∗
t+1 := ΘS∗

t − ζin∇ΘS

(
LKD(ΘS

t |xtrain,ytrain,Φ)

+ LSP(ΘS
t |xtrain,ytrain,Φ)

)
.

(t = 0, 1, ..., T − 1)

(31)

Note that we set T = 2 in our experiments. Here, the ΘS∗ update
similarly follows the optimization of the student network proposed
in Eqns. 19, 20 and 21.

4.2.4 Training procedure
The overall training procedure of the proposed DDSL is

summarized in Alg. 2. In detail, after a series of initializations, we
update the student network using GT supervision, KD supervision
and sparsity supervision. To dynamically impose the sparsity
constraint, a set of “unimportant” channels with an allocated
sparsity ratio are selected to be restricted. Then, the dean network
is updated using the proposed meta scheme. After a period of
training, the training procedure stops when the student network
has converged or the stop condition (i.e., Eqn. 22) has been
satisfied. The channels with zero parameters are pruned and a
final compressed model with acceptable performance is obtained.

5 EXPERIMENTS AND RESULTS

5.1 Settings
Databases and Networks. We evaluate the proposed method on
two databases: CIFAR [58] and ImageNet [59]. The data are
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TABLE 1
The results of pruning ResNet56 and ResNet110 on CIFAR-10. The term “Pre-defined?” refers to whether a fixed pruned ratio is assigned to each

layer. The “--” indicates that the results are not reported in the original paper.

Model
Architecture Method Training Settings Test Accuracy PRParam PRFLOPsPre-defined? Fine-tuning?

ResNet56

Baseline N/A N/A (93.81±0.14%) 0 0
Li et al. [28] 4 4 93.06% 13.70% 27.60%

CP [34] 4 4 91.80% -- 50.00%
AMC [39] % 4 91.90% -- 50.00%

HRank [30] % 4 93.17% 42.40% 50.00%
SFP [31] 4 % (92.26±0.31)% -- 52.60%

FPGM [29] 4 % (92.93±0.49)% -- 52.60%
ASFP [32] 4 % (93.12±0.20)% -- 52.60%

DPFPS [47] % % (93.20±0.11)% 46.84% 52.86%
DCP [51] % 4 93.49% 49.24% 49.75%
CAC [52] % % 93.48% 29.43% 30.16%

ResRep [53] % % 93.71% −− 52.91%
EagleEye [54] % 4 94.66% −− 50.40%

Logits [5] 4 % 92.63% 43.50% 43.68%
AT [17] 4 % 92.76% 43.50% 43.68%
IRG [19] 4 % 92.97% 43.50% 43.68%

MetaDistiller [27] 4 % 92.78% 43.50% 43.68%
VID [55] 4 % 92.69% 43.50% 43.68%
CRD [56] 4 % 92.91% 43.50% 43.68%
SAD [57] 4 % 92.96% 43.50% 43.68%

DPFPS [47] + IRG [19] % 4 93.57% 45.62% 50.27%
GSKD [10] % % 92.45% 62.75% 69.28%
FSKD [11] 4 % 92.44% 72.91% 73.00%
FSCD [12] % % 92.78% 72.91% 73.00%

Ours % % (94.05±0.09)% 47.89% 56.99%
Ours % % 93.98% 74.98% 75.89%

ResNet110

Baseline N/A N/A (94.69±0.18%) 0 0
Li et al. [28] 4 4 93.30% 32.40% 38.60%
HRank [30] % 4 92.65% 68.70% 68.60%

SFP [31] 4 % (93.38±0.30)% -- 40.80%
FPGM [29] 4 % (93.85±0.11)% -- 52.30%
ASFP [32] 4 % (93.10±0.06)% -- 52.30%

DPFPS [47] % % (92.61±0.17)% 74.32% 74.36%
CAC [52] % % 93.54% 52.31% 51.15%
Logits [5] 4 % 92.38% 74.78% 74.96%
AT [17] 4 % 92.23% 74.78% 74.96%
IRG [19] 4 % 92.65% 74.78% 74.96%

MetaDistiller [27] 4 % 92.57% 74.78% 74.96%
VID [55] 4 % 92.49% 74.78% 74.96%
CRD [56] 4 % 92.46% 74.78% 74.96%
SAD [57] 4 % 92.71% 74.78% 74.96%

DPFPS [47] + IRG [19] % 4 92.85% 71.67% 72.38%
Ours % % (93.87±0.35)% 75.13% 75.31%

augmented using the same strategies as in the PyTorch official
examples [60]. On the CIFAR database, we evaluate the proposed
method using VGG network [61] and ResNets [62]. As the original
VGG-16 is specially designed for ImageNet classification, we
use a variant version (i.e., VGG-Small) taken from [63] in our
experiments with CIFAR. On the ImageNet database, we evaluate
our model on ResNets (including ResNet 34, 50, and 101) and
MobileNet v2 [43]. In addition, in ablation analysis, we analyze
the proposed method by using ResNet20 evaluated on CIFAR10.
Evaluation Metrics. To evaluate the performance of different
model compression methods, we use the parameters pruned ratio,

PRParam = 1− #Paramremain

#Paramtotal
, (32)

where #Paramremain is the number of remaining parameters.

The term #Paramtotal is the total number of parameters in
the original network. We also use the FLoating-point OPerations
(FLOPs) pruned ratio,

PRFLOPs = 1− #FLOPremain

#FLOPtotal
, (33)

where #FLOPremain is the number of remaining FLOPs after
the model is pruned. Besides, #FLOPtotal represents the total
number of FLOPs in the original network.
Implementation Details. We train all the networks from scratch.
For CIFAR-10 and CIFAR-100, the total number of epochs is 200
with a standard batch size of 64. The inner loop learning rate
ζin is initialized as 0.1 and multiplied by 0.1 at epoch 100 and
epoch 150, while the outer loop learning rate ζout is set to be 0.1
times the inner loop learning rate, as suggested empirically. For
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Fig. 10. Accuracy curves at different pruned ratios. The proposed
method works best among different compression methods.

ImageNet, the total number of epochs is 120 with a 256 batch
size. The inner loop learning rate ζin is initialized as 0.1 and
multiplied by 0.1 at epoch 30, epoch 60 and epoch 90, respectively,
while the outer loop learning rate ζout is 0.1 times the inner
loop learning rate. A standard stochastic gradient descent (SGD)
optimizer with 10−4 weight decay and 0.9 momentum is adopted.
All the experiments are conducted on a platform with 8 Nvidia
Tesla GPU cards and 96-core Intel(R) Xeon(R) Platinum 8163
CPU. In addition, every single setting is repeated 10 times with
different random seeds on Pytorch.

5.2 Comparison with the state-of-the-art
We compare the performance of our method with 24 state-

of-the-art model compression methods, including Li et al. [28],
HRank [30], SFP [31], CP [34], AMC [39], FPGM [29], ASF-
P [32], IE [64], DPFPS [47], ResRep [53], EagleEye [54],
DMCP [65], DCP [51], CAC [52], GSKD [10], FSKD [11],
FSCD [12], Logits [5], AT [17], IRG [19], MetaDistiller [27],
VID [55], CRD [56] and SAD [57]. Among them, Li et al.,
IE, HRank, SFP, CP, AMC, FPGM, ASFP, DPFPS, ResRep,
EagleEye, DCP and CAC are sparsity pruning methods. GSKD,
FSKD, FSCD and DPFPS+IRG are methods using both knowl-
edge distillation and pruning. Others are knowledge distillation
methods. Note that “DPFPS+IRG” denotes the model first pruned
via DPFPS (i.e., a state-of-the-art channel pruning method) and
then trained with IRG (i.e., a state-of-the-art KD method). For
a fair comparison, we adopt a pre-defined compression model as
the student network for knowledge distillation methods, because it
has a similar pruned ratio as sparsity pruning methods with which
it is compared. For example, in Tab. 1, ResNet56-x0.75 is the
student network, since it has a similar FLOPs pruned ratio as the
competing pruning methods.
Evaluation on CIFAR. Tab. 1 presents the model compressed
results of test accuracy, pruned ratio of PRParam and PRFLOPs

on CIFAR 10. As shown in this table, the proposed method has
the best performance among almost all the methods, including
the sparsity pruning methods, the knowledge distillation methods
and the methods using both pruning and knowledge distillation.
In particular, for ResNet56, our compressed model achieves an
accuracy of 94.05% with a 56.99% pruned ratio of FLOPs. The
performance even surpasses that of the baseline model. With a
higher pruned ratio, namely, 75.89% pruned ratio of FLOPs, the
accuracy of the proposed method only degrades slightly and is still
higher than that of the baseline. For the large DNN ResNet110, our
method performs the best. It surpasses DPFPS, which achieves the
highest pruned ratio among all the compared methods, by 1.07%
test accuracy. For traditional DNN VGG-Small, our method prunes

VGG-Small more than 94.27% parameters and 74.19% FLOPs,
with a slight accuracy loss (i.e., less than 0.09%). It also achieves
the best performance. Due to the space limitation, the detailed
experimental results of VGG and other results are reported in the
supplemental material.

Further, Fig. 10 evaluates the proposed DDSL at different
pruned ratios, compared with IRG (i.e., a KD state-of-the-art
method), DPFPS (i.e., a sparsity pruning state-of-the-art method)
and a direct combination of them. It is obvious that the proposed
DDSL surpasses the compared methods at all the assigned values
of pruned ratio. When PRFLOPs exceeds 80%, the test accuracies
of all the compared methods drop sharply. In contrast, the graph of
our method has a steady trend. At 90% pruned ratio, the proposed
DDSL even surpasses the best of the compared method by ∼3%
test accuracy. The direct combination of KD and sparsity pruning
”DPFPS+IRG” (i.e., ResNet20 is first pruned via DPFPS and then
the pruned network is trained by IRG with a pre-trained ResNet20
teacher network) performs similar to IRG. It indicates that the
performance gain of a direct combination is small. On the contrary,
via joint dynamic optimization, the proposed method outperforms
”DPFPS+IRG” by a large margin, which verifies the effectiveness
of our dynamically distillability-and-sparsability learning scheme.
Evaluation on ImageNet. On the large-scale challenging database
ImageNet, our method also performs the best as reported in Tab.
2, in comparison with sparsity pruning methods and KD methods.
For compression performance, the proposed method not only
achieves the highest pruned ratio, but also maintains the highest
accuracy. In particular, our method has the best performance for all
three network architectures with different depths (i.e., ResNet34,
50 and 101). It even surpasses the baseline for ResNet101.
When compressing a lightweight network (i.e., MobileNet v2),
the proposed method is also superior to the compared methods.
Our method has an efficient training scheme which does not
need a pre-defined compressed architecture, fine-tuning steps or
multi-pass steps. In contrast, nearly all KD methods need to pre-
define the student architecture. Some sparsity pruning methods
need a pre-defined network or fine-tuning to enhance the accuracy.
DPFPS, ResRep and CAC do not need pre-defining and fine-
tuning, but it has inferior performance compared with our method.
d DPFPS+IRG method, which directly combines pruning and
knowledge distillation, has a high pruned ratio but is still worse
than the proposed method for both performance and pruned ratio.

These experimental results indicate that the proposed method
is effective and efficient, and is superior to almost all the compared
methods on both small-scale and large-scale databases when
compressing various DNNs with different depths and architec-
tures, with the help of the proposed dynamically distillability-and-
sparsability learning scheme.

5.3 Ablation analysis

(1) Analysis of distillability and sparsability. It is hard to
accurately calculate distillability and sparsability, but the learned
supervision control signals (i.e., α and β) do include information
about distillability and sparsability. Fig. 11 shows the curves of su-
pervision control signals at different layers during training. These
graphs show that as distillability and sparsability change during
training, the supervision control signals are adaptively adjusted at
different layers. For distillability, the supervision control signals α
increase in the deeper layers, especially at the last convolutional
layer and the FC layer. This indicates that deeper layers have
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TABLE 2
The results of pruning ResNets and MobileNet v2 on ImageNet.

Model
Architecture

Method Training Settings Test Accuracy
PRFLOPs

Model
Architecture

Method Training Settings Test Accuracy
PRFLOPs

Pre-defined? Fine-tuning? Top-1 Top-5 Pre-defined? Fine-tuning? Top-1 Top-5

ResNet34

Baseline N/A N/A 73.92% 91.62% 0

ResNet50

Baseline N/A N/A 76.15% 92.87% 0
SFP [31] 4 % 71.83% 90.33% 41.10% SFP [31] 4 % 74.61% 92.06% 41.80%

FPGM [29] 4 % 72.11% 90.69% 41.10% FPGM [29] 4 % 75.03% 92.40% 42.20%
ASFP [32] 4 % 71.72% 90.65% 41.10% ASFP [32] 4 % 74.88% 92.39% 41.80%

DPFPS [47] % % 72.25% 90.80% 43.29% DPFPS [47] % % 75.55% 92.54% 46.20%
Li et al. [28] 4 4 72.17% −− 24.20% HRank [30] % 4 74.98% 92.33% 43.77%

IE [64] 4 4 72.83% −− 24.20% IE [64] 4 4 74.50% −− 45.00%
DMCP [65] % 4 72.96% 90.99% 39.87% DMCP [65] % 4 75.67% 92.58% 38.34%

EagleEye [54] 4 4 72.87% 90.94% 39.37% EagleEye [54] 4 4 75.73% 92.59% 42.07%
ResRep [53] % % 73.02% 91.02% 41.65% CAC [52] % % 75.79% 92.35% 55.16%

Logits [5] 4 % 72.42% 90.90% 28.38% Logits [5] 4 % 74.86% 92.19% 28.43%
AT [17] 4 % 72.38% 90.88% 28.38% AT [17] 4 % 74.91% 92.29% 28.43%

IRG [19] 4 % 72.73% 90.99% 28.38% IRG [19] 4 % 75.07% 92.27% 28.43%
MetaDistiller

[27]
4 % 72.58% 90.92% 28.38% MetaDistiller

[27]
4 % 74.78% 92.11% 28.43%

VID [55] 4 % 72.56% 90.92% 28.38% VID [55] 4 % 74.99% 92.30% 28.43%
CRD [56] 4 % 72.71% 90.99% 28.38% CRD [56] 4 % 75.08% 92.38% 28.43%
SAD [57] 4 % 72.67% 90.97% 28.38% SAD [57] 4 % 75.12% 92.39% 28.43%

DPFPS+IRG % 4 72.53% 90.89% 42.56% DPFPS+IRG % 4 75.69% 92.58% 47.38%
Ours % % 73.26% 91.09% 49.14% Ours % % 76.02% 92.74% 50.01%

ResNet101

Baseline N/A N/A 77.37% 93.56% 0

MobileNet v2

Baseline N/A N/A 72.00% 90.65% 0
DPFPS [47] % % 77.27% 93.68% 44.97% DPFPS [47] % % 71.10% 89.87% 24.89%

SFP [31] 4 % 77.03% 93.46% 42.20% AMC [39] % 4 70.80% −− 26.54%
FPGM [29] 4 4 77.32% 93.56% 42.20% MobileNet v2

0.75x [43]
4 % 69.80% 88.97% 26.54%

IE [64] 4 4 77.35% −− 39.80%
DMCP [65] % 4 76.98% 93.36% 43.27% DMCP [65] % 4 71.11% 89.61% 29.67%

EagleEye [54] 4 4 76.92% 93.32% 42.81% EagleEye [54] 4 4 71.18% 89.64% 30.00%
ResRep [53] % % 77.02% 93.44% 44.39% DCP [51] % 4 64.22% 85.95% 44.75%

Logits [5] 4 % 76.33% 93.01% 28.61% Logits [5] 4 % 70.68% 89.65% 27.02%
AT [17] 4 % 76.21% 92.93% 28.61% AT [17] 4 % 70.51% 89.57% 27.02%

IRG [19] 4 % 76.57% 93.16% 28.61% IRG [19] 4 % 70.83% 89.69% 27.02%
MetaDistiller

[27]
4 % 76.36% 93.03% 28.61% MetaDistiller

[27]
4 % 70.72% 89.71% 27.02%

VID [55] 4 % 76.62% 93.19% 28.61% VID [55] 4 % 70.75% 89.72% 27.02%
CRD [56] 4 % 76.78% 93.30% 28.61% CRD [56] 4 % 70.65% 89.62% 27.02%
SAD [57] 4 % 76.91% 93.39% 28.61% SAD [57] 4 % 70.59% 89.59% 27.02%

DPFPS+IRG % 4 77.31% 93.53% 46.28% DPFPS+IRG % 4 71.15% 89.98% 28.32%
Ours % % 77.38% 93.81% 50.96% Ours % % 71.37% 90.42% 32.37%

higher distillability and that there is more useful knowledge to be
distilled for these layers. In addition, as shown in Fig. 11-(c), α
decreases at the end of training, which indicates that distillability
may decrease during training for the same challenge databases
(e.g., ImageNet). It is consistent with our Observation 3 for Im-
ageNet. Fortunately, by properly mining the distilled knowledge,
our method slows the downward trend of distillability and has
a satisfactory performance. For sparsability, deeper layers have
relatively higher supervision intensities, because there are more
redundant channels, i.e., higher sparsability. This phenomenon
is consistent with our sparsity allocation results. Besides, other
than a sudden network structure change as traditional channel
pruning does [33], [34], the proposed supervision control signal β
increases, making the student network to be sparse progressively.
As a result, the student network fits the data in the early stages of
the training, making it is less likely that the optimization yields a
sub-optimal network.

(2) Effectiveness of different components. We thoroughly

analyze the effectiveness of each component of the proposed
method. Tab. 3 reports the performance of different components
in our method using ResNet20 tested on CIFAR10. In this table,
”Ours-KD” refers to our method of training a pre-defined and fixed
student network, while ”Ours-SP” refers to our method without
knowledge guidance from a teacher. As reported, ”Ours-KD” and
”Ours-SP” both outperform state-of-the-art KD and SP methods
by a significant margin. The effectiveness of our dean component
is verified. With a layer-wise dynamic supervision intensity adjust-
ment scheme, the performance is improved compared with a pre-
defined supervision intensity scheme (e.g., IRG and DPFPS). Fur-
ther, the combination of all components (i.e., the proposed DDSL
framework) shows the best performance. The student baseline is
surpassed by a 1.94% accuracy with a higher pruned ratio. The
feeding of the student information and the teacher knowledge into
the dean ensures that the proposed DDSL automatically balances
the importance of KD and SP during training. As a result, our dean
gives better supervision control signals than those obtained from
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α β 

(a) Alpha on CIFAR10 (b) Beta on CIFAR10

α β 

(c) Alpha on ImageNet (d) Beta on ImageNet

Fig. 11. The graphs of supervision control signals at different layers
during training. Note that (a) and (c) are the graphs of supervision
control signals for distillability from different layers. The graphs of (b)
and (d) are the supervision control signals for sparsability from different
layers. The point values on the lines are the sum of the elements in βl.

TABLE 3
Performance of different components in our method.

Methods Accuracy PRParam PRFLOPs

Baseline ΘT 91.97% 0 0
Baseline ΘS 88.43% 74.23% 74.73%

IRG [19] 89.35% 74.23% 74.73%
DPFPS [47] 89.03% 74.88% 76.86%

Ours-KD 89.68% 74.23% 74.73%
Ours-SP 89.32% 75.09% 77.27%

Ours-separately 89.57% 75.09% 77.27%
Ours 90.37% 74.99% 76.97%

* Note that “Baseline ΘT” and “Baseline Θs” represent the teacher network
and the student network trained from scratch, respectively. “Ours-KD” and “Ours-
SP” are the proposed method using only KD and only structured sparsity pruning,
respectively. Besides, “Ours-separately” denotes our method optimized separately (i.e.,
use structured sparsity pruning first and then train with KD).

methods which use single component.
(3) Joint Optimization Versus Separate Optimization. The

proposed DDSL optimize Eqn. 17 jointly, with KD component
(i.e., LKD) and sparsity pruning component (i.e., LSP). To evalu-
ate the effectiveness of our dynamically joint optimization scheme,
we compare it with separate optimization “Ours-separately”. For
this method, we first use our dynamic sparsability learning compo-
nent “Ours-SP” to obtain a pruned model. Then this pruned model
is trained utilizing our dynamic distillability learning component,
“Ours-KD”. As reported in Tab. 3, the test accuracy of joint opti-
mization is 0.8% higher than that of separate optimization, with a
similar pruned ratio. Fig. 12 shows that our joint optimization is
much better than separate optimization at different pruned ratios.
Joint optimization is an end-to-end framework with fewer hyper-
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Fig. 12. Accuracy curves at different compression ratios of joint opti-
mization and separate optimization.

parameters, which makes DDSL a more efficient and effective
method.

(4) Analysis of progressively layer-wise sparsity allocation.
The proposed progressively layer-wise sparsity allocation aims to
distribute proper sparsity ratio for each layer in a progressive man-
ner. It ensures that DDSL obtains a compact and high-performance
model architecture. Fig. 13-(a) and Fig. 13-(b) show the layer-wise
allocated sparsity ratio sr(l) computed by the proposed method
and the actual sparsity ratio sr(l)act after training, respectively. For
both sub-figures, the deeper layers have larger sparsity ratios,
which demonstrates that the deeper layers have more redundant
channels. The actual sparsity ratios change as the allocated ratios
are progressively adjusted. After training, the actual sparsity ratio
in each layer is equal to the final allocated ratio. This indicates
that DDSL is able to achieve the target sparsity ratio, while many
previous methods can not accurately control the final sparsity
ratio by simply changing the sparsity supervision intensity. Fig.
13-(c) shows the overall sparsity ratio changes compared with
the target ratio. With the dynamic layer-wise sparsity allocation
control, the overall sparsity ratio can easily approach the target
ratio. Consequently, a more compact architecture, compared with
baseline, is obtained as shown in Fig. 13-(d). The above analysis
fully verifies the superiority of the proposed progressively layer-
wise sparsity allocation algorithm.

(5) Training efficiency analysis. Besides the number of
parameters and FLOPs, we also analyze the convergent of the
proposed method during training. Fig. 14 compares the training
loss and test accuracy curves of different methods. As shown in
the figure, the proposed DDSL has the fastest convergence and the
best performance (even faster than the baseline). It is interesting
to note that DPFPS, with a manual pre-defined sparsity constraint
adjustment scheme (i.e., the constraint strength changes following
a fixed function), has a suddenly steep performance drop at around
epoch 50. It is because the sparsity constraint strength increases
sharply from zero to a large value around epoch 50. This leads
to a sudden network structure change and performance drop. It
takes more than 50 epochs to recover the performance. In contrast,
the performance of DDSL increases steadily during the whole
training process, since the constraint strength is dynamically
adjusted by the dean in a progressive manner. As a result, the
problem of DPFPS is significantly alleviated for DDSL and the
final performance is improved by a large margin.

(6) Applications on other tasks. The proposed DDSL can
be easily generalized to other tasks. As shown in Tab. 4, DDSL
is evaluated on three visual tasks including object detection [66],
instance segmentation [67] and liveness detection [68]. For de-
tection and segmentation, three popular backbones are used,
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Fig. 14. Analysis of training convergence. Note that “Baseline” repre-
sents the pruned network (i.e., student network) trained from scratch.

namely, ResNet50, ResNet101 and ResNext101-64x4d. We fol-
low the recent protocol of COCO database [69] and report the
standard COCO metric average precision (AP). Note that AP in
segmentation is computed using mask intersection over union
(IoU). According to the experimental results in Tab. 4, under
similar performance degradation, DDSL shows 8%-10% more
FLOPs compression compared with DPFPS+IRG. In addition,
for liveness detection, which is a binary classification task, we
adopt ResNet18, Inception-v3 and ResNext26 as backbones. Equal
Error Rate (EER) is reported as the evaluation metric. And the
experiments are conducted on CelebA-Spoof [68], which is one
of the largest datasets for liveness detection. From Tab. 4, DDSL
performs similar or equal compared with DPFPS+IRG but obtains
10%-13% more FLOPs compression. It is interesting to notice
that, though DDSL is designed for classification task, it has good
generalization when it is directly applied to other tasks such as
detection and segmentation.

(7) The stability of the framework. The performance fluc-
tuation under different hyper-parameter configurations is analyzed
to verify the stability of the proposed framework. In detail, we
use different hyper-parameters, including the batch size and the
outer loop learning rate (i.e., the learning rate for the dean
network), to evaluate the proposed DDSL. The pruning results
of ResNet and MobileNet on ImageNet are depicted in Fig. 15.
As is seen, under different learning rates and batch sizes, the Top-
1 accuracy fluctuates within the range of 0.4% and the pruned
ratios have a 2% averaged fluctuation range. It depicts that both
the performance and the pruned ratio stay steady when the hyper-
parameters vary.

TABLE 4
Evaluation on other visual tasks, including object detection, instance

segmentation and liveness detection.

Task Backbone
Architecture

Method AP PRFLOPs

Object
Detection

ResNet50
Baseline 34.5 0

DPFPS+IRG 33.8 27.98%
Ours 34.0 36.77%

ResNet101
Baseline 37.1 0

DPFPS+IRG 36.5 30.27%
Ours 36.6 38.13%

ResNeXt101-64x4d
Baseline 39.2 0

DPFPS+IRG 38.6 26.97%
Ours 38.6 33.82%

Task Backbone
Architecture

Method AP PRFLOPs

Instance
Segmentation

ResNet50
Baseline 32.6 0

DPFPS+IRG 31.7 25.71%
Ours 31.7 32.88%

ResNet101
Baseline 33.9 0

DPFPS+IRG 33.0 26.87%
Ours 33.1 34.26%

ResNeXt101-64x4d
Baseline 35.1 0

DPFPS+IRG 34.9 23.79%
Ours 35.0 32.17%

Task Backbone
Architecture

Method EER PRFLOPs

Liveness
Detection

ResNet18
Baseline 1.6 0

DPFPS+IRG 1.7 29.62%
Ours 1.7 37.34%

Inception-v3
Baseline 1.4 0

DPFPS+IRG 1.5 39.69%
Ours 1.5 52.83%

ResNeXt26
Baseline 1.3 0

DPFPS+IRG 1.3 36.58%
Ours 1.3 48.32%

6 CONCLUSION

In this paper, we proposed a new method for model com-
pression, which simultaneously considers model accuracy and
model size. In particular, we first revisited model compression
and analyzed the factors that influence the performance of model
compression. Specifically, we found that there are two attributes
for model compression: distillability and sparsablity. Distillability
indicates how much useful knowledge can be extracted from a
teacher network. Sparsablity indicates the extent to which the
model can be pruned. By exploring distillability and sparsablity,
a guide for model compression during training can be obtained.
Inspired by our observations, we proposed a novel dynamically
distillability-and-sparsablity learning framework (DDSL), com-
prising a teacher, a student and a dean. The teacher guides
the student using the distilled knowledge, while the student
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(a) ResNet101

PRFLOPs PRFLOPs

Batch sizeLearning rate

PRFLOPsPRFLOPs

Batch sizeLearning rate

(b) MobileNetV2

Fig. 15. The test Top-1 accuracy curves and pruned ratio PRFLOPS

curves at different outer loop learning rates ζout and batch sizes. Note
that the inter loop learning rate ζin is commonly set to 0.1. (a) The
curves of pruning ResNet101 on ImageNet. (b) The curves of pruning
MobileNetV2 on ImageNet.

learns to become more accurate and more compact. In addition,
the dean controls the whole learning process. In this manner,
the supervisions are dynamically adjusted and a good balance
is achieved. In order to optimize the proposed framework, an
ADMM-based knowledge distillation-with-pruning (KDP) joint
optimization algorithm was presented for updating the model. The
joint optimization improves the accuracy and the pruned ratio of
our method. Finally, experimental results showed that our method
outperforms 24 state-of-the-art methods in terms of accuracy and
pruned ratio on both small-scale and large-scale databases.

We foresee three directions for future research in this area.
First, it would be promising to extend our method to data-
free situation. Second, the acceleration and simplification of the
training procedure is another future work, for making it more
convenient and efficient. Third, in addition to the convolutional
neural network, it is interesting to extend our method to other
architectures, such as Transformer [70].

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (Grant No. 2020AAA0106800),
the Natural Science Foundation of China (Grant No.61902401,
No. 62192785, No. 61972071, No. U1936204, No. 62122086, No.
62036011, No. 62192782 and No. 61721004), the Beijing Natural
Science Foundation No. M22005, the CAS Key Research Program
of Frontier Sciences (Grant No. QYZDJ-SSW-JSC040). The work
of Bing Li was also supported by the Youth Innovation Promotion
Association, CAS.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017. 1

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587. 1

[3] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko, “Sequence to sequence-video to text,” in Proceedings of the
IEEE International Conference on Computer Vision, 2015, pp. 4534–
4542. 1

[4] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” arXiv preprint arXiv:1608.03665,
2016. 1, 3

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015. 1, 2, 3, 4, 5, 11, 12,
13

[6] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolu-
tional networks for classification and detection,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 10, pp. 1943–
1955, 2015. 1

[7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 6869–6898, 2017. 1

[8] L. Wang and K.-J. Yoon, “Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021. 1

[9] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value
of network pruning,” arXiv preprint arXiv:1810.05270, 2018. 1, 8

[10] J. Cho and M. Lee, “Building a compact convolutional neural network for
embedded intelligent sensor systems using group sparsity and knowledge
distillation,” Sensors, vol. 19, no. 19, p. 4307, 2019. 1, 3, 11, 12

[11] T. Li, J. Li, Z. Liu, and C. Zhang, “Few sample knowledge distillation
for efficient network compression,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
14 639–14 647. 1, 3, 11, 12

[12] H. Bai, J. Wu, I. King, and M. Lyu, “Few shot network compression via
cross distillation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 3203–3210. 1, 3, 11, 12

[13] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017. 2

[14] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International conference on artificial neural
networks. Springer, 2018, pp. 270–279. 2

[15] L. J. Ba and R. Caruana, “Do deep nets really need to be deep?” arXiv
preprint arXiv:1312.6184, 2013. 2

[16] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio, “Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550,
2014. 2

[17] S. Zagoruyko and N. Komodakis, “Paying more attention to attention:
Improving the performance of convolutional neural networks via atten-
tion transfer,” arXiv preprint arXiv:1612.03928, 2016. 2, 7, 11, 12, 13

[18] Z. Huang and N. Wang, “Like what you like: Knowledge distill via
neuron selectivity transfer,” arXiv preprint arXiv:1707.01219, 2017. 2

[19] Y. Liu, J. Cao, B. Li, C. Yuan, W. Hu, Y. Li, and Y. Duan, “Knowl-
edge distillation via instance relationship graph,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 7096–7104. 2, 7, 11, 12, 13, 14

[20] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1365–1374. 2

[21] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distilla-
tion: Fast optimization, network minimization and transfer learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4133–4141. 2

[22] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual
learning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 4320–4328. 3

[23] D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen, “Online knowledge
distillation with diverse peers,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 3430–3437. 3

[24] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your
own teacher: Improve the performance of convolutional neural networks
via self distillation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 3713–3722. 3

[25] S. Yun, J. Park, K. Lee, and J. Shin, “Regularizing class-wise predictions
via self-knowledge distillation,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020, pp. 13 876–
13 885. 3

[26] Y. Jang, H. Lee, S. J. Hwang, and J. Shin, “Learning what and where
to transfer,” in International Conference on Machine Learning. PMLR,
2019, pp. 3030–3039. 3, 10



17

[27] B. Liu, Y. Rao, J. Lu, J. Zhou, and C.-J. Hsieh, “Metadistiller: Network
self-boosting via meta-learned top-down distillation,” in European Con-
ference on Computer Vision. Springer, 2020, pp. 694–709. 3, 11, 12,
13

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016. 3, 11, 12,
13

[29] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks acceleration,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4340–4349. 3, 11, 12, 13

[30] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao,
“Hrank: Filter pruning using high-rank feature map,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1529–1538. 3, 11, 12, 13

[31] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning
for accelerating deep convolutional neural networks,” arXiv preprint
arXiv:1808.06866, 2018. 3, 11, 12, 13

[32] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, and Y. Yang, “Asymptotic soft
filter pruning for deep convolutional neural networks,” IEEE transactions
on cybernetics, vol. 50, no. 8, pp. 3594–3604, 2019. 3, 11, 12, 13

[33] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
2736–2744. 3, 13

[34] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 1389–1397. 3, 11, 12, 13

[35] Z. Huang and N. Wang, “Data-driven sparse structure selection for
deep neural networks,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 304–320. 3

[36] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W. Lin, “Thinet:
pruning cnn filters for a thinner net,” IEEE transactions on pattern
analysis and machine intelligence, vol. 41, no. 10, pp. 2525–2538, 2018.
3

[37] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and
E. Choi, “Morphnet: Fast & simple resource-constrained structure learn-
ing of deep networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 1586–1595. 3

[38] H. Yang, Y. Zhu, and J. Liu, “Ecc: Platform-independent energy-
constrained deep neural network compression via a bilinear regression
model,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 11 206–11 215. 3

[39] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 784–
800. 3, 11, 12, 13

[40] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autocompress: An
automatic dnn structured pruning framework for ultra-high compression
rates,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 4876–4883. 3

[41] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun,
“Metapruning: Meta learning for automatic neural network channel
pruning,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 3296–3305. 3

[42] X. Ning, T. Zhao, W. Li, P. Lei, Y. Wang, and H. Yang, “Dsa: More
efficient budgeted pruning via differentiable sparsity allocation,” arXiv
preprint arXiv:2004.02164, 2020. 3

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520. 4, 11, 13

[44] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1314–1324. 4

[45] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2820–2828. 4

[46] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018. 4

[47] X. Ruan, Y. Liu, B. Li, C. Yuan, and W. Hu, “Dpfps: Dynamic and
progressive filter pruning for compressing convolutional neural networks
from scratch,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 3, 2021, pp. 2495–2503. 4, 8, 11, 12, 13, 14

[48] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011. 9

[49] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimiza-
tion,” Annals of operations research, vol. 153, no. 1, pp. 235–256, 2007.
10

[50] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1126–1135. 10

[51] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, “Discrimination-aware channel pruning for deep neural
networks,” Advances in neural information processing systems, vol. 31,
2018. 11, 12, 13

[52] Z. Chen, T.-B. Xu, C. Du, C.-L. Liu, and H. He, “Dynamical channel
pruning by conditional accuracy change for deep neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 2,
pp. 799–813, 2020. 11, 12, 13

[53] X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding, “Resrep:
Lossless cnn pruning via decoupling remembering and forgetting,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 4510–4520. 11, 12, 13

[54] B. Li, B. Wu, J. Su, and G. Wang, “Eagleeye: Fast sub-net evaluation for
efficient neural network pruning,” in European conference on computer
vision. Springer, 2020, pp. 639–654. 11, 12, 13

[55] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai, “Variational
information distillation for knowledge transfer,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 9163–9171. 11, 12, 13

[56] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distilla-
tion,” arXiv preprint arXiv:1910.10699, 2019. 11, 12, 13

[57] M. Ji, B. Heo, and S. Park, “Show, attend and distill: Knowledge
distillation via attention-based feature matching,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp.
7945–7952. 11, 12, 13

[58] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009. 10

[59] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. 10

[60] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in pytorch,” in Advances in Neural Information Processing Systems
Workshop, 2017. 11

[61] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
11

[62] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778. 11

[63] S. Zagoruyko, “92.45% on cifar-10 in torch,” Torch Blog, 2015. 11
[64] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance

estimation for neural network pruning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
11 264–11 272. 12, 13

[65] S. Guo, Y. Wang, Q. Li, and J. Yan, “Dmcp: Differentiable markov
channel pruning for neural networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 1539–
1547. 12, 13

[66] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, pp. 91–99, 2015. 14

[67] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969. 14

[68] Y. Zhang, Z. Yin, Y. Li, G. Yin, J. Yan, J. Shao, and Z. Liu, “Celeba-
spoof: Large-scale face anti-spoofing dataset with rich annotations,” in
European Conference on Computer Vision. Springer, 2020, pp. 70–85.
14, 15

[69] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755. 15

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008. 16



18

Yufan Liu received her B.S. degree from Zhe-
jiang University in 2015, and the M.S. degree
from Beihang University in 2018. She is cur-
rently a research associate with the National
Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences, Bei-
jing, China. Her research interests include com-
puter vision, model compression and video un-
derstanding.

Jiajiong Cao received BA and Master degree
from the college of information science and elec-
tronic engineering, Zhejiang University in 2018.
Now he is a reseacher in the IoT Business Unit,
Ant Group. His research interests are in deep
learning, biometrics and face recognition.

Bing Li received the Ph.D. degree from the De-
partment of Computer Science and Engineer-
ing, Beijing Jiaotong University, Beijing, China,
in 2009. He is currently a Professor with the
Institute of Automation, Chinese Academy of
Sciences, Beijing. His current research interests
include video understanding, color constancy,
visual saliency, multi-instance learning, and Web
content security.

Weiming Hu received the Ph.D. degree from
the Department of Computer Science and Engi-
neering, Zhejiang University, Zhejiang, China, in
1998. From 1998 to 2000, he was a postdoctoral
research fellow with the Institute of Computer
Science and Technology, Peking University, Bei-
jing. He is currently a professor with the Insti-
tute of Automation, Chinese Academy of Sci-
ences(CASIA), Beijing. His research interests
are visual motion analysis, recognition of web
objectionable information, and network intrusion

detection.

Stephen Maybank received a BA in Mathemat-
ics from King’s College Cambridge in 1976 and a
PhD in computer science from Birkbeck college,
University of London in 1988. Now he is a pro-
fessor emeritus in the Department of Computer
Science and Information Systems, Birkbeck Col-
lege. His research interests include the geome-
try of multiple images, camera calibration, visual
surveillance, etc.


