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RDF datasets can be queried using the SPARQL language but are often irregularly structured and incomplete, which may
make precise query formulation hard for users. The SPARQL�� language extends SPARQL 1.1 with two operators Ð APPROX
and RELAX Ð so as to allow lexible querying over property paths. These operators encapsulate diferent dimensions of
query lexibility, namely approximation and generalisation, and they allow users to query complex, heterogeneous knowledge
graphs without needing to know precisely how the data is structured. Earlier work has described the syntax, semantics and
complexity of SPARQL�� , has demonstrated its practical feasibility, but has also highlighted the need for improving the speed
of query evaluation. In the present paper, we focus on the design of two optimisation techniques targeted at speeding up the
execution of SPARQL�� queries and on their empirical evaluation on three knowledge graphs: LUBM, DBpedia and YAGO.
We show that applying these optimisations can result in substantial improvements in the execution times of longer-running
queries (sometimes by one or more orders of magnitude) without incurring signiicant performance penalties for fast queries.

CCS Concepts: · Information systems → Query languages for non-relational engines; Query optimization; Resource
Description Framework (RDF).

Additional Key Words and Phrases: SPARQL 1.1, path queries, query approximation, query relaxation

1 INTRODUCTION

SPARQL is the predominant language for querying RDF data, which is the standard model for representing web
data and more speciically Linked Open Data. However, datasets in RDF form can be hard to query by users if
they do not have full knowledge of the structure of the data. Moreover, RDF datasets are often extracted from
webpage content, leading to incomplete and irregular data. We have extended SPARQL 1.1 with two operators Ð
APPROX and RELAX Ð with the aim of supporting users’ lexible querying over the property path queries of
SPARQL 1.1, calling this new language SPARQL�� . APPROX and RELAX encapsulate diferent aspects of query
lexibility: inding diferent answers and inding more general answers, respectively. APPROX automatically
applies approximations to a SPARQL 1.1 property path, such as inserting a property, removing a property, or
substituting a property by a diferent one. RELAX automatically generalises a property path by replacing a class
by a superclass, a property by a superproperty, or a property by its domain or range type.

Extending SPARQL 1.1 with APPROX and RELAX allows users to query complex and heterogeneous knowledge
graphs without the need to know precisely how the data is structured. To illustrate, suppose a user is querying
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LUBM to ind the titles of works co-authored by teachers and teaching assistants who teach on the same course,
and poses the following SPARQL 1.1 query:

SELECT ?x ?t WHERE {

?x (publicationAuthor/teacherOf) ?c .

?x (publicationAuthor/teachingAssistantOf) ?c .

?x rdf:type Article . ?x title ?t }

This query returns no answers because in LUBM the property title is associated with the class Person, not the
class Article. Applying APPROX to the last triple pattern allows title to be automatically replaced by all valid
properties of articles (such as name, publicationAuthor and publicationDate), with a user-speciied cost ��
being assigned to this substitution operation:

SELECT ?x ?t WHERE {

?x (publicationAuthor/teacherOf) ?c .

?x (publicationAuthor/teachingAssistantOf) ?c .

?x rdf:type Article . APPROX(?x title ?t) }

This query now returns the co-authored articles and their properties, with the cost �� being associated with
these answers. Applying also RELAX to the third triple pattern replaces Article by its superclass Publication,
which also has additional subclasses such as Book and Manual, so that a broader set of co-authored works can be
returned to the user than just articles. This relaxation operation, too, has a user-speciied cost ����������� assigned
to it, so the resulting query answers now have a cost of �� + ����������� associated with them1:

SELECT ?x ?t WHERE {

?x (publicationAuthor/teacherOf) ?c .

?x (publicationAuthor/teachingAssistantOf) ?c .

RELAX(?x rdf:type Article) . APPROX(?x title ?t) }

Several more examples of SPARQL 1.1 queries and their approximation and/or relaxation are given in Section 4.
The above examples illustrate how users can control where the APPROX and RELAX operators can be applied,

as well as the costs associated with individual approximation and relaxation operations. Operation costs can be
hidden from users if desired, by a system choosing appropriate default costs (e.g., a cost of one for each operation).
To aid users in choosing which triple patterns to approximate or relax, a production version of our approach
could include a facility that indicates to the user which triple patterns in their initial query are amenable to
approximation and which to relaxation Ð this can be achieved by applying a irst step of rewriting to each
triple pattern and determining which triple patterns can be approximated/relaxed to produce a non-empty set of
answers. Users would then be able to select which triple patterns to approximate/relax in the irst instance.

In [28] we described the extension of SPARQL 1.1 with the APPROX and RELAX operations illustrated above and
presented in detail the SPARQL�� language, including its syntax, semantics and complexity of query answering.
We also described a prototype implementation of SPARQL�� , and conducted a query performance study over the
YAGO knowledge graph which pointed to the practical feasibility of the approach but also highlighted the need
for developing optimisation techniques for SPARQL�� query evaluation. In the present paper, we focus on the
design of two such optimisation techniques and on their empirical evaluation with respect to three knowledge

1In general, the overall cost of an approximated and/or relaxed query is the summed cost of the sequence of approximation or relaxation
operations that have generated that query.
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graphs: LUBM, DBpedia and YAGO. The contribution of the paper is the design of two optimisation techniques
targeted at speeding up the execution of approximated and/or relaxed SPARQL queries, and the demonstration
that applying these optimisations brings substantial improvements to the execution times of longer-running
SPARQL�� queries whilst not incurring a signiicant performance penalty for fast queries.
We continue the paper in Section 2 with an overview of related work on lexible querying in databases

and the semantic web, and also on RDF data summarisation and query containment, which are the two query
optimisation approaches that we explore later in the paper. In Section 3 we recall from [28] the syntax, semantics
and implementation of SPARQL�� , to the level of detail needed for our purposes here. Our implementation
approach Ð originally described in [28], and improved here with a more efective query caching mechanism Ð is
based on query rewriting. Section 4 presents a performance study of the baseline implementation described in
Section 3, using three sets of SPARQL queries over the LUBM, DBpedia and YAGO knowedge graphs, respectively.
Section 5 then motivates and describes our two optimisation techniques for SPARQL�� , one based on constructing
an RDF graph summary and using it to reduce the number of rewritten queries that need to be evaluated; and
one based on detecting query containment relationships which again are used to reduce the amount of query
evaluation that is undertaken. In Section 6 we undertake a performance study of these two optimisations, both
individually and combined, and compare the optimised query evaluation against the baseline implementation
results of Section 4. Section 7 draws our conclusions and directions of further work.

2 RELATED WORK

2.1 Flexible querying

Early work on relaxation for query languages over structured data models, such as SQL or OQL, explored the
removal of a selection criterion from the query’s WHERE clause or the ‘widening’ of a selection criterion so as to
match a broader range of values [10, 32]. Another common early approach was fuzzy matching of a selection
criterion, using a similarity function to determine the degree of matching of each query answer [8, 9, 29, 51].
Bordogna and G. Psaila [8] proposed ‘soft’ conditions that tolerate incomplete matchings by exploiting fuzzy set
theory. Generalisation of queries through type abstraction was also proposed [18] as was the use of ‘malleable’
schemas comprising overlapping deinitions of data structures and attributes [62].

Proposals for lexible querying of semi-structured data have included relaxing queries by removing conditions
from XPath expressions [3], ‘widening’ queries by using knowledge from an ontology, thesaurus or schema [33, 44,
59], and fuzzy XPath query evaluation [2]. For lexible querying of RDF data, SPARQL’s OPTIONAL clause [31]
provides some lexibility by returning query answers that may fail to match speciied triple patterns of the
query. More generally, Hurtado et al. [37] proposed a RELAX operator that allows ontology-based relaxation
of speciied triple patterns; such triple patterns are rewritten into successively more general ones and answers
are incrementally returned at increasing ‘costs’ from the exact form of the query. The RELAX operator that we
support here is based on that work and we describe it in more detail in Section 3. Meng et al. [48] relax queries
on RDF data based on user preferences, as do Dolog et al. [21].

In contrast to query relaxation, which aims to return additional answers compared to the original query, query
approximation returns potentially diferent answers that may still be of relevance to the user. (We note that our
focus in this paper is on query approximation, i.e. generating and precisely evaluating variants of the original
query, rather than on approximate query answering using techniques such as histograms [39], wavelets [17] or
sampling [5], which are complementary to our work.) Fink and Olteanu [24] discuss approximation of queries
over probabilistic databases through specifying lower- and upper-bound queries for a given query. Buratti and
Montesi [11] propose cost-based edit operations that transform one XQuery path expression into another. Grahne
and Thomo [30] explored approximate matching of regular path queries (RPQs) over semi-structured data, using
a weighted regular transducer to perform transformations on RPQs. Hurtado et al. [38] extended this approach
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to conjunctive regular path queries (CRPQs). The techniques proposed by Hurtado et al. [37] and Hurtado et
al. [38] were combined by Poulovassilis and Wood [56] and Poulovassilis et al. [55] to support concurrently both
relaxation and approximation of CRPQs.

Frosini et al. [12, 28] similarly investigate extensions to fragments of SPARQL 1.1 to allow both approximation
and relaxation of its property path expressions; complexity bounds for several fragments are derived and it is
shown that adding the APPROX and RELAX operators does not increase the theoretical complexity class of the
language fragments studied.

Similarity-based techniques have also been proposed for lexibly querying RDF data e.g. similarity measures on
literals or resource names [34, 42], structural similarity measures exploiting the graph structure of the data [19, 61],
and ontology-driven similarity measures [35, 36, 57]. Other approaches include using knowledge of the semantic
relationships between graph nodes for lexible query matching [47], using predicates to express lexible paths
between graph nodes [16], and using transformation functions to map nodes/edges appearing in a graph query
to matches in the data graph [60]. Elbassuoni et al. [22] propose keyword-based search extensions of SPARQL
and IR-style ranking of query answers. De Virgilio et al. [20] propose a meta-level framework for integrating
diferent lexible query processing methods on graph-structured data. Pivert et al. [54] undertake a survey of
techniques for lexibly querying RDF data based on user preferences.

Unlike most of these works, our approach centres on query rewriting and we associate a speciic rewritten query
with each lexible answer returned to the user, thereby directly supporting an explanation of how query answers
have arisen. Moreover, users can select which of the full range of approximation/relaxation operations they wish
to be applied to which parts of their queries, and they can also set the cost of each approximation/relaxation
operation (see Section 3.4).

A complementary direction of research is that of semantic schema discovery [41] which can aid users in querying
complex, heterogeneous datasets by inferring additional schema structures upon which users can base their
query formulations. In contrast, our lexible querying approach implicitly discovers relationships in the data and
incorporates them into an automatic query rewriting process.

2.2 RDF summarisation

A considerable amount of work has been done on graph summarisation in general (e.g. see the survey by Liu et
al. [45]) and on RDF data in particular (e.g. see the survey by Čebirić et al. [15]). Most of this work is concerned
with using the summary as some form of substitute for the data graph, in the sense that the summary contains
references to the original graph nodes. This is certainly true when the summary is used as an index, where often
some notion of bisimulation is used to construct a so-called quotient graph from the original. A recent paper by
Blume et al. [7] uniies this work on structural graph summarisation by presenting a common model in which
such summaries can be deined.
Our application of summaries is diferent in that we are interested only in the sequences of labels appearing

along paths in a graph (which we call path labels) rather than the nodes comprising the paths. As such, our
approach is more similar to those used in text indexing and searching. In text processing, it is often useful to be
able to recognise all substrings of a inite string or set of inite strings. Devices that recognise all substrings of a
set of strings have been called factor automata [49]. The summary automata that we use to optimise SPARQL��

queries are similar to factor automata in that, given a graph� and a predeined length � , they recognise precisely
the path labels of length less than or equal to � appearing in � . However, they difer from factor automata in
that they also recognise all the remaining (possibly ininite) path labels in � , as well as possibly some of length
greater than � that do not appear in � .
Instead of using our summary automata to match path labels, we could have used quotient graphs based on

bisimulation, or �-bisimulation [40] since we only handle exact matching up to a pre-deined path length � .
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However, the path matching process using our summary automaton is more eicient than when using a quotient
graph. Given a path label � of length � , our automaton can be used to check for the existence of � in time � (�),
whereas the time using a quotient graph is� (� ·�), where � is the number of nodes in the quotient graph. Details
of our approach are given in Section 5.1.

2.3 uery containment

The problem of query containment, for a particular query language, is fundamental and hence usually studied
intensively. For conjunctive regular path queries (CRPQs), one of the earliest papers on containment was that
by Florescu et al. [26]. They provided an EXPSPACE-algorithm to decide containment of CRPQs, but no lower
bound for the problem was proven. Calvanese et al. [13] extended CRPQs to include an inverse operator, and
showed that query containment is EXPSPACE-complete for this class of queries. More recently, Figuera et al. [23]
show that, by considering various sub-classes of CRPQs which are known to occur frequently in practice, the
complexity of deciding containment can be reduced.

For SPARQL 1.0, the complexity of query containment is the same as that for the relational algebra, given their
equivalence in terms of expressive power [4]. A comprehensive analysis of the complexity of containment for
several fragments of SPARQL is carried by by Pichler and Skritek [53]. Kostylev et al. [43] study containment for
SPARQL 1.1, including property paths and most of the other features of the language, proving EXPSPACE lower
bounds for those fragments where containment is decidable. On the other hand, Mailis et al. [46] consider simpler
forms of conjunctive queries on RDF, for which they show that containment can be decided in polynomial time.

We already mentioned the paper by Grahne and Thomo [30] on applying approximation to regular path queries
(RPQs). In that paper, they also deine the problem of approximate containment between queries, showing that it
is equivalent to deciding containment between a pair of regular expressions and hence PSPACE-complete. In our
containment optimisation, we too check for containment between the regular expressions occurring in triple
patterns in SPARQL�� , extending this to a suicient test for containment between SPARQL�� queries. As a result,
our method may miss some opportunities for removing redundant queries, but it remains in PSPACE rather than
being in EXPSPACE, as would be the case for a complete algorithm based on CRPQs. Details of our approach are
given in Section 5.2.

3 SPARQL�� LANGUAGE AND IMPLEMENTATION

We begin by introducing the syntax and semantics SPARQL�� in Section 3.1, to the level of detail needed for the
present paper. We then specify in Section 3.2 the algorithms underpinning SPARQL�� query evaluation. Next
we describe in Section 3.3 our sub-query caching mechanism, which aims to improve query execution times
by caching and reusing the answers to parts of queries. Finally we briely describe our prototype SPARQL��

implementation in Section 3.4, again to the level of detail necessary here.

3.1 Theoretical Foundations

To recall the syntax and semantics of SPARQL�� , we irst give some fundamental deinitions, many taken from
previous work (e.g. [52]), modiied for our purposes:

Deinition 3.1 (Sets, triples and variables). We assume pairwise disjoint ininite sets� and � of URIs and literals,
respectively. An RDF triple is a tuple ⟨�, �, �⟩ ∈ � ×� × (� ∪ �), where � is the subject, � the predicate and � the
object of the triple. We assume also an ininite set � of variables that is disjoint from� and �. We abbreviate any
union of the sets� , � and � by concatenating their names; for instance,�� = � ∪ �.

Note that we omit blank nodes from triples because their use is discouraged for Linked Data since they represent
resources identiied by IDs that may not be unique in the dataset [6]. In practice, blank nodes are handled as URIs
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that do not identify a speciic resource, both in the semantics of our language and in its implementation (see
www.w3.org/TR/2014/REC-rdf11-mt-20140225/#blank-nodes).

Deinition 3.2 (RDF-Graph). An RDF-Graph � is a directed graph (�, �, �) where: � is a inite set of nodes
such that � ⊂ ��; � is a inite set of predicates such that � ⊂ � ; � is a inite set of labelled, weighted edges of
the form ⟨⟨�, �, �⟩, �⟩ such that the edge source (subject) � ∈ � ∩� , the edge target (object) � ∈ � , the edge label
� ∈ � and the edge weight � is a non-negative number.

Note that in the above deinition we have modiied the deinition of an RDF-Graph from [52] to add weights to
the edges Ð all set to 0 Ð which simpliies the formalisation of the SPARQL�� semantics.

Deinition 3.3 (Ontology). An ontology � is a directed graph (�� , �� ) where each node in �� represents either
a class or a property, and each edge in �� is labelled with a symbol from the set {��, ��, ���, �����}. These edge
labels respectively encompass the RDFS vocabulary fragment rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain
and rdfs:range (known as �DF [50]).

In an RDF-graph� = (�, �, �), we assume that each node in � represents an instance or a class. The predicate
���� , representing the RDF vocabulary rdf:type, can be used in � to connect an instance of a class to a node
representing that class. In an ontology � = (�� , �� ) associated with an RDF-graph� = (�, �, �) we assume that
each node in �� represents a class (a łclass nodež) or a property (a łproperty nodež). The intersection � ∩ �� is
contained in the set of class nodes of �� . � is contained in the set of property nodes of �� .

Deinition 3.4 (Triple pattern). A triple pattern is a tuple ⟨�, �,�⟩ ∈ �� ×�� ×���. Given a triple pattern
⟨�, �,�⟩, ��� (⟨�, �,�⟩) is the set of variables occurring in it.

For simplicity, we omit blank nodes from our language as these act as variables and a query containing blank
nodes can be expressed in an equivalent form without using blank nodes (see www.w3.org/TR/2013/REC-sparql11-
query-20130321/#QSynBlankNodes).

Deinition 3.5 (Mapping). A mapping � from��� to�� is a partial function � : ��� → ��. We assume that
� (�) = � for all � ∈ ��, i.e. � maps URIs and literals to themselves. The set ��� (�) is the subset of � on which
� is deined. Given a triple pattern ⟨�, �,�⟩ and a mapping � such that ��� (⟨�, �,�⟩) ⊆ ��� (�), � (⟨�, �,�⟩) is the
triple obtained by replacing the variables in ⟨�, �,�⟩ by their image according to �.

We now specify the syntax of SPARQL�� regular expression patterns, query patterns and queries:

Deinition 3.6 (Regular expression pattern). A SPARQL�� regular expression pattern � ∈ ����� (� ) is deined as
follows:

� := � | _ | � | (�1 |�2) | (�1/�2) | �∗

where �1, �2 ∈ ����� (� ) are also regular expression patterns, � represents the empty pattern, � ∈ � , and _ is a
symbol that denotes the disjunction of all URIs in� .

The above is compliant with a fragment of the full property path syntax of SPARQL 1.1 (leaving out inverse
paths and negated properties), with two extensions necessary for SPARQL�� . Firstly, the symbol _ can appear in
a rewritten SPARQL�� query (but not in a user-submitted query). Prior to query evaluation (which we undertake
by translating SPARQL�� into SPARQL 1.1), _ is replaced by !� (a negated property), where � is a URI that is
known not to exist in the RDF-graph. Secondly, the symbol � too can appear in a rewritten SPARQL�� query (but
not in a user-submitted query). Prior to query evaluation � is replaced by �?.

Deinition 3.7 (Query Pattern). A SPARQL�� query pattern � is deined as follows:
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� := �� ×�� ×��� | �� × ����� (� ) ×��� | �1 AND �2 | �1 UNION �2 | � FILTER � |
RELAX(�� × ����� (� ) ×���) | APPROX(�� × ����� (� ) ×���)

where � is a SPARQL built-in condition and �1, �2 are also query patterns. We denote by ��� (�) the set of all
variables occurring in a query pattern � .

In the concrete SPARQL�� syntax, a dot (.) is used for conjunction (as in SPARQL) but, for greater clarity, we
use AND in the abstract SPARQL�� syntax.

Deinition 3.8 (SPARQL�� Triple Pattern). A SPARQL�� triple pattern � is deined as follows:

� := ��×��×��� | ��×����� (� )×��� | RELAX(��×����� (� )×���) | APPROX(��×����� (� )×���)

We denote by ��� (�) the set of all variables occurring in a triple pattern � .

Deinition 3.9 (Query). A SPARQL�� query has the form SELECT−→� WHERE � , with � a SPARQL�� query
pattern and −→� ⊆ ��� (�). We may omit in the abstract syntax the keyword WHERE for simplicity. Given a
SPARQL�� query � ′

= SELECT−→�� , the head of �
′, ℎ��� (� ′), is −→� if −→� ≠ ∅ and is ��� (�) otherwise. We may

omit in the abstract syntax the SELECT keyword if −→� = ���� (�).

The semantics of SPARQL�� are an extension of the SPARQL 1.1 semantics to include the costs of applying
the APPROX and RELAX operators. These costs determine the ranking of query answers returned to the user,
with exact answers (of cost 0) being returned irst, followed by answers with increasing costs. We extend the
notion of SPARQL query evaluation from returning a set of mappings to returning a set of pairs ⟨�, �⟩, where � is
a non-negative integer indicating the cost of the answers arising from the mapping �. More formally:

A mapping � from ��� to�� is as deined earlier. Two mappings �1 and �2 are compatible if ∀� ∈ ��� (�1) ∩
��� (�2), �1 (�) = �2 (�). The union of two mappings � = �1 ∪ �2 can be computed only if �1 and �2 are compatible.
The resulting � is a mapping such that ��� (�) = ��� (�1) ∪ ��� (�2) and: for each � in ��� (�1) ∩ ��� (�2), we have
� (�) = �1 (�) = �2 (�); for each � in ��� (�1) but not in ��� (�2), we have � (�) = �1 (�); and for each � in ��� (�2)
but not in ��� (�1), we have � (�) = �2 (�).

The result,� , of evaluating a SPARQL�� query comprises a set of pairs of the form ⟨�, �⟩ where � is a mapping
and � is a non-negative integer indicating the cost of the answers arising from that mapping. We deine the union
and join of two sets of SPARQL�� query evaluation results,�1 and�2 as follows:

�1 ∪�2 = {⟨�, �⟩ | ⟨�, �1⟩ ∈ �1 or ⟨�, �2⟩ ∈ �2 with � = �1 if ��2 .⟨�, �2⟩ ∈ �2,

� = �2 if ��1 .⟨�, �1⟩ ∈ �1, and � =���(�1, �2) otherwise}

�1 Z �2 = {⟨�1 ∪ �2, �1 + �2⟩ | ⟨�1, �1⟩ ∈ �1 and ⟨�2, �2⟩ ∈ �2,

with �1 and �2 compatible mappings}

The semantics of a triple pattern ⟨�, �,�⟩ with respect to an RDF-graph � , denoted ⟦⟨�, �,�⟩⟧� , is deined
recursively as follows, where � , �1, �2 are regular expression patterns, � , �, � are in��� , and�1, . . . ,�� are fresh
variables:

⟦⟨�, �,�⟩⟧� = {⟨�, 0⟩ | ��� (�) = ��� (⟨�, �,�⟩) ∧ ∃� ∈ � . � (�) = � (�) = �}

⟦⟨�, �,�⟩⟧� = {⟨�, �⟩ | ��� (�) = ��� (⟨�, �,�⟩) ∧ ⟨� (⟨�, �,�⟩), �⟩ ∈ �}

⟦⟨�, �1 |�2, �⟩⟧� = ⟦⟨�, �1, �⟩⟧� ∪ ⟦⟨�, �2, �⟩⟧�

⟦⟨�, �1/�2, �⟩⟧� = ⟦⟨�, �1, �⟩⟧� Z ⟦⟨�, �2, �⟩⟧�

⟦⟨�, �∗, �⟩⟧� = ⟦⟨�, �,�⟩⟧� ∪ ⟦⟨�, �,�⟩⟧� ∪
⋃

�≥1

{⟨�, �⟩ | ⟨�, �⟩ ∈ ⟦⟨�, �,�1⟩⟧�

Z ⟦⟨�1, �,�2⟩⟧� Z · · · Z ⟦⟨��, �,�⟩⟧� }
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Subproperty (1)
⟨�, ��, �⟩⟨�, ��, �⟩

⟨�, ��, �⟩
(2)

⟨�, ��, �⟩⟨�, �,�⟩

⟨�, �,�⟩

Subclass (3)
⟨�, ��, �⟩⟨�, ��, �⟩

⟨�, ��, �⟩
(4)

⟨�, ��, �⟩⟨�, ����, �⟩

⟨�, ����, �⟩

Typing (5)
⟨�, ���, �⟩⟨�, �,�⟩

⟨�, ����, �⟩
(6)

⟨�, �����, �⟩⟨�, �,�⟩

⟨�, ����, �⟩

Fig. 1. RDFS entailment rules

A mapping � satisies a condition �, denoted � |= �, as follows:

� is � = �: � |= � if � ∈ ��� (�), � ∈ �� and � (�) = �;
� is � = �: � |= � if �,� ∈ ��� (�) and � (�) = � (�);
� is ����� (�): � |= � if � ∈ ��� (�) and � (�) ∈ � ;
� is ��������� (�): � |= � if � ∈ ��� (�) and � (�) ∈ �;
� is �1 ∧ �2: � |= � if � |= �1 and � |= �2;
� is �1 ∨ �2: � |= � if � |= �1 or � |= �2;
� is ¬�1: � |= � if it is not the case that � |= �1;

Finally, the semantics of SPARQL�� queries not including APPROX and RELAX are as follows, where � , �1,
�2 are query patterns and the projection operator �−→� selects only the subsets of the mappings relating to the
variables in −→� :

⟦�1 AND �2⟧� = ⟦�1⟧� Z ⟦�2⟧�

⟦�1 UNION �2⟧� = ⟦�1⟧� ∪ ⟦�2⟧�

⟦� FILTER �⟧� = {⟨�, �⟩ ∈ ⟦�⟧� | � |= �}

⟦SELECT−→��⟧� = �−→� (⟦�⟧� )

3.1.1 Semantics of RELAX. The RELAX operator relies on the �DF entailment rules shown in Figure 1. In order
to guarantee that relaxed queries have unambiguous costs, we require that the ontology � is acyclic and also
that its extended reduction is used (see [37] for detailed discussion). The extended reduction of � , ������ (�), is
computed as follows: (i) compute the closure of � under the rules of Figure 1; (ii) apply the rules of Figure 2 in
reverse until no more rules can be applied2; (iii) for every pair of triples ⟨�, ��, �⟩ and ⟨�, ��, �⟩ in � , apply rule 1
of Figure 1 in reverse unless there exists a URI � such that triples ⟨�, ��, �⟩ and ⟨�, ��, �⟩ are also contained in �3;
(iv) for every pair of triples ⟨�, ��, �⟩ and ⟨�, ��, �⟩ in � , apply rule 3 of Figure 1 in reverse unless there exists a
URI � such that triples ⟨�, ��, �⟩ and ⟨�, ��, �⟩ are also contained in � .

For the purposes of SPARQL�� query evaluation, we assume that � = ������ (�). This means that only direct

relaxations (see below) are applied to queries. These query relaxations correspond to the ‘smallest’ possible
relaxation steps, thereby allowing an unambiguous cost to be assigned to rewritten queries (see [37] for detailed
discussion and formal proofs).
Following the terminology of [37], a triple pattern ⟨�, �,�⟩ directly relaxes to a triple pattern ⟨� ′, �′, �′⟩ with

respect to an ontology � = ������ (�), denoted ⟨�, �,�⟩ ≺� ⟨� ′, �′, �′⟩, if ���� (⟨�, �,�⟩) = ���� (⟨� ′, �′, �′⟩)
and ⟨� ′, �′, �′⟩ is derived from ⟨�, �,�⟩ by applying rule � from Figure 1. There is a cost ������ associated

2Applying a rule in reverse means removing a triple that is deducible by the rule, i.e. if there are two triples � and � ′ that match the antecedent
of a rule then remove a triple that can be derived from � and � ′ using that rule.
3The proviso łunless there exists a URL � such that ...ž here, and in step (iv), ensures that removal of redundant triples happens from the
‘outside-in’ for the transitive �� and �� properties, so as to correctly minimise them.
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(e1)
⟨�, ���, �⟩⟨�, ��, �⟩

⟨�, ���, �⟩
(e2)

⟨�, �����, �⟩⟨�, ��, �⟩

⟨�, �����, �⟩

(e3)
⟨�, ���,�⟩⟨�, ��, �⟩

⟨�, ���, �⟩
(e4)

⟨�, �����, �⟩⟨�, ��, �⟩

⟨�, �����, �⟩

Fig. 2. Additional rules for extended reduction of an RDFS ontology

with the application of such a direct relaxation. For example, suppose the ontology � contains the triples
⟨�������,���, ��������⟩, ⟨�������, �����, ����⟩, ⟨�������, ���, �������� ⟩, ⟨�������, �����, ����⟩, ⟨�������, ��,�������⟩,
⟨�������, ��, ��������⟩. Then rule 5 can be used to deduce the triple pattern ⟨�, ����, �������� ⟩ from the
triple patterns ⟨�, �������,�������⟩ and ⟨�������, ���, �������� ⟩; rule 6 can be used to deduce triple pattern
⟨�, ����, ����⟩ from triple patterns ⟨����� �������, �������,�⟩ and ⟨�������, �����, ����⟩; rule 2 can be used
to deduce triple pattern ⟨�,�������,�⟩ from triple patterns ⟨�, �������,�⟩ and ⟨�������, ��,�������⟩; and
rule 4 can be used to deduce triple pattern ⟨�, ����, ��������⟩ from triple patterns ⟨�, ����, �������� ⟩ and
⟨�������, ��, ��������⟩.
A triple pattern ⟨�, �,�⟩ relaxes to a triple pattern ⟨� ′, �′, �′⟩, denoted ⟨�, �,�⟩ ≤� ⟨� ′, �′, �′⟩, if starting from

⟨�, �,�⟩ there is a sequence of direct relaxations that derives ⟨� ′, �′, �′⟩. The cost of such a sequence of direct
relaxations is the sum of the individual costs of the direct relaxations in the sequence. The relaxation cost of
deriving ⟨� ′, �′, �′⟩ from ⟨�, �,�⟩, denoted ����� (⟨�, �,�⟩, ⟨� ′, �′, �′⟩), is the minimum cost over all sequences of
direct relaxations that derive ⟨� ′, �′, �′⟩ from ⟨�, �,�⟩.

The semantics of the SPARQL�� RELAX operator are as follows, where � , �1, �2 are regular expression patterns,
� , � ′, �, �′ are in��� , � , �′ are in� , and �, �1, . . ., �� are fresh variables:

⟦RELAX(�, �,�)⟧�,� = ⟦⟨�, �,�⟩⟧� ∪ {⟨�, � + ����� (⟨�, �,�⟩, ⟨� ′, �′, �′⟩)⟩ |

⟨�, �,�⟩ ≤� ⟨� ′, �′, �′⟩ ∧ ⟨�, �⟩ ∈ ⟦⟨� ′, �′, �′⟩⟧� }

⟦RELAX(�, �1 |�2, �)⟧�,� = ⟦RELAX(�, �1, �)⟧�,� ∪ ⟦RELAX(�, �2, �)⟧�,�

⟦RELAX(�, �1/�2, �)⟧�,� = ⟦RELAX(�, �1, �)⟧�,� Z ⟦RELAX(�, �2, �)⟧�,�

⟦RELAX(�, �∗, �)⟧�,� = ⟦⟨�, �,�⟩⟧� ∪ ⟦RELAX(�, �,�)⟧�,� ∪
⋃

�≥1

{⟨�, �⟩ |

⟨�, �⟩ ∈ ⟦RELAX(�, �, �1)⟧�,� Z ⟦RELAX(�1, �, �2)⟧�,� Z · · ·

Z ⟦RELAX(��, �,�)⟧�,� }

3.1.2 Semantics of APPROX. For query approximation, we apply edit operations that delete, insert or substitute a
URI in a �������� regular expression pattern, as speciied in Algorithm 8 in Appendix A. The application of
such an edit operation has a non-negative cost �� , �� or �� , respectively, associated with it. We write � {∗ � if a
sequence of edit operations can be applied to a URI � to derive a regular expression pattern � . The edit cost of
deriving � from � , denoted ����� (�, �), is is the minimum cost over all sequences of edit operations that derive. �
from � .
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The semantics of the APPROX operator are as follows, where � , �1, �2 are regular expression patterns, � , � are
in��� , � , �′ are in� , and �, �1, . . ., �� are fresh variables:

⟦APPROX(�, �,�)⟧� = ⟦⟨�, �,�⟩⟧� ∪
⋃

{⟨�, � + ����� (�, �)⟩ | � {∗ � ∧ ⟨�, �⟩ ∈ ⟦⟨�, �,�⟩⟧� }

⟦APPROX(�, �1 |�2, �)⟧� = ⟦APPROX(�, �1, �)⟧� ∪ ⟦APPROX(�, �2, �)⟧�

⟦APPROX(�, �1/�2, �)⟧� = ⟦APPROX(�, �1, �)⟧� Z ⟦APPROX(�, �2, �)⟧�

⟦APPROX(�, �∗, �)⟧� = ⟦⟨�, �,�⟩⟧� ∪ ⟦APPROX(�, �,�)⟧� ∪
⋃

�≥1

{⟨�, �⟩ |

⟨�, �⟩ ∈ ⟦APPROX(�, �, �1)⟧� Z ⟦APPROX(�1, �, �2)⟧� Z · · ·

Z ⟦APPROX(��, �,�)⟧� }

3.1.3 Complexity of SPARQL�� query answering. We studied in [28] the data, query and combined complexity
of SPARQL�� query answering, extending earlier results from [52, 58] for simple SPARQL queries, from [1] for
SPARQL with regular expression patterns to include our new lexible querying constructs, and from [12] to
include also UNION in SPARQL�� . We showed that the data complexity of SPARQL�� is in PTIME, while the
query and combined complexity are NP-Complete Ð we refer readers to [28] for details4.

3.2 SPARQL�� uery Processing

To evaluate a SPARQL�� query � that may contain occurrences of APPROX or RELAX, we make use of a
query rewriting algorithm that incrementally creates a set of queries {�0, �1, . . . } not containing these operators,
such that

⋃
�⟦��⟧�,� = ⟦�⟧�,� 5. Our query rewriting algorithm has previously been described in [28]. For

completeness we include it here as Algorithm 6 in Appendix A where an overview of its operation is also given.
The cost of each query generated by the rewriting algorithm is the summed cost of the sequence of approximation
or relaxation operations that have created the query. If the same query is generated more than once, only the one
with the lowest cost is retained. The set of queries generated is kept sorted by increasing cost, and for practical
reasons we limit the number of queries generated by bounding the cost of queries up to a maximum value � . The
soundness, completeness and termination of the rewriting algorithm are proved in [28].
To compute the answers to a SPARQL�� query � , we use Algorithm 1. This calls the rewriting algorithm

(function �������) to create the list of rewritten queries up to a maximum cost � , applies an evaluation function
(����) to each such query (in order of increasing cost of the queries), and assigns the cost of the query to each
mapping returned by ���� . If a particular mapping is created more than once, only the one with the lowest cost is
retained. The set of mappings� is maintained in order of increasing cost.

We note that our algorithm for applying APPROX to a regular expression pattern (Algorithm 8 in Appendix A)
already includes some simple optimisations. To illustrate, consider a regular expression pattern comprising a single
URI � . One step of approximation yields the set of ⟨����������, ����⟩ pairs�0 = {⟨�, ��⟩, ⟨!�, ��⟩, ⟨(_/�), ��⟩, ⟨(�/_), ��⟩}.
where �� is the cost of a deletion, �� is the cost of a substitution, and �� is the cost of an insertion. Naïvely applying
approximation again would yield 16 pairs. However, the irst if statement in Algorithm 8 ensures that the pair
⟨�, ��⟩ is not approximated further (we assume that the cost of substitution is less than that of deletion plus
insertion, so there is no point in inserting into the empty label).

4We also discussed in [28] how SPARQL�� could be extended to allow OPTIONAL subqueries, with the triple patterns in such subqueries
being able to have APPROX or RELAX applied to them. Since the combined complexity of SPARQL with OPTIONAL is PSPACE-complete,
the combined complexity of SPARQL�� would increase similarly.
5We note that the set of queries resulting from rewriting a SPARQL�� query that includes APPROX/RELAX up to a speciied maximum cost
are themselves SPARQL 1.1 queries and therefore they could be expressed as a single SPARQL 1.1 query using SPARQL’s UNION operator
(losing, of course, the cost associated with each subquery).
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ALGORITHM 1: Flexible Query Evaluation

input :Query � ; approximation/relaxation max cost �; Graph � ; Ontology � .
output :List� of mapping/cost pairs, sorted by cost.
� := ∅;

foreach ⟨� ′, ����⟩ ∈ rewrite(� ,� ,�) do

foreach ⟨�, 0⟩ ∈ eval(� ′,�) do
� :=� ∪ {⟨�, ����⟩}

end

end

return M;

Next, we apply approximation to the remaining three pairs in �0. Approximating ⟨!�, ��⟩ yields the set �1 =
{⟨(_/!�), (�� + �� )⟩, ⟨(!�/_), (�� + �� )⟩}. Only insertions are applied since deleting or substituting a substituted
label will only generate queries at costs greater than those already generated. Approximating ⟨(_/�), ��⟩ yields
the set �2 = {⟨((_/_)/�), (2 ∗ �� )⟩, ⟨_, (�� + �� )⟩, ⟨(_/!�), (�� + �� )⟩, ⟨(_/(_/�)), (2 ∗ �� )⟩, ⟨(_/(�/_)), (2 ∗ �� )⟩} The
irst of these pairs is equivalent to the fourth, while the third is the same as the irst in �1, so both pairs can be
removed from �2. Approximating ⟨(�/_), ��⟩ yields the set �3 = {⟨_, (�� + �� )⟩, ⟨(!�/_), (�� + �� )⟩, ⟨((_/�)/_), (2 ∗
�� )⟩, ⟨((�/_)/_), (2 ∗ �� )⟩, ⟨(�/(_/_), (2 ∗ �� )⟩}. The irst of these pairs is the same as the second in (the original)
�2, while the second is the same as the second in �1, so both can be removed. The third pair in �3 is equivalent to
the ifth in �2, while the fourth and ifth pairs in �3 are equivalent, so one can be removed. So after two rounds of
approximation, we are left with 2 + 3 + 1 = 6 rather than 16 new pairs.

3.3 Pre-Computation Optimisation

In order to speed up query execution, we have implemented an optimisation technique that caches and reuses the
answers to selected subqueries of the queries generated by the rewriting algorithm. For each query � generated
by the rewriting algorithm, we generate a set �� of subqueries of � using the ConnectedTripleSet function listed
in Algorithm 2. Each query (i.e. set of triple patterns) � ∈ �� contains (i) the exact part of� , i.e. the triple patterns
that are not approximated or relaxed, plus (ii) possibly additional approximated or relaxed triple patterns such that
the following property holds: every �′ ⊆ � contains at least one triple pattern that shares a variable with a triple
pattern from �−�′. If a query � has this property, we say that it is connected. When evaluating such a query �, it is
never the case that for �′, �′′ with � = �′ ∪�′′ we have that ���� (�′,�) Z ���� (�′′,�) = ���� (�′,�) × ���� (�′′,�).
In other words, in creating an answer set for � from partial answer sets for pairs of its subqueries, it is never
necessary to compute a Cartesian product6. We note that Algorithm 2 may return an empty set if it is not possible
to generate any connected subqueries of � satisfying criteria (i) and (ii).

6This contrasts with the pre-computation optimisation that we presented in [28] in which queries were split into their exact part and
their approximated/relaxed part, irrespective of the join relationships between triple patterns, which led potentially to the breaking of join
relationships and the need to compute the Cartesian product of two sets of pre-computed answers. We refer readers to [28] for a detailed
description of this problem with that earlier version of our pre-computation optimisation.
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ALGORITHM 2: ConnectedTripleSet Function

input :a query � .
output :Set of subqueries of � , �� .
�� := ∅;

����� := subset of triple patterns of � that are not labelled with APPROX or RELAX;

foreach set of triple patterns � such that ����� ⊆ � ⊂ � and � is connected do

�� := �� ∪ �;

end

return �� ;

Example 3.10. Given query� = (�1, �1, �2) AND ������ (�1, �2, �3) AND ����� (�4, �3, �2) AND ����� (�4, �4, �5),
ConnectedTripleSet returns the following set of subqueries:

{{(�1, �1, �2)}, (1)

{(�1, �1, �2), ������ (�1, �2, �3)}, (2)

{(�1, �1, �2), ����� (�4, �3, �2)}, (3)

{(�1, �1, �2), ������ (�1, �2, �3), ����� (�4, �3, �2)}, (4)

{(�1, �1, �2), ����� (�4, �3, �2), ����� (�4, �4, �5)}} (5)

We see that each of these subqueries contains the exact part of� (i.e. just the triple (�1, �1, �2) in this example),
plus potentially one or more additional approximated/relaxed triple patterns such that the subquery is connected.
We notice that the triple pattern ����� (�4, �4, �5) appears only together with triple pattern ����� (�4, �3, �2)
as these share the variable �4 and the variable �2 is needed to connect to the exact triple pattern (�1, �1, �2).

Algorithm 3 speciies the evaluation of SPARQL�� queries up to a maximum cost � , utilising a query cache and
the ConnectedTripleSet function. The algorithm invokes in two places a modiied query evaluation function eval

which exploits now any sub-query answers that have already been computed and stored in the cache, retrieving
such answers and combining or extending them to produce the complete answer set. Algorithm 3 begins by
invoking the query rewriting algorithm described earlier. The ConnectedTripleSet function is used to generate a
set of connected subqueries for each query � ′ generated by the rewriting algorithm. Each such subquery � ′′

whose results are not already in the cache is evaluated, using the eval function, and its results are stored in the
cache; if parts of� ′′ have already been evaluated and cached, then these answers are reused by ���� and extended
with further partial evaluation results to produce a full answer set for � ′′. To avoid memory overlow, there is an
upper limit on the size of the cache7. The answers of the full query � ′ are then computed, using again the eval
function, and added to the list of answers� .
In this paper, we use Algorithm 3 as the baseline for investigating the efectiveness of the two optimisations

that we introduce in Section 5, since it is these two new optimisations that are our focus here. We refer readers to
Chapter 6 of [27] for a detailed comparison of query performance with and without sub-query caching8.

7Currently there is no cache replacement policy in our prototype. The cache is initialised when a new user query is submitted, and results
caching ceases once the cache is full (omitted from Algorithm 3 for simplicity). It is an area of future work to implement and evaluate more
sophisticated policies.
8In brief, the indings from that analysis are that the pre-computation optimisation reduces the execution time of queries that have a large
number of rewritings due to its caching of partial answers, but that it may increase somewhat the execution time of queries with a low
number of rewritings due to the additional subquery evaluation undertaken. The determination of the precise threshold of when to apply this
optimisation would be implementation-dependent and in the case of our prototype implementation it is at around 15 rewritten queries.
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ALGORITHM 3: Flexible Query Evaluation with Pre-Computation

input :Query � ; approx/relax max cost �; Graph � ; Ontology � .
output :List� of mapping/cost pairs, sorted by cost.
�−→� := head of � ;

���ℎ� := ∅ ; /* cache is a set of pairs of query/evaluation results */

� := ∅;

foreach ⟨� ′, ����⟩ ∈ rewrite(� ,� ,�) do

foreach � ′′ ∈ ������������������ (� ′) do
if � ′′ is not in ���ℎ� then

���ℎ� := ���ℎ� ∪ ⟨� ′′, ���� (� ′′, ���ℎ�,�)⟩ ;

end

end

foreach ⟨�, 0⟩ ∈ eval(� ′, ���ℎ�,�) do
� :=� ∪ {⟨�, ����⟩};

end

end

return �−→� (�);

3.4 SPARQL�� Implementation

We have implemented a prototype that supports SPARQL�� query evaluation, which is described in detail in [28]
(the source code is available at https://github.com/riccardofrosini/SPARQLAR). Its user interface allows queries
to be formulated and submitted, datasets and ontologies to be selected, and query answers to be incrementally re-
turned to the user in order of increasing cost. Users can select which of the full range of approximation/relaxation
operations they wish to be applied to which parts of their queries. They can also set the cost of each approxima-
tion/relaxation operation. Datasets are stored in Jena9 using the TDB database10. Jena library methods are used
to execute SPARQL 1.1 queries over the selected RDF dataset, as requested by the SPARQL�� query evaluator
(the ���� function described above).

In subsequent sections of the paper we focus on the performance and optimisation of SPARQL�� queries
using this prototype. In practice, this SPARQL�� query processing system would be part of a broader framework
supporting lexible SPARQL query processing for end-users. For example, a keyword-based or natural language
query interface could be supported, translating users’ queries and their approximation/relaxation options into
SPARQL�� . To help users interpret the answers to their queries, in our current prototype users can ask to see
which rewritten query has generated a given answer. This facility could be extended to allow users to request full
query provenance information showing the sequence of approximation/relaxation steps that led to that query.

4 QUERY PERFORMANCE STUDY

For our empirical evaluation of SPARQL�� query processing Ð i.e. Algorithm 3 described in the previous section
Ð and of the optimised query processing described in Section 5, we use three datasets: LUBM11 (Lehigh University

9https://jena.apache.org
10https://jena.apache.org/documentation/tdb/
11https://swat.cse.lehigh.edu/projects/lubm/
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Benchmark), YAGO 3.012 and DBpedia13. The LUBM benchmark constructs datasets that describe universities,
departments, professors, publications and students. By specifying the number of universities, the benchmark
scales the size of the dataset. We set the number of universities to be 50 which generates an RDF dataset containing
approximately 6,700,000 triples. The YAGO dataset integrates data from Wikipedia, Geonames and Wordnet.
It contains approximately 120 million triples, corresponding to a size of 10 GB in the Jena TDB format. YAGO
also records an estimated accuracy measure for each fact, which we removed for our performance study. The
DBpedia dataset contains facts extracted from Wikipedia’s infobox. It also contains triple patterns that record
links between diferent Wikipedia pages and links to external sources, and redirection URLs from one page to
another. It contains approximately 4,230,000 URLs and 62 million triples.

We deined ive SPARQL�� queries for each of LUBM, DBpedia and YAGO Ð which we call łtop-level queriesž
below, to distinguish them from the sets of rewritten queries produced by the rewriting algorithm. Each query
contains between one and seven triple patterns, some of which are approximated or relaxed in order to retrieve
the answers that the user is seeking or that may more generally be of interest to the user. We explain each query,
and how applying approximation or relaxation may be useful, in the following subsections.
The cost of each edit and relaxation operation is set to 1 for our performance study. We also assume that the

user has selected the full range of edit and relaxation operations to be applicable by the APPROX and RELAX
operators. We successively set the maximum cost of the desired query answers to be 1, 2 and 3. We report on
the number of queries generated by the rewriting algorithm for each of these maximum costs, and on the time
taken to execute each top-level query up to each maximum cost. The performance study was conducted using a
Windows machine with 32GB of RAM and an Intel Core i7 processor. Each top-level query was executed 5 times;
the irst execution was discarded to account for Jena cache warm-up efects, and the query execution time we
used was taken to be the average of the four subsequent executions. By ‘query execution time’ we mean the total
time taken from submitting a top-level query to returning all the answers up to the speciied maximum cost. For
the purposes of this performance study, the cache relating to the pre-computation optimisation is emptied at the
start of each top-level query evaluation.

4.1 LUBM

We irst describe each of the ive top-level queries run on the LUBM dataset. Although each query includes
APPROX and/or RELAX operators, we irst describe what the exact form of the query speciies (i.e. without the
APPROX/RELAX operators) before motivating the inclusion of the APPROX and RELAX operators and describing
the additional results returned.

Query�1 asks for the titles of articles written by a teacher and a teaching assistant who teach on the same course:

�1: SELECT ?x ?t WHERE {

?x (publicationAuthor/teacherOf) ?c .

?x (publicationAuthor/teachingAssistantOf) ?c .

RELAX(?x rdf:type Article) . APPROX(?x title ?t) }

The exact form of the query will not return any answers because in LUBM the property title has domain Person,
not Article. By approximating the last triple pattern, the rewriting algorithm will replace the property title

with the expression !title (amongst other edit operations) and the resulting query will return all properties of

12The version we use is from https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
archive The latest YAGO database can be found at https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/
yago-naga/yago/
13The data we use is from http://downloads.dbpedia.org/2016-04/. The latest database and information on DBpedia can be found at https:
//wiki.dbpedia.org/
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articles other than title. Relaxing the triple pattern (?x rdf:type Article) also allows the user to see other
types of publication that the authors have co-written, since Article has a superclass Publication which has
subclasses such as Book and Manual.
Query �2 asks for every course that was taken by both GraduateStudent1, who has a Masters degree, and

Student25, who is an alumnus of the same university from which GraduateStudent1 obtained their Masters
degree:

�2: SELECT ?c WHERE {

RELAX(GraduateStudent1 (mastersDegreeFrom/hasAlumnus) Student25) .

GraduateStudent1 takesCourse ?c .

Student25 takesCourse ?c }

Because GraduateStudent1 did not in fact get a Masters degree from the university of which Student25 is an
alumnus, the exact query returns no answers. By relaxing the irst triple pattern, the property mastersDegreeFrom
will be replaced by its super-property degreeFrom. Since GraduateStudent1 does in fact have other degrees
from the university of which Student25 is an alumnus, the rewritten query will return the courses taken by both
of them, among other answers.

Query �3 asks for the publications co-authored by AssociateProfessor3 and a student that she advises:

�3: SELECT * WHERE {

?z publicationAuthor AssociateProfessor3.

APPROX(?z (publicationAuthor/advisor) AssociateProfessor3) }

The exact form of this query does return some answers. Applying APPROX to the second triple pattern allows
the property advisor to be dropped from the query (among other edits), allowing the user to see more generally
all the publications written by AssociateProfessor3.

Query�4 asks for every undergraduate student ?s and course ?c, such that ?s has email address "UndergraduateStudent5@Department1..."
?c is taught by an AssistantProfessor, and ?s takes ?c:

�4: SELECT ?s ?c WHERE {

?x rdf:type AssistantProfessor . ?x teacherOf ?c .

?s takesCourse ?c . RELAX(?s rdf:type UndergraduateStudent) .

APPROX(?s address "UndergraduateStudent5@Department1.University0.edu") }

The property address is not present in LUBM, so the exact query will not return any answers. Applying APPROX
to the last triple pattern allows address to be replaced by !address, which will match the property emailAddress
among others. The resulting query would still not return any answers since the student with the speciied email
address is in fact a graduate student rather than an undergraduate student. The RELAX operator on the fourth
triple pattern allows graduate students with that email address to also be returned.

Query �5 asks for every assistant professor who is an author of Publication0 and works for an organization
that has ResearchGroup3 as a sub-organization:

�5: SELECT ?p WHERE {

RELAX(ResearchGroup3 subOrganizationOf* ?x) .

RELAX(?p rdf:type AssistantProfessor) . ?p worksFor ?x .

Publication0 publicationAuthor ?p }
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The exact form of the query returns no answers. Relaxing the irst triple pattern allows its replacement by
(Organization rdf:type−/subOrganizationOf* ?x), using the statement (subOrganizationOf rdfs:range

Organization) from the LUBM ontology, thus removing the requirement for ResearchGroup3; the resulting
query returns assistant professors who are authors of Publication0. Relaxing the second triple pattern al-
lows its replacement by (?p rdf:type Professor), returning authors of Publication0 who are professors
(which includes FullProfessor, AssociateProfessor and AssistantProfessor); further steps of relaxation
will replace Professor by Faculty and then Employee.

Table 1 shows the number of queries generated by the rewriting algorithm for each of the queries �1 to �5

and each of the maximum costs 1, 2 and 3. The number of queries generated depends on the number of relaxed
and approximated triple patterns, as well as on the length of the property path in each triple pattern, and may
increase exponentially with respect to the maximum cost. In general, the APPROX operator generates a greater
number of rewritten queries than the RELAX operator, since the latter is applicable only if the ontology contains
speciic rules related to the triple pattern being relaxed. We see that query �3 generates the largest number of
rewritten queries at maximum cost 3 even though it has only one approximated triple pattern. This is because its
property path comprises a concatenation of two URIs.

Max Cost �1 �2 �3 �4 �5

1 6 4 8 6 3
2 16 7 28 16 5
3 30 7 64 30 7

Table 1. Number of LUBM queries generated by the rewriting algorithm, for maximum costs 1, 2 and 3.

Table 2 shows the number of answers returned by each top-level query when executed with maximum cost 0,
1, 2 and 3 (cost 0 corresponds to the exact form of the query). All queries except �1 return more answers after
one step of approximation/relaxation. Query �1 returns more answers after two steps of approximation. We also
notice that, after the irst two steps (i.e. max cost 2), no additional answers are returned for any query. This is due
to the highly structured nature of the LUBM dataset and the sparsity of the connections between URIs, which
leave less scope for additional connections being discovered through the lexible query processing.

Max Cost �1 �2 �3 �4 �5

0 0 0 7 0 0
1 0 3 13 1 1
2 2036 3 13 1 1
3 2036 3 13 1 1

Table 2. Number of answers returned by each LUBM query, for each maximum cost up to 3.

Table 3 shows the execution times in seconds of the ive queries with maximum cost 1, 2 and 3. We see that, at
all maximum costs, queries �3 and �4 take much longer to execute than the others. This is due to the APPROX
operator introducing the _ symbol into more complex property paths. For example, in �3 the conjunct

APPROX(?z (publicationAuthor/advisor) AssociateProfessor3) .

is rewritten into the following alternative conjuncts (among others) after 1 step of approximation:

APPROX(?z (_/publicationAuthor/advisor) AssociateProfessor3)

APPROX(?z (publicationAuthor/_/advisor) AssociateProfessor3)
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APPROX(?z (publicationAuthor/advisor/_) AssociateProfessor3)

Max Cost �1 �2 �3 �4 �5

1 0.76 0.83 154.14 125.21 0.92
2 2.64 1.88 221.42 162.39 1.73
3 9.66 2.04 243.22 177.33 2.21

Table 3. Execution times (seconds) for LUBM queries, for maximum costs 1, 2 and 3.

4.2 DBpedia

We irst describe each of the ive queries run on the DBpedia dataset.
Query �1 asks for those books which follow łThe Hobbitž in the author’s work.

�1: SELECT ?y WHERE {

APPROX(The_Hobbit subsequentWork* ?y). ?y rdf:type Book }

The exact form of the query returns only the URI The_Hobbit, but the user would have expected further results
in line with the three books comprising łThe Lord of the Ringsž. Applying APPROX to the irst triple pattern
generates, among others, a query containing the triple pattern

The_Hobbit subsequentWork*/!subsequentwork/subsequentWork* ?y

which matches every book connected to the URI of the łThe Hobbitž resource, including

dbr:The_Return_of_the_King

dbr:The_Two_Towers

dbr:The_Fellowship_of_the_Ring

Query �2 asks for the albums published by the Rolling Stones on the London Records label, along with the
songs on each album.

�2: SELECT ?x ?y WHERE {

APPROX(?x albumBy The_Rolling_Stones) . ?x rdf:type Album .

?y album ?x . RELAX(?x recordLabel London_Records)

} group by ?x

The exact form of this query returns no answers since the predicate albumBy is not present in DBpedia. Applying
APPROX to the irst triple pattern will replace albumBy by !albumBywhich matches the predicate artist, among
others, giving the desired results. Applying RELAX to the fourth triple pattern expands the results to encompass
albums release by the Rolling Stones with other publishers.

Query �3 asks for anyone who died during the łBattle of Poitiersž, along with the dates of both the battle and
the person’s death.

�3: SELECT ?k ?d ?kd WHERE {

APPROX(?k diedIn Battle_of_Poitiers) .

Battle_of_Poitiers date ?d . ?k deathDate ?kd }

The exact form of the query returns no answers since the predicate diedIn is not present in DBpedia. Applying
APPROX to the irst triple pattern will replace diedIn by !diedIn. The resulting query will return every person
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connected to the łBattle of Poitiersž (since the domain of deathDate has to be a person), including łPeter I, Duke
of Bourbonž who is connected to the battle by the predicate deathPlace.
Query �4 asks for every Scientist who died in the 1800s during a duel.

�4: SELECT ?x WHERE {

?x subject Duelling_Fatalities . RELAX(?x deathDate "18xx-xx-xx") .

RELAX(?x rdf:type Scientist) }

The exact form of the query returns no answers since the year ł18xx-xx-xxž is not formatted correctly. Applying
RELAX to the second triple pattern replaces it by ?x rdf:type Person, and the resulting query will return
łÉvariste Galoisž amongst others. If the user wishes to see all people who died during a duel, applying RELAX to
the last triple pattern replaces it by ?x rdf:type owl:Thing, returning additional answers such as the scientist
łMartin Lichtensteinž, who is not explicitly classiied as a scientist in DBpedia.

Query �5 asks for every person born in New York who has a parent who acted in the ilm ł12 Angry Menž,
along with all the ilms in which the person acted.

�5: SELECT ?x ?f WHERE {

APPROX(12_Angry_Men_(1957_film) actor ?a) . ?x parent ?a .

APPROX(?f actor ?x).

RELAX(?x birthPlace New_York) }

The exact form of the query returns no answers since the predicate actor is not present in DBpedia. Applying
APPROX to the irst and third triple patterns will replace actor by !actor, which matches the predicate starring
among others. The resource łNew Yorkž refers to the state rather than the city, and for this reason the resulting
query will return fewer answers than expected since in DBpedia not every person is connected to their state of
birth by the predicate birthPlace. Applying RELAX to the last triple pattern will cause it to be rewritten as (?f,
rdf:type, Person), removing the requirement that the person be born in New York.
Table 4 shows the number of queries generated by the rewriting algorithm for these ive queries at cost 1, 2

and 3. Query �1 results in 3 rather than 4 rewritten queries at cost 1 because the rewriting algorithm recognises
that applying deletion to a Kleene closure of a single URI results in an equivalent regular expression. Query �4

results in the fewest rewritten queries overall since it does not contain the APPROX operator. Query �5 results
in the greatest number of rewritten queries since it has two approximated triple patterns. Query �3 results in
only 6 new rewritings at cost 2 because some redundant rewritings are removed as explained in the illustration
of applying APPROX to a regular expression pattern given at the end of Section 3.2.

Max Cost �1 �2 �3 �4 �5

1 3 5 5 3 10
2 7 11 11 6 47
3 15 19 19 10 149

Table 4. Number of DBpedia queries generated by the rewriting algorithm, for maximum costs 1, 2 and 3.

Table 5 shows the number of answers returned by each top-level query when executed with maximum cost 1,
2 and 3. The numbers of answers for queries �1 and �2 are constrained by the use of the rdf:type property.
In query �3 the constant URL Battle_of_Poitiers limits the number of answers since it has few connections
to persons with a death date. Query �4 has only one variable ?x, that needs to be connected to the subject
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Duelling_Fatalities, hence bounding the number of answers. Query �5 produces no answers at maximum
cost 1 since it contains two occurrences of the actor property which does not appear in the data; hence, at least
two edit operations are needed to produce a query that returns results.

Max Cost �1 �2 �3 �4 �5

0 1 0 0 0 0
1 4 60 1 1 0
2 5 60 4 69 54
3 5 66 8 69 369

Table 5. Number of answers returned by each DBpedia query, for each maximum cost up to 3.

Table 6 shows the execution times of each of the queries with maximum cost 1, 2 and 3. The high execution
time of query �1 with maximum cost 2 and 3 is due to the presence of the Kleene-closure which, combined with
the APPROX operator, generates queries with concatenations of multiple Kleene-closure operations that are time
consuming to evaluate. The high execution time of query �3 is because the variable ?k binds to many constants
in the graph after application of the APPROX operator.
Query �5 has high execution time due to the large number of queries the rewriting algorithm generates,

combined with the presence of two APPROX operators leading to multiple occurrences of the _ symbol. However,
the pre-caching optimisation described earlier limits the increase in execution times for maximum costs 2 and 3.

Max Cost �1 �2 �3 �4 �5

1 0.003 0.05 129.23 0.03 101.84
2 52.23 0.11 244.84 0.31 122.52
3 97.14 1.29 334.23 0.65 152.68

Table 6. Execution times (seconds) for DBpedia queries, for maximum costs 1, 2 and 3.

4.3 YAGO

We irst describe each of the ive queries run on the YAGO dataset.
Query �1 asks for the geographic coordinates of the łBattle of Waterloož.

�1: SELECT * WHERE {

APPROX(Battle_of_Waterloo happenedIn/(hasLongitude|hasLatitude) ?x) }

The exact form of this query returns no answers since YAGO does not record the geographic coordinates of the
town of Waterloo. Applying APPROX to the query’s triple pattern will, among other edits, result in happenedIn

being removed. The resulting query now returns the coordinates of the łBattle of Waterloož, since these are
directly recorded in YAGO.

Query �2 asks for the family names of people who acted in the ilm łTea with Mussoliniž.

�2: SELECT * WHERE {

?x actedIn Tea_with_Mussolini . RELAX(?x hasFamilyName ?z) }
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The exact form of the query returns only a partial set of answers because, in YAGO, some actors have only a irst
name (e.g. Cher) and others have their full name recorded using the predicate rdfs:label. Applying RELAX to
the second triple pattern replaces łhasFamilyNamež by łlabelž, returning the names of actors in the ilm that are
recorded using the property łlabelž or using its sub-properties such as łhasGivenNamež.

Query �3 asks for events taking place in Berkshire in 1643.

�3: SELECT * WHERE {

?x rdf:type Event . ?x happenedOnDate "1643-##-##" .

APPROX(?x happenedIn "Berkshire") }

The exact form of the query returns no answers since the predicate happenedIn is not directly connected to the
literal łBerkshirež. Applying APPROX to the third triple pattern will generate, among other queries, the following
query which will return all the events that occurred in 1643 in Berkshire:

SELECT * WHERE{

?x rdf:type Event . ?x happenedOnDate "1643-##-##" .

?x happenedIn/_ "Berkshire" }

Queries �4 and �5 are two of the most challenging queries that were attempted over YAGO in [28] (they were
numbered Q6 and Q7 in that paper)14. �4 executed in under one second in its exact form but took over one
minute with maximum cost set to 2. �5 executed in ive seconds in its exact form but failed to terminate with
maximum cost set to 215.

�4: SELECT ?n WHERE {

APPROX(?a actedIn/isLocatedIn Australia) .

?a rdfs:label ?n .

RELAX(?a rdf:type actor) .

?city isLocatedIn China .

?a wasBornIn ?city .

APPROX(?a directed/isLocatedIn United_States) }

14Note that in the present paper we use a more recent, and larger, version of YAGO compared to that used in [28] and so the query timings
we obtain here cannot be directly compared with the query timings in that paper
15The longest-running query in [28] was actually the one numbered Q5 in that paper: SELECT ?n1 ?n2 WHERE { ?a rdfs:label ?n1 . ?b rdfs:label
?n2 . RELAX(?a isMarriedTo ?b). APPROX(?a livesIn/isLocatedIn* ?p). APPROX(?b livesIn/isLocatedIn* ?p)}. This too failed to terminate
with maximum cost set to 2. Running the exact form of this query with our current prototype, and on the most recent version of YAGO,
returns 2,943,311 answers and takes over 17 hours due to the number of isLocatedIn edges present in the graph and the double presence of
the Kleene-closure of isLocatedIn. It was not possible to execute within 24 hours even at just maximum cost 1 the approximated/relaxed
version of this query, not even when we applied both of the new optimisations described Section 5. However, we would argue that, given the
very large number of answers returned by the exact form of this query, this would not in reality be a query for which a user would be likely
to request approximation or relaxation.
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�5: SELECT ?n1 ?n2 WHERE {

APPROX(?a rdf:type Event) .

RELAX(?a happenedIn ?b ).

?p wasBornIn ?b .

?p wasBornOnDate ?d .

RELAX(?a happenedOnDate ?d) .

?a rdfs:label ?n1 .

?p rdfs:label ?n2 }

�4 returns returns every Chinese actor who played in American ilms and directed Australian ilms. The two
uses of APPROX allow the relationships between the person and Australia and the USA to be approximated to
other connections. The use of RELAX allows the class of the person to be relaxed to superclasses of ‘actor’. �5

returns the labels of every event ?a and person ?p such that ?p was born in the same place and on the same day
that ?a occurred. The one use of APPROX allows the entity ?a to be connected in potentially diferent ways to the
entity ?p. The two uses of RELAX allow the properties ‘happenedIn’ and ‘happenedOnDate’ to be relaxed to their
super-properties.
Table 7 shows the number of queries generated by the rewriting algorithm for each of the YAGO queries at

maximum cost 1, 2 and 3. Query�1 results in a high number of queries even though it has only one triple pattern
which is approximated. This is because its single triple pattern contains a complex property path, namely, the
concatenation of a property with a disjunction of two properties. Query�2 generates only 2 queries for maximum
costs 1, 2 and 3, since the RELAX operator can only be applied once to the triple pattern. Query �3 has only a
single predicate in the property path in the approximated triple pattern which reduces the number of possible
queries that can be generated. In contrast, queries�4 and�5 have 3 conjuncts each with a lexible operator which
increases the number of queries to be evaluated considerably. Query �4 in particular has 2 approximated triple
patterns containing complex property paths.

Max Cost �1 �2 �3 �4 �5

1 12 2 5 16 8
2 50 2 11 119 30
3 120 2 19 560 74

Table 7. Number of YAGO queries generated by the rewriting algorithm, for maximum costs 1, 2 and 3.

Table 8 shows the number of answers returned by each top-level query when executed with maximum cost 0,
1, 2 and 3. The number of answers returned by query �1 increases exponentially with the maximum cost because
the successive application of APPROX yields an exponentially increasing number of nodes that are reachable
from the node Battle_of_Waterloo. Similarly, �5 contains only one constant literal, namely Event, which is
part of an approximated triple pattern and so allows a large number of answers, while the two approximated
triple patterns of �4 are able to match many distant nodes in the YAGO database graph. In contrast, the number
of answers to query �2 does not increase as the maximum cost increases since the number of queries generated
by the rewriting algorithm does not increase. For query�3, the number of answers is bounded by the presence of
constants as well as the rdf:type property which constrains the variable ?x to be of type Event.

Table 9 shows the execution times of each of the queries with maximum cost 1, 2 and 3. The execution times of
�2 and �3 are low whereas �1, �4 and �5 take much more time, especially with maximum cost 2 and 3. This
is due to the large number of queries generated by the rewriting algorithm and the exponential growth of the
answer set.
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Max Cost �1 �2 �3 �4 �5

0 0 4 0 32 1450
1 1381 263 1 234 54023
2 18584 263 1 25199 73311
3 116082 263 1 33316 455181

Table 8. Number of answers returned by each YAGO query, for each maximum cost up to 3.

Max Cost �1 �2 �3 �4 �5

1 0.02 0.012 0.11 2.44 214.55
2 31.18 0.012 0.66 122.77 602.11
3 264.53 0.012 2.11 648.29 1301.54

Table 9. Execution times (seconds) for YAGO queries, for maximum costs 1, 2 and 3.

5 OPTIMISATION TECHNIQUES

In this section, we describe the two optimisation techniques that we implemented with the aim of improving the
performance of our SPARQL�� query processing prototype. The techniques were designed to identify rewritten
queries that do not need to be evaluated because they return no answers, or no new answers.

We term the irst optimisation technique, described in Section 5.1, the summary optimisation. This technique
relies on constructing a graph summary from the RDF data being queried. This summary is then used to detect
queries that can return no answers because they do not match the graph summary. We also use the summary to
replace occurrences of the _ symbol and of expressions of the form !� within rewritten queries by a disjunction
of speciic properties based on their presence in the summary, which we have empirically determined results in
faster query execution.

We term the second optimisation technique, described in Section 5.2, the containment optimisation as it is based
on query containment. Using this optimisation, a rewritten query � with cost � that can return only answers
already returned by a query �′ at cost �′ ≤ � that contains � is discarded.

The improvements in performance provided by each of these optimisations individually and by their combined
use are reported in Section 6.

5.1 Summary Optimisation

Our summary structure for an RDF-graph � is deined by a deterministic inite state automaton �� constructed
from the edge labels of paths in � of length less than or equal to a speciied maximum length �. We term a
sequence of edge labels in a path of � a path label. The set of sequences of labels of length up to � that is
recognised by �� corresponds precisely to the set of path labels in� of length up to �. Moreover, every path label
in � of length greater than � is also recognised by �� ; however, there may be sequences of of labels of length
greater than � recognised by �� that do not correspond to any path label in � .

We take the common approach of viewing a graph � also as a non-deterministic inite state automaton �� in
which nodes and labelled edges in � become states and transitions in �� , respectively, and each state in �� is
both an initial and a inal state. Clearly, �� accepts all path labels in � , i.e. for each path label � in � , � ∈ L(�� ).
For a summary �� of � , we prove in Proposition 5.4 below that L(�) ⊆ L(�� ). Hence, if a path label appearing
in a query is not in L(�� ), we can be certain that there are no such path labels in � . This allows us to remove
such queries from the set of rewritten queries, thus speeding up query evaluation.
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Given a graph � , the summary automaton �� of length � ≥ 2 for � is deined as follows:

(1) �� has a state � which is both initial and inal.
(2) For each path label �1�2 . . . �� ∈ L(�) with 1 ≤ � < �, �� has states ��1 , ��1�2 , . . . , ��1 ...�� , each of which

is inal, and transitions (�, �1, ��1 ), (��1 , �2, ��1�2 ), . . . , (��1 ...��−1 , �� , ��1 ...�� ).
(3) For each path label �1�2 . . . �� ∈ L(�), �� has the transition (��1 ...��−1 , ��, ��2 ...�� )

16.
(4) There are no other states or transitions in �� .

The states of the automaton �� keep track of the last � transitions that have been traversed, for all � < �. So
even if it has traversed more than � − 1 states, �� will keep track of only the last � − 1 states.

Step (3) ensures that all path labels in the graph � are recognised by the automaton. To illustrate, consider the
graph � and summary �� shown in Figure 3 (we do not indicate the initial and inal states, since � is always the
initial state and all states are inal). If we were to construct a summary �� of length � = 2 using only steps (1) and
(2) above, �� would have only the three transitions from � : (�, �, �� ), (�, �, ��) and (�, �, �� ). Hence, the summary
would not recognise the path label ��� in � . Step (3) includes the transitions (�� , �, �� ), (�� , �, ��) and (��, � , �� )
in �� , as shown in Figure 3(b). Now all three path labels arising from the cycle in � are recognised by �� .

a

bc

p

q

r

(a) Graph � .

��

����

�

p

q

r
pq

r
(b) Summary �� .

Fig. 3. Representing graph cycles in the summary.

We note that, in the worst case, the size of a summary of length � for a graph � can be � (��), where � is the
number of distinct property labels of � . However, in practice, RDF-graphs tend to be sparse, resulting in much
smaller summaries.

Example 5.1. To illustrate the construction of our summary, we consider the graph� shown in Figure 4 which
describes a portion of a ilm database. The summary of length � = 2 is formed from the following path labels of
length 1 and 2 found in � :

actedIn, year, hasDirector,

actedIn/year, actedIn/hasDirector, hasDirector/actedIn

The resulting automaton �2 is shown in Figure 5 (we use�, � and � to denote the properties���� , ℎ���������� and
�������, respectively). It is easy to verify that �2 recognises every sequence in L(�); moreover, in this particular
case, L(�2) = L(�).

If we now consider a summary of length � = 3, then we have the following 4 additional paths of length 3:

actedIn/hasDirector/actedIn, actedIn/hasDirector/year,

hasDirector/actedIn/year, hasDirector/actedIn/hasDirector

16Note that states ��1 ...��−1 and ��2 ...�� will both have been deined in step 2, with � = � − 1.
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Fig. 4. Graph describing part of a film database.

and the resulting automaton �3 will be as shown in Figure 6. We note that �3 is larger than �2, even though the
two are in fact equivalent (i.e L(�3) = L(�2)): states ��� and ��� are equivalent to �� , while ��� is equivalent
to �� and ��� is equivalent to �� .

�

��

����

actedIn

yearhasDirector

hasDirector

actedIn ye
ar

Fig. 5. Summary �2 of size 2.

Although it happened to be the case that L(�2) = L(�) in the above example, this is of course not always
true. For example, consider a graph � having path labels �� and �� , but no path label ��� . A summary �� of
length 2 will recognise ��� because �� will have transitions (�, �, ��), (��, �, ��) and (��, �, �� ). We characterise in
Proposition 5.4 below precisely the path labels recognised by a summary. First, we show two preliminary results.

Lemma 5.2. Any summary �� constructed from a graph � is deterministic.

Proof. Suppose that �� is of length �, � ≥ 2. Every transition labelled � in �� is either from a state �� to
a state ��� , where � is a path label with |� | < � − 2 (step (2)), or from a state ��� to a state ��� , where � is a
path label with |� | = � − 2 and � is an edge label (step (3)). In each case, the successor state for a transition is
determined by the source state and the transition label, so there cannot be two transitions with the same label �
leading to two diferent states ��� and ��� , � ≠ � . □
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Fig. 6. Summary �3 of size 3.

The next corollary follows from the above result.

Corollary 5.3. Any string � ∈ L(�) is accepted in state �� if |� | ≤ � − 1; and in state �� , where � = �� for label

paths � and � with |� | = � − 1, if |� | ≥ �.

We now provide a characterisation of the path labels accepted by a summary. For brevity, we abbreviate łpath
labelž by łpathž below, and use łsubpathž to mean a contiguous sequence of edge labels taken from a path label.

Proposition 5.4. Let �� be a summary of an RDF graph � of length � ≥ 2. Then for any path � , � ∈ L(�� ) if
and only if for each subpath � of � , with |� | ≤ �, � ∈ L(�� ).

Proof. The proof is by induction on the length |� | of � . We take |� | ≤ � as the base case since this is obviously
true based on the construction of �� from � .
Assume that the result holds for paths of length up to � + � , � ≥ 0, and consider a path � = ����� of length

� + � + 1, where �, � and � are edge labels, � and � are path labels, and |� | = � . So |��� | = �.
If � ∈ L(�� ), then by the inductive hypothesis, all subpaths of ���� of length up to � are in L(�� ). Hence, all

subpaths of ��� of length up to � are also in L(�� ). So we only need to show that all suixes of ���� of length
up to � are in L(�� ). But |��� | = �, so the suixes of length up to � do not include any part of �. We know by
the inductive hypothesis that �� and all its subpaths are in L(�� ). By Corollary 5.3, �� must be accepted in state
��� since |�� | = � − 1. Since � ∈ L(�� ), a transition from ��� to ��� must have been added by step (3) of the
construction of �� . Hence all suixes of � of length up to � must also be in L(�� ).

Conversely, suppose that for path � , each subpath � of � , with |� | ≤ �, is in L(�� ). By the inductive hypothesis,
we know that both ���� and ���� are in L(�� ). From Corollary 5.3, we know that ���� is accepted by �� in
state ��� and that ���� is accepted in state ��� . Furthermore, there must be a transition labelled � from ��� to ��� .
Hence, � = ����� is in L(�� ). □

Corollary 5.5. Let � be an RDF-graph and �� be a summary of � of length � ≥ 2. Then L(�) ⊆ L(�� ).

Proof. Let � ∈ L(�). Since every subpath of � of length at most� is inL(�� ), we conclude that � ∈ L(�� ). □

The following lemma allows us to avoid executing queries that will not return any answers by irst testing
them against the summary.

Lemma 5.6. Let �� be a summary of length � constructed from an RDF-graph � , and � be a SPARQL�� query

without any APPROX, RELAX or UNION operators. If there exists a triple pattern (�, �,�) ∈ � such that � is a

regular expression pattern and L(�) ∩ L(�� ) = ∅, then ⟦�⟧� = ∅.
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Proof. Using Corollary 5.5, we can rewrite L(�) ∩ L(�� ) = ∅ as L(�) ∩ L(�) = ∅. Hence, ⟦⟨�, �,�⟩⟧� = ∅.
For any query evaluation result� , we have that� Z ∅ = ∅, and therefore ⟦�⟧� = ∅. □

We can also exploit our summary to replace the symbol _ with a disjunction of speciic edge labels. Queries
containing _ are expensive to evaluate, since _ matches every edge label of a graph � . We similarly replace
occurrences of expressions of the form !� by a disjunction of speciic edge labels (other than �). For example,
consider the SPARQL�� query � = APPROX(�, �2/�3, �) over an RDF-graph � . For a maximum cost of 1, the
rewriting algorithm will generate queries of the form (�, �,�), where � is one of the following:

(1) �2/�3
(2) _/�2/�3
(3) �2/_/�3
(4) �2/�3/_
(5) !�2/�3
(6) �2/!�3
(7) �/�3
(8) �2/�

Suppose that the full set of path labels of length 1 to 3 in� is {�1, �2, �3, �1�3, �2�2, �2�3, �2�2�2, �2�2�3}. Then
the summary automaton �� with � = 3 extracted from � consists of the following transitions:

(�, �1, �1), (�, �2, �2), (�, �3, �3), (�1, �3, �1,3),

(�2, �2, �2,2), (�2, �3, �2,3), (�2,2, �2, �2,2), (�2,2, �3, �2,3).

We can replace the _ and !�� symbols within expressions (2) to (6) above as follows:

• in (2) and (3) by �2 to give (�2/�2/�3) in both cases, since �2�2�3 is the only path of length 3 ending in �3;
• in (5) by �1 since �1�3 and �2�3 are the only paths of length 2 ending in �3 but �2�3 cannot be matched to
!�2/�3 ;

• in (6) by �2 since �2�2 and �2�3 are the only paths of length 2 starting with �2 but �2�3 cannot be matched
to �2/!�3 ;

• in (4) we can detect that (�, �2/�3/_, �) returns no answers since there is no path in which �3 is followed
by another URI;

Given a query � , Algorithm 4 uses the summary optimisation to determine which rewritten queries can be
discarded because they will not return any answers. Algorithm 4 rewrites each query � ′, generated from �

by the rewriting function ��� , by replacing each property path � appearing in a triple pattern in � ′ with the
corresponding property path of the automaton constructed from the intersection of the summary graph �� and
�� , the automaton recognising L(�). If any intersection is empty, then � ′ (�) will be empty as well and so does
not need to be executed.

For some combinations of property path � and summary graph �� , the intersection � ′ := �� ∩ �� can become
very large. For example, consider DBpedia query �3 after two steps of approximation:

SELECT DISTINCT ?x ?y

WHERE {

?y album ?x .

?x rdf:type Album .

?x _/!albumBy <The_Rolling_Stones> .

?x recordLabel <London_Records> }

The third triple pattern has a regular expression that, when intersected with �� , generates a graph with 79915
nodes. Trying to convert this graph back to a regular expression results in Jena returning a łstack overlowž
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error. To overcome this, we have empirically determined a heuristic for deciding when not to apply the summary
optimisation. This is relected in Algorithm 4, where the property path � is replaced by � ′ only if � ′ has length
less than������, which we set at 50,000 following empirical investigation.

To apply the summary optimisation, we replace the rewrite function called in Algorithm 3 (i.e. Algorithm 6) by
Algorithm 4 instead.

ALGORITHM 4: Rewriting queries using the summary optimisation

input :Query � ; max approx/relax cost �; Graph � ; Ontology � ; length � for summary.
output :List of ⟨query, cost⟩ pairs sorted by increasing cost.
�� := summary automaton of � for paths up to length �;

�� := ∅;

foreach ⟨� ′, ����⟩ ∈ rew(� ,� ,�) do

toExecute := true;

foreach triple pattern (�, �,�) ∈ � ′ do

�� := an automaton that recognises L(�);

� ′ := a regular expression equivalent to �� ∩ �� ;

if L(� ′) = ∅ then toExecute := false;

if |� ′ | < ������ then � ′ := replace (�, �,�) with (�, � ′, �) in � ′;

end

if toExecute then �� := �� ∪ {⟨� ′, ����⟩} ;

end

return ��;

5.2 uery containment

During the evaluation of SPARQL�� queries, opportunities for applying optimisations based on query containment
can arise in at least two ways. Firstly, a rewritten query � may contain a triple pattern which is subsumed by
another triple pattern in � , as illustrated in the next example.

Example 5.7. Consider the LUBM query �4 from Section 4.1:

SELECT * WHERE {

?z publicationAuthor AssociateProfessor3 .

APPROX(?z publicationAuthor/advisor AssociateProfessor3) }

Among other edits, the rewriting algorithm removes the property advisor from the second triple pattern,
resulting in query � ′

4:

SELECT * WHERE {

?z publicationAuthor AssociateProfessor3 .

?z publicationAuthor AssociateProfessor3 }

Clearly, one of the two triple patterns in � ′
4 is redundant and can be removed prior to evaluation. Furthermore,

any other rewriting of �4 with cost at least that of � ′
4 will be contained in � ′

4.

The second opportunity arises when the application of an edit operation to a property path produces an
expression that is contained in the set of property paths already produced (this corresponds to the case of
containment of regular path queries under approximate semantics [30]).

Example 5.8. Consider the YAGO query �1 from Section 4.3:
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SELECT * WHERE {

APPROX(Battle_of_Waterloo happenedIn/(hasLongitude|hasLatitude) ?x) }

When rewriting the regular expression happenedIn/(hasLongitude|hasLatitude), the expressions (1) happenedIn/_/(hasLongitude|hasLatitude)
(2) happenedIn/_/hasLongitude and (3) happenedIn/_/hasLatitude are generated, each at the cost of one
insertion. Clearly, expressions (2) and (3) are each contained in expression (1) and can therefore be dropped from
the set of queries to be evaluated and rewritten further.

When considering query containment for SPARQL�� we also need to take into account the costs of the
mappings. We assume, as is common practice, that the two queries being checked for containment have the same
variables in their heads, noting that this will always in fact be the case in our context.

Deinition 5.9. Given SPARQL�� queries � and � ′, � is contained in � ′ (or � ′ contains �), denoted � ⊆ � ′, if
for each graph � and each pair ⟨�, �⟩ ∈ ⟦�⟧� , there exists a pair ⟨�, � ′⟩ ∈ ⟦� ′⟧� such that � ≥ � ′.

Note that the cost of the contained query must be at least that of the containing query (cf. [30]). For our
purposes, we also deine containment between SPARQL�� triple patterns (once again assumed to refer to the
same variables).

Deinition 5.10. Given SPARQL�� triple patterns � and � ′, � is contained in � ′ (or � ′ contains � ), denoted � ⊆ � ′, if
for each graph � and each pair ⟨�, �⟩ ∈ ⟦�⟧� , there exists a pair ⟨�, � ′⟩ ∈ ⟦� ′⟧� such that � ≥ � ′.

Given a regular expression � , recall that we denote by L(�) the language denoted by � . The following
proposition, stating that containment between two triple patterns ⟨�, �,�⟩ and ⟨�, � ′, �⟩ is equivalent to language
containment between their regular expression patterns � and � ′, follows from the analogous result in [30]:

Proposition 5.11. Given triple patterns ⟨�, �,�⟩ and ⟨�, � ′, �⟩, where � and � ′ are regular expression patterns,

⟨�, �,�⟩ ⊆ ⟨�, � ′, �⟩ if and only if L(�) ⊆ L(� ′).

A triple pattern in our context is equivalent to a regular path query (RPQ). Hence, testing containment
between triple patterns is equivalent to testing containment between RPQs, a problem known to be PSPACE-
complete [14]. Given regular expression patterns � and � ′, we can testL(�) ⊆ L(� ′) by constructing deterministic
inite automata �� and �� ′ for � and � ′, respectively, and then using standard techniques to determine if
L(�� ) ⊆ L(�� ′ ). The size of�� may be exponential in the size of � , but since the decision problem is PSPACE-
complete, no substantially better method is known. We use this method in our query containment algorithm
(Algorithm 5) which we describe below. We note that if we were to allow inverse properties in our regular
expression patterns, we would have to use two-way automata to decide containment of triple patterns (or 2RPQs);
the complexity of checking containment of 2RPQs remains PSPACE-complete [14].

Algorithm 5 takes as input a query� , and constructs�� , the set of all queries generated from� by the rewriting
algorithm up to cost � . Then a query�1 is removed from�� if there is another rewritten query�2 that contains�1

(as determined by the �������� function), a process repeated until �� no longer changes. The�������� function
removes from a query any triple pattern which contains another, diferent triple pattern; it also removes triple
patterns of the form (?x type rdfs:Resource) unless doing so would leave ?x unbound, since everything is
an rdfs:Resource.
The �������� function takes as input queries �1 and �2. It checks that, for every triple pattern ⟨�, �,�⟩ in �1,

there is a triple pattern ⟨�, � ′, �⟩ in �2 such that L(� ′) ⊆ L(�).
We note that Algorithm 5 is sound but not complete, that is, it does not identify all possible containment

relationships between queries since it undertakes only pairwise comparisons between individual triple patterns.
Similarly to Algorithm 4, Algorithm 5 returns a set of queries to be evaluated, hence we are able to apply the

query containment optimisation by replacing the call to the rewrite function in Algorithm 3 by a call to Algorithm
5 instead.
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ALGORITHM 5: Rewriting queries using the containment optimisation

input :Query � ; approx/relax max cost �; Graph � ; Ontology � .
output :List �� of query/cost pairs sorted by cost.
�� := ∅;

foreach � ′ ∈ rew(minimise(�),� ,�) do �� := �� ∪ {⟨minimise(� ′), ���� ′⟩};

while �� changes do

if exist ⟨�1, ����1⟩ ∈ �� , ⟨�2, ����2⟩ ∈ �� such that �1 ≠ �2, contains(�2, �1) and ����2 ≤ ����1 then
�� := �� − {⟨�1, ����1⟩};

end

end

return ��;

Function minimise(�)
input :Query � .
output :Minimised � .
foreach triple pattern � ∈ � do

if � is of the form ⟨�, ����, rdfs:Resource⟩ then remove � from � unless that would leave � unbound;

if there exists � ′ ∈ � such that � ′ ≠ � and � ′ ⊆ � then remove � from � ;

end

return � ;

Function contains(�1, �2)
input :Queries �1 and �2.
output :True if �1 contains �2; false otherwise.
foreach triple pattern ⟨�, �,�⟩ ∈ �1 do

if �⟨�, � ′, �⟩ ∈ �2 such that�� ′ ⊆ �� then return False ;

end

return True;

6 QUERY PERFORMANCE WITH OPTIMISATIONS

In this section, we evaluate the efectiveness of the optimisations described in the previous section in terms
of reducing both the numbers of queries to be evaluated and the time needed to execute them. We group the
results by dataset so that comparisons between the methods can be seen side by side. In each case, we compare
the numbers of queries or execution times of queries in four settings: (i) with no optimisation (other than
subquery caching); (ii) with the containment optimisation; (iii) with the summary optimisation; and (iv) with
the summary and containment optimisations combined. We choose this order of presentation because, in most
cases, it demonstrates increasing improvement in performance. In (iv), the summary optimisation is applied
irst, followed by the containment optimisation, because this generally provides more opportunities for applying
the containment optimisation and hence improving query execution times (we have empirically veriied this
by testing also the alternative ordering of the two optimisations). The query execution times reported in the
following tables include the time for optimisation, where applicable.
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6.1 LUBM

The summary of size 2 for LUBM has 68 transitions (and consumes 5 kilobytes), while the summary of size 3 has
122 transitions (9 kilobytes). For the experiments described here, we use the summary of size 3.

6.1.1 Number of rewriten queries generated. The numbers of rewritten queries generated under the four settings
described above are shown in Table 10.

Max Cost Optimisation �1 �2 �3 �4 �5

1 none 6 4 8 6 3
1 containment 6 4 2 6 3
1 summary 3 1 5 3 3
1 combined 2 1 2 2 2
2 none 16 7 28 16 5
2 containment 16 7 2 16 5
2 summary 10 4 19 10 5
2 combined 7 2 2 7 3
3 none 30 7 64 30 7
3 containment 30 7 2 30 7
3 summary 19 3 53 19 7
3 combined 14 2 2 14 4

Table 10. Number of LUBM queries generated, with and without various optimisations.

The containment optimisation by itself only afects the number of queries generated for query �3. As we saw
in Example 5.7, it detects that all queries resulting from one of the rewritten queries at cost 1 will be contained in
it, meaning that only 2 queries are retained overall.
The summary optimisation tends to do better than the containment optimisation in reducing the number

of queries generated. For example, it turns out that the property hasAlumus does not occur in the data, so
3 of the queries at maximum cost 1 for �2 are discarded, leaving only the query in which the irst triple
pattern is (GraduateStudent1 (mastersDegreeFrom/type) University). On average, about 30% of queries
are discarded by the summary optimisation.

When combining the summary optimisation with query containment, Table 10 shows in most cases a further
reduction in the number of queries generated compared to the two separate optimisations. For example, the
numbers of queries generated for queries �1 and �4 at maximum cost 3 reduce to 14 (from 19 and 30 for the
summary and containment optimisations, respectively). The case of �5, where only the combination of the two
optimisations is able to reduce the number of queries, is worthy of explanation.

The summary optimisation rewrites the irst (relaxed) triple pattern of�5, namely (ResearchGroup3 subOrganizationOf*

?x) to

(ResearchGroup3 ( � | subOrganizationOf | (subOrganizationOf/subOrganizationOf)) ?x)

because there are at most two consecutive subOrganizationOf property labels in the data. Applying one step of
relaxation produces

(Organization (^type | (^type/subOrganizationOf) |

(^type/subOrganizationOf/subOrganizationOf)) ?x)
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since the RDF ontology speciies that the domain of subOrganizationOf is of type Organization. Query contain-
ment now detects that the property path ^type subsumes both ^type/subOrganizationOf and ^type/subOrganizationOf/subOrganizationOf
Furthermore, the triple pattern

(Organization (^type) ?x)

is subsumed by the third triple pattern in �5, namely, (?p ub:worksFor ?x). These successful containment
tests are only possible after the summary optimisation has replaced the Kleene closure by a disjunction of paths.

We see that, overall, by using the combined optimisations over 70% of queries are discarded.

6.1.2 uery execution times. Table 11 shows the execution times for each of the original queries (maximum cost
0), along with the times for each of the four settings using maximum costs of 1, 2 and 3, respectively.

Max Cost Optimisation �1 �2 �3 �4 �5

0 none 0.02 0.14 0.84 0.93 0.23
1 none 0.76 0.83 154.14 125.21 0.92
1 containment 0.79 0.87 2.27 125.7 0.93
1 summary 0.52 0.49 5.32 23.21 0.94
1 combined 0.59 0.47 2.29 9.85 0.70
2 none 2.64 1.88 221.42 162.39 1.73
2 containment 2.65 1.92 3.43 162.64 1.75
2 summary 2.35 1.75 9.24 97.37 1.76
2 combined 2.12 1.56 2.36 90.23 1.16
3 none 9.66 2.04 243.22 177.33 2.21
3 containment 9.67 2.06 4.42 178.62 2.23
3 summary 8.37 1.92 12.43 107.31 2.24
3 combined 7.26 1.52 2.68 103.12 1.40

Table 11. Execution times (seconds) for LUBM queries, using various optimisations.

The only reduction in execution time using query containment is for query �3, since that is the only query
for which the containment optimisation reduces the number of queries generated, although the reduction in
execution time is quite dramatic (from over 243 seconds to under 3 seconds at maximum cost 3).
Of course query execution time depends not only on the numbers of queries generated, as can be seen in

queries �1 and �4, where the same numbers of queries are generated but execution times difer signiicantly.
For �1 (as well as �2 and �5), query execution times are relatively short. At maximum cost 3, �4 takes almost
3 minutes to execute without any optimisation. The combined optimisation reduces this by almost 42%. The
reductions for �1, �2 and �5 are somewhat less, at almost 25% for �1 and �2, and 36% for �5.

6.1.3 Overall observations. Overall, we see that the containment optimisation by itself brings limited beneit in
reducing the number of rewritten queries generated. The summary optimisation does better than the containment
optimisation in reducing the number of queries generated. Combining the two optimisations brings in most
cases a further reduction in the number of queries generated compared to the two separate optimisations. A
similar pattern is observed in the query execution times: there are limited improvements with query containment
alone, more substantial improvements with the summary optimisation, and further improvement using both
optimisations.
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6.2 DBpedia

The summary of size 2 for DBpedia has 71,514 transitions (4.3 megabytes), while that of size 3 contains 1,109,836
transitions (67.3 megabytes). Attempting to rewrite the DBpedia queries using the summary of size 3 would
produce many instances where the summary optimisation cannot be applied due to the ������ check in
Algorithm 4. Therefore, for the experiments described here, we use the summary of size 2.

6.2.1 Number of rewriten queries generated. The numbers of rewritten queries generated, with and without the
various optimisations, are shown in Table 12.

Max Cost Optimisation �1 �2 �3 �4 �5

1 none 3 5 5 3 10
1 containment 3 5 5 3 10
1 summary 3 1 1 1 0
1 combined 3 1 1 1 0
2 none 7 11 11 6 47
2 containment 7 11 11 6 46
2 summary 7 4 4 2 3
2 combined 7 4 4 2 3
3 none 15 19 19 10 149
3 containment 15 19 19 10 146
3 summary 15 8 8 4 18
3 combined 15 8 8 4 18

Table 12. Number of DBpedia queries generated, with and without various optimisations.

The query containment optimisation is only able to remove a few queries for �5 at maximum costs 2 and 3.
The summary optimisation is more efective than the containment optimisation in removing queries. The most

striking case is for query�5 at maximum cost 3 when the number of queries is reduced from 149 to 18 (i.e., 88% of
queries have been removed). For query �1, on the other hand, the summary optimisation was not able to discard
any queries.

The number of queries generated by combining the two optimisations, in this case, is the same as the number
generated by the summary optimisation.

6.2.2 uery execution times. Table 13 shows the execution times for each of the four settings using maximum
costs of 1, 2 and 317.

In Table 13 we can see the overhead associated with the optimisation algorithms for queries that execute quickly,
e.g., queries �1, �2 and �4 at maximum cost 1, where execution times of the queries without any optimisation
are all under 53ms. The containment optimisation reduces the execution times slightly for �5 at maximum costs

17Even with the use of the summary of size 2, rather than size 3, there were a number of instances of query triple patterns where the summary
optimisation was not applied, due to the check in Algorithm 4 that a triple pattern’s regular expression � should only be replaced by the
intersection, � ′, of the summary graph and the automaton recognising L(� ) if � ′ has length less than������.�1: at maximum cost 2,
the optimisation was not applied to four of the queries, and at max cost 3 it was not applied to twelve of the queries.�2: at max cost 2, the
query’s APPROX triple pattern was not replaced in two queries; at max cost 3 it was not replaced in six queries.�3: at max cost 2, the query’s
APPROX triple pattern was not replaced in two queries; at max cost 3 it was not replaced in six queries.�5: at max cost 2, the query’s irst
APPROX triple pattern was not replaced in one query and its second APPROX triple pattern in two other queries; at max cost 3, the query’s
irst APPROX triple pattern was not replaced in eleven queries and its second APPROX triple pattern in sixteen other queries.
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Max Cost Optimisation �1 �2 �3 �4 �5

0 none 0.001 0.001 0.001 0.001 0.002
1 none 0.003 0.05 129.23 0.03 101.84
1 containment 0.13 0.19 129.25 0.15 102.00
1 summary 0.53 0.62 1.09 0.07 0.44
1 combined 0.69 0.82 1.13 0.19 0.49
2 none 52.23 0.11 244.84 0.31 122.52
2 containment 52.13 0.26 245.53 0.46 118.63
2 summary 22.18 0.87 2.15 0.23 1.82
2 combined 22.23 0.94 2.52 0.36 1.88
3 none 97.14 1.29 334.23 0.65 152.68
3 containment 97.20 1.32 335.74 0.69 145.11
3 summary 43.83 2.08 10.21 0.43 3.70
3 combined 43.93 2.17 11.20 0.56 3.86

Table 13. Execution times (seconds) for DBpedia queries, using various optimisations.

2 and 3 because there are fewer queries to execute. The summary optimisation is much more efective at reducing
the execution times for queries �3 and �5, each by two orders of magnitude.
It is interesting to note that the summary optimisation also reduces the execution times for �1 at maximum

costs 2 and 3, even though no fewer queries are produced. This is because Jena can make better use of indexes
when the summary optimisation replaces occurrences of _ by the URIs of speciic predicates.

6.2.3 Overall observations. Overall, we see again that the containment optimisation brings limited beneit in
reducing the number of rewritten queries generated and that the summary optimisation is more efective. The
number of queries generated by combining the two optimisations is, in this case, the same as the number
generated by the summary optimisation alone. For queries that execute quickly, i.e. in under two seconds, we
see that applying the optimisations does not incur a signiicant performance penalty Ð less than one second
in all cases. For slower queries we see modest or no improvements in execution times with query containment
alone, substantive improvements with the summary optimisation, and no signiicant further improvement when
combining both optimisations.

6.3 YAGO

Compared to DBpedia, the summaries for the YAGO dataset are considerably smaller. For size 2, the summary
has 1,320 transitions (88.2 kilobytes), while for size 3 it has 10,528 transition (708 kilobytes). For the experiments
described here, we use the summary of size 3.

6.3.1 Number of rewriten queries. The numbers of rewritten queries generated, with and without the various
optimisations, are shown in Table 14.

We see that it was not possible to eliminate any rewritten queries for query�2 since it contains only the RELAX
operator. One or two queries were eliminated by one or other of the optimisations for �3 at each maximum cost,
but the optimisations had the greatest success with �1. Here, the containment optimisation was able to discard a
signiicant number of queries at maximum costs 2 and 3, with the summary optimisation doing slightly better in
each case. Combining both optimisations resulted in further reductions in the numbers of queries. For example,
the containment and summary optimisations each discarded two diferent queries at maximum cost 1, which
meant that the combined optimisation was able to discard four queries. We notice that the summary optimisation
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Max Cost Optimisation �1 �2 �3 �4 �5

1 none 12 2 5 16 8
1 containment 10 2 5 16 8
1 summary 10 2 4 16 5
1 combined 8 2 4 16 5
2 none 50 2 11 119 30
2 containment 40 2 11 119 30
2 summary 37 2 10 117 14
2 combined 27 2 10 117 14
3 none 120 2 19 560 74
3 containment 98 2 19 560 74
3 summary 85 2 18 542 28
3 combined 63 2 18 542 28

Table 14. Number of YAGO queries generated, with and without various optimisations.

also reduces the number of queries considerably for query �5, especially at maximum costs 2 and 3. On the other
hand, only a small number of queries could be eliminated for queries �3 and �4.

6.3.2 uery execution times. Table 15 shows the execution times for each of the four settings using maximum
costs of 1, 2 and 318.

Max Cost Optimisation �1 �2 �3 �4 �5

0 none 0.002 0.001 0.001 0.006 3.93
1 none 0.02 0.012 0.11 2.44 214.55
1 containment 0.03 0.013 0.12 2.56 214.78
1 summary 0.09 0.014 0.07 2.49 13.29
1 combined 0.10 0.015 0.09 2.78 13.66
2 none 31.18 0.012 0.66 122.77 602.11
2 containment 25.36 0.013 0.53 129.21 605.71
2 summary 22.13 0.014 0.58 22.87 19.32
2 combined 9.10 0.015 0.59 25.83 22.74
3 none 264.53 0.012 2.11 648.29 1301.54
3 containment 224.66 0.013 1.86 701.19 1307.41
3 summary 192.38 0.014 1.18 118.91 121.02
3 combined 183.14 0.015 1.19 154.10 129.51

Table 15. Execution times (seconds) for YAGO queries, using various optimisations.

As for the DBpedia queries, we see that the overhead of optimisation is noticeable for queries that execute
quickly, such as queries �1, �2, �3 and �4 at maximum cost 1. We also see that the overhead of the containment
optimisation by itself can be signiicant for slower queries such as �4 and �5 at maximum costs 2 and 3. In these

18There were some instances of query triple patterns where the summary optimisation was not applied due to the������ check in Algorithm
4.�1: at max cost 3 the summary optimisation was not applied to twelve of the queries.�4: at max cost 3, the query’s irst triple pattern was
not replaced in six queries and its second triple pattern in another six queries.

ACM Trans. Web



Optimisation Techniques for Flexible SPARQL queries • 35

cases, no rewritten queries are discarded by the containment optimisation and there are many queries to check
(e.g., 560 for �4 at maximum cost 3).

For query �1 only at maximum costs 2 and 3 do the beneits of optimisation become apparent. At maximum
cost 2, the combined optimisation reduces the execution time to under a third of the time without optimisation.
For query�3 at maximum cost 3, the summary and combined optimisations are able to almost halve the execution
time. The biggest improvements can be seen for queries �4 and �5, where the summary optimisation reduces
the time considerably for �4 at maximum costs 2 and 3, and for �5 at all maximum costs. This reduction was
achieved by the summary optimisation simplifying the triple patterns in �4 and �5, resulting in much faster
execution times, as well as signiicantly fewer queries needing to be evaluated for �5.

6.3.3 Overall observations. Overall, we see again that the containment optimisation brings limited beneit
in reducing the number of rewritten queries generated and that the summary optimisation is more efective.
Combining the two optimisations brings for one query a further reduction in the number of queries generated
compared to the two separate optimisations. Again we see that for queries that execute quickly, the performance
overhead of applying the optimisations is not signiicant. For slower queries, the summary optimisation is able
to give substantial reductions in execution times; the containment optimisation gives modest gains in a few
instances, but can also incur a signiicant performance penalty (e.g. for query �4 with maximum cost 3); and
combining the two optimisations may or may not improve the times obtained with the summary optimisation
alone, dependent on the behaviour of the containment optimisation.

7 CONCLUSIONS

In this paper we have designed and evaluated empirically two optimisation techniques for speeding up the
evaluation of SPARQL�� queries. SPARQL�� allows users to query RDF data in a lexible way by evaluating
multiple alternative queries which might provide useful answers not returned by the user’s original query.
However, these additional queries can incur a signiicant performance overhead, necessitating the deployment of
optimisation techniques such as those studied in this paper.
Our approach to lexibly querying RDF data using SPARQL 1.1. centres on query rewriting, whereby a set of

queries is incrementally generated and evaluated at an increasing ‘cost’ from the submitted query. This allows a
speciic rewritten query and speciic cost to be associated with each query answer returned to the user, allowing
the user to see how each answer has arisen. In our framework, users can select which of the full range of
approximation and relaxation operations they wish to be applied to a query, and can set the cost of each such
operation, giving users control of the range of edits they wish to be applied to a given query and the priority of
application of these edits. Alternatively, users can choose to use the system or application defaults, e.g. applying
all operations at a cost of 1.

The conclusions to be drawn from our empirical study are that:

• applying the summary optimisation brings substantial improvements in execution times for longer-running
SPARQL�� queries, in some cases by one or more orders of magnitude;

• applying the containment optimisation also brings a substantial improvement for some longer-running
queries;

• combining the optimisations can bring further improvements for some queries;
• the summary optimisation does not incur a signiicant performance penalty, and therefore it should always
be applied (subject to the heuristic relating to individual triple patterns identiied in Section 5.1);

• the containment optimisation should also generally be applied (after applying the summary optimisation)
because in most cases it, too, does not incur a signiicant performance penalty.

With respect to the last point, the containment optimisation can incur a signiicant performance penalty (over 5
seconds) when there is a large number of queries to be checked for containment and when few or no queries are
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discarded after its application. This situation is exempliied by DBpedia query�5 at maximum cost 3, YAGO query
�4 at maximum cost 2 and 3, and YAGO query �5 at maximum cost 3. Since it is not possible a priori to know
how many queries will be discarded by the containment optimisation, our recommendation is therefore that the
containment optimisation should not be applied if the number of queries to be checked is more than an upper limit�,
to be empirically determined for a given implementation environment. For our own prototype implementation,
� is around 70 queries. However, it can be observed from the performance results presented in Section 6 that
there is one case Ð YAGO query �1 Ð where using this heuristic to not apply the containment optimisation after
applying the summary optimisation would incur a performance penalty Ð of approximately 5% (a run-time of 192s
achieved by the summary optimisation alone compared with 183s with the combined optimisation). The relative
simplicity of YAGO query �1 (just one triple pattern) compared to DBpedia query �5 (four triple patterns), and
YAGO queries �4 and �5 (six and seven query patterns, respectively) leads us therefore to a modiied version of
the heuristic for application of the containment optimisation: the containment optimisation should not be applied

if the number of queries to be checked is more than an upper limit� and the original user query contains more than

� triple patterns. Again, the number � would need to be empirically determined for a given implementation, and
in our case the results of Section 6 indicate that it lies somewhere between 1 and 3.
We have applied our two optimisations to the full set of queries from [28], listing the results in Appendix B,

which provide further corroboration of the above conclusions concerning these two optimisations. Directions of
future work include:

(1) further empirical evaluation of our baseline and optimised implementation, with additional queries and
additional datasets;

(2) extending our APPROX and RELAX operators to apply to the full property path syntax of SPARQL 1.1;
(3) reining the semantics of APPROX and RELAX to encompass also lexical or semantic similarity measures

over literals and resources, so as to allow iner-grained ranking of answers;
(4) combining the APPROX and RELAX operators into one integrated łFLEXž operator, that simultaneously

applies approximation and relaxation operations to a property path;
(5) application of rewriting-based query approximation to other graph query languages.

In respect of (4), supporting a FLEX operator would allow greater ease of query formulation for users, since they
would not need to be aware of the ontology structure and to identify which conjuncts of their query may be
amenable to relaxation and which to approximation. Support of a FLEX operator for CRPQs was explored in [55]
but has so far not been investigated in the context of SPARQL. In respect of (5), initial work on rewriting-based
query approximation for Cypher is reported in [25].
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A REWRITING ALGORITHM

The query rewriting algorithm (Algorithm 6) takes as input the SPARQL�� query to be evaluated, ��� ; the
maximum approximation/relaxation cost of the rewritten queries, � ; and the ontology � . It starts by creating the
query �0, which returns the exact answers to the user’s query � , i.e. ignoring any occurrences of the APPROX
and RELAX operators in � . To keep track of which triple patterns need to be relaxed or approximated, we label
such triple patterns within �0 and within subsequently generated queries with � for approximation and � for
relaxation.
In Algorithm 6, the function ����� (łto conjunctive query setž) takes as input the query �0 and returns a

set of pairs ⟨�� , 0⟩ such that
⋃
�⟦��⟧� = ⟦�0⟧� and no �� contains the UNION operator. The function �����
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exploits the following equalities:

⟦(�1 UNION �2) AND �3⟧� =

(⟦�1⟧� ∪ ⟦�2⟧� ) Z ⟦�3⟧� =

(⟦�1⟧� Z ⟦�3⟧� ) ∪ (⟦�2⟧� Z ⟦�3⟧� ) =

(⟦�1 AND �3⟧� ) ∪ (⟦�2 AND �3⟧� )

The set of queries returned by ����� (�0) is assigned to the variable oldGeneration . For each query � in
oldGeneration, each triple pattern ⟨�, �,�⟩ in � labelled with � (�), and each URI � appearing in � , we apply one
step of approximation (relaxation) to � , and assign the cost of applying that approximation (relaxation) to the
resulting query. The applyApprox and applyRelax functions invoked by Algorithm 6 are shown as Algorithms 7
and 9, respectively. We note that Algorithm 9 is deined more eiciently than the version listed in [28], although
their efects are the same. The addTo function invoked by Algorithm 6 takes two arguments: a collection � of
query/cost pairs and a single query/cost pair ⟨�, �⟩. It adds ⟨�, �⟩ to� if� does not already contain� . If� already
contains a pair ⟨�, �′⟩ such that �′ > � , then ⟨�, �′⟩ is replaced by ⟨�, �⟩ in� i.e. the smallest cost associated with
� ′ is retained. We continue to generate queries iteratively up to the maximum query cost � .

ALGORITHM 6: Rewriting algorithm

input :Query ��� ; approx/relax max cost �; Ontology � .
output :List of ⟨query, cost⟩ pairs, sorted by increasing cost.
�0 := remove the APPROX and RELAX operators from ��� , and label the approximated/relaxed triple patterns by �/�;

������� := ����� (�0);

������������� := ����� (�0);

while oldGeneration ≠ ∅ do

������������� := ∅;

foreach ⟨�, ����⟩ ∈ oldGeneration do

foreach labelled triple pattern ⟨�, �,�⟩ in � do

��� := ∅;

if ⟨�, �,�⟩ is labelled with � then ��� := applyApprox(� ,⟨�, �,�⟩) ;

else if ⟨�, �,�⟩ is labelled with � then ��� := applyRelax(� ,⟨�, �,�⟩,K) ;

foreach ⟨� ′, ���� ′⟩ ∈ ��� do

if ���� + ���� ′ ≤ � then
addTo(�������������, ⟨� ′, ���� + ���� ′⟩);

addTo(�������, ⟨� ′, ���� + ���� ′⟩);

/* The elements of ������������� and ������� are ordered by increasing cost. */

end

end

end

end

������������� := �������������;

end

return ������� ;

The applyApprox (Algorithm 7) and applyRelax (Algorithm 9) functions invoke the functions approxRegex
(Algorithm 8) and relaxTriplePattern (Algorithm 10), respectively. Algorithm 8 applies one step of approximation
to a regular expression � . If � is a URL � , then deletion is represented by � , substitution by !� (since � has already
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ALGORITHM 7: applyApprox

input :Query � ; triple pattern ⟨�, �,�⟩� .
output :Set � of ⟨query, cost⟩ pairs.
� := ∅;

foreach ⟨� ′, ����⟩ ∈ approxRegex(�) do
� ′ := replace ⟨�, �,�⟩� by ⟨�, � ′, �⟩� in � ;

� := � ∪ {⟨� ′, ����⟩};

end

return S;

ALGORITHM 8: approxRegex

input :Regular expression � .
output :Set � of ⟨regular expression, cost⟩ pairs.
� := ∅;

if � = � then return � ;

else if � = _ then � := � ∪ {⟨_/_, �� ⟩} ;

else if � =!� then � := � ∪ {⟨_/!�, �� ⟩, ⟨!�/_, �� ⟩} ;

else if � = � where � is a URI then � := � ∪ {⟨�, �� ⟩, ⟨!�, �� ⟩, ⟨_/�, �� ⟩, ⟨�/_, �� ⟩} ;

else if � = �1/�2 then
foreach ⟨� ′, ����⟩ ∈ approxRegex(�1) do � := � ∪ {⟨� ′/�2, ����⟩} ;

foreach ⟨� ′, ����⟩ ∈ approxRegex(�2) do � := � ∪ {⟨�1/� ′, ����⟩} ;

end

else if � = �1 |�2 then
foreach ⟨� ′, ����⟩ ∈ approxRegex(�1) do � := � ∪ {⟨� ′, ����⟩} ;

foreach ⟨� ′, ����⟩ ∈ approxRegex(�2) do � := � ∪ {⟨� ′, ����⟩} ;

end

else if � = �∗1 then

foreach ⟨� ′, ����⟩ ∈ approxRegex(�1) do � := � ∪ {⟨(�∗1 )/�
′/(�∗1 ), ����⟩} ;

end

return T;

ALGORITHM 9: applyRelax

input :Query � ; triple pattern ⟨�, �,�⟩� of � ; Ontology � .
output :Set � of ⟨query, cost⟩ pairs.
� := ∅;

foreach ⟨⟨� ′, � ′, �′⟩�, ����⟩ ∈ relaxTriplePattern(⟨�, �,�⟩, �) do
� ′ := replace ⟨�, �,�⟩� by ⟨� ′, � ′, �′⟩� in � ;

� := � ∪ {⟨� ′, ����⟩};

end

return S;

appeared, at lower cost), and insertion by _. None of these three terms can be used in the original SPARQL��

query submitted by the user. Hence if they appear in the regular expression being approximated, it must be as
the result of an edit operation applied earlier. This means that it is not necessary to apply any further operations
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ALGORITHM 10: relaxTriplePattern

input :Triple pattern ⟨�, �,�⟩; Ontology � .
output :Set � of ⟨triple pattern, cost⟩ pairs.
� := ∅;

if � = � where � is a URI then

foreach �′ such that ∃(�, ��, �′) ∈ �� do � := � ∪ {⟨⟨�, �′, �⟩, �����2 ⟩} ;

foreach � such that ∃(�, ��, �) ∈ �� and � = ���� and � = � do � := � ∪ {⟨⟨�, ����, �⟩, �����4 ⟩} ;

foreach � such that ∃(�, ��, �) ∈ �� and � = ����− and � = � do � := � ∪ {⟨⟨�, ����−, �⟩, �����4 ⟩} ;

foreach � such that ∃(�,���, �) ∈ �� and � is a URI or a Literal do � := � ∪ {⟨⟨�, ����, �⟩, �����5 ⟩} ;

foreach � such that ∃(�, �����, �) ∈ �� and � is a URI do � := � ∪ {⟨⟨�, ����−, �⟩, �����6 ⟩} ;

end

else if � = �1/�2 then
foreach ⟨⟨� ′, � ′, �⟩, ����⟩ ∈ relaxTriplePattern(⟨�, �1, �⟩) do � := � ∪ {⟨⟨� ′, � ′/�2, �⟩, ����⟩} ;

foreach ⟨⟨�, � ′, �′⟩, ����⟩ ∈ relaxTriplePattern(⟨�, �2, �⟩) do � := � ∪ {⟨⟨�, �1/� ′, �′⟩, ����⟩} ;

end

else if � = �1 |�2 then
foreach ⟨⟨� ′, � ′, �′⟩, ����⟩ ∈ relaxTriplePattern(⟨�, �1, �⟩) do � := � ∪ {⟨⟨� ′, � ′, �′⟩, ����⟩} ;

foreach ⟨⟨� ′, � ′, �′⟩, ����⟩ ∈ relaxTriplePattern(⟨�, �2, �⟩) do � := � ∪ {⟨⟨� ′, � ′, �′⟩, ����⟩} ;

end

else if � = �∗1 then

foreach ⟨⟨�1, � ′, �2⟩, ����⟩ ∈ relaxTriplePattern((⟨�1, �1, �2⟩) do � := � ∪ {⟨⟨�, �∗1/�
′/�∗1 , �⟩, ����⟩} ;

foreach ⟨⟨� ′, � ′, �⟩, ����⟩ ∈ relaxTriplePattern((⟨�, �1, �⟩) do � := � ∪ {⟨⟨� ′, � ′/�∗1 , �⟩, ����⟩} ;

foreach ⟨⟨�, � ′, �′⟩, ����⟩ ∈ relaxTriplePattern((⟨�, �1, �⟩) do � := � ∪ {⟨⟨�, �∗1/�
′, �′⟩, ����⟩} ;

end

return T;

to � , and only insertions need be applied to to _ and !� , as indicated by the second, third and fourth lines in the
algorithm. For detailed explanation of Algorithm 10, please see [28].

B TIMINGS FOR THE TEN YAGO QUERIES OF [28]

Each of the ten queries �� from [28] has � triple patterns. The irst four queries each have RELAX applied to
only a single triple pattern. Hence not many rewritten queries are generated, opportunities for optimisation are
limited, and their execution times are fast.

Queries �5, �6 and �10 each have RELAX applied to one triple pattern and APPROX applied to two. Running
the exact form of query �5 returns 2,943,311 answers and takes over 17 hours. In �5 both triple patterns with
APPROX applied to them also use Kleene closure in their property paths. As a result, the set of rewritten queries
at each maximum cost from 1 to 3 are not able to complete execution within 24 hours. On the other hand, we see
that the summary optimisation in particular is able to reduce the execution times considerably for queries �6 to
�10 at all maximum costs.
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Max Cost Optimisation �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

1 none 2 3 3 2 13 16 8 6 6 10
1 containment 2 3 3 2 11 16 8 6 4 10
1 summary 2 2 2 1 13 16 5 4 3 8
1 combined 2 2 2 1 11 16 5 4 3 8
2 none 2 5 5 2 85 119 30 16 29 46
2 containment 2 5 5 2 60 119 30 16 12 46
2 summary 2 4 4 1 85 117 14 10 6 35
2 combined 2 4 4 1 60 117 14 10 6 35
3 none 2 5 5 2 389 560 74 30 96 138
3 containment 2 5 5 2 232 560 74 30 23 138
3 summary 2 4 4 1 389 542 28 18 8 108
3 combined 2 4 4 1 232 542 28 18 8 108

Table 16. Number of queries generated, with and without various optimisations.

Max Cost �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

0 13618 1180 930 8405 2943311 32 1450 11557 0 0
1 13619 260062 116521 8405 N/A 234 54023 12917 0 0
2 13619 260062 116521 8405 N/A 25199 73311 13092 0 0
3 13619 260062 116521 8405 N/A 33316 455181 13092 0 0

Table 17. Number of answers returned by the queries.

Max
Cost Optimisation �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

1 none 0.031 0.033 0.034 0.010 N/A 2.44 214.55 1428.1 1913.0 2215.0
1 containment 0.031 0.033 0.034 0.010 N/A 2.56 214.78 1428.4 1038.0 2215.0
1 summary 0.031 0.026 0.030 0.007 N/A 2.49 13.29 191.3 90.2 67.5
1 combined 0.031 0.026 0.030 0.007 N/A 2.78 13.66 191.5 90.4 68.0
2 none 0.031 0.041 0.041 0.010 N/A 122.77 602.11 2105.0 4110.0 3603.0
2 containment 0.031 0.041 0.041 0.010 N/A 129.21 605.71 2106.0 2549.0 3605.0
2 summary 0.031 0.039 0.040 0.007 N/A 22.87 19.32 281.1 104.4 89.0
2 combined 0.031 0.039 0.040 0.007 N/A 26.83 22.74 281.6 104.9 91.2
3 none 0.031 0.041 0.041 0.010 N/A 648.29 1301.54 3267.0 7772.0 5630.0
3 containment 0.031 0.041 0.041 0.010 N/A 701.19 1307.41 3270.0 3105.0 5632.0
3 summary 0.031 0.039 0.040 0.007 N/A 118.91 121.02 453.4 122.5 106.6
3 combined 0.031 0.039 0.040 0.007 N/A 154.10 129.51 455.5 123.3 107.9

Table 18. Execution times (seconds) for the queries, using various optimisations.
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