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ARTICLE

2.7 Å cryo-EM structure of ex vivo RML prion fibrils
Szymon W. Manka 1, Wenjuan Zhang 1, Adam Wenborn1, Jemma Betts1, Susan Joiner1, Helen R. Saibil 2✉,

John Collinge 1✉ & Jonathan D. F. Wadsworth 1✉

Mammalian prions propagate as distinct strains and are composed of multichain assemblies

of misfolded host-encoded prion protein (PrP). Here, we present a near-atomic resolution

cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated

from the brains of RML prion-infected mice. We found that prion rods comprise single-

protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofila-

ments. Each rung of the protofilament is formed by a single PrP monomer with the ordered

core comprising PrP residues 94–225, which folds to create two asymmetric lobes with the

N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal

lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated

from the brain of hamsters infected with the 263K prion strain. However, there are

marked conformational variations that could result from differences in PrP sequence and/or

represent distinguishing features of the distinct prion strains.
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Prions are lethal infectious agents that cause fatal neurode-
generative diseases in mammals, including scrapie in sheep
and goats, chronic wasting disease in cervids, bovine

spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob
disease (CJD) in humans1–3. They are devoid of nucleic acid and
composed principally or entirely of multichain fibrillar assemblies
of misfolded, host-encoded prion protein (PrP), a glycosylpho-
sphatidylinositol (GPI)-anchored cell surface glycoprotein con-
taining two asparagine (N)-linked glycosylation sites1–3. Prions
propagate by means of seeded protein polymerization, which
involves recruitment of PrP monomers to fibrillar assemblies
followed by fragmentation of these elongating structures to
generate more seeds. Different prion strains produce distinct
clinicopathological phenotypes in the same inbred host and
appear to be encoded by distinct misfolded PrP conformations
and assembly states1–3. Since the discovery of prions, considerable
international effort has been focused on determining their
structure in order to understand unique facets of prion biology,
including the mechanisms of replication, the differences between
prions and non-infectious amyloid, the molecular basis of strain
diversity, inter-species transmission barriers and toxicity1–4. Sig-
nificantly, the generation of self-propagating polymeric or amy-
loid protein assemblies is now widely recognised to be involved in
the pathogenesis of many other human diseases. Consequently,
“prion-like” mechanisms of propagation and spread and
whether the strain phenomenon is involved in phenotype have
become a major research focus in the commoner neurodegen-
erative diseases3,5–7 and recent advances have defined the struc-
tures of diverse self-propagating assemblies of tau8–12, amyloid-
β13,14 and α-synuclein15 from human brain.

The structural transition accompanying PrP monomer incor-
poration into infectious, protease-resistant, detergent-insoluble
fibrillar prion assemblies (classically designated as PrPSc1,16)
involves gross rearrangement of the protein fold17. While the
cellular isoform of PrP (PrPC) contains an ordered globular
C-terminal domain containing three α-helices18,19, PrP mono-
mers within the infectious prion multimers adopt a β-strand-rich
configuration1,19 which confers protease-resistance to the
C-terminal two-thirds of the protein sequence. The arrangement
of β-strands, potential inclusion of other structural constituents,
and the overall architecture of ex vivo prion fibrils (also referred
to as prion rods1,4,20) have been intensely debated on the basis
of various indirect, computational or low-resolution structural
studies and diverse structural models have been proposed
(reviewed in refs. 4,21). Notably prion strains indicate structural
heterogeneity and may constitute a cloud of diverse molecular
assemblies (analogous to a viral quasispecies)2,22 which further
complicates definition of the unifying structural features of a
prion. In particular, because strain-specific prion assemblies
contain distinct and characteristic ratios of di-, mono- and non-
glycosylated PrP23–27, prion architectures must satisfactorily
explain how such high-fidelity selection of PrP glycoforms is
achieved2,3,28.

Cryogenic electron microscopy (cryo-EM) and the recent
advances in image processing (Relion)29–31 have enabled
direct, high-resolution structural studies of amyloids, fibrillar
polymers defined by cross-β structure, in which misfolded
protein monomers stack to form a ribbon of intermolecular
β-sheets19,32–34. Disease-related PrP has long been known to
present the tinctorial hallmarks of amyloid20 and consistent with
this, recent high-resolution cryo-EM studies suggest that protein
cores of mammalian prions may generally adopt parallel in-
register intermolecular β-sheet (PIRIBS) amyloid structures35–40.
In vitro-generated fibrils from recombinant, bacterially derived,
full-length human PrP36, an N-terminal fragment thereof37, or
full-length human E196K PrP40 form such amyloids, each

consisting of two symmetrical protofilaments. However, PrP
monomers show distinct folds and distinct lateral contacts (inter-
protofilament interfaces) in each of these amyloids, which indi-
cates the structural plasticity of PrP, and thus, its potential for
adopting different folds in different prion strains, but artificial
in vitro polymerisation products have uncertain biological rele-
vance. The recombinant PrP substrate is devoid of N-linked
glycans and GPI-anchor which may impact the conformation of
the amyloid core and its resultant biological properties. Notably,
PrP amyloids formed from recombinant PrP alone are either
devoid of detectable prion infectivity or have specific-infectivities
far too low for meaningful structural analysis2–4,41. Efforts to
elucidate prion structure have therefore concentrated on struc-
tural characterisation of ex vivo purified material having high
specific infectivity, and recently, a cryo-EM study of the hamster
263K prion strain determined a high-resolution PIRIBS structure
of PrP fibrils present in a purified, ex vivo prion sample of high
specific infectivity38,39.

In this study, we present a 2.7 Å cryo-EM structure of PrP
fibrils present in preparations of infectious RML mouse-adapted
scrapie prions42,43, the most commonly studied laboratory prion
strain, purified to extremely high specific infectivity44. In vitreous
ice, we found that infectious prion rods are predominantly single-
protofilament helical amyloid fibrils. The protofilaments have a
unique PIRIBS conformation, with similarities to fibrils from the
263K hamster prion strain, but very different from the PIRIBS
conformations of in vitro generated PrP amyloids. Notably, in
distinction to purified preparations of the 263K hamster prions
that were reported to consist of only single protofilaments38,39, in
our purified RML prion samples we observed that the single
protofilaments coexist with twisted pairs of the same protofila-
ments. These findings are consistent with our previous low-
resolution imaging of paired fibres in preparations of extremely
high specific infectivity in which we were able to correlate
structural entities with infectivity by bioassay of EM grids28,45.
The presence of both single and paired protofilaments is
intriguing and understanding their origins may be critical to
elucidating the mechanism of prion propagation and selection of
PrP glycoform ratios that distinguish some prion strains.

Results
Purified RML prion rods show both single and paired proto-
filament architectures. RML prion rods from the brain of
terminally-infected CD1 mice were purified using previously
reported methods44 with the exception that proteinase K (PK)
rather than pronase E was used for initial digestion of brain
homogenate. Purified fractions contained disease-related PrP at
~99% purity with respect to total protein, with all major SDS-
PAGE silver-stained bands immuno-reactive with an anti-PrP
monoclonal antibody on western blots, which showed the sig-
nature PK-resistant fragment size and PrP glycoform ratio that
characterises the RML prion strain44 (Supplementary Fig. 1).
Mass spectrometry analyses of the purified rods showed that PK
N-terminally truncates PrP monomers in the rods mainly at
residue 88 (with minor cleavage sites at residues 80, 84 and 90)
with no evidence for C-terminal truncation. PK-digested rods
thereby comprise PrP monomers predominantly starting at
residue 89 extending to the C-terminus with intact GPI anchor
(Supplementary Fig. 1). Prion infectivity of purified samples
was measured using the Scrapie Cell Assay46 as reported
previously41,44. The specific prion infectivity of all purified sam-
ples used in this study corresponds to ~109 mouse intra-cerebral
LD50/mg protein, consistent with our previous findings28,44,45.
With the exception of very occasional collagen fibres, prion rods
were the only visible protein structures in these samples.
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The cryo-EM images of frozen-hydrated purified RML prion
assemblies revealed two distinct fibrillar morphologies, ~10 nm-
wide single protofilaments and ~20 nm-wide pairs of the same
protofilaments (see results below). The ratio of observed single
protofilaments to pairs was ~9:1 (Fig. 1a). The paired protofila-
ments show clear helical symmetry, with the crossover or half-pitch
(180° helical turn) distance ranging from 150 to 180 nm (Fig. 1a).
The single protofilaments were rarely sufficiently long to
encompass the full crossover distance, but this was determined
from the reconstruction to be on average slightly shorter (135 nm)
than the pairs (Fig. 1a, b).

The presence of predominantly single protofilaments in our
infectious RML prion rod preparations was surprising. Based on our
previous negative-stain EM and AFM imaging of the purified RML
samples28,45, we interpreted the rod preparations to contain
predominantly paired fibres. However, due to their helical twist the
paired fibres, when viewed on a surface, alternate between wider,
face-on (~20 nm) and narrower, edge-on (~10 nm) views. Guided by
negative-stain EM28,45 we considered that all narrower views (10 nm)
seen in 2D projections corresponded to edge-on views of the pairs.
With the insight provided by the high-resolution 3D cryo-EM, it is
now apparent that the negative-stain 2D EM reflects a distribution of
single and double-protofilament architectures (Supplementary Fig. 2).

The RML protofilament has a PIRIBS structure. We determined
a 2.7 Å structure of the single RML protofilament and de novo built
and refined an atomic model in the cryo-EM density based on
mouse PrP sequence (residues T94-Y225) (Fig. 1b–d, Table 1 and
Supplementary Figs. 3–5). Similar to fibrils from the hamster 263K
prion strain38,39, the RML protofilament displays a PIRIBS amyloid
structure, with a single PrP chain contributing each rung or ‘rib’ to
the resultant helical ribbon, with a 4.82 Å spacing between the
rungs, a left-handed helical twist of −0.64°, and a crossover dis-
tance of approx. 1344 Å (Fig. 1b–f). Each visible rung comprises
residues that are stabilised as part of the amyloid core, with short
unresolved flexible tails at each end (PK-resistant core is slightly
larger than amyloid core). The amyloid core has overall dimensions
of approx. 10 × 7 nm (Fig. 1d) and can be divided into a double-
hairpin N-terminal lobe and a single-hairpin C-terminal
disulphide-stapled lobe (Fig. 1c and d). The extra (non-protein)
densities in the N-terminal lobe are consistent with phospho-
tungstate (PTA) polyanions ([PW11O39]7− at pH 7.8) used to
facilitate prion purification44,47,48 that form cage-like Keggin
structures48,49. These bind to solvent-exposed strings of positively
charged residues on the surface of the protofilaments (Fig. 1b, c, e,
Supplementary Fig. 4). Extra densities in the C-terminal lobe are
seen at the positions of N180- and N196-linked glycans and the
flexible GPI-anchor at the C-terminus (Fig. 1c).

Intra- and inter-molecular interactions in RML protofilaments.
Alternating polar and hydrophobic intra-chain interactions sta-
bilise the conformation of the PrP chain in each amyloid rung
(Fig. 2a) and form hydrophobic and hydrophilic columns along
the fibril (Fig. 2b), similar to the way in which charges distribute
along the fibril (Fig. 2c). These longitudinal interactions likely
contribute to the extraordinary stability of the assembly and
may play an important role in templating PrP misfolding,
refolding into the prion strain-specific conformation and resis-
tance to host clearance mechanisms. The other major inter-
molecular interactions are the typical hydrogen bonds in the
PIRIBS arrangement (Fig. 2d). Our model suggests that there are
15 inter-chain β-sheets in the RML fibril (Fig. 2d).

N- and C-terminal lobes of the PrP subunits in the RML
protofilament are staggered. Considering longitudinal stacking

of PrP monomers, the N- and C-terminal lobes of the chain are
staggered along the amyloid fibril axis, so that each N-terminal
lobe is co-planar with the C-terminal lobe of the consecutive rung
(Fig. 3). Hydrophobic interactions between the N-terminal lobe’s
V120 and the C-terminal lobe’s F174 and H176 mediate the
contact between the staggered lobes (Fig. 3). Similar, but more
pronounced staggering was reported for fibrils from the 263K
prion hamster strain38,39 (Fig. 4a, bottom panel), in which each
N-terminal lobe contacts the C-terminal lobe of the second
consecutive rung.

Comparison of mouse RML protofilaments with hamster 263K
fibrils. When the two PrP conformations are aligned on the first
two β-strands, the N-terminal lobes of the two strains look rela-
tively similar (Fig. 4a), although the first hairpin structure in the
RML conformation does not resemble a ‘Greek key’ – as it was
named in the 263K fibril conformation38,39 – and the N-terminal
lobe of the 263K fibril appears less tightly packed than that of RML
(Fig. 4b, see holes in the solvent-accessible surface), whereas the
C-terminal lobes are markedly divergent (Fig. 4a). The distance
between the first glycosylation site (N180/181 in the mouse/ham-
ster sequence) is ~7 Å and it increases to ~34 Å for the second
glycosylation site (N196/197 in the mouse/hamster sequence).
Then the two folds become closer again between residues R207/
208-Q216/217 (mouse/hamster numbering) and diverge again at
their C-termini. The last residues of the ordered protein cores of
RML and 263K fibrils are ~36 Å apart (Fig. 4a, top panel). The side
view of the alignment (Fig. 4a, bottom panel) reveals the more
pronounced inter-lobe stagger observed in the 263K fibril. This
difference may be linked to the tighter helical twist of the 263K
fibril (crossover distance of ~100 nm38,39) compared to that of the
RML protofilament (crossover distance of ~135 nm).

The C-terminus and tip of the C-terminal lobe is where the two
structures deviate the most. This tip appears rigid in RML
protofilaments, likely due to relatively tight interactions stabilis-
ing the corresponding hairpin structure (Fig. 2a, d), whereas in
the 263K fibril reconstruction, the density for the three amino
acid residues at that tip (K194-E196) is missing (Fig. 4b), which
indicates local flexibility or disorder. This flexibility is likely a
consequence of the divergent fold in the 263K fibril C-terminal
lobe compared to RML protofilaments. The C-terminal lobe of
the RML protofilament continues to bind along the opposing
strand in the hairpin structure, resulting in the C-terminal lobe
being a single hairpin, while in the 263K fibril the chain pivots at
residue Y218 to swing in the opposite direction and fold back on
itself, forming a double hairpin structure (Fig. 4a–c). There, at the
base of that second hairpin, residue Y226 interacts with I203 and
I205, creating a gap in the first hairpin, which in turn destabilises
its tip (which is the tip of the C-terminal lobe) (Fig. 4c, bottom
panel). The difference in the conformation of the C-terminal lobe
between the two fibrils corresponds to the differences in their host
PrP sequence (Fig. 4c, top panel). These differences result in a
narrower groove between the N- and C-terminal lobes in the
RML PrP fibril than in the 263K hamster PrP fibril (Fig. 4b).

Notably, shortly after we posted the RML fibril structure in a
preprint50, Kraus and colleagues posted a ~3 Å structure of
GPI-anchorless, underglycosylated RML fibrils (aRML) from
RML prion-infected GPI-anchorless PrP transgenic mice51.
Comparison of the cross sections of wild-type RML and aRML
protofilaments show they are remarkably similar with the
exception that residues 226–230 that are disordered in the wild-
type RML fibril, presumably due to the presence of the GPI-
anchor, are ordered in the aRML fibril. This comparison also
shows that PTA has no major effect on the RML fibril fold as
PTA was not used for purification of the aRML fibrils.
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Analysis of RML paired protofilaments enabled two low
resolution 3D reconstructions (Supplementary Fig. 5). These
images clearly demonstrate that the paired structures contain
protofilaments with the fold that we describe. However, bound
PTA is close to the protofilament interface in both paired
assemblies raising the possibility that PTA might be contributing
to this pairing. Accordingly, we have now purified RML prion
fibrils without PTA and have found that these preparations
contain paired protofilaments whose morphology in ice appears
very closely similar to those seen in samples prepared with PTA
(Supplementary Fig. 5). These findings establish that pairing
per se is not simply a PTA-induced artefact.

Discussion
In the present study, we have determined a 2.7 Å structure of
single protofilaments in highly purified preparations of infectious
mouse RML prions and compared this with the recently pub-
lished cryo-EM structure of fibrils in highly purified preparations
of hamster 263K prions38,39. Both RML and 263K fibrils have a
PIRIBS conformation with a PrP subunit forming each rung of
the fibril, and protease-resistant cores that correspond to the
sequences expected from the strain-specific signature PrP 27–30
truncated PrPSc banding patterns seen on western blots. The
PIRIBS conformation of prion fibrils is compatible with earlier

studies that examined ex vivo material using a variety of other
techniques (comprehensively reviewed in refs. 38,39).

The fold in the core of both RML and 263K fibrils creates
distinct N- and C-terminal lobes in each PrP monomer thereby
generating a broadly similar overall architecture in which the
N-linked glycans and GPI anchor project from the C-terminal
lobe. Significantly, the protofilament fold in RML fibrils purified
from wild-type mice that we report here appears to be congruent
with recently described aRML fibrils purified from RML-prion
infected transgenic mice expressing GPI-anchorless PrP51.

While the architectures of ex vivo mouse RML and hamster
263K fibrils are clearly similar, they are notably distinct from the
recently reported cryo-EM structures of recombinant PrP
amyloids36,37,40 and the β-solenoid structure postulated for
ex vivo PrP amyloid fibrils purified from the brain of RML-prion
infected transgenic mice expressing GPI-anchorless PrP52.

The mouse RML and hamster 263K fibrils are remarkably
similar, considering the increasingly wider landscape of ex vivo
amyloid structures12–15,19,32–34, which may be relevant for the
unique properties of prions. Despite this overall structural simi-
larity, there are pronounced differences in the fold of the
C-terminal lobes of mouse RML and hamster 263K fibrils, which
may be attributable to differences in PrP primary structure and/or
represent distinct conformational templating by divergent prion
strains. To directly observe strain-specific prion conformations
on the same PrP sequence, high-resolution cryo-EM structures of
fibrils from other mouse- or hamster-adapted prion strains are
required.

Authentic prion structures should account for the mechanism
by which high-fidelity selection of PrP glycoforms is achieved
during prion assembly2,3,28. The glycoform ratios of PrP in mouse
RML fibrils and hamster 263K fibrils are very different, with
marked predominance of di-glycosylated PrP in the 263K
fibril38,39 and predominance of mono-glycosylated PrPs in the
RML fibril44 (Supplementary Fig. 1). Although in silico modelling
suggests no obvious steric hindrance for accommodating even
solely di-glycosylated PrP chains into a cross-β amyloid
structure53, the degree of helical twist and the size of the cleft
between the N-and C-terminal lobes in which residue N180/N181
(mouse/hamster numbering) is contained may favour certain PrP
glycoforms over others. Notably, the 263K fibril has a much wider
groove between the N- and C-terminal lobes than RML fibrils
(Fig. 4b), which may sterically permit more glycan occupancy at
N181. Moreover, the 263K fibril has a greater helical twist than
RML fibrils (100 nm38,39 versus 135 nm crossover distance,
respectively), which may help to displace successive glycans and
thereby accommodate a higher glycan occupancy at both N181
and N197 sites. These structural differences may favour incor-
poration of di-glycosylated PrP monomers (which are the most
abundant PrPC glycoforms) into the 263K fibril over the RML
fibril.

The finding that the RML single protofilament fold is very
closely similar in RML-infected wild type mice and GPI-
anchorless PrP transgenic mice indicates that the absence of the
GPI anchor and lower levels of glycosylation do not have a major
impact on the stability of this fold51. These data are consistent
with earlier findings that GPI-anchorless RML PrPSc shows very
high stability in chaotropes or when heated54. However, it is
important to note that the RML prion strain was originally iso-
lated from wild-type mice42,43 expressing GPI-anchored and fully
glycosylated PrP and that the aRML fibril fold was templated by
wild-type RML fibrils. While these new cryo-EM data show that
the RML fibril fold can stably propagate in the absence of post-
translational modifications, they do not inform on potentially
critical roles for the GPI-anchor or N-glycans in dictating the
genesis of the fold. The fact that aRML fibrils can propagate

Table 1 Cryo-EM data collection, refinement and validation
statistics.

RML
(EMD-13989)
(PDB 7QIG)

Data collection and processing
Magnification 81,000x
Voltage (kV) 300
Electron exposure (e–/Å2) 49
Defocus range (μm) from −3.0 to −1.5
Pixel size (Å) 1.067
Symmetry imposed C1
Initial particle images (no.) 771,499
Final particle images (no.) 119,390
Map resolution (Å) 2.7
FSC threshold 0.143
Map resolution range (Å) 2.5–3
Refinement
Initial model used (PDB code) de novo
Model resolution (Å) 2.7
FSC threshold 0.143
Model resolution range (Å) 2.7–50
Map sharpening B factor (Å2) −36.9
Model composition
Non-hydrogen atoms 6255
Protein residues 396
Ligands none
B factors (Å2)
Protein 31.38–66.09
r.m.s. deviations
Bond lengths (Å) 0.005
Bond angles (°) 0.693
Validation
MolProbity score 1.56
Clashscore 2.72
Poor rotamers (%) 0
Ramachandran plot
Favoured (%) 91.54
Allowed (%) 8.46
Disallowed (%) 0
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efficiently in wild-type mice54,55 is not surprising as the RML fold
at its inception would have had to sterically accommodate
N-glycans and the GPI anchor. Indeed, propagation of aRML
templates in wild-type mice restores the signature glycoform ratio
of the RML strain54.

While the architecture of the single RML and 263K protofila-
ments may be sufficient to explain generation of strain-specific
PrP glycoform ratios, a potential alternative mechanism is the
propagation of paired protofilaments in which the architecture of
the pairs sterically limits the space available for glycan occupancy
as monomers assemble into each protofilament. Within such
architectures the glycans themselves may also interact with one
another and contribute to the overall stability of the assembly and
to the ability of prions to evade host defences. Our observation
of paired protofilaments in the purified RML prion samples
may suggest such a mechanism and paired protofilaments
have also recently been reported in purified samples from L-type
BSE-prion-infected transgenic mouse brain56. Importantly, while
we have established that protofilament pairing per se is not
simply a PTA-induced artefact, PTA may contribute hetero-
geneity to protofilament pairing, or conversely, PTA may disrupt
the interface of paired assemblies leading to the generation of
single protofilaments. How the proportions of single and double

protofilament architectures are impacted by PTA, and potential
heterogeneity that PTA may contribute to pairing, are currently
unknown. We are now working to obtain high-resolution cryo-
EM data of PTA-free RML fibrils. From these data, it will be
critical to determine the atomic structures of the paired assem-
blies and establish whether the single protofilaments we observe
in our samples (i) originate from pairs which are the replicating
species, (ii) replicate independently and then pair, or (iii) coexist
with pairs as two independent seed architectures.

Methods
Research governance. Frozen brains from mice with clinical prion disease were
used to generate purified prion samples. These brain samples were generated by us
as part of a previous study44 in which work with animals was performed in
accordance with licences approved and granted by the UK Home Office (Project
Licences 70/6454 and 70/7274) and conformed to University College London
institutional and ARRIVE guidelines. All experimental protocols were approved by
the Local Research Ethics Committee of UCL Queen Square Institute of Neurology/
National Hospital for Neurology and Neurosurgery. Prion purification, cell-based
prion bioassay and preparation of cryo-EM grids was conducted at UCL in
microbiological containment level 3 or level 2 facilities with strict adherence to
safety protocols. Work with infectious prion samples at Birkbeck College London
was performed using dedicated sample holders and equipment with strict adher-
ence to safety procedures and local risk assessment. Prion samples were
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transported between laboratories in packaging conforming to UN 3373 Biological
Substance, Category B specifications.

Preparation of purified RML prion rods. Prion-infected brain homogenate was
prepared by homogenizing 200 brains from female CD-1 mice terminally infected
with the RML prion strain in Dulbecco’s phosphate-buffered saline lacking Ca2+ or
Mg2+ ions (D-PBS; Gibco) to produce a pool of ~1 l 10 % (w/v) RML brain
homogenate (designated I17700) using methods described previously44. Purification
of RML prion rods was performed as described previously44 with the exception that
initial protease digestion was performed using PK in the place of pronase E. Briefly,
200 µl aliquots of 10% (w/v) RML brain homogenate were dispensed into standard
1.5ml microfuge tubes with screw cap and rubber O ring. Typically, 12 tubes were
processed at a time. Samples were treated with 2 µl of 5 mg/ml PK prepared in water
(to give 50 µg/ml final protease in the sample) and incubated for 30min at 37 °C with
constant agitation, after which digestion was terminated by addition of 4.1 µl of
100mM 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) to give
2 mM final concentration in the sample. 206 µl of 4% (w/v) sarkosyl (Calbiochem) in
D-PBS and 0.83 µl of Benzonase (purity 1; 25,000 U/ml) were then added to give final
concentrations in the sample of 2% (w/v) and 50 U/ml, respectively. Following
incubation for 10min at 37 °C, 33.5 µl of 4% (w/v) sodium phosphotungstate
(NaPTA) prepared in water pH 7.4 was added to give a final concentration of 0.3%
(w/v) in the sample. After incubation for 30min at 37 °C the samples were adjusted
(and thoroughly mixed) with 705.3 µl of 60% (w/v) iodixanol and 57.2 µl of 4% (w/v)
NaPTA prepared in water pH 7.4, to give final concentrations in the sample of 35%
(w/v) and 0.3% (w/v), respectively. After centrifugation for 90min at 16,100 g the
sample separates into an insoluble pellet fraction (P1), a clarified supernatant (SN1)
and a buoyant, partially flocculated, surface layer (SL). 1 ml of SN1 was carefully
isolated from each tube taking extreme care to avoid cross contamination with either
P1 or SL. SN1 was filtered using an Ultrafree-HV microcentrifuge filtration unit
(0.45 µm pore size Durapore membrane, Millipore, Prod. No. UFC30HV00). This
was accomplished by loading 500 µl aliquots of SN1 and centrifugation at 12,000 g for
30 sec using one filtration unit per ml of SN1. 480 µl aliquots of filtered SN1 were
transferred to new 1.5ml microfuge tubes and thoroughly mixed with an equal

volume of 2% (w/v) sarkosyl in D-PBS containing 0.3% (w/v) NaPTA pH 7.4 and
incubated for 10min at 37 °C. Samples were then centrifuged for 90min at 16,100 g to
generate an insoluble pellet fraction (P2) and a clarified supernatant (SN2). SN2 was
carefully removed and discarded, after which each P2 pellet was resuspended in 10 µl
of 5 mM sodium phosphate buffer pH 7.4 containing 0.3% (w/v) NaPTA and 0.1%
(w/v) sarkosyl. In order to avoid unnecessary aggregation of the purified rods arising
from repeated rounds of centrifugation the final two wash steps detailed in Wenborn
et al. 201544 were replaced with a single wash. Resuspended P2 pellets were pooled
and mixed with 1.0ml of 5 mM sodium phosphate buffer pH 7.4 containing 0.3% (w/
v) NaPTA and 0.1% (w/v) sarkosyl and samples centrifuged at 16,100 g for 30min to
generate a clarified supernatant (SN3) and an insoluble pellet fraction (P3). SN3 was
carefully removed and discarded and final P3 samples were typically resuspended to a
concentration of 120X relative to the starting volume of 10 % (w/v) brain homogenate
from which they were derived, prior to loading on to EM grids (see below). Pur-
ification of RML prion rods without NaPTA was performed as described above with
the following modifications. Additions of 4% (w/v) NaPTA pH 7.4 were replaced with
equivalent volumes of water. Filtered SN1 was diluted 3-fold in 2% (w/v) sarkosyl in
D-PBS to give 11.67% (w/v) iodixanol in the sample prior to centrifugation to gen-
erate P2 pellets. Final resuspension of the P3 pellets was done in 50mM tris con-
taining 150mM NaCl pH 7.4, prior to loading on to EM grids.

Prion infectivity of brain homogenates or purified samples was measured using
the Scrapie Cell Assay (SCA) and Scrapie Cell End Point Assay (SCEPA)46 using
PK1/2 cells (an established cell line; D-Gen Ltd, London). Every SCA experiment
included concomitant assay of a serial dilution of RML prions of known prion titre
determined from rodent bioassay to produce a standard curve that unknown
samples were calibrated against. 10 % (w/v) RML brain homogenate I6200 was
used as the standard and reported a prion titre of 107.3 + 0.5 (mean + s.d.)
intracerebral LD50 units/ml when endpoint titrated six times in Tg20 mice that
overexpress mouse PrP on a Prnpo/o background, corresponding to 107.7 TCIU/ml
in PK1/2 cells44. PrP concentrations in purified samples were measured by ELISA
as described previously44.

SDS-PAGE, silver staining and western blotting. Samples were prepared for
SDS-PAGE using NuPage 4X LDS buffer and 10X Reducing Agent (Thermo
Fisher) according to the manufacturer’s instructions followed by immediate
transfer to a 100 °C heating block for 10 min. Electrophoresis was performed on
NuPage 12 % Bis-Tris protein gels (Thermo Fisher), run for 60 min at 200 V, prior
to electroblotting to Immobilon P membrane (Millipore) for 16 h at 15 V. Mem-
branes were blocked in 1X PBS (prepared from 10X concentrate; VWR Interna-
tional) containing 0.05% (v/v) Tween 20 (PBST) and 5% (w/v) non-fat dried
skimmed milk powder and then probed with 0.2 μg/ml anti-PrP monoclonal
antibody ICSM35 (D-Gen Ltd) in PBST for at least 1 h. After washing (1 h with
PBST) the membranes were probed with a 1:10,000 dilution of alkaline-
phosphatase-conjugated goat anti-mouse IgG secondary antibody (Sigma-Aldrich,
Cat No A2179) in PBST. After washing (1 h with PBST and 2 × 5min with 20 mM
Tris pH 9.8 containing 1 mM MgCl2) blots were incubated for 5 min in chemilu-
minescent substrate (CDP-Star; Tropix Inc) and visualized on Biomax MR film
(Carestream). SDS-PAGE gels (prepared as above) were silver stained using the
Pierce Silver Stain Kit (Thermo Fisher) according to the manufacturer’s instruc-
tions. Gels were photographed on a light box using a Nikon Coolpix P6000 digital
camera. Typical sample loadings for western blotting or silver staining correspond
to purified material derived from 10 µl or 100 μl of 10 % (w/v) RML prion-infected
brain homogenate per lane, respectively. The SDS-PAGE and western blot data
generated in this study are provided in a Source Data file.

Determination of N-terminal PK-cleavage sites in purified RML prion rods by
mass spectrometry. N-terminal PK-cleavage sites in PrP were determined by the
targeted derivatization of α-amino groups and subsequent analysis by mass spec-
trometry, as described by Deng et al. (2015)57 with minor modifications. Briefly,
purified RML fibils were prepared as above and subjected to SDS-PAGE separation
using NuPAGE 12% Bis-Tris mini protein gels (Thermo Fisher) according to the
manufacturer’s instructions. Gel sections spanning all three PrP glycoforms were
excised, reduced with 100 µM tris(2-carboxyethyl)phosphine and alkylated with
200 µm iodoacetamide prior to N-terminal labelling with 6 mM
N-Succinimidyloxycarbonylmethyl tris(2,4,6-trimethoxyphenyl)phosphonium
bromide, (TMPP-Ac-OSu) (Sigma) for 1 h at 22 °C in 100 mM HEPES buffer pH
8.2. Gel-pieces were then washed thoroughly and subjected to overnight trypsin
digestion at a working concentration of 2.5 µg/ml. The following day, tryptic digest
peptides were recovered by gel extraction, as described by Shevchenko et al.
(2006)58. Peptide analysis was performed by liquid chromatography mass-spec-
trometry, using an Acquity I-Class UPLC system coupled to a Xevo G2-XS Q-ToF
mass spectrometer (Waters). Data was collected in MSe acquisition mode using
concurrent low- and high-collision energy functions with 5 V and 15–45 V of
collision energy, respectively. Peptide sequence assignments were made using
ProteinLynx Global Server 3.0.3 (Waters) against a species-specific reference pro-
teome (Uniprot UP000000589, mus musculus) and optionally allowing for
N-terminal amino-group derivatization by TMPP (+572.1811 Da). Extracted
ion chromatograms were generated for each TMPP-labelled peptide and relative
abundance was determined from their respective peak areas. These data are
provided in a Source Data file.
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RML sample preparation for cryo-EM. RML prion rods purified from 2.4ml 10 %
(w/v) RML-infected brain homogenate were resuspended from the P3 pellet (see
above) in 20–30 μl 5 mM sodium phosphate buffer pH 7.4 containing 0.1 % (w/v)
sarkosyl and 4 μl of the suspension was applied directly to a glow-discharged C-flat™
Holey Carbon CF-2/2–4 C Cu 400 mesh cryo-EM grid (Electron Microscopy Sci-
ences) in the chamber of the Leica GP2 plunging robot. The chamber was set to 20 °C
and 50% humidity. After 10 s incubation, the grids were blotted for 3 s (with an
additional 2 mm push) and plunge-frozen in liquid ethane maintained at −183 °C.

Cryo-EM data collection. Cryo-micrographs were acquired at Birkbeck College
London, on a 300 kV Krios G3i microscope (FEI/Thermo Fisher) with a post-GIF
(20 eV slit) K3 detector (Gatan) operated in super-resolution mode. The magnified
pixel size was 0.5335 Å. The dose rate was 16.37 e-/Å2/s during 3-s exposures,
resulting in the total dose of 49 e-/Å2 on the specimen. The exposures were col-
lected automatically at four shots per grid hole, with fast acquisition (240 images/
hr), using the EPU 2 software (FEI/Thermo Fisher), at defocus ranging from −3.0
to −1.5, and fractionated into 50 movie frames.
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Cryo-EM image processing and 3D reconstruction. All image processing except
particle picking was done within the framework of Relion 3.131. We used Relion’s
implementation of the MotionCor2 algorithm to align movie frames. The images
were 2x binned in Fourier space during the frame alignment, resulting in the final
pixel size of 1.067 Å2 in the drift-corrected sums. The contrast transfer function
(CTF) parameters were estimated with Gctf59. We then picked particles (fibril
segments) using the deep learning package crYOLO60,61 trained on 100 example
micrographs. The picking was accurate and avoided crowded regions with over-
lapping or clumped rods, fibrils on carbon support and fibrillar bundles, as illu-
strated in Supplementary Fig. 3. We imported the coordinates into Relion and
extracted images of prion rod segments of different box sizes (ranging from 1024 to
384 pixels) to perform reference-free 2D classification. Optimal 2D class averages
and segments were selected for further processing and used to de novo generate an
initial 3D reference with relion_helix_inimodel2d programme31, using an esti-
mated rise of 4.75 Å and helical twist according to the observed crossover distances
of the filaments in the 2D class averages. After 3D classification and 3D auto-
refinement, we obtained a 3D reconstruction of the RML fibril at 3.0 Å resolution
in a 384-pixel cube. Subsequent Bayesian polishing62 and CTF refinement63 were
performed to further improve the resolution of the reconstruction to 2.7 Å,
according to 0.143 FSC cut-off criterion (Supplementary Fig. 6). The final 3D map
was sharpened with a generous, soft-edged solvent mask at 10% of the height of the
box using the computed B-factor value of −36.9 Å2. The sharpened map was used
for the subsequent atomic model building and refinement. The absolute hand of
the helical twist was determined directly from the map through resolved densities
of the carbonyl oxygen atoms of the polypeptide backbone31. The local resolution
calculation was performed by LocRes in Relion 3.1 with solvent mask over the
entire map. Paired fibrils were picked manually and processed as described above.
The data supported low resolution 3D reconstruction of two types of paired
assemblies, but 2D classifications suggest that other modes of pairing may also be
present.

Atomic model building and refinement. A single subunit repeat was extracted in
UCSF Chimera64 for the initial de novo model building in Coot65. The initial
atomic model was then copied and fitted into their consecutive subunits in the map
and the map was zoned around the atomic coordinates in UCSF Chimera64. The
3-rung map and model were placed in a new unit cell with P1 space group for
subsequent model refinement using default settings in phenix.real_space_refine66

and REFMAC567 with non-crystallographic symmetry (NCS) group definitions
constraining the helical subunit repeat. Model geometry was evaluated using the
MolProbity server68 (http://molprobity.biochem.duke.edu/) after each round of
refinement, and problematic or poorly fitting regions in the model were manually
adjusted using Coot65 and Isolde69 (within ChimeraX70). This process was repeated
until a satisfactory level of model:map agreement with acceptable model stereo-
chemistry was achieved (Table 1).

Negative-stain EM. RML prion rods purified from 2.4 ml 10 % (w/v) RML-
infected brain homogenate were resuspended from the P3 pellet (see above) in 40 μl
50 mM tris, 150 mM NaCl pH 7.4 (TBS) containing 0.1% (w/v) sarkosyl and
deposited on glow-discharged EM grids with a continuous carbon film (Agar).
The grids were briefly blotted and washed with TBS before staining with 2%
solution of NANO-WTM stain (Nanoprobes). After ~1 s exposure to the stain
solution, the grids were blotted again and air-dried. The negatively stained grids
were imaged in the Unit on a 120 kV Talos microscope (FEI/Thermo Fisher) with a
4k × 4k BM-Ceta camera.

Structure analyses and presentation. Analyses and visualisations of the cryo-EM
density map and the models compared in this study were done using UCSF
Chimera64 and ChimeraX70.

Statistics and reproducibility. Purification of RML prions was successfully
replicated ~20 times while optimizing sample concentrations for cryo-freezing
using the Talos microscope. Eleven cryo-EM grids containing material from five
independent prion purifications were used for data collection in the Krios
G3i microscope. Representative images of prion rods in ice were selected from a
data-set comprising ~6000 multi-frame movies.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The cryo-EM data generated in this study have been deposited in the EMPIAR database
under accession code EMPIAR-10992. The 3D cryo-EM density map was deposited into
the Electron Microscopy Data Bank (https://www.ebi.ac.uk/pdbe/emdb) under accession
code EMD-13989 (Infectious mouse-adapted RML scrapie prion fibril purified from
terminally-infected mouse brains). The corresponding atomic coordinates were deposited
in the Protein Data Bank (https://www.rcsb.org) under PDB code 7QIG. Uncropped and
unprocessed SDS-PAGE and western blot data and mass spectrometry data generated in
this study are provided in Source Data files.
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