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VEdge_Detector: automated coastal vegetation edge 
detection using a convolutional neural network
Martin S. J. Rogersa, Mike Bithella, Susan M. Brooksb and Tom Spencera

aCambridge Coastal Research Unit, Department of Geography, Cambridge University, Cambridge, UK; 
bDepartment of Geography, Birkbeck, University of London, London, UK

ABSTRACT
Coastal communities, land covers, and intertidal habitats are vul-
nerable receptors of erosion, flooding or both in combination. This 
vulnerability is likely to increase with sea level rise and greater 
storminess over future decadal-scale time periods. The accurate, 
rapid, and wide-scale determination of shoreline position, and its 
migration, is therefore imperative for future coastal risk adaptation 
and management. This paper develops and applies an automated 
tool, VEdge_Detector, to extract the coastal vegetation line from 
high spatial resolution (Planet’s 3 to 5 m) remote-sensing imagery, 
training a very deep convolutional neural network (holistically 
nested edge detection), to predict sequential vegetation line loca-
tions on annual to decadal timescales. Red, green, and near-infrared 
(RG-NIR) was found to be the optimum image spectral band com-
bination during neural network training and validation. The 
VEdge_Detector outputs were compared with vegetation lines 
derived from ground-referenced positional measurements and 
manually digitized aerial photographs, which were used to ascer-
tain a mean distance error of <6 m (two image pixels) and >84% 
producer accuracy (PA) at six out of the seven sites. Extracting 
vegetation lines from Planet imagery of the rapidly retreating cliffed 
coastline at Covehithe, Suffolk, United Kingdom, has identified a 
landward retreat rate >3 m year−1 (2010–2020). Plausible vegeta-
tion lines were successfully retrieved from images in The 
Netherlands and Australia, which were not used to train the neural 
network, although significant areas of exposed rocky coastline 
proved to be less well recovered by VEdge_Detector. The method 
therefore promises the possibility of generalizing to estimate 
retreat of sandy coastlines from Planet imagery in otherwise data- 
poor areas, which lack ground-referenced measurements. 
Vegetation line outputs derived from VEdge_Detector are pro-
duced rapidly and efficiently compared to more traditional non- 
automated methods. These outputs also have the potential to 
inform upon a range of future coastal risk management decisions, 
incorporating future shoreline change.
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1. Introduction

Coastal zones are often characterized by high human population densities, presence of 
critical infrastructure, and internationally designated sites of nature conservation signifi-
cance. In the United Kingdom (UK) alone, damage caused by coastal flooding and erosion 
frequently exceeds £260 million per year, with the number of properties vulnerable to 
coastal erosion projected to increase from 9,800 to greater than 100,000 by 2080 
(Committee on Climate Change 2018). Detecting contemporary shoreline position and 
likely rates of future change is vital for understanding coastal morphological response to 
changing marine climates and subsequent landscape recovery, and the way these dynamics 
impact upon human lives and livelihoods. This information is necessary to better inform 
coastal risk management decisions, including the suitability (or lack thereof) of projected 
human interventions in the coastal zone (De Andrés, Barragán, and Scherer 2018).

Shoreline detection techniques can be broadly categorized into datum-based or proxy- 
based methods (Pollard, Brooks, and Spencer 2019a). Datum-based methods use light 
detection and ranging (lidar) or other elevation capture methods (e.g. terrestrial laser 
scanning) to generate digital terrain models (DTMs) from which the shoreline can be 
extracted (Brock and Purkis 2009). From these DTMs, shorelines are commonly delineated 
as the mean high water (MHW) or other water elevation contour (Moore, Ruggiero, and 
List 2006). Datum-based methods determine both shoreline position and the 3D profile of 
the coastal zone, but infrequent image capture and inconsistent spatial coverage limit 
widespread applications (Pardo-Pascual et al. 2018).

Proxy-based shoreline analysis can be broadly classified by the use of geomorpholo-
gical, vegetation, water or human features (Toure et al. 2019), with detection of visibly 
discernible features through multispectral or panchromatic optical image analysis. The 
instantaneous waterline position is the dominant shoreline proxy extracted from optical 
remote-sensing imagery (Boak and Turner 2005). It is commonly delineated by thresh-
olding the normalized difference water index (NDWI) of a coastal multispectral image 
(McFeeters 1996; Hagenaars et al. 2018) or by conducting land cover classification (Pekel 
et al. 2016). Using these methods, global, decadal-scale changes in waterline position 
have been calculated to determine large-scale trends in shoreline position (Luijendijk et 
al. 2018; Mentaschi et al. 2018). However, collating a time-series of instantaneous water-
line position in isolation does not necessarily provide an indication of net shoreline 
migration. The amplitude of horizontal change in waterline position caused by diurnal 
or semi-diurnal tidal cycles can vary depending on beach gradient, which in turn is often 
linked to beach sediment size and sorting. So depending on where in the tidal frame the 
image was captured, tidal range potentially has a greater effect on waterline position than 
decadal shoreline accretion or erosion (Pugh and Woodworth 2014). This issue can be 
mitigated by calculating the mean waterline position extracted from multiple, temporally 
adjacent, images (Almonacid-Caballer et al. 2016) but this removes the ability to detect 
short-term variability and, even then, there are spring-neap, equinoctical and nodal tide 
cycles operating at different timescales. Waterline position can be tidally corrected by 
considering slope profile and tidal stage during image capture (Vos et al. 2019); although 
approximate slope profiles have to be used when concurrent datum-based measure-
ments are not available. Thus, given the difficulties of deriving a robust waterline position 
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indicator, there is potential value in seeking out alternative shoreline proxies from 
remote-sensing imagery to quantify temporal rates of shoreline change.

The vegetation line is a shoreline proxy which can be flood-responsive, representing 
the limits to spring high tide flooding, or erosion-responsive, delineating the boundary 
between the upper beach and the base of sand dunes or soft rock cliffs (Pollard, Spencer, 
and Brooks 2019b; Toure et al. 2019). Coastal vegetation lines have been derived through 
manual digitization (e.g. Ferreira et al. 2006; Theiler et al., 2013), or by semi-automated 
methods including thresholding the normalized difference vegetation index (NDVI, 
Rahman et al., 2011) and supervised classification of coastal land covers (Zarillo, Kelley, 
and Larson 2008). However, fully automated vegetation line extraction using thresholding 
and image classification is precluded by variability in the spectral properties of vegetation 
due to phenology, species, biomass density, vegetation line boundary abruptness, time of 
year, and azimuth. Manual selection of threshold values or class numbers can be time 
consuming and optimal values can vary within one image. Due to these difficulties, there 
is a need to investigate the ability of alternative, fully automated methods to extract the 
vegetation line.

Other automated methods used to detect edges in remote-sensing imagery can be 
separated into grey-scale or multispectral edge detectors. Grey-scale edge detection 
methods include well-established kernel-based methods, including Sobel, Laplacian, 
and Canny edge detection. These single-sized kernels have been used to delimit coastal 
waterlines as locations with the greatest rate of change in greyscale intensity (Pardo- 
Pascual et al. 2012; Luijendijk et al. 2018). These methods, however, lose valuable spectral 
information when converting multispectral imagery to a single band, and they lack the 
inclusion of semantic information, meaning they may also detect irrelevant boundaries, 
such as field edges and roads.

Machine learning tools, including support vector machines (SVM) and random forests 
(RF), have been used to classify land covers in multispectral imagery to assist shoreline 
detection. SVMs maximize the distance between pixels assigned to different classes in 
feature space (Elnabwy et al. 2020). The coastal waterline has been identified as the 
boundary between pixels classified by the SVM tool as land or water (Zhang, Jiang, and 
Xu 2013; Elnabwy et al. 2020). Choung and Jo (2017) found the mean error in waterline 
position to be lower using SVM compared to NDWI thresholding, but SVM outputs 
contained a lot of ‘speckle’, attributable to the similar spectral properties of shallow 
water, sand, and rock surfaces.

RF methods use decision trees to split pixels into subsets with increasingly homo-
genous pixel values (Breiman 2001). Typically, an ensemble of trees are used, with 
each individual tree trained using a different sample of the original data set of pixels. 
Within each tree, some pixels are withheld during training and subsequently used to 
validate the accuracy of the classification method (Breiman 2001). Binary land and 
water maps have been generated using RF (Bayram et al. 2017; Demir et al. 2017) 
although large mean errors (>22 m) have been recorded between manually digitized 
shorelines and RF derived shorelines. These differences can be attributed to noise 
contained within the pansharpened images (Demir et al. 2017). Further, the shallow 
nature of RF and SVM means they are not robust to identifying spectral–spatial 
relationships, most saliently that adjacent pixels are likely to belong to the same 
feature class (Zhang, Zhang, and Du 2016). No applications of RF or SVM to detect the 
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coastal vegetation line could be found in the literature; RF and SVM have only been 
used to detect the waterline from imagery pertaining to a localized area of interest. 
Further analysis is necessary to determine whether SVM and RF models, which do not 
consider the value of neighbouring pixels when classifying a pixel, can be generalized, 
so as to detect waterline position in other global locations.

More recently, convolutional neural networks (CNN) have received increased attention 
as a way to effectively detect edges in remote-sensing imagery. This is in part because 
they simultaneously consider the value of the pixel of interest and neighbouring pixels 
(Kokkinos, 2015; Zhang, Zhang, and Du 2016). CNNs convolve kernels of different sizes 
over the raw input image. Smaller kernels (e.g. 3 × 3) capture detailed edge structures but 
suffer from high incidence of false positives (noise). Conversely, larger kernels detect only 
the most salient edges, generating blurred boundaries and missing localized detail. 
Optimal fusing of the outputs from different sized kernels subsequently identifies the 
most likely location of true edges and minimizes noise by considering that edges will be in 
the same location irrespective of kernel size (Ren 2008).

Holistically nested edge detection (HED) is an example of a CNN which progressively 
reduces image resolution, instead of increasing kernel size, to achieve multi-scale image 
convolution (Xie and Tu 2015). The HED model architecture contains five separate sets of 
convolutional layers, all using 3 × 3 kernels, which are each separated by 2 × 2 max 
pooling layers to reduce image resolution. A side output layer is produced after every set 
of convolutional layers. The first side output contains local boundary detail but is suscep-
tible to noise and false inland boundaries. Conversely, side output 5 only detects salient 
boundaries and is robust to image noise, but the predicted coastal vegetation edge is 
blurred. These five side output layers are optimally fused to derive the final output, 
predicting the likelihood of each pixel being an edge (Xie and Tu 2015; see Figure 1 for 
a graphical overview of HED architecture).

During HED training, every epoch contains a feed- forward and backpropagation stage. 
During the feed-forward stage, the internal weights in the HED model are used to derive 
the predicted edge locations from the raw input image. The difference, or loss, between 
the predicted vegetation line position and the ground-truth binary image is back-propa-
gated through the hidden layers of the HED model, to update the internal HED model 
weights. These updated weights are subsequently used in the feed-forward stage of the 
next epoch of HED training (see Xie and Tu (2015) and Kokkinos (2015) for a full summary 
of HED architecture and functionality).

Applications of CNN methods, including HED, to detect edges have recently increased 
in number, due to enhanced computer processing power and greater image availability to 
train CNNs, e.g. natural image data sets including the Berkeley segmentation data set 
(Arbelaez et al. 2007) and ImageNet (Stanford Vision Lab 2016). The Visual Geometry 
Group Network (VGGNet-16) model is a CNN with a very similar architecture to HED but 
contains no side outputs. The model was trained using the ImageNet data set to detect all 
objects in natural Red Green Blue (RGB) images, e.g. images of animals, humans and 
everyday items (Simonyan and Zisserman 2014). Applications of HED to detect every 
object in natural images are widespread, but remote-sensing applications, where images 
contain more noise and a higher density of boundaries, remain highly limited. A key 
research gap is the retraining and fine-tuning of these generalist edge detection CNNs to 
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be able to differentiate between separate types of edge in remote-sensing imagery and 
exclusively extract edges of interest.

To exclusively detect particular types of edge in remote-sensing imagery, some studies 
have updated or fine-tuned the weights within pre-existing CNNs by retraining them with 
remote-sensing image pairs. Richer convolutional networks (RCF), which are CNNs with a 
similar architecture to HED, have been fine-tuned to exclusively detect building boundaries in 
remote-sensing imagery, achieving a higher accuracy than other generalist edge detection 
algorithms (Lu et al. 2018). Fine tuning was conducted by training the RCF on 1856 image 

Figure 1. Holistically nested edge detection (HED) architecture. Three spectral bands from every 
satellite image are selected as HED input. Input images are fed through five distinct stages of image 
convolution, and between each stage, a max pooling layer decreases image size. The squares to the 
bottom left of the image detail the number of convolution kernels at each stage. The side outputs are 
resized and optimally fused to generate the output.
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pairs containing an urban scene and a binary image showing building edge and non-edge 
locations (Lu et al. 2018). Similarly, a U-Net neural network was retrained with Landsat 
imagery to predict glacial calving front locations (Mohajerani et al. 2019). Remote-sensing 
applications of HED, or modified versions, have been used to detect field boundaries (H. Liu 
et al., 2019) and to derive land cover classification (Marmanis et al. 2018). X.Y. Liu et al. (2019) 
modified the standard convolution structure of HED to detect shorelines in heavily urbanized 
Jiaozhou Bay, China. HED was reported to outperform Sobel and Canny Edge Detection 
(producer accuracy (PA): Sobel = 0.66, Canny = 0.82, modified HED = 0.95) but no information 
was provided on the shoreline proxy used. Furthermore, this study trained HED using 
exclusively RGB spectral bands; further analysis is necessary to identify the optimum spectral 
band combination during HED training. These abovementioned studies highlight the poten-
tial of retraining a CNN to fine-tune its internal weights to exclusively detect a particular type 
of edge in remote-sensing imagery. To date, this approach has not been applied to exclu-
sively detect coastal vegetation edges from remote sensing imagery.

This study aims to train and apply a holistically nested edge detection (HED) model to 
extract coastal vegetation lines. The objectives of the paper are to (i) train a HED model 
using coastal remote-sensing imagery, namely Planet 3 m and 5 m resolution imagery 
(PlanetScope and RapidEye); (ii) assess the performance of HED in extracting the coastal 
vegetation line when trained using different combinations of spectral bands as input 
across a range of coastal settings (Winterton, Suffolk, UK; Perranuthnoe, Cornwall, UK; 
Bribie Island, Australia and Wilk-Ann-Zee, The Netherlands); (iii) compare Vedge_Detector 
performance against other experimental methods previously used to detect the coastal 
vegetation edge, namely ground-referenced measurements and manual digitization of 
remote sensing and aerial imagery; and (iv) incorporate the best performing HED model 
within VEdge_Detector to detect shoreline change from sequential images of Covehithe, 
Suffolk, UK, between 2010 and 2020.

2. Materials and methods

2.1. Remote-sensing imagery data sources

A total of 78 Planet images (PlanetScope and RapidEye, with 3 and 5m spatial resolution 
respectively) were selected for HED training (Planet Team 2017). Ortho Scene product 
level imagery was chosen, meaning Planet had orthorectified and radiometrically cor-
rected images prior to image download. Locations were chosen to encompass a diverse 
range of geomorphic landforms, tidal ranges and vegetation types (see the supplemental 
material). Training image sizes ranged from 6.3 km2 to 1557.5 km2 and images were 
selected from all years when Planet imagery was available (2010 to 2020). Multiple images 
were collected from each location to ensure the training data set contained scenes 
captured at different tidal stages. This ensured multiple images of the same shoreline, 
with different beach widths, were contained in the training data set.

2.2. Holistically nested edge detection (HED) training

All steps taken in this study were separated into three stages: HED training using coastal 
remote-sensing imagery; validation of the trained HED models; and digital shoreline 
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change analysis using the best performing HED model. The training and validation stages 
determined the optimal combination of remote-sensing spectral bands to train the HED 
model, while keeping the HED model architecture constant. The best performing HED 
model became the VEdge_Detector tool, developed to extract vegetation lines in the 
shoreline change stage. Figure 2 provides a graphical overview of the three analytical 
stages.

2.2.1. Manual digitization of the vegetation line
To generate the training data set, vegetation lines were manually digitized from all 78 
training images in ArcGIS 10.5.1. The image NDVI was overlaid at 70% transparency to aid 
visual vegetation line identification. Where vegetation lines were interrupted, the seaward 
extent of inland waterbodies or urban areas were used. Vegetation line shapefiles were 
converted into binary raster edge maps (binary images), with edge pixel values set to 1 
and non-edge pixels to 0. Image pairs were subsequently established, containing the 
original image and the binary image.

2.2.2. Data Augmentation
A large number of images are required during HED training to refine the internal weights 
within the HED model. Manual digitization of this number of images would be too time 
consuming; therefore, data augmentation was used to substantially increase training data 
size from 78 to 10,700 image pairs. Larger images were cropped to size 480 × 480 pixels 
(the default image size used by the HED architecture) at multiple locations. The 
uncropped larger images also formed part of the training data set, but were resized to 

Figure 2. Overview of the three stages carried out in this study. Four holistically nested edge detection 
(HED) models were independently trained using different spectral band combinations (training). The 
performance of each HED model was evaluated using a separate image set (validation). The best 
performing HED model, trained on images with spectral band combination red, green, near-infrared 
(RG-NIR), formed the VEdge_Detector tool. This tool detected the vegetation line position from 
multiple images of the same shoreline captured over a 10-year period (shoreline change detection).
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480 × 480 pixels prior to HED training. Image pairs were flipped vertically, rotated by 90, 
180, and 270 degrees and subject to the introduction of Gaussian noise (Figure 3). 
Gaussian noise was not added to the binary images. Images were rotated around five 
different points of origin. Image pairs not containing any vegetation line after rotation 
were automatically discarded. All image pairs were shuffled and randomly assigned into 
training (80%) and testing (20%) sets prior to HED input. The proportion of land cover in 
each image varied from 2% to 98%.

2.2.3. Holistically nested edge detection (HED) training
HED training was conducted to modify the model’s internal weights to increase the 
model’s ability to exclusively detect coastal vegetation edges. To speed up HED training, 
non-zero weights were initialized prior to training commencement. This study initialized 
the internal weights contained within the VGGNet-16 architecture prior to training. The 
weights contained within the VGGNet-16 architecture were derived from training the 
model on 1.2 million natural images to detect everyday objects, e.g. animals, people and 

Figure 3. Transformations used in data augmentation (a) original image (cropped to 480 × 480 pixel 
size), (b) – (d) original image rotated by 90°, 180°, and 270°, (e) original image flipped vertically, (f)–(h) 
flipped image rotated by 90°, 180°, and 270°, (i)–(l) Gaussian noise added to the flipped images. 
Transformations (b)–(h) were simultaneously conducted on the binary images.
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urban features. Using the weights contained within the VGGNet-16 architecture increased 
the speed of HED training compared to using randomly assigned weights. The key 
difference between the architecture in VGGNet-16 and HED is that HED contains side 
outputs. The side outputs enable deep supervision, whereby every side output is directly 
compared to the binary image to calculate loss. By comparison, in VGGNet-16 only the 
final output is compared to the binary image. Deep supervision guides the neural network 
to detect transparent objects, i.e. to only detect the edges of objects at a per-pixel level 
rather than the entirety of an object (Xie and Tu 2015).

To substantiate the assertion that the default weights in the VGGNet-16 architecture 
were not suitable for detecting exclusively coastal vegetation edges, a HED model 
containing the default VGGNet-16 weights was used to predict the coastal vegetation 
edge in an image of Winterton, Suffolk, UK. This HED model failed to detect the coastal 
vegetation line and instead detected the waterline and other inland boundaries (e.g. 
roads and field edges). This was attributed to the weights in the VGGNet-16 architecture 
originally being trained to classify all objects in a natural RGB image, whereas the 
objective of this study is to exclusively extract the vegetation line in remote-sensing 
imagery and discard other boundaries. This reinforced the necessity to retrain the HED 
model to refine the model weights, using the image pairs derived through manual 
digitization and data augmentation.

During every epoch of HED training, the internal weights in the HED model were used 
to predict the coastal vegetation line position from the raw image. The class-balanced 
cross entropy loss function was used to calculate the difference, or loss, between the 
predicted vegetation line position and the binary image. The loss function was class- 
balanced to account for the large imbalance between edge and non-edge pixels, i.e. the 
vast majority of pixels in every image were non-edge. To prevent the HED model from 
achieving very accurate results if it predicted all pixels to be non-edge, a scaling factor was 
used. This was calculated by determining the proportion of edge to non-edge pixels in 
each image. This scaling factor ensured that the HED model was penalized proportio-
nately more for predicting a false negative (predicting an edge pixel to be a non-edge) 
than a false positive (predicting a non-edge pixel to be an edge).

HED model training was implemented in Python’s Keras library with Tensorflow back-
end. The code for the training of HED was modified from Liu (2018) to enable input of 16 
bit Planet imagery; selection of the desired image band combination; and the calculation 
of NDVI. The HED model was run in parallel on four Tesla P100-PCIE-16GB GPUs for 1000 
epochs, with a running time of seven h 45 min per spectral band combination. The 
VEdge_Detector tool, instructions, and input image specifications are available from 
GitHub (github.com/MartinSJRogers).

2.3. Validation

The HED model performance was validated by predicting the vegetation line location in 
seven images not previously seen by the model. All output prediction pixel values ranged 
between 0 and 1, representing the range in HED confidence that the pixel represented the 
vegetation line. Confidence contours were used to determine where ground referenced 
measurements were located in relation to predicted vegetation line confidence curves. 
HED outputs were accordingly contoured at 0.1 intervals between 0.05 and 0.95 for 
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Figure 4. Example of 0.05 (yellow), 0.55 (orange), and 0.95 (red) confidence contours produced by 
VEdge_Detector at Winterton, UK. The confidence contours were generated from the raw 
VEdge_Detector output, which is overlaid as the blue colour ramp. Light and dark blue pixels 
represent the locations predicted as being an edge pixel with a high and low confidence, respectively. 
The manually digitized vegetation line (black) is displayed for visual comparison. Land and sea are 
found to the left and right of the image, respectively. Aerial imagery, provided by the Environment 
Agency with 40 cm resolution, is used as a backdrop (Environment Agency, 2020).
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subsequent model evaluation through comparison with ground-referenced measure-
ments. All contours had a landward and seaward line (see Figure 4 for a demonstration 
of the vegetation line contours produced).

Distance and pixel-based evaluation metrics were used to determine the best perform-
ing HED model. Distance-based evaluation of HED performance was conducted by 
comparing (i) HED model prediction contours (confidence contours) with ground-refer-
enced measurements of vegetation line location; (ii) confidence contours to a manually 
digitized vegetation line of the same image; and (iii) ground-referenced measurements to 
manual digitization.

The ArcMap plugin Digital Shoreline Analysis System (DSAS; Thieler et al. 2009; USGS 
2018) v5.0 was used in ArcGIS 10.5.1 to calculate the distance between shorelines for 
comparators (i), (ii), and (iii). Distance calculations were made on transects generated at 
10 m alongshore intervals, orthogonal to the dominant shoreline orientation. To reduce 
transect crossing on sinuous coastlines, each transect was drawn orthogonal to a 
smoothed baseline. This was generated by calculating mean baseline angle over a 
200 m interval, with the transect location at the midpoint. Root mean square error 
(RMSE, Equation (1)) measured the distance between lines. Mean absolute error (MAE, 
Equation (2)) determined the net landward (positive) or seaward (negative) bias in 
prediction contours as shown in the following equations. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

Xn

i¼1

oi � pið Þ
2

s

(1) 

MAE ¼
1
n

Xn

i¼1

oi � pij j (2) 

where o and p are observed and predicted vegetation line positions along each transect, i, 
respectively, and n is the number of transects. MAE values were assigned as negative if the 
predicted contours were consistently seaward of the line derived from ground-reference 
measurements or manual digitization.

The pixel-based evaluation metrics used were user accuracy (Equation (3)), producer 
accuracy (Equation (4)), and F1 (Equation (5)). All three metrics are suited to classification 
tasks with imbalance in class populations (e.g. non-edge pixels constitute >90% of the 
image), 

UA ¼
PTrue

PTrue þ PFalse
(3) 

PA ¼
PTrue

PTrue þ NFalse
(4) 

F1 ¼
PA � UA

PA þ UA
(5) 

where UA and PA are the user accuracy and producer accuracy values, respectively. UA 

values are more sensitive to the detection of inland non-coastal boundaries, so are 
typically lower than PA values. PTrue = True Positive and NTrue = True Negative, each 
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corresponding to correctly classified pixels and PFalse = False Positives and NFalse = False 
Negative, each corresponding to incorrectly classified pixels. A pixel incorrectly predicted 
to be the vegetation line will be classified as a false-positive pixel, irrespective of the 
distance from the manually digitized or ground referenced line. To account for ‘near- 
misses’, where HED predicts the vegetation line to be at pixels close to the ground- 
referenced or manual digitization measurements, the manually digitized and ground 
referenced lines were buffered to be three pixels wide (instead of one). Relaxed UA, PA, 
and F1 scores were calculated by comparing HED outputs to the buffered ground 
referenced and manually digitized vegetation line measurements.

2.3.1. Validation image locations
Seven sites were used for HED validation (Table 1). High-resolution ground measurements 
were collected from three of these seven locations along the Suffolk coastline of eastern 
England on 7 September 2019 (Walberswick, Dunwich and Covehithe) using a real-time 
kinematic global positioning system (RTK-GPS) with horizontal positional accuracy of 
30 mm. Soft sandy cliffs are located at Covehithe with sharp cliff-top edge vegetation 
lines. In contrast, a more complex vegetation line on a mixed sand and shingle barrier is 
present at Walberswick and Dunwich (Pye and Blott 2006). To ensure at least one ground- 
referenced measurement per pixel, points were captured approximately every 2 m 
alongshore and whenever there was a notable change in vegetation line direction. At 
Dunwich and Covehithe, isolated vegetation patches situated in front of the continuous 
vegetation line were not demarcated. At Walberswick, two vegetation lines were gener-
ated from ground-referenced measurements: (i) a landward continuous vegetation line 
and (ii) locations of isolated seaward vegetation patches. Confidence contours were 

Table 1. Locations of holistically nested edge detection validation images. Other columns provide 
information on dominant shoreline direction, spring and neap tidal ranges, dominant sediment type, 
geomorphology, and climate at each site as well as whether ground-referenced measurements of the 
coastal vegetation edge were collected.

Location Country Tidal range (m)
Dominant vegeta-

tion type Geomorphology Climate

Ground- 
referenced 
data col-

lected 
(Yes/ No)

Walberswick UK (Suffolk) 2.5(spring) 
0.5 (neap)

Psammosere dune 
vegetation

Dune Temperate Yes

Covehithe UK (Suffolk) 2.5 (spring) 
0.5 (neap)

Cliff top grasses/ 
agricultural 
crops.

Soft sandy cliffs Temperate Yes

Dunwich UK (Suffolk) 2.5 (spring) 
0.5 (neap)

Psammosere dune 
vegetation

Shingle dune Temperate Yes

Winterton UK (Suffolk) 2.5 (spring) 
0.5 (neap)

Psammosere dune 
vegetation

Dune Temperate No

Perranuthnoe UK (Cornwall) 6.0 (spring) 
2.0 (neap)

Cliff top grasses 
and 
Psammosere 
dune vegetation

Beach dunes 
and rocky 
cliff

Temperate No

Wilk-Ann-See The Netherlands 4.0 (spring) 
2.0 (neap)

Psammosere dune 
vegetation

Dune Temperate No

Bribie Island Queensland, 
Australia

2.0 (spring) 
0.5 (neap)

Eucalyptus forest Barrier island Sub- 
tropical

No
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Figure 5. (a) Original 3 m PlanetScope image of Cromer, Norfolk, UK (52°93ʹ58.3 N, 1°27ʹ18.0 E). 
Predicted coastal vegetation edge locations using the HED model trained with spectral band combi-
nation (b) RGB, (c) RG-NDVI, (d) RB-NIR, (e) RG-NIR.
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compared to both vegetation lines derived from ground-referenced measurements at this 
site.

Ground-referenced measurements were compared to HED vegetation line predictions 
generated from a 3 m resolution PlanetScope image, using distance and pixel-based 
evaluation metrics outlined above. The PlanetScope image was captured on 12 
September 2019 and was previously unseen by the HED model. Between 7 and 12 
September 2019 waves approached from a dominant north easterly direction and rarely 
exceeded 1 m significant wave height (maximum peak significant wave height at 
Southwold Approach was 1.45 m (Cefas 2020)). Due to these wave conditions, there is a 
high degree of confidence that the vegetation line remained stable over this time period.

The trained HED model was also used to predict the vegetation line position at four 
additional locations, where ground-referenced measurements were not collected (Table 
1). At these locations, HED output prediction contours were compared solely to manually 
digitized vegetation lines. Images from two locations (Winterton, UK and Perranuthnoe, 

Figure 6. (a) Original 5 m RapidEye image of Varela, Guinea-Bissau (12°28ʹ61.0 N, −16°59ʹ45.7 E). 
Predicted coastal vegetation edge locations using the HED model trained with spectral band combi-
nation (b) RGB, (c) RG-NDVI, (d) RB-NIR, (e) RG-NIR.
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UK) were used during HED training but different image dates were used (training image 

Figure 7. (a) Original 3 m PlanetScope image of the islands of Sylt, Amrum, and Föhr, Frisian Islands, 
Germany (54°68ʹ31.4 N, 8°55ʹ74.4 E). Predicted coastal vegetation edge locations using the HED model 
trained with spectral band combination (b) RGB, (c) RG-NDVI, (d) RB-NIR, (e) RG-NIR.
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dates: 2018 and 2019, testing image dates: 2010 and 2015). The other two locations were 
previously unseen by the neural network: Wilk-Ann-See, The Netherlands and a separate 
section of Bribie Island, Australia.

2.4. Determining the optimum spectral band combination

The default VGGNet-16 weights can only be initialized in a HED model which accepts 
images with three spectral bands. The performance of the HED model was therefore 
independently trained using four different combinations of three spectral bands: red 
green near-infrared (RG-NIR), RGB, RB-NIR, and RG-NDVI. Output predictions from the 
four HED models were compared to select the most appropriate model for vegetation line 
detection. Figures 5–7 provide a comparison of HED performance using different spectral 
band combinations at three locations not contained in either the training or validation 
data set: Cromer, UK; Varela, Guinea-Bissau and Wyk auf Föhr, Germany. The HED models 
trained on spectral band combinations RG-NDVI and RGB predicted every pixel in the 
image to be the coastal vegetation edge, these models were therefore rejected. Only the 
HED models trained on images with spectral band combinations RG-NIR and RB-NIR were 
able to discard pixels not pertaining to the coastal vegetation edge. The HED model 
trained on RB-NIR spectral band images was still unable to discard many non-edge pixels 
and as a result produced very low UA results of 0.06, 0.02, and 0.02 at Cromer, Varela, and 
Wyk auf Föhr, respectively. In contrast, the HED model trained using spectral bands RG- 
NIR was able to predict the location of the coastal vegetation edge with a UA of 0.26, 0.59 
and 0.25 at Cromer, Varela, and Wyk auf Föhr, respectively. The HED model trained using 
images with RG-NIR spectral bands was thus used to form the basis of the VEdge_Detector 
tool.

2.5. Shoreline change detection

The VEdge_Detector tool was used to predict the vegetation line from 11 images of 
Covehithe spanning the period 2010 to 2020. To minimize the influence of seasonal 
changes to vegetation line location, all selected images were captured in the period 
between May and August of each year. Confidence contours were generated at 0.1 
intervals from 0.05 to 0.95, creating a total of 10 landward and seaward contours per 
image.

Vegetation line change was calculated using DSAS in ArcGIS 10.5.1 (USGS 2018). The 
position of the 10 confidence contours for every year was determined along transects 
running orthogonal to the dominant shoreline direction. Transects were separated by 
10 m alongshore intervals. Change in the position of the landward and seaward 0.95, 0.55, 
and 0.05 confidence contours was calculated to determine rates of vegetation line 
change. Metrics calculated were Net Shoreline Change (NSC = distance between the 
oldest and most recent shoreline position) and End Point Rate (EPR = NSC divided by 
the time interval in years). To minimize geometric errors, ten tie-points were used to 
ensure consistent georegistration in the 11 images used in shoreline change analysis. The 
locations of stable anthropogenic structures, including road junctions and building 
corners, were used as the tie points and were distributed evenly over the images.
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Aerial imagery of Covehithe, provided by the Environment Agency with 10 to 50 cm 
resolution, was manually digitized (Environment Agency, 2020). NSC values derived using 
DSAS were compared when using vegetation lines produced by the VEdge_Detector tool 
and manual digitization of aerial imagery. Due to aerial imagery availability, NSC values 
were compared across five baselines: 2010 to 2011, 2013 to 2014, 2015 to 2016, 2016 to 
2017, and 2017 to 2018.

3. Results

3.1. Manual, ground-referenced, and VEdge_Detection measurements

Manually digitized vegetation lines were consistently located close to ground-referenced 
measurements (root mean square error (RMSE) was 1.72, 4.13, and 2.28 m for Covehithe, 
Walberswick (landward) and Dunwich, respectively). All sites exhibited a landward bias in 
manual digitization, with mean absolute error (MAE) of 0.82, 3.83, and 1.83 m, respec-
tively. Across all sites, >93% of transects recorded an error ≤2 image pixels (6 m). At 
Walberswick, where ground-referenced measurements of two vegetation lines were 
collected, the manually digitized line was located closer to the landward continuous 
vegetation line than the seaward isolated vegetation patches (manual digitization to 
seaward measurements RMSE = 16.72 m and MAE = 13.83 m). VEdge_Detector perfor-
mance was therefore subsequently compared to the landward ground-referenced mea-
surements at Walberswick.

The VEdge_Detector tool extracted continuous vegetation edges at all three field sites 
(Figure 8). For every site the VEdge_Detector 0.95 confidence contours were <5 m from 
ground-referenced vegetation line measurements (see Table 2 for summary of all RMSE 
and MAE values).

At Walberswick and Covehithe, all ground-referenced measurements were located 
between or seawards of the 0.95 confidence contours (Figure 8 (a) – (b)). The 
VEdge_Detector tool performed best at Covehithe with ground-referenced measure-
ments located closest to the seaward 0.95 confidence contour (RMSE = 2.71 m, 
MAE = −0.02 m). A landward bias in the landward 0.95 contour (MAE = 7.98 m) and a 
seaward bias in the 0.95 seaward contour demonstrates that ground-referenced measure-
ments at Covehithe were primarily located between the 0.95 confidence contours. 
Ground-referenced measurements were closest to the seaward 0.05 confidence contour 
at Walberswick (RMSE = 4.46 m, MAE = −1.11 m). Most ground-referenced measurements 
were situated between the seaward 0.95 (MAE = 4.31 m) and 0.05 confidence contours. 
The larger RMSE and MAE values for landward confidence contours compared to seaward 
contours shows a slight landward bias in VEdge_Detector outputs at Covehithe and 
Walberswick.

The relatively high PA scores at these two sites (Covehithe = 0.87, Walberswick = 0.84) 
demonstrate that VEdge_Detector correctly detected a large proportion of vegetation line 
pixels derived from ground-referenced measurements. However, the lower UA 

(Covehithe = 0.16 and Walberswick = 0.11) shows that a number of pixels inland of the 
field-derived vegetation line pixels are also being detected by the VEdge_Detector.

In contrast to the other two sites, VEdge_Detector predictions were primarily seawards 
of ground-referenced measurements at Dunwich (0.95 landwards confidence contour 
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RMSE = 5.98 m, landward MAE = −5.21 m). The field line was located very close to the 0.05 
confidence contour (RMSE = 2.37 m, MAE = 1.03 m). PA values at Dunwich were consistent 
with the other two field sites, although a lower UA was recorded (PA = 0.85, UA = 0.07).

The VEdge_Detector tool produced a continuous vegetation line at three of the four 
sites without field data (Figure 9). The tool failed to predict a continuous vegetation line 
along some cliffed sections at Perranuthnoe, but a continuous line was generated along 
the beach sections and the cliffed sections to the right of the image (Figure 9 (c)). The tool 
performed best at Winterton and Bribie Island with errors <4 m between 0.95 confidence 
contours and manually digitized lines (Winterton MAE = 3.83 m, Bribie Island 
MAE = 3.11 m, Figure 9 (a)–(b), Table 3). PA values >0.9 were recorded at Winterton, 
Bribie Island, and Wilk-Ann-Zee, demonstrating a very high capability of the tool to detect 
the manually digitized vegetation line pixels. UA was higher at Bribie (0.39) compared with 
Winterton (0.11), indicating that the tool produced a less precise line at Winterton.

UA and PA were lower at Wilk-An-Zee and Perranuthnoe (Table 3), although more 
complex vegetation lines are found at these sites instead of straight sections. More inland 
pixels were predicted as the vegetation line at these sites (Figure 9 (c)–(d)). There was a 
greater seaward bias in tool predictions at Perranuthnoe (RMSE = 7.14 m, MAE = −6.63 m), 
whereas distance-based error at Wilk-Ann-Zee was comparable to Bribie and Winterton 
(RMSE = 4.61 m, MAE = 5.57 m).

3.2. Digital shoreline change analysis

For Covehithe, the VEdge_Detector tool generated confidence curves of vegetation line 
position from separate images captured in 2010 and 2020 (Figure 10 (a)). A continuous 
shoreline was extracted from both images, including where the vegetation line is inter-
rupted by the local shingle barriers that enclose Benacre Broad and Covehithe Broad. 
Total change in shoreline position between these two years was measured using the 
DSAS tool and the seaward 0.95 confidence contours (Figure 10 (b)). End point rates (EPR) 
along the Covehithe cliffs ranged between 2.47 and 5.48 m year−1, with an average retreat 
rate of 3.27 m year−1 (Figure 10(b)). The total amount of shoreline retreat during this 
period ranged between 24.27 and 54.38 m; the transect with the smallest and largest 
retreat are shown as location i and ii respectively in Figure 10 (a)–(b). Cross sections of the 
confidence curves at locations i and ii are shown in the two insets in Figure 10 (a). The 
stretches of shoreline with the greatest rates of retreat corresponded to areas with no 
overlap in confidence curves. In contrast, the confidence curves overlapped up to the 0.2 
confidence contours at transects where retreat rates were lower.

The VEdge_Detector tool was subsequently used to generate confidence curves of 
vegetation line position at Covehithe annually between 2010 and 2020. Continuous 
vegetation lines were generated in all years except 2011, 2012, and 2018 when some 
agricultural fields had been ploughed, leading to apparent breaks in the vegetation line. 
The relative position of the annual confidence curves from 2010 to 2020 at the location 
with the fastest rate of retreat is presented in Figure 11. The vegetation line retreated 
landwards at a faster rate during the first half of the decade (EPR 2010 to 2015 = 6.92 m 
year−1, 2016 to 2020 = 4.31 m year−1, Figure 11). Individual years with the greatest rates of 
landward retreat were 2010 to 2011 (16.1 m ± 3.67 m), 2016 to 2017 (8.80 ± 3.24 m), 2013 
to 2014 (6.93 ± 4.20 m) and 2017 to 2018 (5.31 ± 3.38 m). The smallest retreat rates were 
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Figure 8. Comparison of VEdge_Detector tool predictions to field measurements of vegetation line at 
(a) Covehithe, (b) Walberswick, and (c) Dunwich. Locations of photograph (a)i, (b)i, and (c)i are show by 
arrows on corresponding images. The solid black lines show the ground-referenced vegetation lines at 
all sites. At Walberswick, the landward and seaward vegetation lines derived from field measurements 
are denoted by a solid and dashed line, respectively.

Table 2. VEdge_Detector accuracy at the three field sites determined by pixel and distance-based 
metrics from ground-referenced measurements. Shaded pixels in the mean absolute error column 
represent a landward (green) or seaward (blue) bias respectively in VEdge_Detector predictions. 
Darker colours represent a greater landward or seaward bias. Red boxes indicate the confidence 
contours with lowest RMSE and MAE per site. VEdge_Detector outputs are shown in Figure 8.
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Figure 9. VEdge_Detector outputs for (a) Winterton, Suffolk, UK (b) A stretch of Bribie Island, Australia, 
separate to the locations used for training outlined in the supplemental material, and (c) 
Perranuthnoe, Cornwall, UK. The red oval indicates the rocky cliff section where the VEdge_Detector 
failed to detect cliff top vegetation, (d) Wilk-Ann-zee, Netherlands. (a) and (b) display the predicted 
vegetation line in red with a confidence ≥0.95. (c) and (d) show examples of all VEdge_Detector 
outputs prior to applying any confidence thresholding. The white line in (c) and (d) shows the location 
of the manually digitized line.
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recorded in 2014 to 2015 (1.66 ± 2.45 m) and 2018 to 2019 (1.32 ± 3.44 m). The greatest 
distance between 0.95 landward and seaward confidence contours was in 2013 (6.70 m) 
and the shortest distance was in 2018 (1.23 m).

Net Shoreline Change (NSC) values derived using DSAS were averaged across the 
entire Covehithe coastline using both VEdge_Detector 0.95 confidence contours and 
manual digitization of aerial imagery. Differences in NSC values obtained using the two 
methods ranged between 1.31 and 4.19 m, with a mean absolute difference of 2.19 m 
(Figure 12). An error value of ± 2.71 m was used for VEdge_Detector outputs, the RMSE 
between VEdge_Detector 0.95 confidence contours and ground-referenced measure-
ments at Covehithe. Errors from digitizing aerial imagery were set at 4.76% of each 
year’s NSC value, consistent with calculations of error determined using the same digitiza-
tion method in Brooks and Spencer (2010).

Table 3. VEdge_Detector accuracy at the four validation sites without ground-referenced data 
determined by pixel and distance-based metrics. Shaded pixels in the mean absolute error column 
represents a landward (green) or seaward (blue) bias respectively in VEdge_Detector predictions. 
Darker colours represent a greater landward or seaward bias. Red boxes indicate the confidence 
contours with lowest RMSE and MAE per site. VEdge_Detector outputs are shown in Figure 9.
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4. Discussion VEdge_Detector performance

VEdge_Detector is the first fully automated tool for the digitization of the coastal vegeta-
tion line from optical remote-sensing imagery, where a trained convolutional neural 
network (CNN) is used to detect the coastal vegetation line. The tool has been adapted 
from the holistically nested edge detection (HED) model (Xie and Tu 2015), a CNN trained 
to identify all objects in natural images. Here HED has been retrained to identify exclu-
sively coastal vegetation edges, achieved by training the HED model on a comprehensive 
set of coastal remote-sensing images. At six of the seven validation sites, VEdge_Detector 
0.95 confidence contours were <6 m from coastal vegetation edges derived from ground- 
referenced measurements or manual digitization of aerial imagery (Tables 2 and 3). 
Previous studies have employed semi-automated methods to detect coastal vegetation, 
including thresholding and image classification (Zarillo, Kelley, and Larson 2008; Rahman 
et al., 2011). VEdge_Detector advances these studies by being able to identify the coastal 
vegetation line in isolation, without requiring further post-processing steps to remove 
inland vegetation land covers and edges.

Figure 10. (a) VEdge_Detector outputs for a 2010 (red) and 2020 (purple) image of the Covehithe 
cliffs, Suffolk. Darker colours represent pixels predicted as the vegetation line with a higher con-
fidence. Inset graphs, comparison of vegetation curves at transects situated at location i (smallest 
recorded change in shoreline position) and ii (largest recorded retreat in shoreline). Note: The image 
shows VEdge_Detector outputs with confidence values from 0.01 to 1.00, whereas the graphs show 
values 0.05–1.00 because the line graphs substantially ‘fan’ between 0.01 and 0.05. (b) Rates of 
landward retreat (End Point Rate) at Covehithe between 2010 and 2020.
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VEdge_Detector differs from other shoreline change studies by exclusively using Planet 
imagery with 3 and 5 m spatial resolution. The combined high temporal and spatial 
resolution and coverage of Planet imagery provides a step-change in the ability to 
conduct shoreline change analysis. Previous studies have been primarily limited to 
digitizing shoreline position in Google Earth Engine’s Landsat or Copernicus imagery 
with 30 and 10 m resolution, respectively (Gorelick et al. 2017). Improvements in error 
values when using this imagery have been achieved using soft-classification, contouring 
and other methods with sub-pixel precision (Foody, Muslim, and Atkinson 2005; Li and 
Gong 2016; Pardo-Pascual et al. 2018). Extraction of the coastal vegetation line using 
imagery with 10–30 m resolution will remain problematic as one pixel can span the entire 
width of the coastal zone, incorporating numerous shoreline proxies. RMSE values derived 

Figure 11. Top: Vegetation confidence curve position during years 2010–2020 at one transect. Bottom: 
Representation of vegetation curves as a line. Dots represent locations of the 0.95 confidence 
contours, vertical lines represent locations of the 0.05 confidence contours. Insets i and ii: Transect 
location and all pixels predicted as the vegetation line with confidence >0.95 overlaid on the 2020 
image. Pixel colour coding by year is consistent with line graphs. Some of the colours are occluded in 
the image due to overlap.
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in this study (2.37–7.97 m) are comparable or a substantial improvement to error values 
derived from sub-pixel precision methods applied to coarser resolution imagery.

The combination of the high (up to daily) temporal resolution of the Planet imagery 
with the VEdge_Detector tool gives new opportunities to analyse the horizontal change in 
shoreline position caused by an individual major storm event or a succession of storm 
events (Roy 2017). Previously this has only been possible through field or aerial-based 
studies (e.g. Spencer et al. 2015). Studies of this nature are rare because data collection 
methods are time consuming, costly and information on shoreline position and profile 
prior to the storm event is only available in isolated, data-rich areas. The passive nature of 
image data collection used in VEdge_Detector, combined with its high spatio-temporal 
resolution opens new possibilities to assess storm damage, or other discrete erosion or 
accretion events in relatively understudied or inaccessible areas.

VEdge_Detector performed best on relatively simple, straight stretches of shoreline (e. 
g. Covehithe, Winterton and Bribie Island; Figure 8 (a)–(b)). Perranuthnoe, Cornwall, UK, 
was the only location where VEdge_Detector did not generate a continuous vegetation 
line. This can be primarily attributed to the additional presence of rocky cliffs, because the 
majority of training data images contained only beaches. While additional HED training 
using more images containing rocky cliffed shorelines may improve model performance, 
this may be at the expense of performance along sandy beached sections. Figure 9 (c) 
shows that the tool can detect a vegetation line at the base of some of the cliffs at 
Perranuthnoe, possibly due to the presence of macroalgae on the shore platform. It is 
beyond the scope of VEdge_Detector to include these sections, because change in 
macroalgal cover is highly unlikely to reflect an actual landward or seaward migration 
in shoreline position. Similarly, fixed coastal defences will not contain a mobile vegetation 
edge. Hence it is important to note that VEdge_Detector is primarily a tool for efficient 

Figure 12. Comparison of Net Shoreline Change (NSC) values generated the VEdge_Detector 0.95 
confidence contours and manually digitized aerial imagery. The blue dots show annual NSC values for 
the whole of the Covehithe coastline averaged over all orthogonal transects. The ovals represent the 
error associated with the two methods. The black line shows the position of the blue dots if there was 
an exact match between NSC values generated using the two methods.
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and rapid extraction of the vegetation line from beach and dune systems over wide 
spatial coverage, from which shoreline change analysis can be performed.

The small discrepancies presented here between manually digitized shorelines and 
ground-referenced measurements from the first three cases studies provided confidence 
in using manually digitized shorelines to assess VEdge_Detector performance at several 
alternative sites where ground-referenced measurement was not possible (RMSE = 1.72, 
4.13, and 2.28 m for Covehithe, Walberswick (landwards) and Dunwich, respectively). At 
Walberswick, the manually digitized line was closer to the landward field vegetation line 
measurements, indicating that manual digitization primarily detects the more continuous 
vegetation line boundary landwards of the habitat of pioneer species. It appears that the 
diffuse nature of the vegetation edge in some locations, with isolated, dis-continuous 
vegetation clumps, can lead to discrepancies between manual digitization, ground-refer-
enced measurements, and VEdge_Detector results because the best available imagery is 
of 3–5 m resolution.

This study further showed that the method was robust at detecting the vegetation line 
on both tropical and temperate coasts. To date, the only previous use of CNNs to extract 
shoreline position has been limited to a single location (X.Y. Liu et al. 2019). Results 
presented here for seven different validation sites have shown that at six sites, PA was 
above 0.85, but UA was lower than PA at every site (Tables 2 and 3). This demonstrates how 
the tool is competent at correctly predicting the vegetation line pixel derived from 
ground referenced measurements but also generates a vegetation boundary region 
instead of a distinct line. These performance metrics are lower than those recorded by 
X.Y. Liu et al. (2019) (UA = 0.94, PA = 0.95). However, X.Y. Liu et al. (2019) used far coarser 
spatial resolution imagery (16 m to 50 m) and thus poorer UA and PA results presented 
here could still result in lower RMSE values. Confidence contours were used throughout 
this study to determine where ground referenced measurements were located across 
predicted vegetation line confidence curves. At six of the seven sites, ground referenced 
measurements were closest to one of the 0.95 confidence contours, with RMSE <6 m 
(Figures 8 and 9). This highlights that even though a distinct vegetation line is not 
predicted, VEdge_Detector commonly predicts the ground referenced vegetation line 
with higher confidence than the surrounding pixels.

Vegetation lines were predicted with higher UA along shorelines with abrupt vegeta-
tion edges. The fieldwork and additional validation sites with the highest UA results were 
Covehithe (UA = 0.16) and Bribie Island (UA = 0.38) respectively. Bribie Island has an abrupt 
vegetation line as bare sand is found immediately adjacent to eucalyptus forest and 
Covehithe has an abrupt cliff-top vegetation boundary because cliff line retreat is too 
rapid for cliff toe vegetation establishment. In comparison, VEdge_Detector UA results 
were lower at Dunwich (UA = 0.07), Walberswick (UA = 0.11), and Wilk-Ann-Zee (UA = 0.07), 
which all contain graded psammosere community vegetation on beach dune systems. 
The low UA and higher PA results highlight how the vegetation edge is not a true line, but 
a boundary region graded from no vegetation to increasingly dense vegetation when 
traversing inland. Discrepancies in the interpretation of vegetation line position occur 
even when collating ground-referenced measurements. This was demonstrated at 
Walberswick, where PA increased from 0.59, when using the most seaward pioneer 
vegetation, to 0.84 when using the landward continuous vegetation edge (Figure 8 (b), 
Table 2). Further investigation, supported with ground-referenced measurements, is 
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required to determine whether this tool not only identifies vegetation edge location but 
also whether UA results can indicate the degree of abrupt change in a vegetation 
boundary. An increase in vegetation line ‘abruptness’ can imply a loss of pioneer species 
seaward of dune systems, perhaps as a result of erosion under storm impacts or wave 
action associated with particularly high tides. Conversely, increasing widths in vegetation 
edge can represent relatively stable, or prograding, shoreline locations where vegetation 
has had the opportunity to establish and migrate seawards.

This paper also provides the first-ever comparison of the performance of a HED model 
using different spectral band combinations. RG-NIR visually outperformed other spectral 
band combinations, demonstrating the importance of spectral band selection in HED 
training. This finding is complementary to the universally applied vegetation detection 
algorithm, NDVI, which utilizes the near-infrared and red wavebands (Genovese et al. 
2001). HED and many other CNN architectures only allow the input of images with three 
spectral bands (Simonyan and Zisserman 2014). Improved performance may be achieved 
by concatenating the outputs of multiple CNNs trained on three band images. Marmanis 
et al. (2018) fused the outputs of two CNNs run in parallel, one CNN trained using spectral 
band information and the other trained using digital terrain models. Parallel CNNs were 
reported to automatically classify land covers with 84.8% pixel accuracy, but no compar-
ison to single CNN performance was provided. Further investigations should compare the 
performance of single and multiple parallel CNNs trained exclusively on images with 
different spectral band combinations.

4.1. Shoreline change analysis using VEdge_Detector

The VEdge_Detector tool showed predicted a consistent landward shift in vegetation 
position between 2010 and 2020 at Covehithe, Suffolk (Figure 10). Years when the 
VEdge_Detector recorded the greatest rates of landward retreat coincide with North 
Sea storm surge events in December 2013 (Spencer et al. 2015; Wadey et al. 2015) and 
January 2017 (Floodlist 2017) and the February to March 2018 ‘Beast from the East’ and 
‘mini-Beast’ (Brooks and Spencer 2019). Average rates of landward retreat at Covehithe 
derived from VEdge_Detector were consistent with results obtained in this study from 
manually digitizing aerial imagery. The mean difference in NSC values when using 
VEdge_Detector and digitizing aerial imagery was less than one pixel. These NSC values 
are also complementary to values derived along this stretch of shoreline using other proxy 
and datum-based methods (Brooks and Spencer, 2012; Burningham and French 2017). 
This study has demonstrated the aptitude for the VEdge_Detector tool to accurately and 
efficiently detect the vegetation line from a relatively data-rich shoreline where it has 
been possible to use other measurements, including aerial imagery, lidar data and 
Ordinance Survey data, to validate precision. Further applications of this tool should 
investigate its use in relatively data poor regions of the world or in regions where there 
is a necessity to determine the impact of coastal protection schemes or other anthropo-
genic interventions in the coastal zone.

A continuous vegetation line was generated at Covehithe for 8 out of 11 years. During 
3 years, the vegetation line was fragmented due to the presence of ploughed agricultural 
land which interrupted the vegetation line. VEdge_Detector has been shown to be able to 
overcome issues of vegetation line fragmentation in other images, for example detecting 
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the landward extent of Benacre Broad and Covehithe Broad on the Suffolk coast (Figure 
10 (a)). Further studies should increase the ability for the tool to generalize, and use urban 
and water pixels when the vegetation line is fragmented. Alongside the sometimes 
fragmented nature of the vegetation line, it may remain an unsuitable proxy to use in 
shoreline change analysis in circumstances where there have been changes in vegetation 
communities as a result of both natural and anthropogenic processes unrelated to shore-
line position. Therefore, this paper suggests future research should combine multiple 
shoreline proxies simultaneously to provide a better indication of shoreline change.

5. Conclusion

This study has trained a holistically nested edge detection (HED) model to produce 
VEdge_Detector, a fully automated tool for the extraction of coastal vegetation lines 
along sandy shorelines from optical remote-sensing imagery. The semantic knowledge 
gained during HED training enables VEdge_Detector to discriminate between coastal 
vegetation edges and other inland vegetation boundaries, thus only extracting the 
coastal vegetation line and removing the need for subsequent post-processing. 
VEdge_Detector produces a vegetation confidence curve instead of a discrete line, 
which better represents how, in reality, the coastal vegetation line is not a distinct 
boundary but a broad zone where vegetation becomes a more continuous cover when 
traversing inland. The low error values (RMSE <6 m at all sites) between VEdge_Detector 
predictions and ground-referenced measurements demonstrate the aptitude for this tool 
to accurately detect the coastal vegetation edge location. VEdge_Detector performance 
varied depending on spectral band selection, with red, green and near-infrared shown to 
be the most pertinent image bands to use for coastal vegetation edge detection. This 
highlights the importance of image spectral band selection during CNN training in any 
context.

VEdge_Detector has been used to detect a decadal-scale, consistent landward shift in 
shoreline position at Covehithe, Suffolk, UK. This trend in vegetation line position is 
consistent with measurements obtained through manually digitizing aerial imagery. This 
exemplifies how using this tool at different locations, which exhibit a larger horizontal tidal 
range, may produce a more robust proxy of shoreline position than using the waterline to 
determine net shoreline change. The Planet imagery used to train the VEdge_Detector tool 
has sufficient spatio-temporal resolution to investigate the impacts of individual storm 
events along highly erodible shorelines or human management interventions on shoreline 
position. The high global coverage of this imagery opens new opportunities for shoreline 
change analysis in otherwise data-poor regions of the world.
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