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Abstract 

Forming expectations about what we are likely to perceive often facilitates perception. We 

forge such expectations on the basis of strong statistical relationships between events in our 

environment. However, due to our ever-changing world these relationships often subsequently 

degrade or even disappear, yet it is unclear how these altered statistics influence perceptual 

expectations. We examined this question across two studies by training participants in perfect 

relationships between actions (index or little finger abductions) and outcomes (clockwise or 

counter-clockwise gratings), before degrading the predictive relationship in a test phase – such 

that ‘expected’ events followed actions on 50-75% of trials and ‘unexpected’ events ensued 

on the remainder. Perceptual decisions about outcomes were faster and less error prone on 

expected than unexpected trials when predictive relationships remained high and reduced as 

the relationship diminished. Drift diffusion modelling indicated that these effects are explained 

by shifting the starting point in the evidence accumulation process as well as biasing the rate 

of evidence accumulation – with the former reflecting biases from statistics within the training 

session and the latter those of the test session. These findings demonstrate how perceptual 

expectations are updated as statistical certainty diminishes, with interacting influences 

speculatively dependent upon learning consolidation. We discuss how underlying 

mechanisms optimise the interaction between learning and perception – allowing our 

experiences to reflect a nuanced, ever-changing environment.  

Keywords: prediction; expectation; uncertainty; perception; DDM 
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1. Introduction 

It is essential that we learn about relationships between events in our world, such that we can 

perceive and interact with it appropriately. For example, to survive we must learn that stamping 

on the brake pedal makes the car stop, or that when we send motor commands to grasp a 

mug of tea we see fingers converging towards the target mug. We learn these relationships 

when there is a correlation between the activation of the event representations (Rescorla & 

Wagner, 1972). In associative terms, this contingency strengthens the association between 

representations, while in Bayesian terminology one event provides a ‘prior’ for the other, 

allowing us to predict it (Oaksford & Chater, 2007).  

While strong statistical relationships help us to form expectations about upcoming perceptual 

events, it is common that the strength of such relationships subsequently degrades over time. 

For example, we foveate our hand frequently as an infant when we learn to grasp, but by 

adulthood we foveate our hand less frequently – instead often foveating the target object or 

something else entirely (Johansson et al., 2001). The sight of fingers moving together is still 

more common than any other singular visual input when we grasp, meaning that there is still 

a predictive relationship (Dickinson & Charnock, 1985), but it is now degraded. In extreme 

cases, a once strong relationship can even disappear entirely, for instance if we cease to 

receive tactile stimulation on a moving effector due to nerve damage.   

It is however unclear how such statistical degradation influences perceptual expectations. 

Perhaps counterintuitively, findings from visual and tactile cognition demonstrate a range of 

persisting predictive influences on perceptual processing that no longer reflect the statistics of 

the environment (Press, Thomas, et al., 2020; Yon et al., 2018, 2021; Yon & Press, 2017, 

2018), suggesting that predictions may be especially stubborn in the face of degraded 

relationships. For example, when participants are presented with no relationship between 

actions and outcomes, predictions that have been previously formed based upon a perfectly 

correlated training phase (Press, Thomas, et al., 2020) or through a lifetime of experience 

(Yon et al., 2018, 2021; Yon & Press, 2017, 2018) continue to influence perceptual processing. 
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It is suggested that priors are ‘stubborn’ (Yon et al., 2019), or difficult to update, and are 

thought by some to explain curious effects of perception in synaesthesia – e.g., numbers 

appearing coloured due to statistical regularities encountered during childhood (Yon & Press, 

2014). Although there are a number of conceptual differences, work from the animal learning 

literature also indicates that predictions may not be updated at all as correlations degrade. For 

example in a classic study, Rescorla (1992, see also 1993) trained rats to learn action-

outcome associations e.g., lever press-sucrose, and recorded lever pressing behaviour after 

devaluing the outcome by pairing it with nausea-generating Lithium Chloride. Such lever 

pressing was identical regardless of whether rats experienced intervening extinction phases 

(where actions no longer produce the outcome). These findings were taken to suggest that 

action-outcome associations remain unaltered through extinction phases (Crimmins et al., 

2021), and that such resistance to change may reflect a general principle of learning – applying 

also to stimulus-outcome learning (Delamater, 2012).  

However, if predictions really exhibit such stubbornness, this would be Bayes-suboptimal. 

Bayesian frameworks assume that an ideal observer generates a precision-weighted 

combination of expectations (prior) and inputs (likelihood) to determine what they perceive 

(posterior; Ernst & Banks, 2002; Garrido et al., 2013; Skora et al., 2021; Yon et al., 2021). If 

the precision on the prior is high – due to strong statistical relationships within our environment 

– perception will be heavily weighted towards expectations, in turn rendering us less sensitive 

to inputs that could update the priors (Press, Kok, et al., 2020a). Nevertheless, the precision 

on the input would also be high in most of these studies indicating stubborn predictions, since 

the input is suprathreshold and unambiguous. One must also therefore consider that 

stubbornness of expectations could be generated due to estimating our environment to be 

more stable than it is (Behrens et al., 2007). Specifically, in stable environments – where 

relationships between events remain consistent across time – new events will not provide 

much information about the structure of the world and our learning rate is assumed to be low. 

The manipulated statistical environment in the studies discussed is indeed relatively stable 
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before the test phases – considering that there is a perfect relationship between actions and 

outcomes in training phases, single events would provide little information about the structure 

of the environment. When the environment changes we may therefore not update our 

predictions accordingly because we have erroneously estimated these relationships to be 

stable. Such errors may be widespread because it is notoriously difficult for us to estimate 

uncertainty within our environment (Yon & Frith, 2021).  

The present studies were therefore designed to address whether and how reducing the 

strength of statistical relationships diminishes predictive influences on perceptual decisions. It 

has typically been found that expected events are perceived with greater speed and accuracy 

than unexpected events (Bar, 2004; Kok et al., 2017; Ouden et al., 2010; Palmer, 1975; Yon 

et al., 2021; Yon & Press, 2018) and it is assumed that a stronger (more precise) expectation 

would generate a greater difference between expected and unexpected trials. We wished to 

determine whether predictions forged on the basis of strong relationships are really so 

resistant to change or whether differing levels of degradation would be reflected accordingly 

in the perceptual decisions. If such expectations are updated we also wished to understand 

how.  

In two experiments, participants were trained with perfect relationships between actions (index 

or little finger abductions) and outcomes (clockwise or counter-clockwise oriented gratings). 

These predictive relationships were subsequently disrupted such that the trained outcome 

followed action on some of the trials (expected trials) and the other grating ensued on the 

remaining (unexpected) trials. Participants answered whether a particular grating orientation 

was presented, and we analysed response times and error rates. A pilot experiment confirmed 

that influences of expectation on perceptual decisions could be observed in such a setting 

(see Supplementary Information). Experiment 1 compared perceptual decisions in groups who 

experienced differing levels of disruption (75%, 67% or 50% expected trials). Experiment 2 

replicated findings in Experiment 1, while isolating influences of learning within training and 
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test phases. We also examined start and drift biasing parameters of the perceptual decision 

process (drift diffusion modelling) to shed light on the mechanisms underlying degradation. 

2. Experiment 1 

Experiment 1 trained three groups of participants in perfect mappings between actions (index 

and little finger abductions) and outcomes (clockwise [CW] and counter-clockwise [CCW] 

gratings). Participants answered “yes/no” to one of two response questions probing “CW 

grating presented?” or “CCW grating presented?”. The question changed frequently to ensure 

that participants learned action-outcome associations rather than action-response 

associations. To test the influence of statistical degradation on reaction times and error rates, 

the three groups experienced different levels of degradation to the trained mappings during a 

subsequent test phase. Participants in the group with the lowest degradation were presented 

with expected action outcomes on 75% of trials and unexpected outcomes on the remaining 

25%. We compared the effects from this group against a group who were presented with 

higher degradation (67% group, whereby the expected events are presented on 67% of trials 

and the unexpected events on 33%) and against a group where there was no longer a 

predictive relationship at test (50% group, whereby expected and unexpected outcomes are 

each presented on 50% of trials).   

2.1. Methods  

Participants  

Twenty-four participants were recruited in each of the 50% (mean age = 27.17 years, SD = 

7.03), 67% (mean age = 29.67 years, SD = 7.07) and 75% (mean age = 25.92 years, SD = 

5.75) degradation groups, totalling 72 participants overall (power determined via piloting; see 

Supplementary Information). Participants were recruited via Prolific, completed the experiment 

online, and were paid a small honorarium for participation. Participants whose accuracy on 

either trial type (expected or unexpected) was not above chance (50%), or who had fewer than 

300 trials remaining after removing those with very short or long response times (RTs; see 
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“Analysis”), were excluded from the analysis. Therefore, one participant was a replacement 

for a participant whose accuracy was below chance on unexpected trials. All participants 

reported normal or corrected to normal vision. 

Stimuli 

Sinusoidal grating stimuli were created using MATLAB and presented against a grey 

background. A Gaussian filter enveloped the grating stimuli to create Gabor patches of 80% 

Michelson contrast. The CW grating was oriented at 45° (relative to the hypothetical vertical 

mid-point i.e., 12 o’clock, 90°) and the CCW grating at 135°.  

Procedure  

The experiment was programmed to run using Gorilla (www.gorilla.sc) for online experiments, 

and participants took part on either a laptop or desktop computer. Participants were instructed 

to set maximum screen brightness in an attempt to reduce variability in viewing conditions. 

During the 100% training phase, participants abducted either the index or little finger of their 

right hand that perfectly predicted the orientation (CW or CCW) of the stimulus. Participants 

were instructed to hold down the ‘c’ and ‘m’ keys with their respective right index and little 

fingers on the computer keyboard until an imperative cue (square or triangle) indicated the 

finger to abduct. As soon as the cued finger was abducted (i.e., the corresponding key was 

released), the visual stimulus was presented for 500 ms in an annulus that surrounded the 

response question in shorthand (‘CW?’ or ‘CCW?’; see Fig. 1). This response text appeared 

in synchrony with the onset of the grating stimulus and remained on screen until a response 

was selected. The stimulus orientation probed by the question alternated every mini-block of 

36 trials. Responses were made using the left thumb on the ‘a’ and ‘z’ keys, for ‘yes’ and ‘no’, 

respectively. Following the response, a variable inter-trial interval of 1500-3000 ms was 

presented before the start of the next trial. 

In the test phase 24 hours later, participants were allocated to one of three groups which only 

differed by level of degradation of the learned action-outcome relationship from the 100% 

http://www.gorilla.sc/
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training phase – where the expected orientation was either presented on 75%, 67%, or 50% 

of trials. The unexpected, and therefore orthogonal, orientation was presented on the 

remaining trials in each condition. There were 360 main experimental trials in each session – 

the anticipated maximum number of trials that participants could undertake in a single session 

before exhibiting fatigue effects. Participants completed 32 practice trials before proceeding 

to the main trials in the training phase. Trial order was randomised and the specific action-

stimulus relationship was counterbalanced across participants. The imperative cue indicating 

the required action was randomised across participants and this cue-action mapping was 

reversed at the midpoint of each session. 

Analysis 

All trials with RTs below 100 ms or larger than 2500 ms were excluded. For each participant, 

the effect of expectation on RTs for correct trials and proportion of errors (PEs) was calculated 

by subtracting the RT/PE for expected trials from unexpected trials. Positive  

Figure 1. Experiment 1 task. (A) A centrally presented visual cue instructed participants to 
abduct either their index or little finger. In the 100% training phase, each finger abduction 
perfectly predicted an oriented stimulus and participants were required to respond (yes/no) to 
the presented question – indicating whether the stimulus was clockwise (‘CW?’) or counter-
clockwise (‘CCW?’). (B) In the subsequent degraded test phase, participants performed the 
same task but were allocated into one of three groups where the presented orientation was 
consistent with the previously learned mapping on either 75%, 67%, or 50% of trials. 
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values reflect faster and less error prone responses on expected compared to unexpected 

trials. 

2.2. Results and Discussion 

A one-way ANOVA on the RT expectation effect showed a significant effect of Degradation 

(F(2,69) = 7.35, p = .001, ηp
2 = .18; Fig. 2A). Participants in the 75% group showed a larger 

RT expectation effect than both the 67% (t(46) = 2.55, p = .014, d = 0.74) and 50% groups 

(t(46) = 3.76, p < .001, d = 1.09), while the RT effects in the 67% and 50% groups did not differ 

(t(46) = 1.18, p = .246, d = 0.34). One-sample t-tests revealed significant RT expectation 

effects for the 75% (M = 44.14 ms, SD = 33.63, t(23) = 6.43, p < .001, d = 1.31) and 67% (M 

= 19.47 ms, SD = 33.46, t(23) = 2.85, p = .009, d = 0.58) groups, but not for the 50% group 

(M = 8.31 ms, SD = 32.33, t(23) = 1.26, p = .221, d = 0.26). 

A similar pattern was observed for the effect of Degradation on PEs (F(2,69) = 9.87, p < .001, 

ηp
2 = .22; Fig. 2B). Participants in both the 75% (t(46) = 3.90, p < .001, d = 1.13) and 67% 

groups (t(46) = 3.42, p = .001, d = 0.99) showed greater PE expectation effects than the 50% 

group, while there was no difference between the effects in the 67% and 75% groups (t(46) = 

2.00, p = .052, d = 0.58). Both the 75% (M = 0.05, SD = 0.06, t(23) = 4.40, p < .001, d = 0.90) 

and 67% (M = 0.03, SD = 0.02, t(23) = 5.22, p < .001, d = 1.07) groups showed significant 

expectation effects, but the 50% group did not (M = 0.002, SD = 0.02, t(23) = 0.37, p = .714, 

d = 0.08; see Supplementary Information for consideration of the development of these effects 

across trial). 

These results demonstrate that participants are faster, and more accurate, at making 

perceptual decisions about expected, relative to unexpected, events when the predictive 

relationship between action and outcome remained highest at test (75%). Furthermore, 

expectation effects became smaller when the relationship was more degraded (67%), and 

were entirely absent when the relationship was eliminated (50%), suggesting that expectations 

are updated when the statistics of the environment are altered. 
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Figure 2. Experiment 1 and 2 Results. (A) Experiment 1 RT expectation effect for the 50%, 
67%, and 75% groups (N = 24 per group). Participants in the 75% group showed a larger RT 
expectation effect than the 67% and 50% groups. (B) Experiment 1 PE expectation effect for 
the three groups. Participants in the 75% and 67% groups both showed larger expectation 
effects than the 50% group. (C) Experiment 2 RT expectation effect for the 75% and 50% 
Training and NoTraining groups (N = 24 per group). Significant expectation effects were 
present in both 75% groups, while these were larger in those who had experienced a 
preceding 100% training phase. No effects were observed in either 50% groups. (D) 
Experiment 2 PE expectation effect for the four groups. The patterns were identical to those 
in RTs (C). The results are plotted with raincloud plots (Allen et al., 2019) displaying probability 
density estimates (upper) and box and scatter plots (lower). Boxes denote lower, middle and 
upper quartiles, whiskers denote 1.5 interquartile range, and dots denote difference scores for 
each participant. 

3. Experiment 2 

Experiment 1 thereby demonstrated that participants were fastest and least error prone when 

responding to expected relative to unexpected events in situations where the statistical action-

outcome relationship had the smallest amount of degradation at test (75% group). Expectation 

effects reduced when these relationships were further degraded (67% group) and disappeared 
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when actions were no longer predictive of the outcome. Such differences according to the 

level of degradation demonstrate that we likely do not stubbornly, and suboptimally, maintain 

perceptual predictions established under strong statistical relationships when the strength of 

these relationships alters – but rather are able to update our expectations to match the new 

statistics of our environment and inform perceptual decision making.  

Experiment 2 was designed to serve two purposes. Firstly, it aimed to replicate the core finding 

from Experiment 1, and secondly, it compared the magnitude of these effects against 

participant groups who did not experience an initial 100% training phase. The latter 

manipulation was added to confirm that the effects observed in Experiment 1 result from 

updating expectations as relationships degrade. That is, in principle the same effects could be 

observed if learning during the training phase is discarded at test, and therefore only reflect 

differences in expectations during the test phase – regardless of any previous learning. Thus, 

if the effects observed in Experiment 1 indeed result from updating of previously learned 

expectations with changing statistical relationships, we would not expect the same effects in 

these groups where the training phase is omitted. However, if the effects purely represent the 

statistics of the environment during the test session regardless of any previous learning, we 

would expect effects to be similar across groups with and without a preceding training phase. 

3.1. Methods  

Participants  

Twenty-four participants were recruited in each of the Training+50% (mean age = 29.83 years, 

SD = 10.48), NoTraining+50% (mean age = 30.79 years, SD = 11.12), Training+75% (mean 

age = 24.83 years, SD = 4.98) and NoTraining+75% groups (mean age = 32.63 years, SD = 

13.13), totalling 96 participants overall. Participants were recruited via Prolific, completed the 

experiment online and were paid a small honorarium for participation. Three participants were 

replacements for those who had fewer than 300 trials after removing those with very short or 

long RTs. 
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Procedure  

The procedure for the 75% and 50% Training groups in Experiment 2 was similar to the 75% 

and 50% groups in Experiment 1. The only difference was that participants also completed a 

short training refresher at the beginning of day 2 – consisting of 36 trials with 100% action-

outcome relationships. We also collected data from two groups without a training phase, i.e., 

75% and 50% NoTraining groups. For participants in the NoTraining groups, the test session 

was identical to that in the Training groups, and they also completed the same overall number 

of trials in a previous session. Crucially though, for the NoTraining groups, participants did not 

receive training in action-stimulus mappings in the first session, but instead were presented 

with the same grating stimuli without a requirement for performing any actions. Stimulus onset 

was instead triggered automatically in this session, 1500 ms after the fixation cross at the start 

of the trial. This way, participants in all groups had the same exposure to the task sessions 

and stimuli, but were not able to learn a predictive relationship between actions and grating 

orientations1. All other parameters of the task were the same across groups. 

3.2. Results and Discussion 

A two-way ANOVA on the RT expectation effect revealed a significant main effect of 

Degradation (F(1,92) = 26.05, p < .001, ηp
2 = .22) and Training (F(1,92) = 4.84, p = .030, ηp

2 

= .05), as well as a significant interaction between these two factors (F(1,92) = 6.60, p = .012, 

ηp
2 = .07; Fig. 2C). Both 75% groups showed significant RT expectation effects (Training+75%: 

M = 53.27 ms, SD = 52.06, t(23) = 5.01, p < .001, d = 1.02; NoTraining+75%: M = 18.01 ms, 

SD = 30.41, t(23) = 2.90, p = .008, d = 0.59) as revealed by one-sample t-tests. However, 

pairwise t-tests showed that this effect was significantly larger in the training group relative to 

 
1 It is worth noting that due to coding error, the cue-action mappings were not perfectly counterbalanced in the 

NoTraining+50% group (eight participants under one mapping and 16 under another). However, given that these 

subgroups behaved comparably, and that there were no effects in either of the 50% groups, we believe this error 

is unlikely to have changed the patterns in the data.  
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the group without a training phase (t(46) = 2.87, p = .006, d = 0.83). The magnitude of the RT 

expectation effect did not differ between the two 50% groups (t(46) = 0.33, p = .740, d = 0.10) 

and neither exhibited a significant expectation effect (Training+50%: M = -3.46 ms, SD = 

31.43, t(23) = -0.54, p = .595, d = -0.11; NoTraining+50%: M = -0.72 ms, SD = 24.99, t(23) = 

-0.14, p = .889, d = -0.03). Replicating the findings from Experiment 1, the RT expectation 

effect was significantly larger in the Training+75% compared to the Training+50% group (t(46) 

= 4.57, p < .001, d = 1.32). 

A two-way ANOVA on the PE expectation effect showed similar results. There was a 

significant main effect of both Degradation (F(1,92) = 30.07, p < .001, ηp
2 = .25) and Training 

(F(1,92) = 12.24, p < .001, ηp
2 = .12) as well as a significant interaction (F(1,92) = 15.60, p < 

.001, ηp
2 = .15; Fig. 2D). Both 75% groups showed a significant effect of expectations on PE 

(Training+75%: M = 0.07, SD = 0.05, t(23) = 6.33, p < .001, d = 1.29; NoTraining+75%: M = 

0.01, SD = 0.03, t(23) = 2.54, p = .018, d = 0.52), and again this effect was larger in the training 

group (t(46) = 4.41, p < .001, d = 1.27). The magnitude of the PE expectation effect did not 

differ between the two 50% groups (t(46) = 0.42, p = .675, d = 0.12) and neither exhibited a 

significant expectation effect (Training+50%: M = 0.0002, SD = 0.02, t(23) = 0.03, p = .975, d 

= 0.01; NoTraining+50%: M = 0.003, SD = 0.03, t(23) = 0.58, p = .567, d = 0.12). Again 

replicating the findings from Experiment 1, the PE expectation effect was significantly larger 

in the Training+75% compared to the Training+50% group (t(46) = 5.73, p < .001, d = 1.65; 

see Supplementary Information for consideration of the development of these effects across 

trial). 

These results reflect that expectation effects diminish as (previously strong) statistical 

relationships degrade – as observed in Experiment 1 and in the training groups of Experiment 

2. Comparison against the no training groups in Experiment 2 renders unlikely an account 

whereby participants discarded expectations learned from training phases and relied solely 

on the statistics of the test phase.  
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4. Drift Diffusion Modelling 

The present findings are consistent with Bayesian accounts of how expectations influence 

perceptual decisions, such that they reflect a precision-weighted combination of what we 

expect (prior) and the input (likelihood; Kersten et al., 2004) – with the prior reflecting the past 

and present statistics of the environment. Such influences can be generated in different ways 

and their nature can be revealed via drift diffusion modelling (DDM; Ratcliff & McKoon, 2008). 

DDMs model participant choices and RT distributions by assuming that observers have an 

internal representation of sensory evidence that is sampled by decision circuits. Decision 

circuits continuously sample from these representations, and when the accumulated decision 

variable meets a response boundary, the appropriate response is triggered (Fig. 3A and B). 

There are two ways that the observed expectation effects, and their degradation, could be 

generated. First, expectations could shift the starting point of the evidence accumulation 

process towards the expected boundary (varying parameter z of the DDM; Fig 3A). Second, 

expectations can bias the rate of evidence accumulation towards the two boundaries (varying 

parameter dc of the DDM; Fig. 3B). Our previous studies have found that drift rate biases 

explain influences of expectations on perceptual decisions (Thomas et al., 2022; Yon et al., 

2021), in line with suggestions that expectations act by increasing the gain of related channels 

(de Lange et al., 2018; Summerfield & de Lange, 2014). We therefore anticipated that our 

effects of certainty degradation would be best modelled as modulations of the rate of evidence 

accumulation.  

We fit hierarchical DDMs to participants’ accuracy and RT data for Experiments 1 and 2 to 

examine how degradation effects are generated. We used the HDDM Python toolbox (Wiecki 

et al., 2013) to fit the DDMs. In the hierarchical DDM, model parameters for each participant 

are treated as random effects drawn from group-level distributions, and Bayesian Markov 

Chain Monte Carlo (MCMC) sampling is used to estimate group and participant level 

parameters simultaneously. We fit four different models to the data from each experiment: (1) 

a null model where no parameters were permitted to vary according to whether a CW or CCW 
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stimulus was expected; (2) a start bias model where the start point of evidence accumulation 

could vary between trials where a CW grating was expected (zCW) and trials where a CCW 

grating was expected (zCCW); (3) a drift bias model where a constant bias in evidence 

accumulation could vary between expected CW (dcCW) and expected CCW (dcCCW) trials; (4) 

a drift + start bias model where both parameters could vary. For Experiment 1, the parameters 

could additionally vary according to Degradation and for Experiment 2 according to 

Degradation and Training. This allowed us to obtain drift and start bias parameters for 

expected CW and expected CCW trials separately for each group in Experiments 1 and 2. 

Note that we use these terms to refer to the stimulus that is expected, while also modelling 

the stimulus that is presented – i.e., we include both expected and unexpected trial types but 

such coding allows us to examine influences of expectation. More specifically, larger start or 

drift bias values on expected CW compared to expected CCW trials would mean that 

participants are biased in line with their expectations (i.e., towards responding CW/CCW on 

an expected CW/expected CCW trial, respectively). Such biasing in line with participants’ 

expectations would lead to faster and less error-prone responses on expected compared to 

unexpected trials (the behavioural effects we found in Experiments 1 and 2). 

All models were estimated with MCMC sampling. For each model, three chains with 90,000 

samples (“burn-in” = 22,500, “thinning” = 3) were run. This allowed us to compute the R-hat 

(Gelman-Rubin) statistic to assess model convergence. Typically, if this statistic is below 1.2 

for all model parameters, one can be fairly confident that convergence has been reached (or 

even more reassuring is the more stringent condition < 1.1; Brooks & Gelman, 1998). For all 

experiments and all models, the Gelman-Rubin statistic was below 1.2 for all parameters, and 

below 1.1 for 99.92% of the parameters. Given that the Gelman-Rubin statistic indicated 

acceptable convergence, the chains of the three individual models were concatenated to 

create the final model. 
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Figure 3. Drift diffusion modelling. (A) A schematic example of start biasing. The starting 
point of the evidence accumulation could be shifted towards the expected boundary from the 
outset of a trial, such that it starts closer to the CW response boundary when a CW grating is 

expected (zCW), and closer to the CCW boundary when a CCW grating is expected (zCCW). 
(B) A schematic example of drift biasing. Alternatively, the rate of evidence accumulation could 
be weighted according to expectations, such that when a CW grating is expected, evidence is 
accumulated more rapidly towards the CW boundary. (C) Comparison of the different models 
by deviance information criterion (DIC) values in Experiments 1 and 2. The drift bias model 
was outperformed by the start bias and drift + start bias models in both experiments. Lower 
DIC values relative to the null model are indicative of a better model fit. 

 

The start, drift, and start + drift bias models for both experiments were compared using the 

deviance information criterion (DIC) as an approximation of Bayesian model evidence (Fig. 

3C). Lower DIC values relative to the null model indicate better model fit. For both Experiments 

1 and 2, the start bias and combined models outperformed the drift bias model (DIC relative 

to null model for Experiment 1: start bias model = -131, drift bias model = -78, start + drift bias 

model = -124; DIC relative to null model for Experiment 2: start bias model = -105, drift bias 

model = -47, start + drift bias model = -107). It is worth noting that differences in DIC smaller 

than 10 do not indicate substantial evidence for the model with the lower DIC (Dunovan et al., 

2014; Zhang & Rowe, 2014). Given that the DIC difference between the start and start + drift 

bias models was less than 10 in both Experiment 1 and 2, we further analysed the parameters 

of the combined model in order to consider the impact of both start and drift biasing (noting 

also that our hypothesized patterns – based upon previous findings – pertained to drift biases 

and therefore we had reason to believe that start biases alone were unlikely to explain effects). 
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Figure 4. Posterior density plots of the modelled parameters from the start + drift bias 
model. The solid line shows the posterior density for the parameters on expected CW trials 
and the dashed line is for expected CCW trials. Stars mark significant differences. (A-C) 
Starting point for Experiment 1. The starting point for expected CW trials was larger than for 
expected CCW trials for the 75% and 67% groups, but not for the 50% group. (D-F) Drift bias 
for Experiment 1. There was no difference in drift bias for expected CW and expected CCW 
trials for any of the three groups, although the effect in the 75% group nearly met threshold. 
(G-J) Starting point for Experiment 2. The starting points differed on expected CW compared 
to expected CCW trials only for the Training+75% group. (K-N) Drift bias for Experiment 2. 
The drift bias was larger on expected CW compared to expected CCW trials for both 75% 
groups, but there were no significant differences for the 50% groups. 

 

Specifically, we computed the proportion of overlap of the posterior distributions for expected 

CW and expected CCW trials for each group (see Fig. 4). Larger posterior probability values 

reflect smaller overlap in distributions (threshold for significance >.975). For Experiment 1, this 

revealed a starting point difference on expected CW compared to expected CCW trials for the 

75% (posterior probabilities that zCW > zCCW = 1.0; Fig. 4A) and 67% (zCW > zCCW = 1.0; Fig. 4B) 

groups, but not for the 50% group (zCW > zCCW = 0.679; Fig. 4C). The drift bias for expected 

CW and expected CCW trials did not differ for any of the three groups (posterior probabilities 

that dcCW > dcCCW: 75% group = 0.967 [although note that this effect almost passed threshold], 
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67% group = 0.342, 50% group = 0.556; Fig. 4D-F). In Experiment 2, the start biases differed 

only for the Training+75% group (posterior probabilities that zCW > zCCW = 0.999; Fig. 4G), but 

not for any of the other groups (posterior probabilities that zCW > zCCW: NoTraining+75% = 

0.172, Training+50% = 0.174, NoTraining+50% = 0.747; Fig. 4H-J). In addition, the drift biases 

differed for both 75% groups (posterior probabilities that dcCW > dcCCW: Training+75% = 0.999, 

NoTraining+75% = 0.998; Fig. 4K-L), but for neither of the 50% groups (posterior probabilities 

that dcCW > dcCCW: Training+50% = 0.648, NoTraining+50% = 0.354; Fig. 4M-N). 

 

6. General Discussion 

In our ever-changing environment, it is common that we initially forge expectations based upon 

strong statistical relationships that subsequently degrade. The present studies were designed 

to interrogate how these altered statistics affect predictive influences on perceptual decisions. 

Across these studies we found evidence that we do not stubbornly, and suboptimally, maintain 

perceptual predictions established under strong statistical relationships. Instead, these results 

suggest that we update our expectations on the basis of new statistical relationships. Drift 

diffusion modelling indicated that these effects are explained by shifting the starting point in 

the evidence accumulation process as well as biasing the rate of evidence accumulation – 

with the former reflecting biases from statistics within the training session and the latter those 

of the test session.  

Rapid expectation updating when the environment changes is likely adaptive for perception. 

Our perceptual experiences are constructed via interactions between the sensory input and 

our expectations (Bar, 2004; de Lange et al., 2018; Yuille & Kersten, 2006). It is reasoned that 

perceptual systems generate a precision-weighted sum of inputs and expectations to render 

experiences more accurate (on average) – given the internal and external noise associated 

with sensory signals and that we must process inputs rapidly in our ever-evolving sensory 

world (Press & Yon, 2019). If our expectations are based upon old knowledge, this process is 

less likely to generate veridical experiences. Of course, these mechanisms will only make 
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experiences more veridical on average, and expectations will frequently be unfulfilled. This is 

arguably why such strange experiences result when the typical contingencies are disrupted, 

as evidenced by a range of compelling illusions – e.g., the hollow face illusion, whereby a 

concave face is perceived as a (more typically-experienced) convex structure (Press, Kok, et 

al., 2020b).  

Despite the fact that we observed a level of updating of perceptual expectations that might be 

considered adaptive, it was far from clear that we would obtain these results – which exhibit a 

greater optimality than might be concluded from previous work. For example, studies from our 

lab have observed that predictions persist when relationships disappear entirely (Press, 

Thomas, et al., 2020; Yon et al., 2018; Yon & Press, 2017, 2018) – extending even to 

scenarios where ‘expected’ events are presented on only 33% of trials (Press, Thomas, et al., 

2020). A range of findings from animal learning also suggest completely unaltered predictions 

when statistical relationships degrade via extinction (e.g., Delamater, 2012; Rescorla, 1992, 

1993). The present findings suggest that perceptual predictions based upon strong statistical 

relationships are not in fact supremely stubborn. Interestingly, our conclusions are supported 

also by more recent findings from animal learning that reward-learning associations do 

degrade inline with diminishing contingencies, and that the previous measures may not 

adequately reflect association strength (Crimmins et al., 2021). Recent accounts of goal-

directed action control further suggest that we establish relationships according to a running 

rate-correlation between actions and outcomes (Perez & Dickinson, 2020), and therefore that 

extinction may represent a rather unique case of statistical degradation.  

The fact that no biasing is observed at all when previously perfect relationships disappear 

suggests that expectations can be especially flexible. However, these findings must also be 

considered in light of our previous work demonstrating that predictions can persist when 

correlations vanish. Most of these findings target priors established over a different timescale 

– specifically, a lifetime’s experience of perceiving particular outcomes of action (Yon et al., 

2021; Yon & Press, 2017, 2018). It is possible that expectations established over different 
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timescales exhibit differing levels of ‘stubbornness’. Those established over one’s lifetime are 

less likely to be found incorrect based upon a few hundred trials, relative to those established 

within a one-hour period. In other words, a comparable correlation based upon more 

datapoints will generate an even higher precision prior, and will therefore require even stronger 

evidence to update. This difference is consistent with the suggestion that you may be able to 

extinguish expectations that are ‘weakly’ learnt but not ‘strong’ ones (Delamater, 2012).  

Comparing the 75% groups in Experiment 2 demonstrates that the biasing influences on 

perception are substantially stronger when there is a preceding 100% training phase, relative 

to when expectations could only be established within the test session. Interestingly these 

training vs no training group differences are not present in the 50% groups, suggesting that 

eliminating predictive relationships can cause the individual to discard earlier learning in a way 

that reducing them does not. However, future research must also establish whether learning 

is discarded by all systems when correlations disappear, or whether there may be differences 

across them. A recent fMRI study of ours (Press, Thomas, et al., 2020) suggested that primary 

visual cortex maintains a representation of relationships learned the previous day even when 

the ‘expected’ is in fact unlikely (presented only 33% of the time). Participants here were 

subjected to more training than in the present studies, but it may also suggest that primary 

visual cortex can maintain a representation based upon old knowledge that has little influence 

on perceptual decisions. Future work should focus on the interplay between neural and 

decisional effects to determine how they may inform each other. There are also some clear 

practical implications of this finding. It is common to examine the influence of expectations on 

perceptual processing by presenting the relationships solely at test – in degraded form. Our 

findings indicate that effect sizes would be larger if including preceding training phases, 

enabling greater clarity in findings and/or smaller sample sizes.  

If we indeed discard previous learning when correlations disappear it would be interesting to 

understand why, and the empirical limits. Speculatively, individuals may ascribe different latent 

structures to training and test phases when correlations disappear, but not when they remain 
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in degraded form (Niv, 2019). Participants may typically assume that the environment remains 

stable, but there may have been meta-cues in the 50% group indicating that the structure had 

altered across sessions. Although participants were given identical instructions on the two 

days that did not reference action-outcome mappings (and identical instructions in 50% and 

75% groups), alongside a short perfectly predictive training refresher at the start of the second 

session in Experiment 2, we do not know what assumptions they may have built 

independently. It would be informative to ask about the limits at which one discards previous 

learning – e.g., whether a 67% training vs no training comparison would reveal less discard 

than the 50% and more than the 75% comparison, and whether learning is discarded in the 

same manner when contingencies degrade gradually. In line with the operation of some all-

or-none mechanisms, some of us have previously proposed that qualitatively different 

processes may influence perception when the level of prediction error crosses a threshold – 

which elicits reactive processes to generate a high-precision representation of events which 

should generate model-updating (Press, Kok, et al., 2020b).  

Drift diffusion modelling indicated that effects of correlation degradation were the product of 

shifting the starting point of the accumulation process as well as biasing the rate of evidence 

accumulation towards the expected boundary. Start point effects were unanticipated, given 

our previous studies that found expectations based upon action congruency – therefore 

reflective of a lifetime of learning about the consequences of action – modulated the rate of 

evidence accumulation (Yon et al., 2021). However, they are less surprising if one considers 

recent suggestions about the particular mechanisms underlying influences of expectation on 

perceptual decisions (Feuerriegel et al., 2021). Specifically, it has been suggested that they 

act by pre-activating sensory representations of anticipated events (Gandolfo & Downing, 

2019; Kok et al., 2017; Press, Kok, et al., 2020b; de Lange et al., 2018). This mechanism shifts 

the evidence accumulation process earlier – to before the presentation of the stimulus – and 

it has been proposed that such mechanisms manifest in different ways depending on specifics 

of the stimuli presented (Feuerriegel et al., 2021). For instance, it has been argued that when 
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the input itself is weak or punctate (like in Yon et al., 2021), drift rate effects should emerge 

from shifting the accumulation process earlier because the rate of evidence accumulation 

grows across time. However, Feuerriegel et al. (2021) argue that when the stimulus is 

presented for longer (like in the present studies), the drift rate is largely determined by the 

stimulus and pre-activation presents predominantly as a shift in the start point of evidence 

accumulation.  

Experiment 2 found that the particular degradation level at test instead influenced the drift rate 

rather than starting point – in spite of the longer duration events (noting the above proposal 

by Feuerriegel et al., 2021, that event durations largely determine the observed effects from 

pre-activation mechanisms). Specifically, both training and no training 75% groups in 

Experiment 2 showed drift biasing effects whereas only the training 75% group showed start 

biasing effects of expectation. An interesting factor that could determine this difference is that 

of consolidation. For instance, the start biasing effects could reflect learning during the training 

session on the previous day (which had been consolidated), and therefore biases us to 

perceive what we expect via pre-activation. On the other hand, drift biasing differences may 

reflect learning across the test session – and it is possible that the underlying mechanisms 

differ accordingly. For example, pre-activation may require learning consolidation via sleep 

(Hindy et al., 2019) or the presentation of high predictive relationships. 

Future research is required to unpack the relative contributions of sensory and purely 

decisional mechanisms to these phenomena (Fritsche et al., 2017). Particularly, start point 

biases in decision processes are classically assumed (including by us) to be reflective of 

decisional biasing rather than sensory biasing, because they are independent of the evidence 

accumulated (Yon et al., 2021). This remains a viable possibility on the basis of the present 

dataset. However, if expectations bias perception by pre-activating associated sensory 

representations, this will also shift the starting point of the evidence accumulation process 

(Feuerriegel et al., 2021). If this is indeed how the system operates, the present findings 

suggest that some level of nuance is needed in these mechanisms – either scaling pre-
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activations according to likelihood of event presentation or pre-activating multiple 

representations simultaneously.  

In conclusion, the present data demonstrate how degrading statistical relationships degrades 

perceptual expectations. Even if perceptual expectations are often more stubborn than they 

should be, the present study shows how we do update them to inform our perceptual decisions 

when statistical relationships become less certain.   
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