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Given a transition matrix P indexed by a finite set V of vertices, the voter
model is a discrete-time Markov chain in {0,1}V where at each time-step a
randomly chosen vertex x imitates the opinion of vertex y with probability
P (x, y). The noisy voter model is a variation of the voter model in which
vertices may change their opinions by the action of an external noise. The
strength of this noise is measured by an extra parameter p ∈ [0,1].

In this work we analyse the density process, defined as the stationary mass
of vertices with opinion 1, i.e.St =

∑
x∈V π(x)ξt(x), where π is the sta-

tionary distribution of P , and ξt(x) is the opinion of vertex x at time t. We
investigate the asymptotic behaviour of St when t tends to infinity for dif-
ferent values of the noise parameter p. In particular, by allowing P and p
to be functions of the size |V |, we show that, under appropriate conditions
and small enough p a normalised version of St converges to a Gaussian ran-
dom variable, while for large enough p, St converges to a Bernoulli random
variable. We provide further analysis of the noisy voter model on a variety
of specific graphs including the complete graph, cycle, torus and hypercube,
where we identify the critical rate p (depending on the size |V |) that separates
these two asymptotic behaviours.

1. Introduction.

1.1. Background. The voter model is a classical interacting particle system, first de-
scribed independently in [11] and [23]. It has found applications across the sciences including
statistical physics [7], social sciences [18], chemistry [27], ecology [38], and sociophysics
[19]. The process can be described simply: a set of vertices (or sites) V are initially each
endowed with an opinion (0 or 1) and vertices update their opinions over time. At the up-
date time of a vertex x, an imitation step occurs: x changes its opinion to that of a randomly
chosen vertex (according to some transition matrix P (x, ·), usually the transition matrix of
the simple random walk on a graph G). The voter model can evolve in discrete or contin-
uous time: in discrete time at each time step one vertex is chosen (uniformly) to update its
opinion, whereas in the continuous time setting each vertex updates at the ring times of an
independent exponential clock. After its conception, the voter model attracted the attention
of probabilists (and later theoretical computer scientists) and several results have been proved
in both the finite-vertex set and infinite-vertex set regimes. In this paper we only consider the
finite-vertex setting, where the focus has predominantly been on estimating the consensus
time defined as the time at which all vertices have the same opinion [4, 12, 13, 22, 25, 34].

Variations of the voter model are ubiquitous, and have been studied to investigate robust-
ness to perturbations in the dynamics, or to allow for increased applicability. These variations
include models with multiple opinions [43], the existence of one or more zealots/stubborn
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vertices [24], constrained voter models [28], the antivoter model [39], and the process on
dynamic graphs [3] or random graphs [42].

In this work we focus on analysing the noisy voter model introduced in [21] (and indepen-
dently in [26]), which is a modification of the voter model in which the opinions are affected
by an external noise. The dynamics are very similar to the voter model: upon selecting a
vertex x for updating, with some probability p, x independently re-randomizes its opinion
(choosing either opinion 0 or 1 with equal probability), otherwise (with probability 1 − p)
x performs an imitation step. Note that by choosing p = 0 we recover the standard voter
model, whereas with p = 1 only re-randomization occurs. The noise allows for more inter-
esting large-time behaviour in finite systems, as configurations of complete consensus are no
longer absorbing. The external noise causes spontaneous opinion changes and provides an
opposing force to the standard voter dynamics which seeks consensus.

To the best of our knowledge, for finite vertex set V , the probability literature has so far
only considered mixing times. Suppose |V | = n and let P be a transition matrix. If p = 1
(only re-randomization occurs) the process is equivalent to a lazy Markov chain on a hy-
percube on 2n vertices, and so the mixing time is Θ(n logn). When the noise parameter
p ∈ (0,1) is constant and P is the transition matrix of a random walk on a graph, [37] shows
that in the continuous time setting (where imitation steps occur at rate 1 and re-randomization
at constant rate) the mixing time of the noisy voter model is O(logn). This translates to a
O(n logn) mixing time for the discrete case. Recently Cox, Peres and Steif [15] proved that,
under appropriate conditions, the mixing time of the noisy voter model (in discrete time1) is
n logn/(2p), and that it exhibits total variation cut-off. The noisy voter model has been stud-
ied more extensively in the physics literature. Of particular relevance here is the observation –
obtained through numerical analyses – of the possible existence of a critical rate for the noise
parameter such that if p = p(n) tends to 0 slower than the critical rate then the noise term
dominates the dynamics, whereas if p tends to 0 faster than this rate the dynamics is closer to
the voter model [6, 35]. We provide theoretical results demonstrating this phenomenon and
conjecture its precise nature for general settings (Conjecture 7).

Our focus is on a particular function of the noisy voter model known as the density process
in the probability literature [10, 14] and the link magnetisation [36] or the degree-weighted
magnetisation [45] in the physics literature. Consider a transition matrix P on n vertices, let
p ∈ [0,1] and ξt(v) denote the opinion of vertex v ∈ V at time t in the noisy voter model
(formal definitions appear in the next section). The time t state of the density process is
defined as St :=

∑
x∈V π(x)ξt(x) where π is the stationary distribution of P (assuming it

exists). Thus the density process models the evolution of the weight (according to π) of
opinion 1. Our motivation for choosing the pre-factor π(x) is that, for the non-noisy voter
model, the quantity St is then conserved under the dynamics, that is, E[St+1 | St] = St almost
surely. The quantity 1

n

∑
x ξt(x) would be natural in the context of edge-updates (i.e. instead

of selecting a vertex for opinion-updating, we select an edge) as it is conserved under this
dynamic. Further, if we assume that P is reversible and that each vertex has a spin value +1
or −1 (instead of an opinion), then the magnetisation of an edge e is the average spin of both
endpoints, and the link magnetisation is the expected magnetisation of a random edge (x, y)
chosen with probability π(x)P (x, y). When P is the (lazy) transition matrix of a random
walk on a graph, the link magnetisation is just the expected average spin of a randomly
chosen edge.

The analysis of the evolution of St over time, and especially its large-time behaviour, pro-
vides insight into the dependency of the noisy voter model on the noise parameter p, allowing

1their main results are presented in continuous time, but for comparison purposes we present their result in
discrete time
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us to identify different regimes as p varies in [0,1]. In particular, we show a transition from
an ordered regime for p small to a disordered regime for p large, which gives support to many
of the results empirically found in [36], especially when P is the transition matrix of a simple
random walk on a large graph.

Our results are expressed in terms of S = limt→∞ St (which exists in distribution). We
prove that for p sufficiently small (depending on the transition matrix P ), S converges (as
|V | tends to infinity) to a Bernoulli distribution (Proposition 6), indicating that in equilib-
rium almost all vertices have the same opinion as in the usual voter model. Conversely we
show that for p sufficiently large (converging to a non-zero constant or to zero sufficiently
slowly) S (normalised appropriately) converges to a Gaussian random variable (Theorem 1,
Corollaries 3, 4, and 5) and so in particular there are positive proportions (according to the
stationary distribution π of P ) of each opinion present at equilibrium. As far as we are aware,
our work is the first to study the asymptotic behaviour of the noisy voter model in which the
noise parameter p can be unbounded from below when the size of the graph tends to infinity.

Throughout, P is chosen as the transition matrix of the simple random walk on a graph G,
and our results are expressed in terms of the graph structure. For several graph families we
obtain the precise critical rate pc = pc(|V |), in the sense that if p≪ pc then S converges to
Bernoulli, and p≫ pc implies that (normalised) S converges to Gaussian (Proposition 8). In
all cases we find that the critical probability pc is proportional to the inverse of the meeting
time of two independent walks (started from stationarity). Obtaining the critical rate for the
cycle and the 2D torus is particularly challenging and requires special treatment and care-
ful analysis (Proposition 9). The cycle is particularly interesting as on the cycle the noisy
voter model is identical to the stochastic Ising model, see for example [15] (the relationship
between the inverse temperature β and the noise parameter p is 4β = log(2/p− 1).)

There are two key ideas behind the proof of Theorem 1 (which is used for all results
presented here pertaining to Gaussian convergence): duality and Stein’s method. Duality for
the voter model has been known since the original works on the model [11, 14, 23, 31] and
allows for the application of the rich theory of random walks. Stein’s method (introduced in
[44]) is a powerful technique for proving approximation results (see for example the survey
[41]). An application of a particular version in [40] is a key contribution to the proof of
Theorem 1, providing general conditions for Gaussian convergence. This approximation has
been used in [32] to obtain conditions for Gaussian convergence in a voter-like model. Stein’s
method has also been used to obtain Gaussian convergence in the antivoter model for the
proportion of vertices with opinion 1 at stationarity [39]. More generally, versions of Stein’s
method have been used with other particle system/statistical mechanics problems: to various
systems including the voter model [20]; to discrete Gibbs measures [17]; to the magnetisation
in the Curie–Weiss model (Ising model on the complete graph) [5, 8, 9, 16].

In the remainder of this section we present the main results. Then, in Section 2 we construct
a dual process to the noisy voter model. While only a small modification is required to the
standard dual (to the voter model), for completeness we include the argument. We then use
this duality to prove some key properties of the noisy voter model in Section 3 including
identities for the mean and variance of S and the proof of all the results of Section 1.3, except
Theorem 1 which features in Section 4, and Proposition 9 (results for the cycle and torus).
The second half of the paper, Section 5, is devoted to the cycle and torus which requires ad-
hoc arguments utilising structural properties of these graphs. The Appendix collects useful
results used throughout.

1.2. Formal description of the model and object of interest. Here we present a formal
definition of the noisy voter model and the statistic S. Let P be the transition matrix of an
irreducible discrete-time random walk on a finite set of vertices V and let π denote the unique
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stationary distribution of P . The noisy voter model on V associated with P is a discrete-time
Markov chain (ξt)t∈N in the space {0,1}V in which all vertices have an initial opinion in
{0,1}. At each time-step, with probability p select a uniform vertex x and re-randomise its
opinion, i.e.choose an opinion from {0,1} uniformly. Otherwise, (with probability q = 1−p)
perform a standard (imitation) step of the voter model.

The transition matrix of (ξt)t∈N, denoted Q, can be given explicitly. Suppose the configu-
rations ξ and ξ′ differ only in the value of x ∈ V , i.e. ξ(y) ̸= ξ′(y) ⇐⇒ y = x, then

Q(ξ, ξ′) = P(ξ1 = ξ′|ξ0 = ξ) =

{ p
2n + q

n

∑
y∈V P (x, y)ξ(y) if ξ(x) = 0,

p
2n + q

n

∑
y∈V P (x, y)(1− ξ(y)) if ξ(x) = 1,(1)

where n= |V |. If ξ and ξ′ differ at more than one vertex then Q(ξ, ξ′) = 0. Finally, Q(ξ, ξ) =
1−

∑
ξ′ ̸=ξQ(ξ, ξ′). We write NVM(V,P, p) for this process.

Observe that if p > 0 then all configurations in {0,1}V are reachable due to re-
randomization, i.e.Q is irreducible. Moreover, with probability at least p/2, no vertex changes
its opinion at a given time step, so Q is aperiodic. It follows that NVM(V,P, p) has a unique
stationary distribution, which we denote by Γ.

Given a vector ξ ∈ {0,1}V , we define the object of interest S(ξ) :=
∑

x∈V π(x)ξ(x) where
π is the stationary distribution of P and ξ is a random {0,1}-valued vector with distribu-
tion Γ. Thus S = S(ξ) is a random variable, and the value of S is given by the π-measure of
the set of vertices with opinion 1.

When p = 0, the noisy voter model reverts to the voter model with transition matrix P .
In such a case, the voter model reaches an ordered state of consensus, that is, a fixed state
where all opinions are the same. Thus the process NVM(V,P, p) does not have a unique
stationary distribution; indeed, it has two absorbing states: the state where all opinions are 1,
and another where all opinions are 0.

On the other hand, if p = 1, then only re-randomization occurs, and thus the chain is a
lazy random walk on the hypercube. It follows that Γ(ξ) = 1/2n for all ξ ∈ {0,1}V , that is,
the components of ξ are i.i.d. Bernoulli random variables of parameter 1/2. In this case we
have E(S) = 1/2 and Var(S) =

∑
x∈V π2(x)/4, and so S−1/2√

Var(S)
converges in distribution

(when n tends to infinity) to a standard Gaussian if maxy∈V {π(y)2/
∑

x∈V π(x)2} → 0 by
Lindeberg’s central limit theorem.

Our results, presented below, provide much finer detail on the transition from order to
disorder.

1.3. Results. We introduce some more notation before presenting the main results. Set
π∗ := maxx∈V π(x), ν2 :=

∑
x∈V π(x)2, and for x, y ∈ V , µ(x, y) := π(x)2P (x, y)/ν2. We

use the letter ξ to denote a sample from Γ, the stationary distribution of NVM(V,P, p).
Finally, let σ2 :=Var(S) denote the variance of S, and W := S−E(S)

σ denote the standardis-
ation of S. Sometimes, we will consider sequences {NVM(Vn, Pn, pn) : n≥ 1} of the noisy
voter model indexed by |Vn| = n ≥ 1 and, in this case, we will include the subindex n for
all above definitions (e.g.Sn, σn,Wn, πn). We will always assume for each n≥ 1 that Pn is
irreducible, and that pn is non-increasing in n.

We denote convergence in distribution by D⇒, e.g. Xn
D⇒X , and all limits given are taken

when n tends to infinity (unless otherwise stated).
Our first result gives sufficient conditions for Wn converging to a Gaussian random vari-

able as n tends to infinity. While the statement may appear a little cumbersome, the condi-
tions required follow naturally from a version of Stein’s method and the result in this form
increases the ease of application. We present simplified versions of the result for particular
situations in the ensuing corollaries.
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THEOREM 1 (General conditions for Gaussian convergence). Consider a noisy voter
model NVM(V,P, p) with |V |= n, and let ξ ∼ Γ. Let Φ denote the cumulative distribution
function of a standard Gaussian random variable on R. Then there exists a universal constant
C > 0 such that

sup
t∈R

∣∣∣P(S − 1/2

σ
≤ t
)
−Φ(t)

∣∣∣≤C
{(π∗

σ

)3n
p
+
(π∗

σ

)2√n

p
+

ν2

pσ2

√
VarΨ

}
,(2)

where the random variable Ψ is given by Ψ :=
∑

x∈V
∑

y∈V µ(x, y)1{ξ(x) ̸=ξ(y)}. Moreover,
we have that

Var(Ψ)≤ 16σ2(π∗)2ν−4.(3)

In particular, if a sequence of noisy voter models NVM(Vn, Pn, pn) (with |Vn|= n) satisfies

n

pn

(
π∗
n

σn

)3

+
π∗
n

σnpn
→ 0(4)

then Wn
D⇒N(0,1).

The term 1/2 in the standardisation of S in equation (2) comes from the fact that E(S) =
1/2, see Proposition 13. We also remark that (4) follows from substituting the bound on the
variance of Ψ from (3) into (2).

The following lemma gives two bounds that can be used to obtain immediate applications
of Theorem 1.

LEMMA 2 (Variance lower bounds). Consider the noisy voter model NVM(V,P, p). The
following two lower bounds for σ2 hold:

1. 4σ2 ≥ ν2,
2. for p≤ 1/2, 4σ2 ≥ (1 + 4pthit)

−1 , where thit =maxx,y∈V Ex(Ty), and Ty is the hitting
time of y ∈ V by the random walk associated with P .

We present the proof of Lemma 2 in Section 3. Combining Theorem 1 with Lemma 2
yields simple conditions to establish a Gaussian limit regime for a sequence of noisy voter
models NVM(Vn, Pn, pn), which we present next.

COROLLARY 3 (Simple conditions for Gaussian convergence). For each n≥ 1 consider
a noisy voter model NVM(Vn, Pn, pn) with |Vn|= n. If(

π∗
n

νn

)3 n

pn
→ 0 as n→∞,(5)

then Wn
D⇒N (0,1).

Now consider the case in which V is the vertex set of a connected graph and P the tran-
sition matrix of the random walk on this graph. It is standard that the stationary distribution
of P is given by π(x) = d(x)/(2m) where d(x) is the degree of x, and m is the number of
edges of the graph. In this setting, we can rewrite the conditions of Corollary 3 to obtain the
following:

COROLLARY 4 (Gaussian convergence for random walks). Let Gn be a sequence of
connected graphs with vertex sets Vn of size n, and let dn(x) be the degree of vertex x in Gn.
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Consider the noisy voter model NVM(Vn, Pn, pn) where Pn is the transition matrix of the
random walk on Gn. If (

maxx∈V dn(x)√∑
x∈V dn(x)2

)3
n

pn
→ 0 as n→∞,(6)

then Wn
D⇒N (0,1).

In the case that pn is a fixed constant in (0,1), the condition π⋆
n/νn = o(n−1/3) implies (6),

while (6) implies π⋆
n/νn → 0. The condition π⋆

n/νn = o(n−1/3) is satisfied by many families
of graphs, e.g. for n-vertex regular graphs, we have π⋆

n/νn = n−1/2, in which case we need
pn ≫ n−1/2 to satisfy equation equation (6). On the other hand it is not satisfied by, for
example, the star graph, since ν2n/4≥ 1/16.

COROLLARY 5 (Gaussian convergence for random walks on regular graphs). Let Gn be
a sequence of regular graphs with vertex sets Vn of size n, and let Pn be the transition matrix
of the random walk on Gn, and consider a sequence of noisy voter models NVM(Vn, Pn, pn).

If pn ≫ n−1/2, then Wn
D⇒N (0,1).

We also show that for very small values of pn, the distribution of Sn converges in distri-
bution to a Bernoulli random variable:

PROPOSITION 6 (Conditions for Bernoulli convergence). For each n ≥ 1, consider
a noisy voter model NVM(Vn, Pn, pn). Let Mn be the meeting time of two independent
continuous-time random walks (moving at rate 1 each according to Pn) started from sta-
tionarity. If pnE(Mn)→ 0 then σ2

n → 1/4 and Sn
D⇒Ber(1/2).

The following conjecture is natural; however it seems hard to prove in general, even for
regular graphs.

CONJECTURE 7. For each n≥ 1, consider a noisy voter model NVM(Vn, Pn, pn) such

that π∗
n/νn → 0. If pnE(Mn)→∞ then Wn

D⇒N (0,1).

We expect our techniques are not sufficient to obtain a proof of Conjecture 7, as the con-
dition in the conjecture involves (expectations of) meeting times of only two particles; on
the other hand the conditions appearing in Theorem 1 (in particular for the quantity Var(Ψ))
involve meeting times of four particles. Thus the conditions in Theorem 1 are likely stronger
than needed as probabilities of events involving four particles typically can not be bounded
by probabilities of events involving just two particles, except if the graph has nice structural
properties such as fast mixing.

Note that Proposition 6 combined with the previous conjecture suggests that for transition
matrices Pn with π∗

n/νn → 0 the inverse expected meeting time is the critical rate of pn which
separates the ordered and disordered phases.

The next result identifies conditions for which the critical rate pc is equal to 1/n. Re-
call that thit =maxx,y∈V Ex(Ty), with Ty is the hitting time of y ∈ V by the random walk
associated with P .

PROPOSITION 8 (General conditions for order-disorder transition). For each n≥ 1, con-
sider a noisy voter model NVM(Vn, Pn, pn) such that thit =O(n) and π∗

n =O(1/n).
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1. If pnn→∞ then Wn
D⇒N (0,1).

2. If pnn→ 0 then Sn
D⇒Ber(1/2).

The conditions of Proposition 8 are satisfied by Pn the random walk on several graph
families including hypercubes, regular expanders, grids and tori in dimension larger than 2,
and complete graphs.

On the other hand, these general results do not cover two important cases: the cycle, which
we denote Cn to indicate it has n vertices, and the two-dimensional torus, denoted by Tn to
indicate it has n vertices (note that when writing Tn we are implicitly assuming that n is
a square number). For these graphs, we do not only need a sharp lower bound for σ2

n but
also better control of the term at the right-hand side of (2), which requires some ad-hoc
arguments. For the cycle the proof features several couplings with a random walk on the
integers, and thus it cannot be extended to other graphs, whereas our argument on the torus
may be extended to other transitive graphs.

PROPOSITION 9 (Order-disorder transition for cycle and 2D torus). Consider the noisy
voter model NVM(Vn, Pn, pn) where Pn is a sequence of transition matrices associated with
the random walk on the graph Gn = (Vn,En), and pn is non-increasing. Then the following
holds true:

1. Let Gn =Cn be the cycle on n vertices. If pnn2 →∞ then Wn
D⇒N (0,1), and if pnn2 →

0 then Sn
D⇒Ber(1/2).

2. Let Gn = Tn be a 2-dimensional torus on n vertices. If pnn logn → ∞ then Wn
D⇒

N (0,1), and if pnn logn→ 0 then Sn
D⇒Ber(1/2).

Note that on both the cycle and the torus, the cases of convergence of Sn to a Ber(1/2)
random variable follow directly from Proposition 6.

In order to apply Theorem 1 to obtain the Gaussian convergence results in Proposition 9,
we require bounds on σ2

n and Var(Ψn). Consider the case of the cycle. Using duality, we can
relate σ2

n to the probability that two independent random walks on the cycle – started from
uniformly chosen locations – have meeting time less than an independent Geo(p) random
variable (which plays the role of the noise). In fact, σ2

n can be computed explicitly in terms
of p and n (for the cycle), see Lemma 27. Duality can also be used to relate Var(Ψn) to
events involving four coalescing random walks. The relevant events are of the form: two
particular walkers meet before any other walkers meet and this first meeting time is less than
a Geo(p) random variable which itself is less than the meeting time of another particular pair
of walkers. Controlling the probability of such events is challenging due to the complicated
dependencies and we make use of several martingale optional stopping arguments together
with the FKG inequality. This type of problem is similar to those studied in [1].

REMARK 10 (Discrete-time vs continuous-time). Although the results in this paper are
given for the discrete-time version of the noisy voter model, they can also be established for a
continuous-time version. In the continuous-time setting, we have a transition-rate matrix R=
(r(x, y) : x, y ∈ V ), and a noise rate δ. Each vertex x adopts the opinion of vertex y at rate
r(x, y), and re-randomises its opinion at rate δ (equivalently, flips its opinion at rate δ/2). We
can then transform the continuous-time process into a discrete one with the same stationary
distribution by using the standard uniformalisation method. Indeed, for given transition-rate
R, and noise rate δ, the analogue discrete process has transition matrix P = I + R

rmax
, where

rmax = max{|r(x,x)| : x ∈ V } is the maximum transition rate from any x ∈ V , and re-
randomisation probability p= δ/(rmax + δ). Note the stationary distribution of P and R are
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the same, so the results of this paper are consistent in both settings. We can also transform
the discrete model into a continuous one; for this, each vertex x re-randomises its opinion at
rate p, and adopts the opinion of vertex y at rate (1− p)P (x, y).

NOTATION. We make use of standard asymptotic notation. Given positive real-valued
functions f and g, we say that f(x) =O(g(x)) or f(x)≲ g(x) if limsupx→∞ f(x)/g(x)≤
C for some constant C > 0.

Similarly f(x) = Ω(g(x)) or f(x) ≳ g(x) if lim infx→∞ f(x)/g(x) ≥ c > 0 for some
constant c; and f(x) = Θ(g(x)) or f(x)≍ g(x) if and only if f(x) = O(g(x)) and f(x) =
Ω(g(x)). Finally, f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0, in particular f(x) = o(1) im-
plies that limx→∞ f(x) = 0.

We use the following set notation: if S is a finite set and k ∈N, we write Sk for the set of
k-tuples from S and (S)k for the set of k-tuples from S without repeats. Additionally, we use
standard language and notation of basic graph theory, in particular x∼ y means that vertices
x and y are neighbours.

2. The dual process. It is classical that the voter model has a dual process of coalescing
random walks, see for example [31]. The noisy voter model also enjoys a coalescing random
walk dual process that allows us to recast probabilities involving the noisy voter model in
terms of probabilities involving the dual (see Proposition 11) which are often more tractable,
and allows for more informative sampling of the stationary distribution Γ.

To be more specific, we use a version of Stein’s method (Theorem 34) to obtain conditions
(involving variance and covariance) for Gaussian convergence. The dual process will allow us
to transform the variance, respectively covariance, estimation problem into one of estimating
probabilities of events related to interactions between two, respectively four, particles.

2.1. Voter model with stubborn vertices. Consider a noisy voter model NVM(V,P, p).
Before constructing its dual, we introduce a process called the voter model with stubborn
vertices, so-called as it features vertices whose opinions remain unchanged over time (see
[47] for further discussion on the voter model with stubborn vertices).

The role of the stubborn vertices is to encode each re-randomisation step of the noisy voter
model as instead a step of the (non-noisy) voter model. To this end, we augment the vertex
set V with two additional (stubborn) vertices denoted 0 and 1, set Ṽ = V ∪{0,1}, and define
a transition matrix P̃ on Ṽ as

(7) P̃ (x, y) =


qP (x, y) x, y ∈ V,
p/2 x ∈ V,y ∈ {0,1},
1 y = x,x ∈ {0,1},
0 otherwise.

Observe that the state of all 0s and the state of all 1s are the unique absorbing states of P̃ .
The voter model with stubborn vertices is the discrete-time model in which each vertex in

Ṽ has an opinion in {0,1} and which at each step chooses uniformly a vertex x from V (not
Ṽ ) and updates the opinion of the chosen vertex to the opinion of vertex y with probability
P̃ (x, y). Stubborn vertex 0 (respectively 1) has opinion 0 (respectively 1) for all time.

Writing (ξt)t≥0 for this process of opinions (we take its state space to be {0,1}V but can
extend ξt to a function on Ṽ by setting (ξt(0), ξt(1)) = (0,1)) we see that (ξt)t≥0 is precisely
the noisy voter model. The purpose of this new process will become apparent in the next
section.
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2.2. The dual process. Consider the following discrete-time process: initialise by placing
a particle on each x ∈ V and label it with its host vertex. At each time step choose a vertex
x from V uniformly and move all particles at x to y ∈ Ṽ with probability P̃ (x, y) with P̃
defined in (7). Note that particles stay together upon meeting.

Observe that when a particle reaches 0 or 1 it never moves again, and we say the particle is
absorbed. Note that all particles are eventually absorbed. Indeed, consider particle x: at each
time-step, the vertex containing x is chosen with probability 1/n, and then it is absorbed into
{0,1} with probability p. Thus, particle x is absorbed in Geometric(p/n) steps, and so all
particles are absorbed in finite time almost surely. We define the absorption time τabs as the
time that all particles are absorbed. Formally, denote by Yt the vector whose entries are the
positions of all particles at time t, i.e.Yt(x) denotes the position of particle x at time t (note
that Y0(x) = x). The absorption time is

τabs := min{t : Yt(i) ∈ {0,1} for all i ∈ V }.

Finally, define the random variable B(x) to be 1 if particle x is absorbed by 1, otherwise
B(x) = 0. For purposes of the analysis, it is convenient to define B(1) and B(0) as constants
taking the values 1 and 0 respectively (i.e. if a particle starts in 1, then it is already absorbed
by 1).

The relation between the voter model with stubborn vertices (ξt)t≥0, and the coalescing
particle system (Yt)t≥0 is established in the following result.

PROPOSITION 11 (Duality). Let Γ be the stationary distribution of the noisy voter model
(or voter model with stubborn vertices). For each ξ ∈ {0,1}V , it holds that

P(B(i) = ξ(i),∀i ∈ V ) = Γ(ξ),(8)

i.e. the distribution of the random vector (B(i))i∈V is the same as the stationary distribution
of the noisy voter model (or voter model with stubborn vertices).

The proof of Proposition 11 is a straightforward application of the graphical representation
of the voter model/coalescing random walks; however, for completeness we include a proof.

PROOF. Let (ξt)t≥0 be the voter model with stubborn vertices and (Yt)t≥0 the coalescing
particle system. Recall that ξt(0) = 0 and ξt(1) = 1.

For a pair of vertices (v,w) ∈ V × Ṽ define Mv,w : {0,1}Ṽ → {0,1}Ṽ such that ξ′ =
Mv,wξ satisfies ξ′(u) = ξ(u) for every u ∈ Ṽ \ {v}, and

ξ′(v) =


ξ(w) if w ∈ V

1 if w = 1

0 if w = 0

,

in other words, ξ′ is the result of vertex v imitating the opinion of vertex w in state ξ.
Let Y be a state of the dual process, i.e. Y ∈ Ṽ V where Y (i) indicates the current posi-

tion of particle i. For (v,w) ∈ V × Ṽ , define the operator M ′
v,w : Ṽ V → Ṽ V that moves all

particles located in vertex v to vertex w. that is, for any particle i such that Y (i) = v, then
Y ′ =M ′

v,wY is such that Y ′(i) =w.
We start by proving that for each T ≥ 0 and each ξ, ξ′ ∈ {0,1}V , it holds that

P(ξT = ξ′|ξ0 = ξ) = P(ξ(YT ) = ξ′),(9)

where ξ(Yt)(i) = ξ(Yt(i)). To prove equation (9) we couple the voter model and its dual on
t = 0, . . . , T . Recall that a coupling ((ξct , Y

c
t ) : t ∈ {0, . . . , T}) is such that marginally the
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distributions of (ξt)Tt=0 and (ξct )
T
t=0 are the same and the distributions of (Yt)Tt=0 and (Y c

t )
T
t=0

are also the same.
Define a probability measure m on V × Ṽ as

(10) m(v,w) =
P̃ (v,w)

n
.

Let u= ((vt,wt) : t ∈ {1,2, . . . ,}) be an i.i.d collection of random elements in V × Ṽ sam-
pled with distribution m. We use u to couple the processes.

For t ∈ {1, . . . , T} define Mt = Mvt,wt
. Define the {0,1}V -valued process (ξct : t ∈

{0,1, . . . , T}) as

ξct =

{
ξ, if t= 0,

Mtξ
c
t−1, if t ∈ {1, . . . , T},

where ξ ∈ {0,1}V is given. Observe that (ξct : t ∈ {0,1, . . . , T}) is distributed as the first T
rounds (ξt)t≥0 starting with initial opinion ξ.

On the other hand, for t ∈ {1, . . . , T}, define M ′
t =M ′

vT−t+1,wT−t+1
. Define the Ṽ V -valued

process (Y c
t : t ∈ {0,1, . . . , T}) as

Y c
t =

{
ι, if t= 0,

M ′
tY

c
t−1, if t ∈ {1, . . . , T},

(11)

where ι is the identity map. In this case (Y c
t : t ∈ {0, . . . , T}) is distributed as the first t

rounds of the dual coalescing process (Yt)t≥0.
The key observation is that for every i and for all t ∈ {0, . . . , T}

ξcT−t(Y
c
t (i)) = ξcT (i),(12)

where we assume that ξt(0) = 0 and ξt(1) = 1. To prove (12) we fix in advance the sequence
uT = ((vt,wt) ∈ V × Ṽ : t ∈ {1, . . . , T}) and use induction.

For t= 0, since Y c
0 (i) = i we have ξcT (Y

c
0 (i)) = ξcT (i). Assume the result holds for some

t < T . We prove it holds for t + 1. Using that MT−t = MvT−t,wT−t
from the definition of

ξcT−t =MT−tξ
c
T−t−1, we have that

ξcT (i) = ξcT−t(Y
c
t (i)) =

{
ξcT−t−1(wT−t), if Y c

t (i) = vT−t,

ξcT−t−1(Y
c
t (i)), if Y c

t (i) ̸= vT−t.
(13)

On the other hand, by using that M ′
t+1 =M ′

vT−t,wT−t
,

Y c
t+1(i) =

{
wT−t, if Y c

t (i) = vT−t,

Y c
t (i), if Y c

t (i) ̸= vT−t.
(14)

Therefore, from equations (13) and (14) we get that ξcT−t−1(Y
c
t+1(i)) = ξcT (i) for all i ∈ V ,

completing the proof of (12).
A particular case of equation (12) for our coupled variables is that ξc0(Y

c
T ) = ξcT . Then, for

all ξ, ξ′ ∈ {0,1}V we have

P(ξT = ξ′|ξ0 = ξ) = P(ξcT = ξ′|ξc0 = ξ) = P(ξ(Y c
T ) = ξ′) = P(ξ(YT ) = ξ′).(15)

Now that equation (9) is proved, we can forget about the coupling and work with the original
processes. By taking limits in both sides of equation (9) when T tends to infinity, we can
recover equation (8). Indeed, on the left-hand side of equation (9) we have that

lim
T→∞

P(ξT = ξ′|ξ0 = ξ) = Γ(ξ′)(16)
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since the stationary distribution of ξT is Γ. On the other hand, since limT→∞ P(τabs ≤ T ) =
1, by taking limit on the right-hand side of equation (9) we have

lim
T→∞

P(ξ(YT ) = ξ′) = lim
T→∞

P(ξ(YT ) = ξ′, τabs ≤ T )

= lim
T→∞

P(ξ(Yτabs) = ξ′, τabs ≤ T )

= P(ξ(Yτabs) = ξ′)

= P(B(i) = ξ′(i),∀i).

REMARK 12 (Dual time relation). Since the speed of the dual process is not relevant
(in the sequel we are only concerned with the orderings of meeting and absorption times),
sometimes it will be convenient for us to consider the continuous-time version of the process
defined as follows. Each vertex x ∈ V is provided with an independent exponential clock of
rate 1/(1 − p). Each time the clock of x ∈ V rings, it moves all its particles, if any, using
the transition matrix P̃ . Note that with probability P̃ (x,x) the particles do not move. Thus,
a vertex rings and any present particles jump at rate 1 (deciding where to move by using P ),
and at rate p/(1−p) any particles on a particular vertex are absorbed into one of the stubborn
states.

The continuous-time version is slightly more convenient as particles are independent until
they meet or are absorbed by one of the stubborn vertices.

We finally note that moving between continuous and discrete-time does not affect the
validity of Proposition 11.

3. Basic properties of NVM(V,P,p). In this section we prove some basic properties
of NVM(V,P, p), in particular properties of the random variable S =

∑
x∈V π(x)ξ(x) where

ξ is sampled from the stationary distribution Γ of NVM(V,P, p), and π is the stationary
distribution of P . These properties feature in the proofs of the results presented in Section 1.3.
In all cases we assume p ∈ (0,1) to avoid trivial cases.

Associated with the dual process of coalescing random walks we define the following
random variables. Under the standard convention that inf{∅}=∞, we define the absorption
time of particle i as τY (i) = inf{t ≥ 0 : Yt(i) ∈ {0,1}}, i.e. τY (i) is the hitting time of the
set {0,1}. Also, for i, j ∈ V define τY (i),Y (j) = inf{τY (i), τY (j)}. We write MY (i),Y (j) =
inf{t≥ 0 : Yt(i) = Yt(j) ∈ V }, i.e MY (i),Y (j) is the meeting time of particles i and j. Notice
that we are only considering meetings that happen in vertices of V and not in the stubborn
vertices 0 nor 1. Hence, MY (i),Y (j) can be infinity, even if both particles are absorbed by the
same vertex. For i, j ∈ V define the event Eij = {MY (i),Y (j) < τY (i),Y (j)}= {MY (i),Y (j) <

∞}. For convenience we define MY (i),Y (i) = 0, and thus P(Eii = 1).
Finally, we will frequently couple the dual process with an independent random walks

process. Given an integer m≥ 1, we say that (Xt(1), . . . ,Xt(m))t≥0 is a RW(m,P ) process
if all the random walks X(i) are independent, and they move according to the transition
matrix P . We will allow time to be continuous or discrete (which shall be made clear when
we use the process); in the case of continuous time the walks jump at rate 1, unless stated
otherwise. It follows from independence that the particles in RW(m,P ) do not coalesce upon
meeting and there is no absorption (in particular they always move in V ). Given x ∈ V m (or
a measure q ∈ V m), we use PRW

x (PRW
q ) to denote the measure with respect to RW(m,P )

when the walks start from x (from q). Finally, we write RW or RW(m) when m and P are
clear from the context. We also write MXi,Xj to denote the meeting time of the walk Xi and
Xj in RW(m,P ).

PROPOSITION 13. In NVM(V,P, p) we have E(S) = 1/2.
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PROOF. By Proposition 11, we know that (B(i))i∈V and ξ have the same distribution, and
so the same marginal distributions. In particular, for all x ∈ V , it holds that P(ξ(x) = 1) =
P(B(x) = 1). Moreover, note that P(B(x) = 1) = 1/2 since in the dual process, each particle
is absorbed by either 0 or 1 with equal probability. (Equation (7) gives the probability that a
particle at v transitions to w in a given step.) Therefore

E(S) =
∑
x∈V

π(x)E(ξ(x)) =
∑
x∈V

π(x)P(ξ(x) = 1) = 1/2.

LEMMA 14. Consider NVM(V,P, p), and let σ2 =Var(S). Then

σ2 =
1

4

∑
x∈V

∑
y∈V

π(x)π(y)P(Exy)

PROOF. Recall that

σ2 =Var

(∑
x∈V

π(x)ξ(x)

)
=
∑
x∈V

∑
y∈V

π(x)π(y)Cov(ξ(x), ξ(y)).

By Proposition 11, the vector (B(x))x∈V has the same stationary distribution as ξ. Thus

σ2 =
∑
x∈V

∑
y∈V

π(x)π(y)Cov(B(x),B(y)).

From the definition of covariance,

Cov(B(x),B(y)) = E(B(x)B(y))−E(B(x))E(B(y)) = E(B(x)B(y))− (1/4).(17)

Given the event Exy = {MY (x),Y (y) < τY (x),Y (y)}, observe that E(B(x)B(y)|Exy) = 1/2:
if both particles meet before either one is absorbed, they move together and their final state
is the same. They are absorbed by 1 with probability 1/2, and by 0 otherwise. On the other
hand, E(B(x)B(y)|Ec

xy) = 1/4 since both particles are absorbed at different times and thus
their final states are independent given Ec

xy . Hence

Cov(B(x),B(y)) = (1/2)P(Exy) + (1/4)P(Ec
xy)− 1/4 = (1/4)P(Exy).

PROOF OF LEMMA 2. We begin with the first item. Since P(Exx) = 1 for all x ∈ V , then
Lemma 14 yields

σ2 =Var(S)≥ (1/4)
∑
x∈V

π(x)2P(Exx) = (1/4)
∑
x∈V

π(x)2 = ν2/4.

For the second item, as was discussed previously P(Exy) has the same value if we consider
discrete or continuous time since this only affects the speed of the process. For this proof
it is more convenient to work in continuous time for which particles in the dual move at
rate 1 and are absorbed by the stubborn vertices at rate δ := p/(1− p). Note that up to time
MY (x),Y (y) ∧ τY (x),Y (y), the particles Y (x), Y (y) move like independent continuous-time
random walks, and the time τY (x),Y (y) is independent of Y (x), Y (y) and is exponentially
distributed with rate 2δ. Hence, we can naturally couple (Y (x), Y (y)) with a RW(2, P )
process (X1,X2) up to time MY (x),Y (y) ∧ τY (x),Y (y). Thus

1− P(Ex,y) = P(MY (x),Y (y) > τY (x),Y (y)) = PRW(2)
(x,y) (MX1,X2 >Z)(18)

where MX1,X2 denotes the meeting time of the independent random walks X1,X2 and Z is
an independent exponential random variable of rate 2δ.
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By multiplying (18) by π(x)π(y) and summing over all x, y ∈ V , Lemma 14 yields

1− 4σ2 = PRW
π2 (MX1,X2 >Z) =

∫ ∞

0
PRW
π2 (MX1,X2 > t)2δe−2δtdt,(19)

Recall that X1 and X2 move on state space V at rate 1 according to the transition matrix
P . Then from [33, Lemma 1.7], we have

Pπ2(MX1,X2 > t)≤ e−t/thit ,

where we recall that thit = maxx,y∈V Ex(Ty), with Ty is the hitting time of vertex y ∈ V .
Therefore,∫ ∞

0
PRW
π2 (MX1,X2 > t)2δe−2δtdt≤ 2δ

∫ ∞

0
exp

(
−t

(
1

thit
+ 2δ

))
dt

=
2δ

1
thit

+ 2δ
=

2δthit
1 + 2δthit

.

By plugging this inequality into (19) we obtain

4σ2 ≥ 1− 2δthit
1 + 2δthit

=
1

1+ 2δthit
.

Note that thit is the same in either continuous or discrete time, so the identical bound holds
in either setting. Using the previous inequality and the assumption p≤ 1/2, we obtain

4σ2 ≥ 1

1 + 2δthit
≥ 1

1 + 4pthit
.

Using a similar argument we next prove Proposition 6.

PROOF OF PROPOSITION 6. We shall show that σ2
n → 1/4, and so, since the Bernoulli

random variable of parameter 1/2 is the only distribution taking values in [0,1] with variance
1/4, we will have proven the result.

Following the same argument of the proof of Lemma 2 we just have to prove that

PRW(2)
π2
n

(MX1,X2 >Z)→ 0,

where (X1,X2) is a continuous-time RW(2, Pn) process on Vn moving at rate 1 according
to Pn, and Z is an exponential random variable of rate 2pn/(1− pn).

In the following computations we omit the subscript n to ease notation. Let tmeet =

ERW(2)
π2 (MX1,X2), and δ = p/(1− p), then

PRW(2)
π2 (MX1,X2 >Z) =

∫ ∞

0
Pπ2(MY (x),Y (y) > t)2δe−2δtdt

≤ (1− e−2δtmeet) + tmeet

∫ ∞

tmeet

2δe−2δt

t
dt.(20)

Now, ∫ ∞

tmeet

2δe−2δt

t
dt=

∞∑
i=1

∫ (i+1)tmeet

itmeet

2δe−2δt

t
dt≤ 2δ

∞∑
i=1

e−2δitmeet

i
.



14

Observe that
∑∞

i=1 e
−ai/i=− log(1− e−a), and that e−a ≤ 1/(1 + a) for |a|< 1. Thus for

all n sufficiently large (so that δtmeet < 1), we obtain∫ ∞

tmeet

2δe−2δt

t
dt≤ 2δ log(1 + 1/(2δtmeet)).

We now use that e−x ≤ 1− x+ x2/2 for x > 0, to give that for 0< x< 1, 1≤ 1−e−x

x
1

1−x/2 ,
i.e.for n sufficiently large,

1≤ 1− e−2δtmeet

2δtmeet

1

1− δtmeet
.

We thus obtain∫ ∞

tmeet

2δe−2δt

t
dt≤ 1− e−2δtmeet

tmeet

1

1− δtmeet
log(1 + 1/(2δtmeet)),

and plugging this into (20) yields

PRW(2)
π2
n

(MX1,X2 >Z)≤ (1− e−2δtmeet)

(
1 +

log (1 + 1/(2δtmeet))

1− δtmeet

)
.(21)

The result follows since limx→0(1− e−x)(1+ log(1+1/x)/(1−x/2)) = 0 and δtmeet →
0 by assumption.

PROOF OF COROLLARY 3. We will prove that (5) implies (4). We consider two cases:
first, suppose that

(π∗
n

σn

)2
n≥ 1, then, by using the first item of Lemma 2 in equation (2) we

have

n

pn

(
π∗
n

σn

)3

+
π∗
n

σnpn
=

π∗
n

σnpn

((π∗
n

σn

)2
n+ 1

)
≤ 2

(
π∗
n

σn

)3 n

pn
≤ 2

(
2π∗

n

νn

)3 n

pn
= o(1).

Secondly, consider
(π∗

n

σn

)2
n < 1, thus

n

pn

(
π∗
n

σn

)3

+
π∗
n

σnpn
=

π∗
n

σnpn

((π∗
n

σn

)2
n+ 1

)
≤ 2

π∗
n

σnpn
<

2√
npn

= o(1),

since
√
npn →∞ which is implicit in statement (5) as (π∗

n/νn)
2 ≥ n−1.

PROOF OF PROPOSITION 8. Recall that pn is non-increasing, hence for the first item, we
divide into the cases that eventually pn ≤ 1/2, and pn > 1/2. If pn > 1/2 we apply directly
Corollary 3 since νn =Θ(1/

√
n) and π∗

n =O(1/n). For the case pn ≤ 1/2, by Lemma 2 we
have that σn =Ω

(
1

npn

)
, which replaced on the left-hand side of equation (4) yields

O
(√

pn/n+ 1/
√
npn

)
= o(1),

and so Theorem 1 yields the result.
For the second item, by [2, Proposition 14.5] we have that E(Mn) ≤ thit = O(n) where

Mn is the meeting time of two independent continuous-time random walks where the initial
state is sampled according to π. The result follows then from Proposition 6.

The next result will be useful to prove the Gaussian approximation of the random variable
W . Suppose we consider NVM(V,P, p) with |V | = n starting from ξ0 = ξ ∼ Γ. Denote
ξ′ = ξ1. Recall the definition W = (S − 1/2)/σ, where S =

∑
x∈V π(x)ξ(x), and similarly

define W ′ (replacing ξ with ξ′). Since ξ ∼ Γ we have Var(S) = Var(S′) = σ2 and E(S) =
E(S′) = 1/2. The following lemma relates W ′ with W .



ASYMPTOTIC BEHAVIOUR OF THE NOISY VOTER MODEL DENSITY PROCESS 15

LEMMA 15. E(W ′|W ) =
(
1− p

n

)
W.

PROOF. Set A= {x ∈ V : ξ(x) = 1} and let P (x,A) =
∑

y∈AP (x, y). Then, for x ∈ V ,
we have

E(ξ′(x)|ξ) = (n− 1)

n
ξ(x) +

1

n

(p
2
+ qP (x,A)

)
.

To see this consider the following argument. With probability 1/n, vertex x is chosen to
update its opinion. If this happens, then with probability p this update is a re-randomisation
and further with probability 1/2 its opinion becomes 1. Otherwise, with probability q = 1−
p, a standard voting step is performed, and thus x samples a vertex with opinion 1 with
probability P (x,A). By multiplying by π(x) and summing over V , we have

E(S′|ξ) = n− 1

n
S +

p

2n
+

q

n

∑
x∈V

π(x)P (x,A).(22)

Denote Q(A,B) =
∑

x∈A π(x)P (x,B). For any irreducible transition matrix P , it holds
that Q(A,Ac) = Q(Ac,A) [30, Exercise 7.2]. Then Q(V,A) = Q(A,A) + Q(Ac,A) =
Q(A,A) +Q(A,Ac) =Q(A,V ) = π(A). Thus∑

x∈V
π(x)P (x,A) = π(A) =

∑
x∈V

π(x)ξ(x) = S.

Plugging into equation (22) we obtain

E(S′|ξ) = S
(
1− p

n

)
+

p

2n
.

Observe that since S is a function of ξ we have E(E(S′|ξ)|S) = E(S′|S). We conclude

E(S′|S)− 1

2
=

(
S − 1

2

)(
1− p

n

)
.

Dividing by σ =
√
Var(S) on both sides completes the proof.

4. Gaussian approximation - proof of Theorem 1.

4.1. Proof of equation (2). In this section we prove equation (2) of Theorem 1. For that,
we combine our previous results with Stein’s method, leading not only to the asymptotic
normality of sequences of NVM processes, but also to error rates. For such, we will employ
a result from Röllin [40] (Theorem 34 in the Appendix) that gives an upper bound for the
Kolmogorov distance between the random variable W and a standard real-valued Gaussian
random variable. Röllin simplified the conditions of the so-called ‘exchangeable pair’ method
developed in [39] which has been used to study the antivoter model.

Recall the definition of Ψ from Theorem 1 as

Ψ :=
∑
x∈V

∑
y∈V

µ(x, y)1{ξ(x)̸=ξ(y)}.

PROPOSITION 16. Consider a noisy voter model NVM(V,P, p) where |V | = n. Let Φ
be the cumulative distribution function of a standard normal random variable. There exists a
universal constant C > 0 such that

sup
t∈R

|P(W ≤ t)−Φ(t)| ≤C
{(π∗

σ

)3n
p
+
(π∗

σ

)2√n

p
+

ν2

pσ2

√
Var(Ψ)

}
.(23)



16

PROOF. Consider the random vector of opinions ξ sampled from Γ, and let ξ′ be the
vector ξ after one iteration of the noisy voter model from ξ. We consider S =

∑
x π(x)ξ(x)

and S′ =
∑

x π(x)ξ
′(x), and denote by W and W ′ the corresponding standardised versions.

Note that E(W ) = 0 and Var(W ) = 1, and that ξ′ has the same distribution as ξ since ξ
is sampled from the stationary distribution (so W ′ has the same mean and variance as W ).
Moreover, note that |W ′−W | ≤ π∗/σ since only one vertex may change its opinion. Finally,
by Lemma 15 we have E(W ′|W ) = (1− p/n)W . Then, combining the three previous facts
with Theorem 34 yields

sup
t∈R

|P(W ≤ t)−Φ(t)| ≤ 12n

p

√
Var(E((W ′ −W )2|W )) + 32

A3

λ
+ 6

A2

√
λ
,(24)

where A = π∗/σ and λ = p/n, and Φ is the cumulative distribution function of a standard
Gaussian random variable; and further

32
A3

λ
+ 6

A2

√
λ
≤ 32

((
π∗

σ

)3 n

p
+

(
π∗

σ

)2√n

p

)
.(25)

We now proceed to find an upper bound for Var(E((W ′−W )2|W )). We start by noticing
that

Var(E((W ′ −W )2|W ))≤Var(E((W ′ −W )2|ξ)),

since W is a function of ξ. Next, notice that since at most one vertex changes its opinion in
one iteration of the noisy voter model we have

(W ′ −W )2 =
∑
x∈V

(
π(x)

σ

)2

1{ξ′(x)̸=ξ(x)}

and thus

E((W ′ −W )2|ξ) =
∑
x∈V

(
π(x)

σ

)2

P(ξ′(x) ̸= ξ(x)|ξ).(26)

Denote by Dx =Dx(ξ) := {y ∈ V : ξ(x) ̸= ξ(y)} ⊆ V the (random) set of vertices whose
opinion differs from the opinion of x, and then we claim that

P(ξ′(x) ̸= ξ(x)|ξ) = 1

n

(p
2
+ qP (x,Dx)

)
=

1

n

p

2
+ q

∑
y∈V

P (x, y)1{ξ(x)̸=ξ′(x)}

 .(27)

To see this note first of all that for ξ′(x) to differ from ξ(x), we have to choose vertex x in
the round, which has probability 1/n. After that, with probability p/2 we re-randomise the
opinion of x to the opposite opinion. Otherwise (with probability q = 1 − p), x chooses a
random y vertex using P (x, ·) and imitates its opinion, obtaining the opposite opinion if and
only if y ∈Dx. By plugging equation (27) into equation (26) we obtain

E((W ′ −W )2|ξ) =
∑
x∈V

(
π(x)

σ

)2

P(ξ′(x) ̸= ξ(x)|ξ)

=
1

n

∑
x∈V

(
π(x)

σ

)2
p

2
+ q

∑
y∈V

P (x, y)1{ξ(x) ̸=ξ(y)}
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=
p

2n

∑
x∈V

(
π(x)

σ

)2

+
q

nσ2

∑
x∈V

∑
y∈V

π(x)2P (x, y)1{ξ(x)̸=ξ(y)}


=

p

2n

∑
x∈V

(
π(x)

σ

)2

+ q
ν2

nσ2

∑
x∈V

∑
y∈V

µ(x, y)1{ξ(x)̸=ξ(y)}

(28)

=
p

2n

∑
x∈V

(
π(x)

σ

)2

+ q
ν2

nσ2
Ψ,(29)

where in equation (28) have used the definition of µ, and in (29) the definition of Ψ.
Taking variance we have

Var(E((W ′ −W )2|ξ)) = (1− p)2
ν4

n2σ4
Var(Ψ)≤ ν4

n2σ4
Var(Ψ),

concluding that

12n

p

√
Var(E((W ′ −W )2|W ))≤ 12n

p

ν2

nσ2

√
Var(Ψ).(30)

We complete the proof by combining equation (30) with equation (25), and by choosing
C = 32.

4.2. Bounding Var(Ψ). In this section we consider the NVM(V,P, p) process with
|V | = n, and provide a bound on Var(Ψ). Recall that in the (discrete-time) dual process
Yt(x) denotes the location of particle initially at vertex x ∈ V and we denote by B(x), the
final location of the particle that started at vertex x.

For u, v,x, y ∈ V , we set

h(u, v,x, y) := P(B(x) ̸=B(u), B(y) ̸=B(v))− P(B(x) ̸=B(u))P(B(y) ̸=B(v))

=Cov(1{B(x)̸=B(u)},1{B(y) ̸=B(v)})

=Cov(1{ξ(x) ̸=ξ(u)},1{ξ(y) ̸=ξ(v)})(31)

where the last equality follow from Proposition 11 assuming ξ ∼ Γ. With this notation we
can write

Var(Ψ) =Var

(∑
x∈V

∑
u∈V

µ(x,u)1{ξ(x)̸=ξ(u)}

)

=
∑

x,u,y,v∈V
µ(x,u)µ(y, v)Cov

(
1{ξ(x)̸=ξ(u)},1{ξ(y)̸=ξ(v)}

)
=

∑
x,u,y,v∈V

µ(x,u)µ(y, v)h(u, v,x, y).

Denote h0(u, v,x, y) =max{0, h(u, v,x, y)}, then

Var(Ψ)≤ (π∗)2

ν4

∑
x,u,y,v∈V

π(x)P (x,u)π(y)P (y, v)h0(u, v,x, y).(32)

A careful analysis of the function h0 leads to the following result.

LEMMA 17. In NVM(V,P, p) we have Var(Ψ)≤ 16(π∗)2ν−4σ2.
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PROOF OF THEOREM 1. Note that Lemma 17 is exactly the bound of equation (3), which
applied to (2) leads to the condition stated in equation (4), and thus Theorem 1 is proved.

We remark that to obtain better bounds on Var(Ψ) we need to rely on equation (32) in
combination with estimates of h0 which depend on the geometry of the graph/transition ma-
trix. Indeed, this is how we proceed for the 2D torus and the cycle.

4.3. Proof of Lemma 17. The proof of Lemma 17 needs a subtle analysis of the function
h0 defined in (31). Our analysis makes heavy use of the dual process in discrete time– recall
the notation for meeting and absorption times from Section 3. For ease of notation in this
section we shall write Mx,u for MY (x),Y (u) and τx for τY (x). For u, v,x, y ∈ V , recall the
definition of h0(u, v,x, y) and set

T u,v,x,y := {τu, τv, τx, τy,Mu,v,Mv,x,Mu,x,Mu,y,Mv,y,Mx,y}(33)

The following proposition is crucial.

PROPOSITION 18. Fix u, v,x, y ∈ V and denote by T1 < T2 < T3 the three smallest
elements of T u,v,x,y . Then

h0(u, v,x, y)≤ P(T1 =Mx,y, T2 = τx, T3 =Mu,v) + P(T1 =Mx,y, T2 =Mu,v)

+ P(T1 =Mx,v, T2 = τx, T3 =Mu,y) + P(T1 =Mx,v, T2 =Mu,y)

+ P(T1 =Mu,v, T2 = τu, T3 =Mx,y) + P(T1 =Mu,v, T2 =Mx,y)

+ P(T1 =Mu,y, T2 = τu, T3 =Mx,v) + P(T1 =Mu,y, T2 =Mx,v).

(34)

For the proof of Lemma 17, the following corollary will suffice.

COROLLARY 19. For each u, v,x, y ∈ V , h0(u, v,x, y) ≤ P(Mx,y < τx ∧ τy) +
P(Mx,v < τx ∧ τv) + P(Mu,v < τu ∧ τv) + P(Mu,y < τu ∧ τy).

PROOF OF LEMMA 17. For x, y ∈ V define Ex,y := {Mx,y < τx ∧ τy}, then by combin-
ing (32) with Corollary 19 we obtain

Var(Ψ)

≤ (π∗)2

ν4

∑
x,u,y,v∈V

π(x)P (x,u)π(y)P (y, v) (P(Ex,y) + P(Ex,v) + P(Eu,v) + P(Eu,y)) .

We claim that the right-hand side above is equal to 4 (π∗)2

ν4

∑
x,y∈V π(x)π(y)P(Ex,y). To see

this, observe that∑
x,u,y,v∈V

π(x)P (x,u)π(y)P (y, v)P(Ex,v) =
∑

x,v∈V
π(x)

∑
y∈V

π(y)P (y, v)P(Ex,v)

=
∑

x,v∈V
π(x)π(v)P(Ex,v),

and similarly ∑
x,u,y,v∈V

π(x)P (x,u)π(y)P (y, v)P(Eu,v) =
∑

u,v∈V
π(u)π(v)P(Eu,v),

∑
x,u,y,v∈V

π(x)P (x,u)π(y)P (y, v)P(Eu,y) =
∑

u,y∈V
π(u)π(y)P(Eu,y),
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which proves the claim. We deduce that

Var(Ψ) = 4
(π∗)2

ν4

∑
x,u,y,v∈V

π(x)P (x,u)π(y)P (y, v)P(Ex,y)

= 4
(π∗)2

ν4

∑
x,y∈V

π(x)π(y)P(Ex,y) = 16
(π∗)2

ν4
σ2,

where the final equality holds due to Lemma 14.

We now focus on proving Proposition 18. For that, we require some preliminary results
that use similar martingale arguments. We begin with a simple lemma.

LEMMA 20. For distinct w,z ∈ V , define f(w,z) := P(B(w) = B(z)) − 1/2 and
for each t ∈ N0 set Ft = f(Yt(w), Yt(z)). Then (Ft) is a martingale up to time R =
min{τw, τ z,Mw,z}. Moreover, f(w,z) = 1

2P(R=Mw,z).

PROOF. It is immediate that Ft is a martingale. We then apply optional stopping at time
R which is valid since the martingale is bounded and R <∞ almost surely (the chain P is
finite and irreducible).

LEMMA 21. For distinct a, c, d, define g(a, c, d) := P(B(d) ̸= B(a),B(d) ̸= B(c)) −
P(B(d) ̸=B(a))P(B(d) ̸=B(c)) and for each t ∈N0 set Gt := g(Yt(a), Yt(c), Yt(d)). Then
(Gt) is a martingale up to time T := min{τa, τ c, τd,Ma,c,Ma,d,M c,d}. Moreover

g(a, c, d) = E[GT1{T=τd} +GT1{T=Ma,c}].

PROOF. The fact that Gt is a martingale is immediate. We apply optional stopping at time
T to obtain g(a, c, d) = E[GT ]. Note that almost surely,

GT1{T=τa} =

(
1

2
P(B(YT (d)) ̸=B(YT (c)))−

1

2
P(B(YT (d)) ̸=B(YT (c)))

)
1{T=τa} = 0.

Similarly GT1{T=τc} = 0 almost surely. Furthermore, GT1{T=Ma,d} = GT1{T=Md,c} = 0.
Hence g(a, c, d) = E[GT1{T=τd} +GT1{T=Ma,c}].

Combining these two lemmas we can obtain the following:

COROLLARY 22. For distinct a, c, d ∈ V set Gt := g(Yt(a), Yt(c), Yt(d)). Define times

T := min{τa, τ c, τd,Ma,c,Ma,d,M c,d},

R := inf{t > T : t ∈ {τa, τ c, τd,Ma,c,Ma,d,M c,d}}.

Then

g(a, c, d)≤ (1/4)P(T = τd,R=Ma,c) + P(T =Ma,c).

PROOF. This follows by applying Lemmas 20 and 21, the strong Markov property at time
T , and the bound Gt ≤ 1 which holds for all times t. Indeed, we have

1{T=τd}GT =
1

2
1{T=τd}f(YT (a), YT (c)),
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and by the strong Markov property at time T and Lemma 20

E[1{T=τd}f(YT (a), YT (c))] =
1

2
P(T = τd,R=Ma,c).

Thus by Lemma 21 and the bound GT ≤ 1,

g(a, c, d)≤ 1

4
P(T = τd,R=Ma,c) + P(T =Ma,c).

LEMMA 23. For distinct u, v,x, y ∈ V , define Ht := h(Yt(u), Yt(v), Yt(x), Yt(y)) and
recall the definition of T u,v,x,y in equation (33). Then (Ht) is a martingale up to time ϱ :=
minT u,v,x,y . Moreover

h(u, v,x, y) = E
[
Hϱ1{ϱ∈{Mx,y,Mx,v,Mu,v,Mu,y}}

]
.

PROOF. The fact that Ht is a martingale is immediate. Applying optional stopping gives
h(u, v,x, y) = E[Hϱ]. However note that almost surely

Hϱ1{ϱ=τu} =

(
1

2
P(B(Yϱ(y)) ̸=B(Yϱ(v)))−

1

2
P(B(Yϱ(y)) ̸=B(Yϱ(v)))

)
1{ϱ=τu} = 0,

and similarly Hϱ1{ϱ=τv} = Hϱ1{ϱ=τx} = Hϱ1{ϱ=τy} = 0 almost surely. Furthermore,
Hϱ1{ϱ=Mx,u} =Hϱ1{ϱ=My,v} = 0. This gives the stated identity.

PROOF OF PROPOSITION 18. First observe that if h < c for some c > 0 then it follows
that h0 < c. From Lemma 23 we have

h(u, v,x, y)

= E
[
HT1

1{T1=Mx,y} +HT1
1{T1=Mx,v} +HT1

1{T1=Mu,v} +HT1
1{T1=Mu,y}

]
= E

[
g(YT1

(u), YT1
(v), YT1

(x))1{T1=Mx,y} + g(YT1
(u), YT1

(y), YT1
(x))1{T1=Mx,v}

+ g(YT1
(x), YT1

(y), YT1
(u))1{T1=Mu,v} + g(YT1

(x), YT1
(v), YT1

(u))1{T1=Mu,y}

]
.

By the strong Markov property at time T1 together with Corollary 22 we obtain the claimed
bound.

5. Torus and Cycle - Proof of Proposition 9.

5.1. The Torus. In this section, we consider a graph Gn = (Vn,En) the torus Tn on n
vertices, and we let Pn be the simple random walk on Tn.

PROPOSITION 24. There exists a universal constant C > 0 (not depending on n) such
that for any torus Tn with n≥ 9,

Var(Ψ)≤C

(
1√
n
+

σ2

(logn)2

)
.

For the proof of this proposition we will consider the continuous-time version of the dual
process (see Remark 12), where particles move at rate 1 in the graph, and are absorbed at
rate δ = p/(1 − p). Further, recall that walks move independently until they meet (or are
absorbed), and so couplings with the process RW(m) of m independent random walks as
defined at the beginning of Section 3 will feature in our analysis, indeed the following two
results about RW(2) on the torus are needed.
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LEMMA 25. Let (Xt, Yt) be a realisation of RW(2) on the torus in continuous time. Let
MX,Y denote the meeting time of the two walks. Then for all t≥ 0,

PRW(2)
π2 (MX,Y ≤ t)≤ (2t+ 1)ν2.

LEMMA 26. Let (Xt, Yt) be a realisation of RW(2) on the torus in continuous time. Let
x and y be two adjacent vertices on the torus. Then there exists a universal constant C > 0
(not depending on n) such that for each t≥ e,

PRW(2)
(x,y) (MX,Y > t)≤C/ log(t).

PROOF OF PROPOSITION 9 ITEM 2. To start with, note that the case pnn logn→ 0 fol-
lows immediately from Proposition 6, since the meeting time of two independent stationary
walks is Θ(n logn).

Now, suppose that pnn logn → ∞. Recall that pn is non-increasing hence limn pn ex-
ists. If limn pn > 0 then the result follows from Corollary 3. So suppose limn pn = 0. By
Theorem 1 it suffices to show

n

p

(
π∗

σ

)3

+
ν2

pσ2

√
Var(Ψ)→ 0 as n→∞,

(to ease notation, we are not writing the subindex n) i.e.

1

n2pσ3
+

√
Var(Ψ)

npσ2
→ 0 as n→∞.

Eventually p≤ 1/2 so by Lemma 2, σ2 ≳ 1
pthit

≳ 1
pn logn (see [30, Proposition 10.13]), hence

1

n2pσ3
≲
√

p(logn)3/n→ 0 as n→∞.

By Proposition 24 it remains to show that√
1√
n
+ σ2

(logn)2

npσ2
≤ 1

n5/4pσ2
+

1

npσ logn
→ 0 as n→∞.

Using again σ2 ≳ 1
pn logn we have the bound

1

n5/4pσ2
+

1

npσ logn
≲

logn

n1/4
+

1√
np logn

→ 0 as n→∞,

by the assumption pn logn≫ 1, completing the proof.

We proceed to prove Proposition 24. Our proof uses the dual process. For ease of notation
in we shall write Mx,u for MY (x),Y (u) and τx for τY (x), etc.

PROOF OF PROPOSITION 24. To bound h0 we use Proposition 18. Consider two terms at
the top of the right-hand side of equation (34), given by

P(T1 =Mx,y, T2 = τx, T3 =Mu,v) + P(T1 =Mx,y, T2 =Mu,v).

Here we are considering the continuous-time version of the dual. Note the previous events
are disjoint and establish that the meeting of x and y occurs before any other meeting or
absorption, so, in particular, we have

P(T1 =Mx,y, T2 = τx, T3 =Mu,v) + P(T1 =Mx,y, T2 =Mu,v)≤ P(T1 =Mx,y).
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Note that up to time T1 no meeting has occurred, so the four particles involved move like inde-
pendent random walks up to this time, thus it is natural to couple (Yt(x), Yt(y), Yt(u), Yt(v))
up to time T1 with an independent random walks process RW(4) that is stopped when a
meeting occurs or when an independent exponential clock of rate 4p/(1 − p) rings (repre-
senting the first absorption time of the four walks). Let (Xt, Yt,Ut, Vt) be a RW(4) process,
let T be the time of the first meeting between any pair of the walks in RW(4), let MX,Y

be the meeting time between (Xt) and (Yt), and let Z be an exponential random variable of
parameter 4δ with δ = p/(1− p), which is independent of the walks. Then we have

P(T1 =Mx,y) = PRW(4)
(x,y,u,v)(M

X,Y = T,MX,Y <Z)

≤ PRW(4)
(x,y,u,v)(M

X,Y <MX,U ∧MY,V ∧Z)

Repeating the same argument to the other terms of equation (34), using reversibility of P ,
and plugging into equation (32) yields

Var(Ψ)

≤ 4
(π∗)2

ν4

∑
x,y,u,v∈V

π(x)P (x,u)π(y)P (y, v)PRW(4)
(x,y,u,v)(M

X,Y ≤MX,U ∧MY,V ∧Z)

= 4
∑

x,y,u,v∈V

1{x∼u}1{y∼v}

16n2
PRW(4)
(x,y,u,v)(M

X,Y ≤MX,U ∧MY,V ∧Z).(35)

We proceed to bound the probability in (35). We write members of V 4 in bold, i.e. x =
(x, y,u, v) ∈ V 4, and write Xt for (Xt, Yt,Ut, Vt). As previously, MX,Y refers to the meet-
ing time of random walks X and Y .

Let x ∈ V 4. If x ̸= y then PRW(4)
x (MX,Y = 0,MX,Y ≤MX,U ∧MY,V ) = 0, so in such

case we denote by fx(t) the derivative of

t 7→ PRW(4)
x (MX,Y ≤ t,MX,Y ≤MX,U ∧My,v),

which exists since the meeting between two particles is a continuous random variable when
the particle start in different locations.

Then we can write fx in terms of the four independent random walks. Indeed:

fx(t) =
1

2
PRW(4)
x ({MX,Y > t, MX,U > t, MY,V > t} ∩ {Xt ∼ Yt}),

which holds because the instantaneous probability that Xt and Yt meet for first time at time t
is exactly the probability that they do not meet up to time t, then at time t one walker moves
to the location of the other (so they have to be neighbours just prior to time t). The rate of
jumping to an adjacent neighbour is 1/4, giving the equation above.

Write Et = {MX,Y > t, MX,U > t, MY,V > t}; then fx(t) can be written as

fx(t) =
1

2
PRW(4)
x (Et,Xt ∼ Yt).

By using the Markov property and reversibility we have

fx(t) =
1

2

∑
x′∈V 4

PRW(4)
x (Et/2,Xt/2 = x′)PRW(4)

x′ (Et/2,Xt/2 ∼ Yt/2)

=
1

2

∑
x′∈V 4

PRW(4)
x′ (Et/2,Xt/2 = x)PRW(4)

x′ (Et/2,Xt/2 ∼ Yt/2)
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≤ 1

2

∑
x′∈V 4

PRW(4)
x′ (MX,U > t/2,MY,V > t/2,Xt/2 = x)

× PRW(4)
x′ (MX,Y > t/2,Xt/2 ∼ Yt/2)

=
1

2

∑
x′∈V 4

PRW(2)
(x′,u′) (M

X,U > t/2, (Xt/2,Ut/2) = (x, y))

× PRW(2)
(y′,v′) (M

Y,V > t/2, (Yt/2, Vt/2) = (y, v))

× PRW(2)
(x′,y′) (M

X,Y > t/2,Xt/2 ∼ Yt/2),

(36)

where PRW(2) is the probability measure associated with two independent random walks.
Denote by Ft the event {MX,Y > t,Xt ∼ Yt}, then from (36) we have∑
x∈V 4

1{x∼u}1{y∼v}

16n2
fx(t)≤

2

64n2

∑
x′∈V 4

PRW(2)
(x′,u′) (Ft/2)P

RW(2)
(y′,v′) (Ft/2)P

RW(2)
(x′,y′) (Ft/2)

=
1

32

∑
(x′,y′)∈V 2

PRW(2)
(x′,π) (Ft/2)P

RW(2)
(y′,π) (Ft/2)P

RW(2)
(x′,y′) (Ft/2).

Since the torus is transitive, we have that PRW(2)
(x′,π) (Ft/2) does not depend on x′, so

PRW(2)
(x′,π) (Ft/2) = PRW(2)

(π,π) (Ft/2), concluding from the previous equation that∑
x∈V 4

1{x∼u}1{y∼v}

16n2
fx(t)≤

1

32

∑
(x′,y′)∈V 2

PRW(2)
(π,π) (Ft/2)P

RW(2)
(π,π) (Ft/2)P

RW(2)
(x′,y′) (Ft/2)

=
n2

32
PRW(2)
(π,π) (Ft/2)

3.(37)

Using reversibility again we obtain

PRW(2)
(π,π) (Ft/2) =

∑
x′,y′∈V

1

n2
PRW(2)
(x′,y′) (Ft/2)

=
∑

x′,y′∈V

∑
x,y∈V

1{x∼y}
1

n2
PRW(2)
(x′,y′) (M

X,Y > t/2,Xt/2 = x,Yt/2 = y)

=
∑

x′,y′∈V

∑
x,y∈V

1{x∼y}
1

n2
PRW(2)
(x,y) (MX,Y > t/2,Xt/2 = x′, Yt/2 = y′)

=
∑

x,y∈V
1{x∼y}

1

n2
PRW(2)
(x,y) (MX,Y > t/2)

=
4

n

∑
x,y

µ(x, y)PRW(2)
(x,y) (MX,Y > t/2).
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By denoting PRW(2)
µ (·) =

∑
x,y µ(x, y)P

RW(2)
(x,y) (·), and substituting the previous equality into

(37) we have∑
x∈V 4

1{x∼u}1{y∼v}

16n2
fx(t)≤

1

8
PRW(2)
µ (MX,Y > t/2)2PRW

(π,π)(Ft/2).(38)

Going back to equation (35), by (38) we have

Var(Ψ)≤ 4
∑

x,y,u,v∈V

1{x∼u}1{y∼v}

16n2
PRW(4)
(x,y,u,v)(M

X,Y ≤MX,U ∧MY,V ∧Z)

≤ 4
∑

x,y,u,v∈V

1{x∼u}1{y∼v}

16n2
PRW(2)
(x,y) (MX,X ≤ 2

√
n)

+ 4
∑

x,y,u,v∈V

1{x∼u}1{y∼v}

16n2
PRW(4)
(x,y,u,v)(2

√
n≤MX,Y ≤MX,U ∧MY,V ∧Z)

=
1

4
PRW(2)
π2 (MX,Y ≤ 2

√
n) + 4

∑
x,y,u,v∈V

1{x∼u}1{y∼v}

16n2

∫ ∞

2
√
n
fx(t)e

−4δt dt

≤ · 5

4
√
n
+ 4

∫ ∞

2
√
n

1

8
PRW(2)
µ (MX,Y > t/2)2 PRW(2)

(π,π) (Ft/2)e
−4δt dt

≤ 5

4
√
n
+ c

∫ ∞

2
√
n
(logn)−2 PRW(2)

(π,π) (Ft/2)e
−4δt dt,

for a universal constant c > 0. The bound on PRW(2)
π2 (MX,Y ≤ 2

√
n) follows from Lemma 25

and the bound on PRW(2)
µ (MX,Y > t/2)2 is from Lemma 26. Now recall that 1

8P
RW
(π,π)(Ft/2)

is the density of MX,Y at time t/2 when both particles start independently with distribution
π, which we shall denote by g(t/2). Then,

Var(Ψ)

≤ 5

4
√
n
+ 8c

∫ ∞

2
√
n
(logn)−2 g(t/2)e−4δt dt≤ 5

4
√
n
+ 8c

∫ ∞

0
(logn)−2 g(s)e−2δs ds

≤ 5

4
√
n
+ 8c(logn)−2ERW(2)

(π,π)

[
e−2δMX,Y ]

=
5

4
√
n
+ 8c(logn)−2 Pπ2(MXY <Z ′)

≤ ĉ

(
1√
n
+ σ2(logn)−2

)
,

where Z ′ is an exponential random variable of parameter 2δ (independent of everything),
c > 0 and ĉ > 0 are universal constants, and the last inequality holds due to Lemma 14.

We now complete this section by presenting the proofs of Lemmas 25 and 26.

PROOF OF LEMMA 25. To ease notation, and since there are no other processes in the
proof, we omit the superscript RW(2) in the probability measures. Now, denote by N(t) the
total number of jumps made by the two walks by time t. Then we claim that for each t≥ 0
and j ∈N,

Pπ2(MX,Y ≤ t |N(t) = j)≤ (j + 1)ν2.
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To see this, denote by T1, . . . , Tj the jump times. Then at these times the distribution of the
locations of the walks is exactly the stationary distribution by the strong Markov property
(and so the probability they are equal is ν2 =

∑
x∈V π(x)2). Thus

Pπ2(MX,Y ≤ t |N(t) = j)≤ Pπ2(X0 = Y0) +

j∑
i=1

Pπ2(XTi
= YTi

) = (j + 1)ν2.

We conclude that Pπ2(MX,Y ≤ t)≤ ν2(Eπ2(N(t)+1)) = ν2(2t+1) since N(t) has Poisson
distribution of mean 2t.

PROOF OF LEMMA 26. As in the proof of Lemma 25 we omit the superscript RW(2) in
the probability measure. The first step is to assume that the random walks move on Z2 instead
of Tn, which clearly provides an upper-bound on the quantity of interest. Recall that x=X0

and y = Y0 are adjacent vertices in Z2, and by transitivity we can assume that y = (0,0) ∈ Z2

and x= (1,0) ∈ Z2. Also, by further using the symmetry of Z2, we can assume that only one
walk moves but at rate 2, while the other is fixed. Then, denote by Zt a simple random walk
on Z2 moving at rate 2, let o be the origin (0,0) ∈ Z2 and x= (1,0) ∈ Z2, and let Ho be the
hitting time of o by the random walk Zt. By our previous discussion, we deduce that

P(x,y)(M
X,Y > t)≤ Px(Ho > t),

We condition on the number of jumps N(t) the walk Zt performs up to time t which is
distributed as a Poisson random variable with mean 2t. Denote by Ĥo the number of jumps
until Zt hit vertex o, and by M(j) the number of times the random walk jumps into vertex o
up to (and including) the j-th jump. Then

Px(Ho > t |N(t) = j) = Px(Ĥo > j) = 1− Px(M(j)> 0).(39)

Note that conditioning on {N(t) = 2j} or {N(t) = 2j + 1} is the same since Z is bipartite,
i.e. Px(M(2j) > 0) = Px(M(2j + 1) > 0), so without loss of generality we focus just on
Px(M(2j)> 0).

We claim that for j ≥ 1,

1− Px(M(2j)> 0)≤ 1

2(1 + c′ log(j))
,(40)

for some constant c′ > 0. By using this we have

Px(Ho > t) =

∞∑
j=0

(1− Px(M(2j)> 0))Px(N(t) ∈ {2j,2j + 1})

≤ 1

2

∞∑
j=0

Px(N(t) ∈ {2j,2j + 1})
1 + c′ log(j + 1)

≤ 1

2
Px(N(t) ∈ {0,1}) + 1

2

∞∑
j=2

Px(N(t) = j)

1 + c′ log((j + 1)/2)

≤ 1

2
Px(N(t) ∈ {0,1}) + 1

2

√
t∑

j=2

Px(N(t) = j) +
1

2

∞∑
j=

√
t+1

Px(N(t) = j)

1 + c′ log(
√
t/2 + 1)

≤ 1

2
Px(N(t)≤

√
t) +

1

2(1 + c′ log(
√
t/2 + 1))

≤ C

log t
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for some C > 0, using in the last bound Chebyshev’s inequality, for example.
To verify equation (40) we start by noting that

Px(M(2j)> 0) =
Ex(M(2j))

Ex(M(2j)|M(2j)> 0)
.

For the denominator, we can assume that Zt hit vertex o for first time at time-step 1, obtaining
the following upper bound Ex(M(2j) |M(2j)> 0)≤ Eo(M(2j − 1)) =

∑2j−1
i=0 P i(o, o).

For the numerator, note that Ex(M(2j)) = Ez(M(2j)) for any z ∼ o, by the symmetry of
Z2 (recall that x∼ o), and so

Ex(M(2j)) =
1

d

∑
z:z∼o

Ez(M(2j)) =
∑
z:z∼o

P (o, z)Ez(M(2j)) =

2j+1∑
i=1

P i(o, o).

Then

1− Px(M(j)> 0)≤ 1−
∑2j+1

i=1 P i(o, o)∑2j−1
i=0 P i(o, o)

=
1− P 2j(o, o)− P 2j+1(o, o)∑2j−1

i=0 P i(o, o)
.

Note that P 2j(o, o) + P 2j+1(o, o)≤ 1/2, so

1− Px(M(2j)> 0)≤ 1

2
∑2j−2

i=0 P i(o, o)
=

1

2
∑j−1

i=0 P
2i(o, o)

≤ 1

2(1 + c′ log(j))
,

where c′ > 0 is a constant independent of i. The last equality follows since P 2i(o, o)≥ c′

i for
all i ≥ 1 where c′ > 0 is independent of the number of vertices and i. To see this, note that
for a random walk on Z2, P 2i(o, o)≥ 1

πi −
c
i2 by Theorem 35, where c > 0 is independent of

i; so by choosing c′ small enough we have P 2i(o, o)≥ c′

i , which gives

j−1∑
i=0

P 2i(o, o)≥ 1 +

j−1∑
i=1

P 2i(o, o)≥ 1 +

j−1∑
i=1

c′/i≥ 1 + c′ log j.

5.2. The Cycle Cn. Our interest in this section is on the noisy voter model on the cycle2

Cn with Pn corresponding to the simple random walk. Specifically, we shall prove Item 1 of
Proposition 9. We first obtain the precise value of the variance, σ2 =Var(Sn).

LEMMA 27 (Cycle variance). For each p ∈ (0,1) set θ = 1−
√

p(2−p)

1−p ∈ (0,1). Then

σ2 =
1

4n

(
1 +

2θ(1− θn−1)

(1− θ)(1 + θn)

)
.

PROOF. We appeal to martingale arguments. By Lemma 14, σ2 = 1
4n2

∑
x,y∈V P(Exy)

and recall that Ex,y = P(MY (x),Y (y) < τY (x),Y (y)). Here we are considering the discrete-
time dual process. For t ∈N0, set Xt to be the clockwise distance between the two particles
Y (x) and Y (y) initialised at x and y in the dual process just after the tth time that one of these
two particles is selected to move/be absorbed (we are essentially looking at the dual when
particles Y (x) and Y (y) move, ignoring the other particles in the process). Note that (Xt)
behaves like a discrete-time simple random walk on the integers. Let T0,n be the hitting time
of {0, n} by (Xt) and G an independent Geometric random variable with parameter p. Then
we deduce that σ2 = 1

4

∑
a,b∈{0,...,n−1} n

−2PRW
|a−b|(T0,n < G), where PRW is the probability

2Cn has vertex set [n] and edge set {{1,2},{2,3}, . . . ,{n− 1, n},{n,1}}
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measure associated with (Xt) (a simple random walk on Z). We now consider the bounded
process Mt := θXt(1− p)t. Since θ+ θ−1 = 2/(1− p), this is a martingale up to T0,n. Thus
by the optional stopping theorem, for each k ∈ {1, . . . , n− 1},

θk = ERW
k

[
(1− p)T0,n

(
1{XT0,n

=0} + θn1{XT0,n
=n}

)]
.

By symmetry

ERW
k

[
(1− p)T0,n

(
1{XT0,n=0} + θn1{XT0,n=n}

)]
= ERW

n−k

[
(1− p)T0,n

(
1{XT0,n=n} + θn1{XT0,n=0}

)]
,

thus

θk + θn−k

= ERW
k

[
(1− p)T0,n

(
1{XT0,n=0} + θn1{XT0,n=n}

)]
+ERW

n−k

[
(1− p)T0,n

(
1{XT0,n=0} + θn1{XT0,n=n}

)]
= ERW

k

[
(1− p)T0,n (1 + θn)

]
,

i.e.

ERW
k

[
(1− p)T0,n

]
= (θk + θn−k)(1 + θn)−1.(41)

To relate this to σ2, note that we can write

σ2 =
1

4

∑
a,b∈{0,...,n−1}

n−2ERW
|a−b|

[
(1− p)T0,n

]
=

1

4
n−2

(
n · 1 + n

n−1∑
k=1

ERW
k

[
(1− p)T0,n

])
and so plugging in (41) and simplifying we obtain

σ2 =
1

4n

(
1 +

2θ(1− θn−1)

(1− θ)(1 + θn)

)
.

We introduce an auxiliary process which, up to a time change, is almost identical to the
dual process on the cycle Cn. Given n ∈ N and p ∈ (0,1), we define CAB (coalescing walk
with absorption) as a process (Xt)t∈N0

= (Xt,Ut, Vt, Yt)t∈N0
taking values in (Cn ∪ ∆)4

where ∆ a cemetery state. The process starts at time 0 from a state in (Cn)4 and we say
that all 4 particles are alive. At each time t ∈ N, we choose uniformly an alive particle and
this particle with probability p gets absorbed into the cemetery state and dies, otherwise the
particle jumps clockwise or anti-clockwise on the cycle with equal probability. If this jump
results in particles meeting, these particles coalesce into a single alive particle (i.e. the number
of alive particles decreases by 1). Any coalesced particles evolve in the same way at the same
times, including having the same absorption times into the cemetery state.

The CAB process is similar to the dual process except time is sped-up, we only observe
the movement of four particles, and the two stubborn vertices considered in the dual process
are glued together into a single cemetery state ∆. To see this, note that if we consider the dual
process, then when a particle Y (z) coalesces with one of the other three particles, say Y (x),
then Y (z) follows the trajectory of Y (x) (this does not change the distribution of the dual
process but allows us to ignore all particles different from Y (x), Y (y), Y (u) and Y (v)). As a
result probabilities of statements involving orders of meetings/absorption times are identical
in both processes.
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For a CAB process (Xt)t∈N0
= (Xt,Ut, Vt, Yt)t∈N0

, we use τA to denote the absorp-
tion time into ∆ of particle A ∈ {X,U,V,Y }, MA,B to denote meeting time of particles
A,B ∈ {X,U,V,Y } and τ := min{τX , τU , τV , τY ,MX,U ,MV,Y }. We also use PCAB

x to
denote probability with respect to the CAB process when the four particle start from x ∈C4

n.
Additionally, for a, b ∈ Cn we define d(a, b) to be the clockwise distance from a to b and
say that (x1, x2, x3, x4) ∈ (Cn)4 is clockwise-oriented if and only if for i ∈ {1,2} and
j /∈ {i, i+ 1}, d(xi, xi+1)< d(xi, xj).

We present a refinement of Proposition 18 to be used for the cycle, presented in terms
of a CAB process. This provides us with the probabilities we need to control to bound the
covariance term. Recall the function h defined in (31).

COROLLARY 28 (Cycle covariance). Let x= (x,u, v, y) ∈ (Cn)4 be clockwise-oriented.
Let (Xt)t≥0 = (Xt,Ut, Vt, Yt)t≥0 be a CAB process initialised from (x,u, v, y). Then

h0(u, v,x, y)

≤ PCAB
x

(
MX,Y < τ

)
+ PCAB

x

(
MU,V < τU =min{τ,MX,Y }

)
.

PROOF. Proposition 18 gives a bound on h0(u, v,x, y) in terms of the dual process, the
probabilities in this bound being identical to probabilities for the CAB process, as already
remarked. Further, due to the structure of the cycle, and the clockwise orientation of x, certain
probabilities are zero (those involving T1 =Mx,v or T1 =Mu,y). The remaining probabilities
can be easily bounded to give the claimed result.

We control the probabilities in Corollary 28 using the following two propositions.

PROPOSITION 29. Let x = (x,u, v, y) ∈ (Cn)4 be clockwise-oriented and distinct with
x∼ u, v ∼ y and d := d(y,x)≥ d(u, v). Let (Xt)t≥0 = (Xt,Ut, Vt, Yt)t≥0 be a CAB process
initialised from (x,u, v, y). Then there exists a universal constant C > 0 such that for any
p ∈ (0,1) and n≥ 8,

PCAB
x

(
MX,Y < τ

)
≤Cd−2

(
exp(−Cd

√
p) + d−1

)
.

We give the proof towards the end of this section.

PROPOSITION 30. Let x = (x,u, v, y) ∈ (Cn)4 be clockwise-oriented and distinct with
x ∼ u, v ∼ y and d(y,x) ≥ d(u, v). Let (Xt)t≥0 = (Xt,Ut, Vt, Yt)t≥0 be a CAB process
initialised from (x,u, v, y). Then for any p ∈ (0,1),

PCAB
x

(
MU,V < τU =min{τ,MX,Y }

)
≤ PCAB

x

(
MU,V < τ

)
∧ p.

Before proving this, we show how these propositions combined with Theorem 1 yield
Item 1 of Proposition 9.

PROOF OF PROPOSITION 9 ITEM 1. The case pn2 → 0 follows immediately from Propo-
sition 6 (recall that p depends on n), since the expected meeting time of two independent
stationary walks is Θ(n2).

Suppose now that pn2 →∞. Recall that p is non-increasing in n, hence limn p exists. If
limn p > 0 then the result follows from Corollary 3. Next, by Theorem 1 and equation 32, it
suffices to show that if n−2 ≪ p≪ 1 then

1

n2pσ3
+

1

npσ2

√ ∑
x,y,u,v

π(x)π(y)P (x,u)P (y, v)h0(u, v,x, y) = o(1)
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as n→∞. For the first term of the sum above, by Lemma 27, we have σ2 = 1
2
√
2pn

(1+o(1))

and so (n2pσ3)−1 = o(1) as n→∞. The second term in the sum is more complicated. We
begin by noticing that

∑
x,y,u,v

π(x)π(y)P (x,u)P (y, v)h0(u, v,x, y) = E (h0(U,V,X,Y ))(42)

where X,Y ∼ π, U is chosen according to P (X, ·) and V according to P (Y, ·) all indepen-
dently. Now observe that from the definition of h,

h(u, v,x, y) = h(x, v,u, y) = h(u, y,x, v) = h(x, y,u, v),

and thus the same is true also for h0. Therefore we have

E[h0(U,V,X,Y )] =
1

4n2

∑
x,y∈Cn

[
h0(x+, y+, x, y) + h0(x+, y−, x, y)

+ h0(x−, y+, x, y) + h0(x−, y−, x, y)
]

=
1

n2

∑
x,y∈Cn

h0(x+, y−, x, y),

where x+, x− for x ∈ Cn refers to the element of Cn neighbouring x clockwise, counter-
clockwise respectively. Notice also that h0(u, v,x, y) = h0(y,x, v,u) and hence the above
can be written as

E[h0(U,V,X,Y )] =
1

n2

∑
x∈Cn

∑
y∈Cn:

1≤d(y,x)<⌊n/2⌋

h0(y,x, y−, x+)

+
1

n2

∑
x∈Cn

∑
y∈Cn:

d⌊n/2⌋≤d(y,x)≤n−3

h0(x+, y−, x, y)

+
1

n2

∑
x∈Cn

∑
y∈Cn:

n−2≤d(y,x)≤n

h0(x+, y−, x, y).

(43)

If d(y,x) = n− 2 then x+ = y− and h0(x+, y−, x, y) = g0(x, y,x+) where g is as in
Lemma 21 and g0 = g ∨ 0. To bound these terms we construct a discrete-time process
(Mt)t∈N0

defined in terms of the locations of the particles in the dual process as

Mt =
(
1− ζd(Xt,(X+)t)

)(
1− ζd((X+)t,Yt)

)
1{t<τabs} + 1{t≥τabs},(44)

where τabs =min{τx, τy, τx+}. This process is a bounded martingale until time

T := min{τabs,Mx,y,Mx,x+ ,My,x+}

with ζ =
2+p−

√
3p(4−p)

2(1−p) = 1−
√
3p+O(p) as p→ 0 (details are given later for the similar

martingale appearing in (47)). Then by the optional stopping theorem we have

(1− ζ)2 = E
[
1{T=τabs} + (1− ζd(XT ,(X+)T ))(1− ζd((X+)T ,XT ))1{T=Mx,y}

]
≥ E

[
1{T=τabs} + (1− ζd(XT ,(X+)T ) − ζd((X+)T ,XT ))1{T=Mx,y}

]
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≥ E
[
1{T=τabs} + (1− ζ − ζn−1)1{T=Mx,y}

]
= E

[
1{T=τabs} +

√
3p(1 + o(1))1{T=Mx,y}

]
≥
√

3p(1 + o(1)) (P(T = τabs) + P(T =Mx,y))

≥
√

p/3(1 + o(1)) (P(T = τx+) + P(T =Mx,y))

≥
√

p/3(1 + o(1))g(x, y,x+)

as n→∞. We deduce that there exists a universal c > 0 such that for all n sufficiently large
g(x, y,x+)≤ c

√
p. It follows that also g0(x, y,x+)≤ c

√
p.

If d(y,x) = n− 1 then x = y− and y = x+ so h(x+, y−, x, y) = P(B(x) ̸= B(x+)) −
P(B(x) ̸= B(x+))

2 ≤ P(B(x) ̸= B(x+)) =
1
2 (1− P (Mx,x+ < τx ∧ τx+)). We can now

appeal to (41) to deduce that P (Mx,x+ < τx ∧ τx+) = (θ + θn−1)(1 + θn)−1 where θ =

(1−
√

p(2− p))(1− p)−1, i.e.P (Mx,x+ < τx ∧ τx+) = 1−
√
2p+O(p) as p→ 0, and so

there exists a universal c > 0 such that for all n sufficiently large h(x+, y−, x, y) ≤ c
√
p. It

follows that also h0(x+, y−, x, y)≤ c
√
p.

If d(y,x) = n then x= y and h0(x+, y−, x, y) = g0(x+, y−, x). By the same argument as
the d(y,x) = n− 2 case, we have g0(x+, y−, x)≤ c

√
p eventually.

If 1≤ d(x, y)≤ n− 3 (which coincides with {x, y,x+, y−} being distinct), we can apply
Corollary 28 followed by Propositions 29 and 30 to each of these above terms. If further
d(y,x)< ⌊n/2⌋ then d(x+, y−)≥ d(y,x) and so we obtain

h0(y,x, y−, x+)

≤ PCAB
y

(
MX+,Y− < τ

)
+ PCAB

y

(
MX,Y < τX =min{τ,MX+,Y−}

)
≤Cd(x+, y−)

−2
(
e−C

√
pd(x+,y−) + d(x+, y−)

−1
)

+
{
Cd(y,x)−2

(
e−C

√
pd(y,x) + d(y,x)−1

)}
∧ p,

where y= (y−, y, x,x+) and τ =min{τX , τX+ , τY , τY− ,MX,X+ ,MY,Y−}. Since d(y,x)<
⌊n/2⌋ we deduce that for n ≥ 4, d(x+, y−) ≥ n/4, hence there exists a universal constant
Ĉ > 0 such that for all n sufficiently large, we have the bound

h0(y,x, y−, x+)≤
Ĉ

n2

(
e−Ĉ

√
pn +

1

n

)
+
{
Cd(y,x)−2

(
e−C

√
pd(y,x) + d(y,x)−1

)}
∧ p.

(45)

If instead we have d(y,x) ≥ ⌊n/2⌋ (with {x, y,x+, y−} still distinct) then d(y,x) ≥
d(x+, y−) and we similarly obtain for all n sufficiently large

h0(x+, y−, x, y)

≤ PCAB
x

(
MX,Y < τ

)
+ PCAB

x

(
MX+,Y− < τ

)
∧ PCAB

x

(
MX+,Y− < τX+ =min{τ,MX,Y }

)
≤Cd(y,x)−2

(
e−C

√
pd(y,x) + d(y,x)−1

)
+
{
Cd(x+, y−)

−2
(
e−C

√
pd(x+,y−) + d(x+, y−)

−1
)}

∧ p,

≤ Ĉ

n2

(
e−Ĉ

√
pn +

1

n

)
+
{
Cd(x+, y−)

−2
(
e−C

√
pd(x+,y−) + d(x+, y−)

−1
)}

∧ p,

(46)
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where x = (x,x+, y, y−) and τ = min{τX , τX+ , τY , τY− ,MX,X+ ,MY,Y−}. Putting the
bounds from (45) and (46) together with the bound of c

√
p for the other cases into (43)

we obtain that there exist constants c1, c2, c3, c4 > 0 such that for all n sufficiently large

E[h0(U,V,X,Y )]

≤ c1
n

⌊n/2⌋∑
d=1

[
n−2

(
e−c1

√
pn + n−1

)
+
(
d−2

(
e−c1

√
pd + d−1

))
∧ p
]
+

√
p

n

≤ c1
n2

+
c2
n

⌊(log 1/p)/√p⌋∑
d=1

(
d−2e−c1

√
pd
)
∧ p+

c2
n

⌊n/2⌋∑
d=⌊(log 1/p)/√p⌋

d−3 ∧ p+

√
p

n

≤ c1
n2

+
c3
n

⌊1/√p⌋∑
d=1

p+
c3
n

⌊(log 1/p)/√p⌋∑
d=⌊1/√p⌋

d−2 +
c2
n

⌊n/2⌋∑
d=⌊(log 1/p)/√p⌋

d−3 +

√
p

n

≤ c1
n2

+
c3
√
p

n
+

c4
√
p

n
+

c4p

n
+

√
p

n
.

Recalling that σ2 = 1
2
√
2pn

(1 + o(1)) as n→∞, it follows that there exists a constant c5 > 0

such that for all n sufficiently large,

1

npσ2

√
E[h0(U,V,X,Y )]≤ c5√

p

√
n−2 +

√
pn−1

and the right-hand side tends to 0 as n→∞ by the assumption that p≫ n−2.

PROOF OF PROPOSITION 30. The bound

PCAB
x

(
MU,V < τU =min{τ,MX,Y }

)
≤ PCAB

x

(
MU,V < τ

)
is immediate. To bound the probability on the left-hand side above by p, we shall use mar-
tingale optional stopping arguments. Before defining the appropriate martingales, we intro-
duce a process on the line Z. We define a process WAB (walks with absorption) as a process
(X∗

t )t∈N0
= (X∗

t ,U
∗
t , Y

∗
t )t∈N0

taking values in (Z∪∆)3 where ∆ denotes the cemetery state.
At each step, one of the three particles is chosen uniformly. The chosen particle jumps to the
cemetery state with probability p, jumps down 1 with probability (1− p)/2 and otherwise
jumps up 1. The process terminates at the first time two particles meet or any particle jumps
to the cemetery state.

Now we construct a discrete-time process (Mt)t∈N0
defined in terms of the locations of

the particles in the WAB process. This process is almost identical to the one defined in (44)
except the underlying process here is a WAB process on the line and the prior martingale is
the dual process on the cycle. Specifically, for each t ∈N0 we set

Mt =
(
1− ζU

∗
t −X∗

t

) (
1− ζY

∗
t −U∗

t

)
1{t<τabs} + 1{t≥τabs},(47)

for ζ = ζ(p) ∈ (0,1) to be determined and where τabs =min{τX∗
, τU

∗
, τY

∗} (with this no-
tation again referring to absorption times). The choice of ζ will ensure (Mt) is a martingale.
Let Ft be the filtration generated by the trajectories of all particles in WAB up to time t. Then
for each t ∈N0,

E[Mt+1 | Ft]

=E
[(
1− ζU

∗
t+1−X∗

t+1

) (
1− ζY

∗
t+1−U∗

t+1

)
1{t+1<τabs} + 1{t+1≥τabs} | Ft

]
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=1{t≥τabs} + p1{t<τabs}

+
1− p

6
1{t<τabs}

{(
1− ζU

∗
t −X∗

t −1
) (

1− ζY
∗
t −U∗

t

)
+
(
1− ζU

∗
t −X∗

t +1
) (

1− ζY
∗
t −U∗

t

)}
+

1− p

6
1{t<τabs}

{(
1− ζU

∗
t −X∗

t +1
) (

1− ζY
∗
t −U∗

t −1
)

+
(
1− ζU

∗
t −X∗

t −1
) (

1− ζY
∗
t −U∗

t +1
)}

+
1− p

6
1{t<τabs}

{(
1− ζU

∗
t −X∗

t

) (
1− ζY

∗
t −U∗

t +1
)
+
(
1− ζU

∗
t −X∗

t

) (
1− ζY

∗
t −U∗

t −1
)}

= 1{t≥τabs} + 1{t<τabs}

[
1 +

1− p

3
(1 + ζ + 1/ζ)

(
ζY

∗
t −X∗

t − ζU
∗
t −X∗

t − ζY
∗
t −U∗

t

)]
.

Thus for (Mt) to be a martingale it suffices that 1 + ζ + 1/ζ = 3/(1− p), i.e.we take

ζ =
2+ p−

√
3p(4− p)

2(1− p)
≥ 1−

√
3p.(48)

Let T ∗ := τabs ∧MX∗,U∗ ∧MY ∗,U∗
and observe that |Mt| ≤ 1 for all t ≤ T ∗. Thus by the

optional stopping theorem,

E[(1− ζU
∗
0 −X∗

0 )(1− ζY
∗
0 −U∗

0 )] = E[M0] = E[MT ∗ ] = PWAB(τabs <MX∗,U∗ ∧MY ∗,U∗
).

(49)

We turn to bounding the probability of interest. It is convenient to couple the CAB process
to a process denoted CAB′ which is initialised from the same state and which evolves in
the same way except that there can be no absorptions until the first meeting time (one way
to construct is to take the CAB process and set p = 0 until the first meeting occurs). The
coupling is successful (i.e. the two processes agree for all times) for CAB processes which
satisfy that the first absorption is after the first meeting. Thus

PCAB
x

(
MU,V < τU =min{τ,MX,Y }

)
≤ PCAB′

x

(
MU,V < τU =min{τ,MX,Y }

)
= PCAB′

x

(
MU,V <min{MX,U ,MX,Y ,MU,Y }, τU =min{τ,MX,Y }

)
.

Now let FCAB′

t be the sigma algebra generated by the CAB′ process up to time t and
R := min{τX , τU , τY }. Then

PCAB
x

(
MU,V < τU =min{τ,MX,Y }

)
≤ ECAB′

x

[
E
[
1{MU,V <min{MX,U ,MX,Y ,MV,Y }}1{τU=min{τ,MX,Y }} | FCAB′

MU,V , MU,V
]]

≤ 1

3
ECAB′

x

[
1{MU,V <min{MX,U ,MX,Y ,MV,Y }}

·E
[
1{R<min{MX,U ,MX,Y ,MV,Y }} | FCAB′

MU,V , MU,V
]]

.(50)

The random variable

1{MU,V <min{MX,U ,MX,Y ,MV,Y }}E
[
1{R<min{MX,U ,MX,Y ,MV,Y }} | FCAB′

MU,V , MU,V
]
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is clearly only non-zero for trajectories satisfying MU,V <min{MX,U ,MX,Y ,MV,Y }. For
these, we have by the memoryless property (R is geometrically distributed) and the strong
Markov property at time S :=MU,V , almost surely

E
[
1{R<min{MX,U ,MX,Y ,MV,Y }} | FCAB′

S , S
]

≤ PCAB′

(XS ,US ,VS ,YS)
(R<min{MX,U ,MX,Y ,MV,Y }).

The CAB′ process in the last probability is initialised from the random state (XS ,US , VS , YS),
and as such U and V will remain together for all later times; thus we can write the preceding
probability as (we change MV,Y to MU,Y )

PCAB
(XS ,US ,VS ,YS)

(R<min{MX,U ,MX,Y ,MU,Y }),

where (XS ,US , VS , YS) is the time S state of a CAB′ process (from time S onwards the
process behaves as a CAB process hence the above probability measure is PCAB).

This CAB can be coupled with a WAB process started from (−d(XS ,US),0, d(US , YS))
such that a jump clockwise/anti-clockwise in CAB corresponds to a jump up/down in WAB,
and jumps to cemetery states coincide in the two processes.

This coupling gives that, almost surely

PCAB
(XS ,US ,VS ,YS)

(
R<min{MX,U ,MX,Y ,MU,Y }

)
≤ PWAB

(−d(XS ,US),0,d(US ,YS))

(
τabs <min{MX∗,U∗

,MY ∗,U∗}
)
,

and combining this with (49) we obtain

PCAB
(XS ,US ,VS ,YS)

(
R<min{MX,U ,MX,Y ,MU,Y }

)
≤ EWAB

[
(1− ζd(XS ,US))(1− ζd(US ,YS)) |XS ,US , YS

]
≤ 3pd(XS ,US)d(US , YS)

almost surely, where we have used the bound (48) in the final inequality.
Plugging this into (50) we obtain

PCAB
x

(
MU,V < τU =min{τ,MX,Y }

)
≤ pECAB′

x

[
1{MU,V <min{MX,U ,MX,Y ,MV,Y }}d(XMU,V ,UMU,V )d(UMU,V , YMU,V )

]
.(51)

Now the reason for introducing the process CAB′ becomes apparent: we know that, on event
{MU,V <min{MX,U ,MX,Y ,MV,Y }}, until time MU,V there are no absorptions (by def-
inition of this process). Also on this event we have (by the nature of the cycle) that for
all t ≤MU,V , d(XMU,V ,UMU,V )d(UMU,V , YMU,V ) < n2. Thus we can bound the above ex-
pectation by coupling to a process of simple random walks on the line, RW(4), defined as
follows: RW(4) takes values in Z4 and at each step a uniformly chosen particle jumps up or
down equally likely. Let (At,Bt,Ct,Dt) be the time-t state of RW(4). The coupling is again
simple: clockwise/anti-clockwise movements of particles correspond to jumps up/down. We
obtain the inequality

ECAB′

x

[
1{MU,V <min{MX,U ,MX,Y ,MV,Y }}d(XMU,V ,UMU,V )d(UMU,V , YMU,V )

]
≤ ERW(4)

(−d(x,u),0,d(u,v),d(u,y))

[
1{MB,C<MA,B∧MC,D}

·
{
(BMB,C −AMB,C )(DMB,C −BMB,C )∧ n2

}]
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= ERW(4)
(−d(x,u),0,d(u,v),d(u,y))

[
1{MB,C<MA,B∧MC,D}

·
{
(BMB,C −AMB,C )(DMB,C −CMB,C )∧ n2

}]

= ERW(4)
(−d(x,u),0,d(u,v),d(u,y))[NM ],

where the process, (Nt)t∈N0
, defined as

Nt = (Bt −At)(Dt −Ct)∧ n2

is a bounded submartingale until the first meeting time M of any two particles in RW(4).
Thus by the optional stopping theorem,

1 = d(x,u) (d(u, y)− d(u, v))

= ERW(4)
(−d(x,u),0,d(u,v),d(u,y))[N0]≥ ERW(4)

(−d(x,u),0,d(u,v),d(u,y))[NM ].

Combining with (51) we obtain

PCAB
x

(
MU,V < τU =min{τ,MX,Y }

)
≤ p,

which completes the proof.

We now turn to proving Proposition 29. The first step is a preliminary lemma on the decay
rate of an expectation involving the hitting time of zero by a discrete-time random walk on Z.
To this end, we write ERW and PRW for the expectation and probability measure associated
with such a random walk and τX0 for the hitting time of zero by process X .

LEMMA 31. There exists a constant c > 0 such that for each p ∈ [0,1),

ERW
⌊d/8⌋[(τ

X
0 )−1/2(1− p)τ

X
0 /3]≤

{
cd−1 if p= 0,

c
(
d−1e−cd

√
p + d−2

)
if p ∈ (0,1).

PROOF. We first decompose over the hitting time of 0:

ERW
⌊d/8⌋[(τ

X
0 )−1/2(1− p)τ

X
0 /3] =

∞∑
i=⌊d/8⌋

i−1/2(1− p)i/3PRW
⌊d/8⌋[τ

X
0 = i].

Next, by the hitting time theorem (Theorem 36) for each i≥ ⌊d/8⌋,

PRW
⌊d/8⌋(τ

X
0 = i) =

1

i

⌊
d

8

⌋
PRW
⌊d/8⌋(Xi = 0).

We can now apply the local central limit theorem which gives the existence of constants
c1, c2 > 0 such that, uniformly in i≥ ⌊d/8⌋,

PRW
⌊d/8⌋(Xi = 0)≤ c1i

−1/2
(
exp(−c2d

2/i) + d−2)
)
.

Using this gives the existence of constants c2, c3 > 0 such that
∞∑

i=⌊d/8⌋

i−1/2(1− p)i/3PRW
⌊d/8⌋[τ

X
0 = i]≤ c3d

∞∑
i=⌊d/8⌋

i−2(1− p)i/3
(
exp(−c2d

2/i) + d−2)
)
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We treat separately the case p= 0. In this case we have the bound

ERW
⌊d/8⌋[(τ

X
0 )−1/2]≤ c3d

∞∑
i=⌊d/8⌋

i−2
(
exp(−c2d

2/i) + d−2)
)
≤ c4d

−1,

for some c4 > 0. For p ∈ (0,1), we have the bound

ERW
⌊d/8⌋[(τ

X
0 )−1/2(1− p)τ

X
0 /3]

≤ c3d

∞∑
i=⌊d/8⌋

i−2e−ip/3 exp(−c2d
2/i) + c5d

−2

≤ c3d

d/
√
p∑

i=⌊d/8⌋

i−2 exp(−c2d
2/i) + c3d

∞∑
i=d/

√
p

i−2e−ip/3 + c5d
−2

≤ c6

(
d−1e−c6d

√
p + d−2

)
,

for some c5, c6 > 0.

Given n ∈ N and p ∈ (0,1) (possibly depending on n), we define two new processes,
denoted WAG and WAIG. Process WAG (walks with absorption and ghost) is a process
(Xt)t∈N0

= (Xt,Ut, Vt, Yt)t∈N0
taking values in (Z ∪ ∆)4 where ∆ denotes the cemetery

state. This process starts at time 0 from a state x= (x,u, v, y) with u≤ x≤ 0≤ y ≤ v and
we say that all 4 particles are alive unless v− u= n in which case all particles except V are
alive, with V being a ghost. At each time t ∈N we choose uniformly from the alive particles
and this chosen particle with probability p gets absorbed into the cemetery state ∆ and dies
(is no longer alive), otherwise the particle chooses to jump up by one or down by one with
equal probability. If this jump results in V − U = n, we say that V becomes a ghost (and is
no longer alive). If V was already a ghost and the particle chosen is U , then V evolves in the
same way as U , i.e. if U is absorbed into ∆ then so is V , if U jumps up/down then V jumps
up/down. The process terminates (no further evolution occurs) if U and X meet, or Y and V
meet, either of X and Y hits 0, or any particle is absorbed into the cemetery state.

Process WAIG (walks with absorption and independent ghost) is almost identical to WAG.
The only difference is that if V is a ghost and U is chosen and not absorbed into ∆, then V
jumps up/down independently of U , rather than copying its move.

In each of these systems we use notation τA to denote the absorption time into ∆ of
particle A ∈ {X,U,V,Y }, τA0 the time for particle A to hit 0, MA,B to denote meeting time
of particles A,B ∈ {X,U,V,Y }, and GV to denote the time that V becomes a ghost (any
of these times is infinite if the process terminates prior to their occurrence). The following
lemma relates the probability that X or Y hits 0 before time τ :=MX,U ∧MV,Y ∧ τY in
these two processes.

LEMMA 32. For each x= (x,u, v, y) ∈ Z4 with u≤ x≤ y ≤ v,

PWAG
x (τX0 ∧ τY0 <MX,U ∧MV,Y ∧ τY )≤ PWAIG

x (τX0 ∧ τY0 <MX,U ∧MV,Y ∧ τY ).

PROOF. We first note that (PWAG
Xt

(τX0 ∧ τY0 < τ))t∈N0
is a bounded martingale until time

T := τX0 ∧ τY0 ∧ τ and so by the optional stopping theorem at time S := T ∧GV ,

PWAG
x (τX0 ∧ τY0 < τ) = EWAG[PWAG

XS
(τX0 ∧ τY0 < τ)]

= EWAG
[
1{τX

0 ∧τY
0 <τ∧GV } + 1{GV <T}PWAG

XGV
(τX0 ∧ τY0 < τ)

]
.(52)
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By the same reasoning we also have

PWAIG
x (τX0 ∧ τY0 < τ) = EWAIG

[
1{τX

0 ∧τY
0 <τ∧GV } + 1{GV <T}PWAIG

XGV
(τX0 ∧ τY0 < τ)

]
.

(53)

Notice that at time GV , we know that V −U = n. So consider a state a= (a, b,n+ b, c). We
will show that

PWAG
a (τX0 ∧ τY0 < τ)≤ PWAIG

a (τX0 ∧ τY0 < τ).(54)

Once we have this inequality we can complete the proof by taking a coupling of WAG and
WAIG: we can couple them so that the absorption times, GV and the trajectories of all parti-
cles are the same in both processes up to time GV . It follows that under this coupling if each
of the events {τX0 ∧ τY0 < τ ∧GV } and {GV < T} hold in WAG, they hold in WAIG and
vice-versa. Hence the indicators in equations (52) and (53) are equal.

It remains to show (54). Note that starting WAG from a means that V is immediately a
ghost. To show (54) we will make use of the FKG inequality for partially ordered sets. In
process WAG, we denote by (Qi)i∈N a sequence of Rademacher random variables (±1 with
probability 1/2 each), which will be used (in the obvious way) to generate the movement of
U (and hence, since V starts as a ghost, of V ). To highlight the dependence of U and V on
Q we will sometimes write these processes as U(Q) and V (Q) (note that if U has jumped k

times by time t then Ut(Q) = u+
∑k

i=1Qi).
Let JU be the sequence of times at which particle U is chosen to evolve (jump or be

absorbed) and W = ((Xt, Yt)t∈N0
, τU , τV , JU ) and note that τX and τY are measurable with

respect to the sigma algebra generated by the trajectories of X and Y . For z ∈ {−1,+1}N,
consider the functions

f(z) := 1{τX
0 ∧τY

0 <MX,U(z)∧τX∧τU(z)}

g(z) := 1{τX
0 ∧τY

0 <MV (z),Y ∧τV (z)∧τY }.

For each m ∈ N, we define a partial order on the sample space Ωm = {−1,+1}m of
(Qi)1≤i≤m. For ω1, ω2 ∈Ωm, we say that ω1 ≤ ω2 iff ω2 can be obtained from ω1 by flipping
some number of −1s in ω1 to +1s. Writing 1 for an infinite vector of 1s and Q ∈ Ωm,
we observe that f((Q,1)) is decreasing with respect to this partial order. Conversely, gm is
increasing. Let µ̂m be the measure on {−1,+1}N which assigns non-zero and equal mass
to vectors z with z(i) = 1 for all i > m, and let µm be µ̂m conditioned on W . By the FKG
inequality we obtain that for each m ∈N,

µm(fg)≤ µm(f)µm(g).

Sending m→∞3 we deduce that

PWAG
a (τX0 ∧ τY0 < τ |W )

≤ PWAG
a (τX0 ∧ τY0 <MX,U ∧ τX ∧ τU |W )PWAG

a (τX0 ∧ τY0 <MV,Y ∧ τV ∧ τY |W )

= PWAIG
a (τX0 ∧ τY0 <MX,U ∧ τX ∧ τU |W )PWAIG

a (τX0 ∧ τY0 <MV,Y ∧ τV ∧ τY |W )

= PWAIG
a (τX0 ∧ τY0 < τ |W ),

where the second equality comes from the fact that given W , U and V move independently
under WAIG. Taking an expectation gives (54) and completes the proof.

3the limits exist since µm(fg), µm(f) and µm(g) remain unchanged for all m≥ τX0 ∧ τY0
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Now we bound the probability that, under WAIG, at least one of particles X and Y hits 0
before time τ .

LEMMA 33. Suppose d≥ 4, u,x, y, v are integers satisfying u≤ x≤−d
2 +1≤ d

2 −
1
2 ≤

y ≤ v and set x= (x,u, v, y). Then there exists a constant c > 0 (not depending on d) such
that

PWAIG
x (τX0 ∧ τY0 < τ)≤ cd−2

(
e−cd

√
p + d−1

)
.

PROOF. We introduce a process denoted WMIG (walks with marking and independent
ghost). This process is similar to WAIG except no particles are absorbed (when a particle
is chosen it always jumps) and the process does not terminate when particles meet (and the
dynamics of particles does not change when any two meet) or when X or Y hit 0. In addition,
each time particle Y is chosen, with probability p it is marked (if not already) – this does not
affect its movement at this time or afterwards. We denote by τYm the time at which Y is
marked.

First we note that we can couple a WAIG process with a WMIG process if they start from
the same configuration up until the time that the WAIG process terminates so that until this
time particles move in the same way in the two processes. Since prior to time τX0 ∧ τY0 ∧ τ
the WAIG process does not terminate, we deduce that

PWAIG
x (τX0 ∧ τY0 < τ)

≤ PWAIG
x (τX0 ∧ τY0 <MX,U ∧MV,Y ∧ τY )

= PWMIG
x (τX0 ∧ τY0 <MX,U ∧MV,Y ∧ τYm)

≤ PWMIG
x (τX0 <MX,U ∧MV,Y ∧ τYm) + PWMIG

x (τY0 <MX,U ∧MV,Y ∧ τYm).(55)

We now consider bounding PWMIG
x (τX0 < MX,U ∧ MV,Y ∧ τY ) (the other term can be

bounded in the same way).
Given that X0 ≤ −d

2 − 1, in order for X to hit 0 it must hit −⌊d/4⌋, a time we denote
τX−⌊d/4⌋. We set TX := τX0 − τX−⌊d/4⌋ be the time it takes for X to hit 0 from −⌊d/4⌋. By the
strong Markov property τX−⌊d/4⌋ and TX are independent. We have

PWMIG
x (τX0 <MX,U ∧MV,Y ∧ τY )≤ PWMIG

x (τX−⌊d/4⌋ <MX,U , TX <MV,Y ∧ τY )

(56)

The two events appearing in the probability on the right-hand side above are in fact inde-
pendent (which is the reason for introducing the WMIG process). We make this clear with
the following argument, which also gives us a way to bound this probability.

Let CX,U denote the number of times during time interval [0, τX−⌊d/4⌋) that process WMIG
chooses either X or U to evolve. Let CV,Y denote the number of times during time interval
[τX−⌊d/4⌋, τ

X
0 ) that V or Y jump under WMIG (if V becomes a ghost it can no longer be

chosen but still jumps if U is chosen). Note that these two random variables are indepen-
dent (they correspond to disjoint time intervals). Given τX−⌊d/4⌋, we have CX,U stochastically
dominates a Bin(τX−⌊d/4⌋,1/2) random variable (the stochastic domination comes from the
fact that once V becomes a ghost, we choose either X or U at each step with probability
2/3). Similarly, given TX , we have CV,Y stochastically dominates a Bin(TX ,1/2) random
variable (once V becomes a ghost, we choose either Y or U (choosing U means V also
moves) at each step with probability 2/3).



38

For each t ∈ N0, for process WMIG set d1t = Xt − Ut and d2t = Vt − Yt and for each
i ∈ {1,2} let (Di

t)t∈N0
be the process (dit)t∈N0

observed only when dit updates (i.e. the value
changes). It is immediate that processes (D1

t )t∈N0
and (D2

t )t∈N0
are independent simple ran-

dom walks on Z started from state 1. For each i ∈ {1,2}, let τD
i

0 = min{t ≥ 0 : Di
t = 0}

and let τD be the number of updates of d2t until Y is marked under WMIG so that
τD ∼Geom(1/2).

Then we have that under WMIG,

{τX−⌊d/4⌋ <MX,U}= {CX,U < τD
1

0 }, {TX <MV,Y ∧ τY }= {CV,Y < τD
2

0 ∧ τD},
(57)

and it is now clear that these events are independent.
It is standard that there exists c1 > 0 such that PRW

1 (τD
1

0 > t)∼ c1t
−1/2 as t→∞ (the su-

perscript RW emphasises that (D1
t )t is a discrete-time random walk on Z). Hence there exists

c2 > 0 such that PWMIG
x (CX,U < τD

1

0 )≤ c2EWMIG
x [(CX,U )−1/2]. By the maximal Azuma’s

inequality, there exists c3 > 0 such that τX−⌊d/4⌋ is at least d2/(c3 logd) with probability at
least 1−d−3. Further, by a Chernoff bound, there exists c4 > 0 such that given τX−⌊d/4⌋, C

X,U

is at least 1
3τ

X
−⌊d/4⌋ with probability at least e−c4τX

−⌊d/4⌋ . Putting these bounds together gives
the existence of c, c̄ > 0 such that

PWMIG
x (CX,U < τD

1

0 )≤ c
(
EWMIG
x [(τX−⌊d/4⌋)

−1/2] + d−3
)
≤ c
(
ERW
⌊d/4⌋[(τ

X
0 )−1/2] + d−3

)
≤ c̄d−1,(58)

where we have used Lemma 31 in the last inequality. Similarly, given TX , CV,Y is at least
1
3T

X with probability at least e−c4TX

. Note also that under WMIG τD
2

0 and τ0 are indepen-
dent (since marking does not affect movement). Then we have the bound

PWMIG
x (CV,Y < τD

2

0 ∧ τD)≤ c
(
ERW
⌊d/4⌋[(τ

X
0 )−1/2(1− p)τ

X
0 /3] + d−3

)
≤ ĉ
(
d−1e−ĉd

√
p + d−2

)
,(59)

for some ĉ > 0, where we have applied Lemma 31 in the last inequality. Combining equations
(55)–(59) completes the proof.

We now present the proof of Proposition 29.

PROOF OF PROPOSITION 29. Recall that d := d(y,x)≥ d(u, v). The first step is to cou-
ple this CAB process with a WAG process denoted (X′

t)t≥0 = (X ′
t,U

′
t , V

′
t , Y

′
t )t≥0. Let m be

the midpoint between x and y, defined to satisfy

d(m,x) =

⌊
d

2

⌋
, d(y,m) =

⌈
d

2

⌉
.

The coupled WAG process is initialised from

(X ′
0,U

′
0, V

′
0 , Y

′
0) = x′ := (−d(m,x),−d(m,u), d(v,m), d(y,m)).

Up until WAG terminates, the absorption times of particles in X′ to the cemetery state ∆ are
the same as their counterparts in X. If particle X jumps clockwise (resp. anticlockwise), then
particle X ′ jumps down (resp. up) by 1 (similarly for other particles). Then the meeting time
of particles U and V coincides with the time that particle V ′ becomes a ghost.
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Notice that for X and Y to meet before either X meets U or Y meets V , at least one of X
and Y must hit the midpoint m, times we denote by τXm and τYm . Therefore we have{

MX,Y ∨MU,V < τ
}
⊆
{
(τXm ∧ τYm)∨MU,V < τ

}
.

However, the coupling forces{
(τXm ∧ τYm)∨MU,V < τ

}
=
{
(τX

′

0 ∧ τY
′

0 )∨GV ′
< τ ′

}
⊆
{
τX

′

0 ∧ τY
′

0 < τ ′
}

where τ ′ := min{τX′
, τU

′
, τV

′
, τY

′
,MX′,U ′

,MV ′,Y ′}. Hence we deduce that

PCAB
x (MX,Y ∨MU,V < τ)≤ PWAG

x′ (τX
′

0 ∧ τY
′

0 < τ ′).

The proof is completed by combining this with Lemmas 32 and 33 (which can be applied
since n≥ 8 and so d≥ 4, d(m,x)≥ d

2 − 1 and d(y,m)≥ d
2 −

1
2 ).

APPENDIX

We present here some results which are used throughout. The first is an application of
Stein’s method to obtain conditions (involving variance and covariance) for Gaussian con-
vergence.

THEOREM 34 (Röllin [40]). Suppose W , W ′ are two random variables with the
same distribution, E(W ) = 0, Var(W ) = 1 and E(W ′|W ) = (1 − λ)W . Then for δ :=
sups∈R |P(W ≤ s)−Φ(s)|,

δ ≤ 12

λ

√
Var(E((W ′ −W )2|W )) + 32

A3

λ
+ 6

A2

√
λ
,(60)

where A is such that |W ′ − W | ≤ A, and Φ is the cumulative distribution of a standard
normal distribution on R.

THEOREM 35 (Local central limit theorem [29, Theorem 1.2.1]). Let pn(x) denote the
probability that a lazy simple random walk on Zd is located in x ∈ Zd after n transitions
starting from 0. Then

∣∣∣∣∣pn(x)− 2

(
d

2πn

)d/2

e−
d|x|2

2n

∣∣∣∣∣≤ c

nd/2
(|x|−2 ∧ n−1),(61)

where |x|2 =
∑d

i=1 x
2
i , and c is a universal constant.

THEOREM 36 (The hitting time theorem [46]). Let (Xt)t≥0 be a discrete-time simple
random walk on Z. Denote by T0 the hitting time of 0 ∈ Z. Then

P(T0 = n|X0 = k) =
k

n
P(Xn = 0).(62)
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