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Computer-aided diagnosis of health problems and pathological conditions has become a substantial part of medical, 

biomedical, and computer science research. This article focuses on the diagnosis of early and progressive dementia, 

building on the potential of deep learning models. The proposed computational framework exploits an MRI brain 

asymmetry biomarker, which has been associated with early dementia, and employs deep learning architectures for 

MRI image classification. Identification of early dementia is accomplished by an eight-layered convolutional neural 

network (CNN) as well as transfer learning of pretrained CNNs from ImageNet. Different instantiations of the 

proposed CNN architecture are tested. These are equipped with Softmax, SVM, LD or KNN classification layers, 

assembled as a separate classification module, which are attached to the core CNN architecture. The initial imaging 

data were obtained from the MRI directory of the ADNI3 database. The independent testing dataset was created using 

image preprocessing and segmentation algorithms applied to unseen patients' imaging data. The proposed approach 

demonstrates a 90.12% accuracy in distinguishing patients who are cognitively normal subjects from those who have 

Alzheimer's Disease (AD), and an 86.40 % accuracy in detecting Early Mild Cognitive Impairment (EMCI). 

Keywords: MRI, brain asymmetry, transfer learning, CNN architecture, dementia. 

 

1. Introduction 

Computational analysis and modelling of clinical data, 

imaging methods and machine learning algorithms have 

led to innovative solutions in several areas of medical 

diagnosis and in the treatment of neurogenerative 

diseases ¹ ².  

Magnetic Resonance Imaging (MRI) is perhaps the most 

popular non-invasive imaging method for the diagnosis 

of brain diseases since it does not use ionizing radiation². 

This paper focuses on early dementia, or amnestic 

Mild Cognitive Impairment (aMCI), which is considered 

a growing problem in public health ³ since 80% of those 

with aMCI will progress to severe dementia within seven 

years of initial diagnosis. Structural markers in the MRI 

 
* Corresponding author. 

images indicate that the patient is at the initial stages of 

the disease. A noticeable early symptom of dementia is a 

variation in the symmetry of the brain hemispheres⁴ ⁵, and 

previous work introduced a method for computing brain 

asymmetry and investigated the potential and robustness 

of brain asymmetry features and brain asymmetry images 

for diagnosis using various machine learning methods. ⁶  

This article builds on this work to propose a 

framework that employs the computational method 

introduced in ⁶ for generating images of brain asymmetry 

and includes distinctive architectural configurations of 

Convolutional Neural Networks (CNNs) for the early 

detection of dementia. It also extends previous work 

presented in ⁷, which concentrated on transfer learning 

using pretrained Deep Learning (DL) architectures.   
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In the last 10 years, deep neural networks became the 

method of choice in intelligent medical diagnosis when 

images are involved⁸. CNNs belong to this class of 

methods and allow feature generation and selection 

through learning, and the various layers of the network 

play the role of feature extractors generating different 

types of features. In many cases, this helps in avoiding 

complicated feature engineering procedures, and when it 

comes to MRI data it has led to high-performance in 

medical diagnosis⁹.  

Transfer learning has been investigated in previous 

work ⁷, where a pretrained neural model called AlexNet 

¹⁰ was used. When transfer learning is adopted, a 

pretrained model's knowledge is transferred to a new task 

or even to a new application domain. This can be 

achieved by adding layers to the pretrained neural 

networks and selecting a strategy for retraining it using 

task-related data, such as training only the added layers, 

retraining the original pretrained network or even 

retraining the full architecture.¹¹ There are several 

examples in the relevant literature where transfer 

learning has performed better than designing and training 

a new model from scratch and has significantly reduced 

the time for training, validation and testing on new tasks 

without harming generalisation.¹²  

In this vein, this work proposes specially created 

CNN-based models for brain asymmetry images and 

compares them with transfer learning of established, 

pretrained deep neural networks, like the AlexNet, and 

the Visual Geometry Group (VGG) network, to the 

domain of brain asymmetry imaging.  

The paper is laid out as follows. Section 2 presents 

related work that employed artificial neural networks for 

clinical diagnosis. Section 3 describes the computational 

framework for processing and classification of brain 

asymmetry images. Section 4 provides information on 

the MRI data sources used in the study. Section 5 

describes the experiments and discusses the results. 

Section 6 includes a discussion of the topic, and Section 

7 presents the conclusions. 

2. Related Work 

The CNN architecture has been used widely for 

processing and classifying images ¹³. This section focuses 

on recent research efforts that are pertinent to this work. 

Researchers in ¹⁴ focused on the diagnosis of MCI 

with a 2D CNN based on the LeNet-5 architecture. 

Functional MRI was used as an imaging source. The 

performance for the MCI data reached 73.4% of 

accuracy, 82.2% of precision, and 92.3% of recall.  

Another work¹⁵ combined various sources of clinical 

information and protocols of 1851 participants from the 

ADNI database. The authors proposed a diagnosis 

approach for dementia that uses a multilayer perceptron 

and a Convolutional Bidirectional Long Short-Term 

Memory and run Monte Carlo simulations¹⁶. The best 

available accuracy was 86%.      

In ¹⁷ features extracted by Principal Component 

Analysis¹⁸ were fed to a Regularized Extreme Learning 

Machine (RELM)¹⁹ to classify input patterns into AD, 

MCI, and HC. The paper reported that the RELM 

improved classification accuracy compared to multiple 

kernel SVM and Import Vector Machine (IVM): binary 

classification of AD and MCI increased from 75.33% to 

80.32%, whilst multiclass classification reached 76.61%. 

The latest 3D CNN perform well on medical imaging 

data. For instance, in ²⁰, a 3D CNN architecture, which 

used 12 convolutional layers and a logistic regression 

layer at the output, was applied to a binary classification 

of patients with mild cognitive impairment (c-MCI) who 

had progressed to Alzheimer's Disease vs healthy 

cognitive patients (HC), and the classification of patients 

with a stable form of MCI (s-MCI) vs HC. The authors 

reported an accuracy of 87% and 76%, respectively.  

In another work²¹, the classification performance of a 

3D VGG network in diagnosing AD was investigated. 

The researchers used the VGG16 model which consists 

of convolutional layers organized into four groups. The 

first and the second group contain two convolutional 

layers each. The third and the fourth group contain three 

layers each and a pooling layer follows them. T1-

weighted MRIs of the ADNI and MRIs of the OASIS 

databases were used for classifiers' training and testing. 

Five-fold cross-validation was used and the classification 

accuracy reached 73.4% for ADNI data and 69.9% for 

the Open Access Series of Imaging Studies (OASIS) 

data. 

The composition of functional MRI and Mini-Mental 

State Examination (MMSE) measures were also tested 

with 3D VGG network²². Feature selection procedure on 

MMSE was performed using linear least square 

regression (LLSR) tree regression, bagging-based 

ensemble regression and support vector regression. The 

algorithm recognized AD with a mean accuracy of 

85.27%.  
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More complex models have been presented in the 

papers ²³ ²⁴. A combination of deep learning models 

consisting of the fusion of two multilayer perceptrons 

(MLP) and CNN VGG-11 networks was investigated by 

Qiu et al. ²³. Prediction of MCI based on MRI and 

cognitive test score biomarkers was achieved with an 

accuracy of 90.9%. Another complex convolutional 

model was proposed by Spasov et al. ²⁴. The model 

consisted of AlexNet and Xception CNN architectures 

and used concatenated features from imaging and various 

non-imaging predictors. The obtained accuracy reached 

86% by grouping imaging data and clinical test scores. 

As one can notice, complex biomarkers are tested 

often with classification algorithms. In this way, ²⁵ 

analyzed three groups of biomarkers, such as mental task 

performance scores, digital (Statistical) and imaging 

biomarkers (fNIRS), by applying CNN. The 

classification results received from each group of 

biomarkers demonstrated the advantage of the imaging 

biomarkers, which showed an accuracy of 90.62% in the 

detection of MCI.  

Another study²⁶ used MRI imaging and non-imaging 

(age, ApoE4, TAU, cognitive test results) data for the 

prediction of AD. Regression analysis investigated the 

correlation between images and other clinical data, and 

deep learning based on convolutional autoencoders with 

Z-manifold block performed the classification task. AD 

was detected with an accuracy of 86% using all ranges of 

biomarkers.  

CNNs have demonstrated promising results in 

distinguishing between different types of dementia and in 

²⁷ the investigators looked for the predictive power of 

CNN in differentiating between AD and dementia with 

Lewy bodies (DLB). They used brain scans obtained with 

perfusion single-photon emission computer tomography 

(SPECT). The reported accuracy was 93.1%, 89.3% and 

92.4% for DLB vs healthy individuals, DLB vs AD and 

AD vs NL healthy individuals, respectively. 

Another important direction in the study of 

Alzheimer's disease is that of risk estimation of its 

development from the early stages of cognitive decline, 

such as the conversion of MCI to AD examined in²⁸. That 

work analyzed the structural hippocampal MRI using a 

deep learning framework for processing right and left 

hippocampal images in separate streams. The time-to-

event prognosis of the progression of MCI to AD was 

conducted using LASSO regularized Cox regression 

model. The model generated an overall risk score for the 

disease progression: AD was detected with an accuracy 

of 90%, and the progression of MCI to AD with an 

accuracy of 76.2%. A combination of imaging and 

cognitive measures improved the performance by 10% 

for progressive MCI. 

Research papers on the diagnosis of Mild Cognitive 

Impairments that employed CNN architectures are 

summarized in Table 1. The latest trends in AD and MCI 

diagnosis using ML are presented in²⁹. 

Non-MRI methods in MCI and AD diagnosis are well 

described in the contemporary literature. Thus, the 

study³⁰ explored longitudinal changes in brain-electrical 

connectivity of patients with MCI and the conversion of 

this form of cognitive decline to Alzheimer’s Disease. 

The research was based on Hierarchical clustering, which 

employed Electroencephalographic (EEG) signal and 

estimated dissimilarity between pairs of the recorded 

EEG signals by calculating the network density. Network 

density reduction was registered in patients with 

progressive to AD forms of MCI. 

In another study³¹, the authors used non-linear 

features and a probabilistic neural network for the 

prediction of MCI and AD. EEG signals were collected 

from frontal, parietal and occipital lobes of subjects with 

cognitive impairment and Alzheimer’s Disease and 

processed with empirical wavelet transform, the so-

called MUSIC-EWT. Non-linear indices of frequency 

bands were analyzed using one-way ANOVA, and the 

most discriminative ones were classified with an 

Enhanced Probabilistic Neural Network (EPNN).  

Another diagnostic approach based on fuzzy logic 

classification algorithm was proposed in³². EEG data 

collected from AD, EMC and the healthy subjects were 

processed with Discrete Wavelet Transform and 

analyzed by computing the Dispersion Entropy Index 

from signal sub-bands. The most discriminative features 

were trained and tested with a fuzzy logic algorithm to 

distinguish between patients’ classes. The method 

demonstrated an 82.6 – 86.9% accuracy for detecting AD 

and MCI. 

Other than EEG, functional biomarkers, such as 

MEG, fMRI, and PET, can also be applied for the 

diagnosis of dementia and its stages 33, 34. However, a 

detailed review of these methods is considered out-of-

scope since the paper is focused on MRI. 
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3. Computational Framework for Processing 

and Classification of Brain Asymmetry 

Images 

In contrast to the work mentioned above that used MRI 

as a source of data, the proposed framework, illustrated 

in Fig. 1, is based on brain asymmetry images. The 

various stages of the data processing pipeline are 

presented in the following subsections. 

 

 

Fig. 1.  Image transformations and generation process of brain 

asymmetry images for deep learning classification proposed. 

3.1. Image preprocessing stages 

The first preprocessing stage is image normalization, 

which brings the pixel intensity values of all imaging data 

to one standard. Each given grayscale image can be 

represented as a histogram of its gray levels. Gray values 

of a poorly contrasted image are clustered mainly in the 

center of the histogram. A histogram normalization 

method spreads the pixel values in a way that fills the 

entire available pixel's intensity range between 0 and 255. 

In our approach, MRI brain images are normalized using 

the histogram stretching technique.  

The second stage is a routine procedure in image 

processing called image resizing, where all images are 

resized to one standard fixed size. The purpose of 

resizing is to fit the images into a certain dimensionality 

space. Very often, the size of big imaging data has to be 

reduced to speed up a machine learning process and 

minimize local storage requirements. In the current 

research, the images are resized to 256×256 pixels with 

three channels by replicating the grayscale image three 

Table 1.  CNN-based methods in medical diagnosis of dementia 

Reference Pathology Method Performance 

20 AD, sMCI, cMCI 3D CNN Acc cMCI vs HC- 87%, 

Acc sMCI vs HC-76%, 

Acc AD vs HC-99% 

15  Dementia MLP + ConvBLSTM Acc-86% 

17 AD, MCI  Unsupervised DL RELM Acc AD vs EMCI-80.32%, 

Acc multiclass-76.61% 

21  AD  3D VGG Accuracy: 

73.4% - ADNI dataset,  

69.9% - OASIS dataset 

14  MCI  2D CNN based on LeNet-5 Acc 73.4%, Prec 82.2%, Recall 

92.3%, F1 – 87% 

23  MCI  2 MLP models + fusion of 

CNN VGG-11  

     Acc 90.9%  

27  AD, DLB CNN Acc DLB vs NL-93.1%, 

Acc DLB vs AD-89.3%, 

Acc AD vs NL-92.4% 

25 MCI  CNN Acc- 90.62%, 

 

26 AD   DL based on convolutional 

autoencoders  

Acc 84%, 

  

22 AD 3D CNN VGG Acc-85.27% 

28 AD, MCI CNN Acc AD vs NC – 90% 

Acc MCI vs AD 76.2% 

24 Progressive MCI AlexNet + Xception CNNs Acc- 86%, sensitivity- 87.5%, 

specificity -84% 
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times to create three channels, extending the dataset that 

forms the input of the deep learning classification stage. 

 

Fig. 2.   MRI slices in coronal and axial planes in original form 

and after processing with segmentation algorithm. 

3.2.  Brain segmentation methods including 

segmentation of hemispheric asymmetries 

In this stage, normalized and resized images are 

processed using brain segmentation algorithms (see Fig. 

2), which aim to localize an object of interest or the image 

boundaries. The process concerns partitioning an image 

into sets of pixels, or segments, united under a special set 

of rules. In the case of MRI, segmentation can be 

performed on 2D images separated from an image 

sequence or on 3D series. If 2D images are segmented 

slice-by-slice, they can be used to construct a 3D model. 

Nevertheless, despite the advantages of 3D, most clinical 

imaging procedures these days are still 2D. Moreover, the 

training of 3D volumetric images with 3D CNN slows 

down their processing without significant improvement 

in the performance of the classifier as reported in ³⁵. A 

favourable feature of image asymmetries is that they can 

be obtained from frontal and horizontal MRI slices only- 

a sagittal plane is not relevant for asymmetry. This can 

facilitate practical implementations of the asymmetry 

biomarker and CNNs in routine healthcare checks using 

2D image slices and off-the-shelf affordable hardware.  

Typically, a scanned image incorporates the skull and 

a nonbrain area as well as white matter (WM) brain 

tissue, gray matter (GM) brain tissue, and cerebrospinal 

fluid (CSF). Therefore, a common approach in MRI 

processing involves the extraction of nonbrain tissues 

before the brain segmentation methods can be used. 

Although there is no single method appropriate for all 

images because of image diversity, presence of noise and 

artefacts, a segmentation method that has been developed 

for one imaging context can be adapted to another class 

of images.  

The segmentation method that is used in the research 

belongs to the group of intensity-based methods, which 

includes thresholding and region-growing or region-

based types³⁸٫³⁹٫⁴⁰. The three main MRI brain tissue types 

are WM, GM and CSF, which can be easily distinguished 

due to their differences in pixel intensity levels. 

However, the presence of noise, artefacts, overlapped 

objects, and inhomogeneity of the tissues is an objective 

factor that can require the incorporation of additional 

tools and the implementation of advanced techniques. 

Biases during the brain segmentation can be corrected by 

adjusting the level of thresholding via changing the 

values of the upper and lower boundaries; an approach 

adopted in this work. Fig. 2 demonstrates the 

performance of the segmentation algorithm on an MRI 

slice.  

The next level of segmentation helps to detect 

differences between the right and left hemispheres 

defining a brain asymmetry image. It is important to note 

that we use our own segmentation algorithms to 

understand asymmetries' nature and control the feature 

collection process. The adopted technique and the 

robustness of the generated brain asymmetry images and 

features for class separation were verified in ⁶, and a 

Matlab implementation is available online at: 

https://www.mathworks.com/matlabcentral/fileexchang

e/85628-asymmetry-detection-of-the-mri-brain. 

The method is based on the finding that there is a loss 

of gray and white matter at the initial stage and along with 

the development of the neurodegenerative disorder, 

which leads to variations in the symmetry of the brain's 

structure. Initially the symmetry between the left and 

right hemispheres of the brain increases. However, the 

progression of the disease increases the degree of 

asymmetry as the left-sided hemispheric lateralization of 

a healthy individual gradually becomes right-sided with 

the development of severe dementia such as Alzheimer's 

Disease (see Refs. 4 and 5). For a cognitively normal 

person, Fig. 3 demonstrates the variations in the anatomy 

of the left and right hemispheres. 

https://www.mathworks.com/matlabcentral/fileexchange/85628-asymmetry-detection-of-the-mri-brain
https://www.mathworks.com/matlabcentral/fileexchange/85628-asymmetry-detection-of-the-mri-brain
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Differences in the symmetry of the two hemispheres 

can be detected through segmentation. The process of 

image analysis and asymmetry detection was discussed 

analytically in⁶ and is briefly presented next for 

completeness: (i) it involves detecting the vertical line of 

brain symmetry. This is assigned for mirroring the left 

hemisphere to the right and repeating the same process in 

the opposite direction; (ii) the original image is 

subtracted from its reflected version. Asymmetrical 

regions of the brain, whose pixels have different intensity 

levels according to the level of asymmetry, are 

segmented from the image by means of image matrix 

operations. An example of the visual changes of an image 

following the above-mentioned processing stages is 

shown in Fig. 4. 

 

3.3. Architectural configurations of the CNN and 

transfer learning  

This stage of the framework focuses on the identification 

of early and progressive dementia considering brain 

asymmetries as a potential biomarker. The problem is 

formulated as a set of binary classification tasks.  

Deep learning is not always the best approach to 

medical diagnosis because of the "black box" issue. We 

applied the latest DL methods to investigate their 

potential use in the identification of early mild cognitive 

impairment using MRI of brain asymmetries. The 

indicated asymmetries, which are represented by 

differences in pixel values between the left and right 

lobes, can potentially enhance the level of interpretability 

of the features generated under the convolutional 

transformations. The previous work7, which focused on 

transfer learning for asymmetry images, showed that 

pretrained AlexNets, which belong to the class of CNNs, 

are suitable for MRI processing. Moreover, it identified 

benefits when extra Softmax or SVM layers are added to 

the base model. During transfer learning, the networks, 

which were pretrained on ImageNet, use their learned 

parameters as initialization for the new training of the 

whole architecture with asymmetry images- a process 

commonly called fine-tuning. Fine-tuning is based on the 

stochastic gradient descent with momentum, as described 

in Section 5.  

Building on this work, deep learning architectures 

with CNNs remain at the core of our approach but are 

enriched with one more transfer learning architecture, the 

so-called VGG16 model that is deeper than AlexNet, as 

well as new CNN-based models that are designed and 

trained on MRI data from the start. The new models share 

a common CNN module as a base network and are 

equipped with separate Softmax, SVM, LD or KNN 

classification modules. The choice of these methods was 

based on previous work that provided evidence that they 

perform well on their own when used for the 

classification of brain asymmetries⁶. 

In the base CNN architecture (see Fig.5), the first 

five convolutional layers play the role of feature detectors 

and there is one fully connected layer. Additional layers 

consist of Local Response Normalization (LRN), Batch 

Normalization (BN), average pooling, dropout and 

Softmax layers. Overall, there are 258,064 neurons and 

12.8 million learnable parameters. The LRN uses non-

linear functions, known as Rectified Nonlinearity Units 

(ReLUs), which speed up training by normalizing the 

 
 

Fig. 3. Lateralisation of a healthy brain. (Source: CDI, Oswaldo 

Cruz German Hospital - Fleury Group / São Paulo 2015.) 

 

Fig. 4.  Image transformation stages from the segmented brain 

to the detection of brain asymmetries. 
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feature maps and removing the negative value. The Batch 

Normalization layer makes the deep learning process 

faster and more stable by the standardization of the 

layers' inputs. Recentring and rescaling operations are at 

the base of this process. Average pooling layers perform 

dimensionality reduction of the images implementing a 

downsampled operation on the input layers. Dropout 

clamps to zero the output signals of hidden neurons 

whose probability of activation is 0.5 or lower to reduce 

overfitting. The first convolutional layer requires an input 

image of size 256×256×3, i.e. 256 pixels wide, 256 pixels 

high, and three color channels, which are artificially 

created by replicating a grayscale image of brain 

asymmetry three times to create three channels in order 

to augment the dataset and facilitate integration with the 

core CNN architecture and the pretrained CNNs, as 

explained below. This layer includes 16 convolutions of 

size 5×5×3 and uses stride = 1 (the stride indicates the 

step size with which the filter/convolution moves over 

the image matrix). The second layer has 32 convolutions 

of size 3×3×3 with stride = 2, while the third layer is a 

copy of the second layer but stride =1. The fourth and 

fifth layers have 64 convolutions of similar sizes of 

3×3×3 with stride = 2. Each convolution layer is followed 

by Batch Normalization and ReLU layers. Average 

pooling layers follow the third and the fifth layers' 

convolutions. A fully connected layer puts together all 

feature outputs from previous layers and sends them to 

the activation unit (e.g. Softmax). Fig. 5 illustrates the 

core CNN architecture. In this instantiation (additional 

instantiations are discussed in Section 5), the Softmax 

layer normalizes the outputs that are used as 

classification probabilities by the output layer for the 

binary diagnostic task.  

 

Fig. 5.  An instantiation of the core CNN architecture that is 

equipped with a standard Softmax module. 

In comparison, pretrained CNNs like AlexNet and 

VGG16 were originally configured and trained for 1000 

classes using ImageNet data. The AlexNet architecture 

consists of 8 layers, has a size of 227MB and includes 61 

million parameters. The input dimensionality is 

227×227×3 (images should be 227 wide, 227 high, 3 

color channels). The VGG16 architecture is much bigger 

than the trained model c. 515MB. This network has 16 

layers and 138 million parameters, and the input 

dimensionality is 224×224×3. Both architectures require 

three channels (number 3 in input dimensionality) as they 

were originally designed to process ImageNet RGB 

images. As mentioned above in the case of the base CNN 

architecture, this requirement is addressed by replicating 

the grayscale image three times to create the three 

channels.  

4. MRI Data Repository 

The MRI data were obtained from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was introduced as a 

public-private partnership led by Dr M.W. Weiner in 

2003. Details about the project and up-to-date 

information are available at www.adni-info.org. 

The used dataset includes 600, 2D images which are 

equally divided between three classes of AD, EMCI and 

NC subjects. T1-waited MRI data from the ADNI3 

database were obtained from 50 patients with Mild 

Cognitive Impairment (EMCI) at the age between 55 and 

65 years old, 50 patients with Normal Cognition (NC) at 

the age between 55 and 65 years old, and 50 patients with 

Alzheimer's Disease (AD) at the age between 65 and 90 

years old. The age range between 55 and 65 years for the 

EMCI and NC groups was chosen to eliminate the ageing 

effect on the MRI data. Images were taken from the same 

type of 3T scanners, Siemens Medical Solutions 

(http://adni.loni.usc.edu/methods/mri-tool/mri 

acquisition). Thus, 600 image dataset of 150 subjects was 

obtained by extracting four central slices from each MRI 

brain. The chosen slices represented the most affected 

brain areas (according to the literature, frontal and 

parietal zones as well as hippocampus and amygdala). 

Examples of the created asymmetry images are exhibited 

in Fig. 6. 
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Fig. 6.  Sample of input images of segmented asymmetries for 

AD, EMCI and NC classes 

5. Experimental Study 

The vast majority of algorithms work by training deep 

networks on high-performance computing infrastructures 

(e.g. cloud, GPU clusters). We explore an alternative 

approach that exploits the characteristics of asymmetry 

images and uses commodity hardware, i.e. the hardware 

is off-the-shelf, affordable and easy to obtain; it is 

functional and suitable for processing asymmetry images 

with deep networks. The experiments presented in this 

section were conducted using the following hardware: 

PC running Windows10 Enterprise, CPU Intel i7-7700 at 

3.60 GHz, 16 GB RAM. The computational framework 

has been developed using Matlab. 

In the first experiment, CNNs from the ImageNet 

(AlexNet, VGG16) are retrained using transfer learning, 

and their classification performance is compared with the 

newly established classifier (Section 3.3), which consists 

of the CNN core plus Softmax module.  

The second experiment compares different instances 

of the CNN core module equipped with a Softmax, SVM, 

LD or KNN module. This module is connected to the 

fully connected layer to produce the output.  

As mentioned above, the dataset includes 600 images 

of segmented asymmetries from 150 patients (samples 

are shown in Fig. 6). Four brain slices from the most 

affected areas were taken from each patient. Segmented 

asymmetry images had a size of 256×256×3, where to 

create three channels, as mentioned in Section 3.3, the 

600 grayscale images were replicated three times to 

create the three channels. 

The experiments were run with balanced datasets, i.e. 

the number of patients and their corresponding MRI 

images were equally distributed between the three 

classes. Each binary classification task, namely EMCI vs 

NC, AD vs NC, and AD vs EMCI, used 400 images, and 

several independent runs with each deep learning 

architecture were performed, as described in the 

following sections, i.e. each model’s architecture was 

fixed but it was trained from random initial weight 

conditions at each run. 

The number of training epochs, n, was set to 11, the 

mini-batch size was 128 and the frequency of checking 

the validation metric was equal to 50. Lastly, a small 

initial learning rate equal to 0.0001 was adopted, whilst 

training followed the stochastic gradient descent with 

momentum (SGDM) method (see Ref 35). These settings 

were based on preliminary experiments reported in7. 

Those and additional experiments included tests with the 

different batch sizes of 32, 64 and 128 and a variable 

number of training epochs from 5 to 30. The 

experimental CNN architectures were based on 3, 5, 7, 

and 9 CNN layers. 

Training, validation and testing data described in this 

paper are selected randomly on a patient level, and no 

images from validation or test patients are included in the 

training set. In addition, the data is shuffled with each 

training epoch. A similar classification approach for 

medical diagnosis is used in the relevant literature; see 

Refs. 36, 37.  The data were split into 80% for training, 

10% for validation and 10% for testing. The same 

training, validation and testing datasets were used in all 

experiments with CNN models, including the transfer 

learning architectures.  

An example of learning curves for the training 

accuracy and loss/error of a 5CLNN-Softmax is provided 

in Fig.7. 

 

Fig.7. Example of training accuracy and error over 11 epochs 

for a 5CLNN-Softmax. The horizontal axis indicates 
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iterations/weight updates. Top graph: smoothed (moving 

average) training accuracy (thick blue line) and training 

accuracy on each mini-batch (thin blue line).  Bottom graph: 

smoothed training loss (thick red line) and training loss on each 

mini-batch (thin red line). 

5.1. Experiment 1 

In this experiment, the two pretrained neural networks, 

AlexNet and VGG-16, are fine-tuned by substituting the 

last three layers of the original architecture with a fully 

connected layer, Softmax and output layers which are 

adjusted to the number of classes in the task. The layer 

replacement is the first step of fine-tuning and it is 

followed by the training of the whole network.  

Table 2 provides comparative performance in testing 

based on ten independent runs from random initial 

conditions for each architecture. In this table, the newly 

established classifier, CNN core plus SoftMax, is 

denoted by 5CLNN. 

Performance measures such as Accuracy, F1-score 

and AUC demonstrate the overall improvement in the 

identification of dementia using 5CLNN. The average 

accuracy across all diagnostic tasks for 5CLNN is higher 

than the accuracy of AlexNet by 1.3% and that of VGG-

16 by 5.39%. F1-score demonstrates similar differences 

in performance with 5CLNN better by 1.4% compared to 

AlexNet, and by 5.5% compared to VGG-16. The 

5CLNN achieves the highest AUC in the identification of 

AD vs NC. Early changes in the brain are diagnosed with 

an accuracy of 86.4%, precision of 83%, recall of 89.1% 

and an F1-score of 86.0%. The diagnostic performance in 

AD vs EMCI is 79.8% in terms of accuracy, 81% in 

precision, 79.1% in recall, and 80.1% in the F1-score 

using 5CLNN.  

The performance of AlexNet and 5CLNN was tested 

further to investigate how consistent the differences 

were. Thirty additional independent runs were conducted 

for each subset of 400 asymmetry images (see Table 3). 

Table 2.  Average performance in testing based on 10 independent runs for AlexNet, VGG16, 5CLNN classifiers for 

three binary datasets: AD vs EMCI, EMCI vs NC, and AD vs NC. 

Classifiers with datasets Accuracy Precision Recall F1-score AUC 

AlexNet      

AD vs EMCI 0.787 ± 0.021 0.790 ± 0.020 0.785 ± 0.023 0.787 ± 0.021 0.875 ± 0.006 

EMCI vs NC 0.858 ± 0.015 0.850 ± 0.016 0.863 ± 0.013 0.856 ± 0.015 0.893 ± 0.002 

AD vs NC 0.882 ± 0.025 0.863 ± 0.026 0.896 ± 0.024 0.800 ± 0.025 0.938 ± 0.001 

VGG-16      

AD vs EMCI 0.708 ± 0.026 0.720 ± 0.023 0.702 ± 0.021 0.711 ± 0.022 0.826 ± 0.003 

EMCI vs NC 0.823 ± 0.020 0.790 ± 0.024 0.845 ± 0.019 0.816 ± 0.021 0.902 ± 0.001 

AD vs NC 0.873 ± 0.030 0.870 ± 0.030 0.874 ± 0.032 0.872 ± 0.031 0.921 ± 0.005 

5CLNN      

AD vs EMCI 0.798 ± 0.023 0.810 ± 0.021 0.791 ± 0.025 0.801 ± 0.023 0.874 ± 0.003 

EMCI vs NC 0.864 ± 0.031 0.830 ± 0.032 0.891 ± 0.026 0.860 ± 0.028 0.928 ± 0.002 

AD vs NC 0.901 ± 0.030 0.950 ± 0.026 0.866 ± 0.031 0.906 ± 0.028 0.941 ± 0.004 

 

Table 3.  Average performance in testing based on 30 additional independent runs for AlexNet and 5CLNN 

classifiers using the same binary datasets. 

Classifiers with datasets Accuracy Precision Recall F1-score AUC 

AlexNet      

AD vs EMCI 0.771 ± 0.022 0.760 ± 0.020 0.777 ± 0.024 0.769 ± 0.022 0.880 ± 0.006 

EMCI vs NC 0.860 ± 0.015 0.870 ± 0.016 0.853 ± 0.016 0.861 ± 0.016 0.898 ± 0.002 

AD vs NC 0.882 ± 0.026 0.860 ± 0.027 0.901 ± 0.024 0.880 ± 0.026 0.952 ± 0.002 

5CLNN      

AD vs EMCI 0.803 ± 0.023 0.810 ± 0.021 0.799 ± 0.025 0.804 ± 0.024 0.870 ± 0.003 

EMCI vs NC 0.878 ± 0.031 0.850 ± 0.033 0.900 ± 0.027 0.874 ± 0.030 0.931 ± 0.002 

AD vs NC 0.911 ± 0.032 0.930 ± 0.028 0.895 ± 0.032 0.912 ±0.030 0.948 ± 0.004 
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The obtained results appear in line with the previous ones 

(cf with Tables 2 and 3). In terms of accuracy and F1-

score, the 5CLNN outperforms the AlexNet by 3.20% 

and 1.62% for AD vs EMCI, by 1.75% and 1.90% for 

EMCI vs NC and by 2.80% and 1.68% for AD vs NC 

sets. 

The statistical significance of these differences was 

evaluated using Wilcoxon-Mann-Whitney ranksum 

test³³. This pairwise non-parametric test was applied to 

prove that the accuracy of 5CLNN is better than the 

accuracy of AlexNet architecture for AD vs EMCI, 

EMCI vs NC and AD vs NC datasets (see Table 4). The 

null hypothesis is based on the statement that we cannot 

easily create a new architecture that will perform at the 

same level or even outperform the CNN model AlexNet. 

If the null hypothesis is rejected, this opens the 

opportunity for new configurations with at least the same 

performance and potential improvement. 

Table 4.  Statistical significance of testing based 

on 30 independent runs for AlexNet and 5CLNN. 

Classifiers 

AD vs 

EMCI 

EMCI vs 

NC 

AD vs 

NC 

p 0.01 0.01 0.01 

h 1 1 1 

 

The test returns a p-value equal to 0.01 for each imaging 

subset and shows a logical value of the test decision h = 

1, which indicates a rejection of the null hypothesis at the 

5% level of significance. Thus, the outperformance of 

5CLNN is proven by these measures. Also, it is worth 

reporting that the average time spent for training, 

validation and testing was 29 min for 5CLNN, 36 min for 

AlexNet and 546 min for VGG-16 using the same 

hardware in all cases. 

5.2. Experiment 2 

The second experiment focuses on the comparison of the 

classification performance of different instances of the 

core 5CLNN. To this end, in Experiment 2, Support 

Vector Machine (SVM), Linear Discriminant (LD), and 

K-Nearest Neighbor (KNN) classification modules 

replace the Softmax layer, which was used in Experiment 

1. The SVM module uses a linear kernel function with a 

box constraint level equal to 1. The KNN module uses 

Euclidian distance with number of neighbors equal to 1. 

The four instantiations of the model are shown in Fig.8. 

Table 5.  Average performance out of 10 runs for the 5CLNN with different classification modules (Softmax, SVM, 

LD and KNN) in the three binary datasets. 

Classifiers with datasets Accuracy Precision Recall F1-score AUC 

5CLNN-Softmax      

AD vs EMCI 0.798 ± 0.023 0.810 ± 0.021 0.791 ± 0.025 0.801 ± 0.023 0.874 ± 0.003 

EMCI vs NC 0.864 ± 0.031 0.830 ± 0.032 0.891 ± 0.026 0.860 ± 0.028 0.928 ± 0.002 

AD vs NC 0.901 ± 0.030 0.950 ± 0.026 0.866 ± 0.031 0.906 ± 0.028 0.941 ± 0.004 

5CLNN-SVM      

AD vs EMCI 0.789 ± 0.025 0.815 ± 0.020 0.774 ± 0.028 0.794 ± 0.024 0.873 ± 0.003 

EMCI vs NC 0.867 ± 0.020 0.750 ± 0.023 0.880 ± 0.018 0.865 ± 0.020 0.900 ± 0.001 

AD vs NC 0.879 ± 0.040 0.869 ± 0.041 0.888 ± 0.037 0.878 ± 0.039 0.940 ± 0.001 

5CLNN-LD      

AD vs EMCI 0.804 ± 0.020 0.829 ± 0.018 0.790 ± 0.023 0.809 ± 0.020 0.909 ± 0.002 

EMCI vs NC 0.873 ± 0.012 0.850 ± 0.019 0.891 ± 0.011 0.870 ± 0.016 0.968 ± 0.002 

AD vs NC 0.886 ± 0.035 0.891 ± 0.032 0.881 ± 0.037 0.886 ± 0.035 0.920 ± 0.002 

5CLNN-KNN      

AD vs EMCI 0.723 ± 0.017 0.740 ± 0.014 0.716 ± 0.020 0.728 ± 0.017 0.893 ± 0.003 

EMCI vs NC 0.833 ± 0.032 0.800 ± 0.036 0.856 ± 0.030 0.827 ± 0.033 0.905 ± 0.002 

AD vs NC 0.874 ± 0.036 0.855 ± 0.038 0.889 ± 0.031 0.872 ± 0.035 0.903 ± 0.003 
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Fig. 8 Combining the 5CLNN core with alternative 

classification modules: Softmax layer (original configuration), 

SVM module, LD module and KNN module. 

 

Table 5 shows the average performance (out of 10 runs) 

for each model - 5CLNN-SoftMax, 5CLNN-SVM, 

5CLNN-LD and 5CLNN-KNN- in the three 

classification tasks.  

The 5CLNN-LD architecture achieves the best 

average performance over all binary problems. Its 

accuracy is higher than the 5CLNN with Softmax by 

0.63% for AD vs EMCI and 0.87% for EMCI vs NC. 

However, 5CLNN-LD architecture shows lower 

performance than 5CLNN-Softmax in the AD vs NC 

task. The 5CLNN-KNN architecture demonstrates lower 

performance than other models in all diagnostic tasks. 

A Wilcoxon ranksum test, as before, was used to 

check if the performance differences of the 5CLNN-LD 

model, although small, are significant compared to the 

second-best model, 5CLNN-Softmax. The null 

hypothesis (h) is that the differences in the performance 

of 5CLNN-LD and 5CLNN-Softmax are not significant. 

If the null hypothesis is rejected (h=1), one says that the 

differences are significant at the 5% level. The outcome 

of the Wilcoxon test is presented in Table 6. 

Table 6.  Statistical significance of the results 

based on 10 runs for the 5CLNN with Softmax 

and LD modules.  

Classifiers 

AD vs 

EMCI 

EMCI vs 

NC 

AD vs 

NC 

p 0.0145 0.0145 0.0145 

h 1 1 1 

z 2.4442 2.4442 2.4442 

 

The p-value of 0.0145, h equal to 1 and z-score of 2.4442 

confirm the statistical significance of the obtained results. 

6. Discussion 

Although a variety of dementia prediction models, based 

on CNN and transfer learning, can be found in previous 

literature, the approach presented in this paper is tailored 

to MRI brain asymmetries, as a new potential biomarker 

in predicting cognitive decline and dementia. In this 

context, it investigates the potential of integrating the 

CNN feature detector modules with different 

classification modules, going beyond the standard CNN 

architectures with Softmax classification layers used in 

previous attempts 

The experiments were conducted through the 

analysis of MRI brain asymmetries by CNN 

configurations that were trained to solve a set of binary 

classification problems. Various CNNs created from 

scratch or pretrained were evaluated, providing evidence 

of the diagnostic potential of these models when images 

of brain asymmetries are used. Pretrained CNNs were 

adapted to the new domain via transfer learning strategy 

and fine-tuned. The proposed 5CLNN core architecture 

was combined with SVM, LD and KNN modules and 

trained successfully and tested on images of brain 

asymmetries that were not used before.  

The study's findings offer additional insight into the 

diagnosis of dementia, especially considering the 

detection of early mild cognitive impairment using the 

images of segmented asymmetry as a potential 

biomarker. Early changes in the brain (EMCI vs NC) 

were diagnosed by the proposed 5CLNN with an 

accuracy of 87.8%±3.1% over 30 training/testing runs. 

The model's ability to distinguish between AD and EMCI 

is 80.3%±2.3%, whilst the AD prediction score compared 

to NC samples is 91.1%±3.2%.  

Also, the diagnostic accuracy of the two transfer 

learning models implemented, AlexNet and VGG16, in 

the early stages of cognitive decline (EMCI vs. NC) 

reached 86.0% ± 1.5% and 82.3% ± 2.0%, respectively. 

However, the proposed 5CLNN performed better than 

the transfer learning models in the tests conducted. The 

average accuracy across all diagnostic tasks for 5CLNN 

is higher than the accuracy of AlexNet by 1.8% and 

VGG-16 by 4.1%. Moreover, the training, validation, and 

testing time of the 5CLNN model is visibly shorter by 7 

min (1.24 times) compared to AlexNet and by 517 min 
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(18.83 times) compared to VGG-16 using commodity 

hardware. 

Another substantial finding of the study is that the 

model’s performance using asymmetry images can be 

improved further by using an appropriate classification 

module. For instance, the best results for the 5CLNN 

were obtained when the model was equipped with an LD 

classification module. This scheme demonstrated, on 

average, 87.3±1.2% of accuracy for the identification of 

EMCI. In contrast, equipping the CNN core with a 

Softmax layer (typically used in CNN applications), an 

SVM module or a KNN module, generated average 

accuracy of 86.4%±3.1%, 86.7±2%, and 83.3±3.2%, 

accordingly.  

The detection performance of created models based 

on images of segmented brain asymmetries is 

comparable to the results of the state-of-the-art literature 

(see Table 2) that used whole MRIs as a source of 

imaging data. The proposed CNN model demonstrates 

the accuracy of 87.8% in the diagnosis of early mild 

cognitive decline which is higher than that obtained with 

3D CNN (87% for converted MCI and 76% for stable 

MCI)²⁰. The proposed CNN (87.8%) overperformed 

LeNet-5 whose diagnostic prediction was 73.4% (see 

Ref.14), and combined AlexNet and Xception CNNs 

with the prediction of 86% in the diagnosis of progressive 

MCI²⁴.  Another study²⁵ used CNN trained via t-maps and 

reported the best accuracy of 90.62% in the detection of 

MCI, but no average performance results were provided. 

Also, the complex model²³ (MLP models + fusion of 

CNN VGG-11) predicts the MCI with an accuracy of 

90.9%. In the diagnosis of AD, our model gives 91.1% of 

accuracy on average which is higher than in 

works²¹٫²²٫²⁶٫²⁸ where it is equal to 73.4%, 85.27%, 84%, 

and 90%. At the same time, the performance of our model 

is lower than in²⁷ by 1.3%. However, the results (see 

Ref.27) are not based on the ADNI dataset but on 

proprietary data, the set of images is shorter than the one 

used in this work, and only the performance of the best 

CNN model that was trained is reported. 

Despite the visible similarity in classification 

performance with other research methods, the models 

that were trained using segmented asymmetry images 

have notable advantages. It is important to note that we 

did not use fusion strategies, like joint models (see Ref. 

22, 27), multiple combined biomarkers (see Ref.23-26), 

or 3D CNNs that process an enormous amount of data 

(see Ref. 20), increasing model complexity and imposing 

implementation requirements. The tendency of 

overfitting with segmented brain asymmetry images, 

which are focused on the affected areas, appears low with 

the use of dropout, and the model uses less features, 

which may shorten the training time.  

Deployment of the framework into medical practice 

would of course require extensive experimentation with 

a larger number of patients than the 150 used in this 

study. Also, issues of bias could be avoided by 

performing experiments with asymmetry images 

generated from other MRI databases (e.g. OASIS) and 

segmentation of hemispheric asymmetries with 

SPM/VBM standard image preprocessing software. 

7. Conclusions 

The growth of medical information has shown the 

necessity of using new diagnostic methods based on 

computerized algorithms. Deep neural networks open 

new possibilities in processing and analyzing imaging 

and non-imaging medical data. Among other areas, these 

methods demonstrate potential in diagnosing 

neurodegenerative diseases at an early stage, which can 

benefit health care and social services.  

A computerized diagnostic of MCI based on MRI 

data can be more accurate and informative than the 

cognitive psychological tests routinely used by medical 

practitioners. Automating the process lessens the work of 

radiologists, psychiatrists, gerontologists, and family 

doctors by providing a machine-supported diagnosis. In 

addition, detecting a mental decline in patients enables 

health services to provide early treatment that can help 

patients stay independent longer.  

Early and precise diagnosis of medical pathology is 

crucial in many situations when timely and focused 

therapy can find the appropriate treatment and reduce 

risks for patients. To this end, the paper presented and 

validated a computational framework for the diagnosis of 

early and progressive dementia based on image analysis 

of brain asymmetries and deep learning architectures.  

The proposed approach is effective in the detection of 

Mild Cognitive Impairment that can lead to the 

development of Alzheimer's Disease in 10-15% of cases, 

according to the literature. The framework was 

implemented and tested using commodity hardware 

exploiting the properties of asymmetry in MRI images 

when combined with transfer learning or neural networks 

trained from scratch with images of brain asymmetry. All 

schemes demonstrate consistent and robust performance 
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and indicate that the images of brain asymmetries can be 

used as an additional biomarker in the diagnosis of 

dementia.  

The suggested computational framework can be 

potentially useful to other researchers working on the 

diagnosis of brain-related disorders or the processing and 

classification of other medical imaging data, especially in 

cases with unclear border and texture or low-scale 

structural changes, which are not visible to the human 

eye.  

Future research includes many additional directions. 

The first of them is a longitudinal study of patients with 

cognitive decline. Observation of the structural and 

functional changes in brain asymmetry can add some 

more clarification to the development of the destructive 

process in the brain tissues. 

Another line of research is an investigation of the 

white matter asymmetries. It remains unclear what 

pattern of asymmetries have AD, EMCI and NC 

individuals and how these patterns different from the 

asymmetries found in gray matter. 

An important addition to the contemporary 

knowledge of the development of dementia is further 

studies of regional asymmetries. A more detailed 

investigation of regional asymmetries using supervised 

learning and transfer learning methods can potentially 

enhance our understanding of Alzheimer's Disease and 

dementia.   
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