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Convergence of sparse grid Gaussian convolution approximation for

multi-dimensional periodic functions

Simon Hubbert∗, Janin Jäger†and Jeremy Levesley‡

October 21, 2022

Abstract

We consider the problem of approximating [0, 1]d-periodic functions by convolution with a scaled Gaussian
kernel. We start by establishing convergence rates to functions from periodic Sobolev spaces and we show
that the saturation rate is O(h2), where h is the scale of the Gaussian kernel. Taken from a discrete point of
view, this result can be interpreted as the accuracy that can be achieved on the uniform grid with spacing
h. In the discrete setting, the curse of dimensionality would place severe restrictions on the computation of
the approximation. For instance, a spacing of 2−n would provide an approximation converging at a rate of
O(2−2n) but would require (2n + 1)d grid points. To overcome this we introduce a sparse grid version of
Gaussian convolution approximation, where substantially fewer grid points are required (from O(2nd) on the
full grid to just O(2nnd−1) on the sparse grid) and show that the sparse grid version delivers a saturation
rate of O(nd−12−2n). This rate is in line with what one would expect in the sparse grid setting (where the
full grid error only deteriorates by a factor of order nd−1) however the analysis that leads to the result is
novel in that it draws on results from the theory of special functions and key observations regarding the
form of certain weighted geometric sums.

MSC Class: 42B05; 65D40; 65D15
Keywords: Sparse grids; Gaussian convolution, Approximation of periodic functions

1 Introduction

Many methods that are designed to deliver approximations are based on the convolution of a kernel function
with the function being approximated. The general approach involves selecting a suitable integrable function
K : IRd → IR (the convolution kernel) satisfying∫

IRd
K(x)dx =

∫
IRd

K(x1, . . . , xd)dx1 · · · dxd = 1.

A scaling vector h = (h1, . . . , hd)
T ∈ IRd, with hi > 0 (1 ≤ i ≤ d) is then used to define a parameterised family

of convolution kernels by

Kh(x) =
1

h1 · · ·hd
K

(
x1

h1
, . . . ,

xd
hd

)
.
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The convolution approximation to a function f ∈ L1(IRd) is defined by

Ch(f)(x) = (f ∗Kh)(x) =

∫
IRd

f(y)Kh(x− y)dy. (1.1)

The convolution kernel described above is anisotropic as each direction is allowed to be scaled by its own
factor. This is practically useful because a typical data sample of a function will show variety along different
directions and so a well designed anisotropic scaling can efficiently capture these features. However, from a
theoretical perspective, most convergence results relate to the isotropic scale where each direction is scaled by
the same factor h > 0. In this case the scaled kernel is Kh(x) = h−dK

(
x
h

)
and the corresponding convolution

approximation

Ch(f)(x) =

∫
IRd

f(y)Kh(x− y)dy =
1

hd

∫
IRd

f(y)K

(
x− y

h

)
dy, (1.2)

can be shown to converge to f as h→ 0, the convergence being uniform on compact sets, [6] chapter 20, theorem
2. The rate of convergence depends upon the smoothness of f and the polynomial reproduction properties of
the underlying kernel. The convolution approximation can be viewed as the continuous counterpart of quasi-
interpolation; a discrete method which generates an approximation over the whole of IRd by linearly combining
the values of f sampled at the scaled integer lattice hZd together with the appropriately shifted and scaled
kernel function. The classical construction, as for example described in [3], takes the form

Qh(f)(x) =
∑
k∈Zd

f(kh)K
(x
h
− k

)
, x ∈ IRd, h > 0. (1.3)

Following [11] the connection between continuous convolution and discrete quasi-interpolation can be seen
if we write

Ch(f)(x) =
1

hd

∑
k∈Zd

∫
h·(k+[− 1

2 ,
1
2 ]d)

f(y)K

(
x− y

h

)
dy.

The integrals above are taken over appropriately shifted and scaled versions of the cube [− 1
2 ,

1
2 ]d. If we approx-

imate each integrand by its value at the midpoint of the cube we get∫
h·(k+[− 1

2 ,
1
2 ]d)

f(y)K

(
x− y

h

)
dy ≈ hdf(kh)K

(x
h
− k

)
,

and so we have that Ch(f)(x) ≈ Qh(f)(x). Quasi-interpolation using Gaussians in one dimension was described
in [10].

In this paper we will examine the approximation of [0, 1]d−periodic functions by convolution with the multi-
dimensional Gaussian kernel. Given the close connection of continuous convolution to quasi-interpolation the
results we establish in the continuous setting will serve as a baseline for what should be expected in the discrete
case.

We begin in Section 2 by deriving the formula for the Fourier expansion of the pointwise error using the
anisotropic scaling of the Gaussian; this result allows us to deduce that convolution approximation is only able
to reproduce the constant function. We then analyse the isotropic case in some detail. In this setting we
demonstrate that the convergence has a saturation rate of O(h2).

In Section 3 we consider the practical issues of employing the discrete (quasi-interpolation) analogue of
continuous convolution in high dimensions. Such a recasting involves constructing a full grid in [0, 1]d with
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an isotropic spacing of h = 1
2n , where n is a positive integer. In this setting, the convolution approximation

will converge to f at a rate of 1
22n , provided f is sufficiently smooth. However, in the discrete setting we are

restricted by the curse of dimensionality since the construction of the quasi-interpolant would require (2n + 1)d

evaluations and this is prohibitively large as n grows. In order to overcome this we consider replacing the
full-grid approximation with a sparse grid version which is built from a certain linear combination of smaller
full grid approximations. Numerical experiments on closely connected methods have been published in [14]. To
analyse this theoretically we mimic the approach of Section 2, i.e., we first derive the formula for the Fourier
expansion of the pointwise error using the sparse grid convolution approximation. We then investigate the
Fourier coefficients of the error expansion and we state the main theorem of the paper, concerning the decay
rate of the coefficients. We then establish that, provided f is sufficiently smooth, the sparse grid convolution

approximation will converge to f at a rate of n
d−1

22n . Section 4 is devoted to the proof of the aforementioned main
theorem of the paper.

2 Gaussian convolution approximation

Our choice of convolution kernel is the multi-dimensional Gaussian

Ψ(x) =
1

(2π)
d
2

exp

(
−1

2
xTx

)
=

1

(2π)
d
2

exp

(
−1

2

(
d∑
i=1

x2
i

))
=

d∏
i=1

ψ(xi),

where ψ : IR→ IR is the univariate Gaussian ψ(x) = (2π)−
1
2 exp

(
− 1

2x
2
)
. Fourier theory will play an important

role in our analysis and we recall that if we let ex(z) = exp(2πix · z) then the univariate Fourier transform of
ψ is

ψ̂(z) :=

∫ ∞
−∞

ψ(x)e−x(z)dx = exp(−2π2z2).

Our general aim is to approximate a [0, 1]d-periodic function

f(x) =
∑
k∈Zd

f̂(k)ek(x) where ey(x) := exp(2πiyTx) =

d∏
i=1

eyi(xi),

by the continuous multi-variable convolution

Ch(f) =

∫
IRd

f(z)Ψh(x− z)dz =
∑
j∈Zd

∫
[0,1]d

f(z)Ψh(x− z− j)dz =

∫
[0,1]d

f(z)Φh(x− z)dz,

where
Φh(x) =

∑
j∈Zd

Ψh(x− j).

Now, Φh(x) is [0, 1]d−periodic and so has a multi-dimensional Fourier series

Φh(x) =
∑
k∈Zd

Φ̂h(k)ek(x),

3



where

Φ̂h(k) =

∫
[0,1]d

Φh(x)e−k(x)dx

=

∫
[0,1]d

∑
j∈Zd

Ψh(x− j)

 e−k(x)dx

=
∑
j∈Zd

∫
[0,1]d

Ψh(x− j)e−k(x)dx

=

∫
IRd

Ψh(x)e−k(x)dx =

d∏
i=1

∫ ∞
−∞

ψhi(xi)e−ki(xi)dxi =

d∏
i=1

ψ̂(hiki).

Applying the d-dimensional convolution formula for [0, 1]d−periodic functions we have:

Ch(f)(x) =
∑
k∈Zd

f̂(k)Φ̂h(k)ek(x) =
∑
k∈Zd

f̂(k)

(
d∏
i=1

ψ̂(hiki)

)
ek(x). (2.1)

Thus the error in the convolution approximation is

Eh(f)(x) = f(x)− Ch(f)(x) =
∑
k∈Zd

f̂(k)

(
1−

(
d∏
i=1

ψ̂(hiki)

))
ek(x). (2.2)

We note that, since ψ̂(0) = 1, the above error representation immediately shows that the convolution reproduces
the constant but not any other trigonometric polynomial.

2.1 Convergence with Isotropic scaling

If we consider the isotropic case where the same scale factor h is applied to all coordinate directions then (2.2)
can be written as

Eh(f)(x) =
∑

k∈Zd\{0}

f̂(k)
(

1− e−2π2h2‖k‖2
)
ek(x). (2.3)

The functions we wish to approximate are taken from a periodic Sobolev space

Nβ =

f =
∑
k∈Zd

f̂(k)ek : ‖f‖β =

 ∑
k∈Zd\{0}

‖k‖2β |f̂(k)|2
1/2

<∞

 .

The Sobolev embedding theorem [2] ensures that if β > d
2 then all functions in Nβ will be continuous. The

following result gives error bounds for Gaussian convolution approximation of such functions.
Proposition 2.1. Let f ∈ Nβ , where β > d

2 . Then

‖Ehf‖∞ ≤ ‖f‖β ·


C1h

2 for β > d
2 + 2;

h2
(
C2

√
ln
(

1
h

)
+ C3

)
for β = d

2 + 2;

C4h
β− d2 for d

2 < β < d
2 + 2,

where Ci i = 1, 2, 3, 4, are positive constants independent of h.
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Proof. Using (2.3) together with the elementary bound 1− e−x < x (for x > 0), we can deduce that

‖Ehf‖∞ ≤ 2π2h2
∑

k∈Zd\{0}

‖k‖2|f̂(k)|. (2.4)

Suppose that β = d
2 + 2 + α, where α > 0, then an application of the Cauchy Schwarz inequality yields

‖Ehf‖∞ ≤ 2π2h2
∑

k∈Zd\{0}

1

‖k‖ d2 +α
· ‖k‖ d2 +α+2|f̂(k)|

≤ 2π2h2

 ∑
k∈Zd\{0}

1

‖k‖d+2α

 1
2

·

 ∑
k∈Zd\{0}

(
‖k‖2

) d
2 +2+α |f̂(k)|2

 1
2

≤ 2π2Ch2‖f‖β .

Now assume that β = d
2 + 2− α where 0 < α < 2. In the following development we will work with a partition

of the punctured integer lattice

Zd \ {0} =

{
k ∈ Zd \ {0} : 1 ≤ ‖k‖ < 1

h

}
︸ ︷︷ ︸

=Θh

∪
{
k ∈ Zd : ‖k‖ ≥ 1

h

}
︸ ︷︷ ︸

=Γh

.

Using this we bound the error in two parts as follows

‖Ehf‖∞ ≤
∑
k∈Θh

|f̂(k)| · |1− e−2π2h2‖k‖2 |+
∑
k∈Γh

|f̂(k)| · |1− e−2π2h2‖k‖2 |.

For the sum over Θh we again employ 1− e−x < x and, bounding as before, we conclude that∑
k∈Θh

|f̂(k)| · |1− e−2π2h2‖k‖2 | ≤ 2π2h2
∑
k∈Θh

|f̂(k)| · ‖k‖2

= 2π2h2
∑
k∈Θh

‖k‖α− d2 ‖k‖ d2 +2−α|f̂(k)|

≤ 2π2h2

(∑
k∈Θh

‖k‖2α−d
) 1

2
(∑

k∈Θh

(
‖k‖2

) d
2 +2−α |f̂(k)|2

) 1
2

≤ 2π2h2

(∑
k∈Θh

(
1

h

)2α−d
) 1

2

‖f‖ d
2 +2−α

≤ C · 2π2h2
[( 1

h

)d(
1

h

)2α−d] 1
2 ‖f‖ d

2 +2−α

≤ C · 2π2h2−α‖f‖ d
2 +2−α = C · 2π2hβ−

d
2 ‖f‖β .

We note that for the case where α = 0, corresponding to β = d
2 + 2, the above development can be traced
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to the third line to yield

∑
k∈Θh

|f̂(k)| · |1− e−2π2h2‖k‖2 | ≤ 2π2h2

(∑
k∈Θh

1

‖k‖d

) 1
2

‖f‖β .

Applying the integral test, with a change to polar coordinates, we have

∑
k∈Θh

1

‖k‖d
≤
∫

1≤‖x‖≤ 1
h

dx

‖x‖d
= Cd

∫ 1
h

1

dr

r
= Cd ln

(
1

h

)
.

In summary, for this part of the sum we can conclude that

∑
k∈Θh

|f̂(k)| · |1− e−2π2h2‖k‖2 | ≤ ‖f‖β

{
Ch2

√
ln
(

1
h

)
for β = d

2 + 2;

Chβ−
d
2 for d

2 < β < d
2 + 2.

(2.5)

For the sum over Γh we employ 1− e−x < 1 and develop the bound as follows:∑
k∈Γh

|f̂(k)| · |1− e−2π2h2‖k‖2 | ≤
∑
k∈Γh

|f̂(k)| =
∑
k∈Γh

|‖k‖α−2− d2 · ‖k‖ d2 +2−α|f̂(k)|

≤

(∑
k∈Γh

‖k‖2α−4−d

) 1
2
(∑

k∈Γh

(
‖k‖2

) d
2 +2−α |f̂(k)|2

) 1
2

≤

(∑
k∈Γh

‖k‖2α−4−d

) 1
2

‖f‖ d
2 +2−α =

(∑
k∈Γh

‖k‖−2β

) 1
2

‖f‖β .

Keeping in mind that d
2 < β ≤ d

2 + 2, the integral comparison test yields∑
k∈Γh

‖k‖−2β ≤
∫
‖x‖≥ 1

h

‖x‖−2βdx = Cd

∫ ∞
1
h

rd−1−2βdr ≤ Ch2β−d,

and, for this parameter range, we can deduce that∑
k∈Γh

|f̂(k)| · |1− e−2π2h2‖k‖2 | ≤ Chβ− d2 , for
d

2
< β ≤ d

2
+ 2. (2.6)

Combining this with (2.5) provides the bounds stated in the proposition.

3 Gaussian convolution approximation on sparse grids

The convergence results of the previous section are of theoretical interest, however, from a practical perspective,
the implementation of the discrete (quasi-interpolation) analogue in high dimensions is restricted by the curse
of dimensionality. A direct recasting of the continuous case to discrete setting would require that we sample
values on a full grid in [0, 1]d, thus for h = 1/2n this would amount to (2n + 1)d evaluations. One remedy that
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can be used to alleviate the curse of dimensionality, at least for moderately high dimensions, is to approximate
on a carefully chosen subset of the full grid, where substantially fewer points are needed to achieve an acceptable
level of accuracy. To describe our approach we let ` = (`1, . . . , `d) denote a general multi-index where `i ≥ 1
for i = 1, . . . , d then we define X` to be the anisotropic (directionally uniform) grid in [0, 1]d where hi = 1/2`i

denotes the spacing in the ith coordinate direction. The number of nodes in X` is then given by

|X`| =
d∏
i=1

(2`i + 1).

We let Xn,d = X2−n1 denote the full isotropic grid with a uniform spacing of h = 1
2n . As a starting point

we can appeal to Proposition 2.1 to conclude that the approximation error for the continuous convolution
approximation to any given f ∈ Nβ (β > d

2 + 2) on the full grid Xn,d satisfies

‖E 1
2n
f‖∞ = ‖f − C 1

2n
(f)‖∞ = O

(
1

22n

)
. (3.1)

In what follows we will consider an approach to convolution approximation on sparse grid subsets of Xn,d.
To be more precise, we consider the following subset of Xn,d,

Sn,d =
⋃

|`|1=n+d−1

X`, (3.2)

with |`|1 = `1 + · · · + `d, which will be referred to as the sparse grid at level n in d dimensions. We note that
there is some redundancy in this definition; the sparse grid is represented as a combination of sub-grids and
some grid points are included in more than one sub-grid, this is nicely illustrated, for the 2 dimensional case,
in Figure 1.

Figure 1: The sparse grid S4,2 constructed via (3.2)

An effort to reduce this redundancy is possible by employing the Boolean sum representation of Delvos [7],
specifically one can express the sparse grid as

Sn,d =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|`|1=n+(d−1)−q

X`, (3.3)

where we interpret the positive contributions as the inclusion of points and the negative contributions as their
removal, this approach is nicely illustrated for the 2 dimensional case, in Figure 2. A precise formula for |Sn,d|,
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the number of points in the sparse grid Sn,d is provided in Lemma 7 of [5], specifically it shown there that

|Sn,d| =
n−1∑
i=0

2i
(
d− 1 + i

d− 1

)
= O(2nnd−1), (3.4)

which is a significant reduction from O(2dn) for a full grid. Later in the paper we will show that the accuracy of
the sparse grid approximation only deteriorates by a factor of nd−1 in comparison to the full grid approximation.
This is typical of what is to be expected from sparse grid methods (see [4]) and this advantage makes them an
attractive solution.

Figure 2: The sparse grid S4,2 constructed via (3.3)

Following (2.1) we represent the anisotropic convolution approximation on X` as

C`(f)(x) = f ∗Ψ( 1

2`1
,..., 1

2`d

)(x) =
∑
k∈Zd

f̂(k)

(
d∏
i=1

ψ̂

(
ki
2`i

))
ek(x). (3.5)

The convolution approximation on the sparse grid Sn,d is formed via the so-called combination technique [9].
This technique takes anisotropic convolution approximations C`(f)(x) (3.5) on the coarser grids X` used in the
formation Sn,d and then linearly combines these according to the Boolean decomposition (3.3), it is defined as

Cn,d(f)(x) =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|`|1=n+(d−1)−q

C`(f)(x). (3.6)

Substituting (3.5) into the above one can show that

Cn,d(f)(x) =
∑
k∈Zd

f̂(k)Ĉn,d(k)ek(x)
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with

Ĉn,d(k) =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|`|1=n+(d−1)−q

d∏
i=1

ψ̂

(
ki
2`i

)

= (−1)d−1
d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|`|1=n+q

e
−
∑d
i=1

2π2k2i

22`i ,

(3.7)

where, in the final line, the order of the terms in the original outer sum are reversed.

Using this representation the pointwise error formula is given by

En,d(f)(x) = f(x)− Cn,d(f)(x) =
∑
k∈Zd

f̂(k)Ên,d(k)ek(x), (3.8)

where

Ên,d(k) = 1− Ĉn,d(k) = 1− (−1)d−1
d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|`|1=n+q

e
−
∑d
i=1

2π2k2i

22`i . (3.9)

We notice that when k = 0 we have that

Ên,d(0) = 1− (−1)d−1
d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|`|1=n+q

1

= 1− (−1)d−1
d−1∑
q=0

(−1)q
(
d− 1

q

)(
n+ q − 1

d− 1

)
,

(3.10)

where we have used the fact that that the number of ways to write s as the sum of r positive integers is
(
s−1
r−1

)
.

The following identity, which is taken from [12] Formula 4.2.5.47, is valid for non-negative integers r and s such
that 0 ≤ r ≤ s

s∑
q=0

(−1)q
(
s

q

)(
a+ bq

r

)
= (−1)sbsδr,s.

Applying this with r = s = d− 1, a = n− 1 and b = 1 we can conclude that the sum in the expression above
equates to (−1)d−1 and hence we have that Ên,d(0) = 0. Thus, as with the plain convolution approximation,
the combination convolution approximation on the sparse grid also reproduces the constant function. At this
point in the paper it is pertinent to compare the two error representations for convolution approximation that
we have developed so far, in the continuous (full grid) setting we have

En,d(f)(x) = f(x)− C 1
2n

(f)(x) =
∑

k∈Zd\{0}

f̂(k)

(
1− e−

2π2‖k‖2

22n

)
ek(x)

and in the sparse grid case we have

En,d(f)(x) = f(x)− Cn,d(f)(x) =
∑

k∈Zd\{0}

f̂(k)

1−
d−1∑
q=0

(−1)q+d−1

(
d− 1

q

) ∑
|`|1=n+q

e
−
∑d
i=1

2π2k2i

22`i

 ek(x).
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In Section 2 we found that error bounds, for sufficiently smooth functions, in the full grid case are easy to
access by applying the simple inequality 1 − e−x ≤ x. The situation for the sparse grid case is clearly not as
straightforward and this leads us to embark on a thorough investigation of the coefficients (3.9). To this end
we will begin with a detailed examination of the 2−dimensional case. The results of this investigation will form
the base case of an inductive proof which we will use to establish convergence in higher dimensions.

3.1 Convergence in two dimension

In two dimensions the sparse grid convolution coefficients of the point-wise error formula (3.9) have the form

Ên,2(k) = 1 +
∑
i+j=n

e
−2π2

(
k21
22i

+
k22
22j

)
−

∑
i+j=n+1

e
−2π2

(
k21
22i

+
k22
22j

)
. (3.11)

Let us develop the general term in the above expression using the full series expansion of the exponential
function. Specifically, we consider

∑
i+j=m

e
−2π2

(
k21
22i

+
k22
22j

)
=

∑
i+j=m

∞∑
p=0

(−1)p
2pπ2p

p!

(
k2

1

22i
+
k2

2

22j

)p
=

∞∑
p=0

(−1)p
2pπ2p

p!
σ2,p(m,k), (3.12)

where

σ2,p(m,k) =
∑

i+j=m

(
k2

1

22i
+
k2

2

22j

)p
=

{
m− 1 if p = 0;∑m−1
j=1

(
k21

22(m−j) +
k22
22j

)p
if p ≥ 1.

(3.13)

For p ≥ 1 we can apply the binomial theorem to yield

σ2,p(m,k) =

m−1∑
j=1

p∑
r=0

(
p

r

)
k2r

1

22(m−j)r
k

2(p−r)
2

22j(p−r) =

p∑
r=0

(
p

r

)
k2r

1 k
2(p−r)
2

22mr

m−1∑
j=1

22(2r−p)j . (3.14)

The inner term of the above expression is a geometric sum of the form
∑n
j=1 x

j with n := m− 1 and either

x := 22(2r−p), if 2r 6= p, or x = 1, if 2r = p. To help distinguish between these cases we define

∆p,2 =

{
0 if p is odd;

1 otherwise,
(3.15)

then applying the geometric sum formula

n∑
j=1

xj =

{
1

x−1−1 (1− xn) if x 6= 1;

n if x = 1,
(3.16)
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we find that

σ2,p(m,k) =

p∑
r=0
r 6= p

2

(
p

r

)
k2r

1 k
2(p−r)
2

22mr

1− 22(2r−p)(m−1)

22(p−2r) − 1
+ ∆p,2

(
p
p
2

)
kp1k

p
2

2mp
(m− 1)

=

p∑
r=0
r 6= p

2

(
p

r

)
k2r

1 k
2(p−r)
2

22mr(22(p−2r) − 1)
−

p∑
r=0
r 6= p

2

(
p

r

)
k2r

1 k
2(p−r)
2 22(2r−p)(m−1)

22mr(22(p−2r) − 1)
+ ∆p,2

(
p
p
2

)
kp1k

p
2

2mp
(m− 1)

=

p∑
r=0
r 6= p

2

(
p

r

)
k2r

1 k
2(p−r)
2

22mr(22(p−2r) − 1)
−

p∑
r=0
r 6= p

2

(
p

r

)
k

2(p−r)
1 k2r

2 22(p−2r)(m−1)

22m(p−r)(22(2r−p) − 1)
+ ∆p,2

(
p
p
2

)
kp1k

p
2

2mp
(m− 1)

=

p∑
r=0
r 6= p

2

(
p

r

)
k2r

1 k
2(p−r)
2

22mr(22(p−2r) − 1)
−

p∑
r=0
r 6= p

2

(
p

r

)
k

2(p−r)
1 k2r

2

22mr(1− 22(p−2r))
+ ∆p,2

(
p
p
2

)
kp1k

p
2

2mp
(m− 1)

=

p∑
r=0
r 6= p

2

(
p

r

)
k2r

1 k
2(p−r)
2 + k

2(p−r)
1 k2r

2

22mr(22(p−2r) − 1)
+ ∆p,2

(
p
p
2

)
kp1k

p
2

2mp
(m− 1),

(3.17)

where the third line follows from reversing the index of the second sum and the penultimate line follows from
a cancellation in the summands of the second sum. The following result captures the terms that dominate the
behaviour of σ2,p(m,k) for large m.

Proposition 3.1. Let k = (k1, k2)T ∈ Z. Then, for m ≥ 2 and p = 1 we have

σ2,1(m, k) = ‖k‖2 ·
(
C0 −

4

3
· 1

22m

)
where C0 =

1

3
. (3.18)

Furthermore, for p ≥ 2 we have that

σ2,p(m, k) = Ck,p
0 + δp,22k2

1k
2
2

m

22m
+
C(k, p, 2)

22m
+O

( m

24m

)
(3.19)

where δp,2 denotes the Kronecker delta function and

Ck,p
0 =

k2p
1 + k2p

2

22p − 1
and C(k, p, 2) =

(1− δp,2)p
(
k

2(p−1)
1 k2

2 + k2
1k

2(p−1)
2

)
22(p−2) − 1

− δp,22k2
1k

2
2. (3.20)

Proof. The first equality follows from setting p = 1 in (3.17). The second equality arises from isolating the
dominant terms of (3.17) while ignoring those which decay faster than 1

22m .

Using the notation introduced above we can write (3.11) as

Ên,2(k) =1 +

∞∑
p=0

(−1)p2pπ2p

p!
(σ2,p(n,k)− σ2,p(n+ 1,k))

=− 2π2 (σ2,1(n,k)− σ2,1(n+ 1,k)) +

∞∑
p=2

(−1)p2pπ2p

p!
(σ2,p(n,k)− σ2,p(n+ 1,k)) ,

(3.21)
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the final equality being true since σ2,0(n,k) = n− 1. Using (3.18) and(3.19) we make note of the following

σ2,1(n,k)− σ2,1(n+ 1,k) = −‖k‖
2

22n

σ2,p(n,k)− σ2,p(n+ 1,k) =
1

22n

[
δp,2

(
3n− 1

2

)
k2

1k
2
2 +

3

4
C(k, p, 2) +O

( n

22n

)]
.

This allows us to write

Ên,2(k) =
1

22n

(
2π2‖k‖2 +

∞∑
p=2

(−1)p2pπ2p

p!

[
δp,2

(
3n− 1

2

)
k2

1k
2
2 +

3

4
C(k, p, 2) +O

( n

22n

)])
(3.22)

Examining the above, we observe that the term dominating the asymptotic rate of decay corresponds to the
first (p = 2) term of the infinite sum, and hence we can deduce that

Ên,2(k) ∼ 22π4

2!
· 3

2

n

22n
k2

1k
2
2 = 3π4k2

1k
2
2

n

22n
. (3.23)

Employing this result in (3.8) we can deduce

En,2(f)(x) ∼ 3π4 n

22n

∑
k∈Z2

f̂(k)k2
1k

2
2ek(x). (3.24)

3.2 Convergence in d > 2 dimensions

In this part we will embark on the d−dimensional analogue of the approach from the previous subsection. We
begin by defining the d−dimensional version of (3.13)

σd,p(m,k) =

{(
m−1
d−1

)
if p = 0;∑

|`|1=m

(∑d
i=1

k2i
22`i

)p
if p ≥ 1.

(3.25)

Then, using this notation in the expansion of the exponential function, the error coefficients (3.9) can be
represented as

Ên,d(k) =1− (−1)d−1
∞∑
p=0

(−1)p2pπ2p

p!

d−1∑
q=0

(−1)q
(
d− 1

q

)
σd,p(n+ q,k)

=1− (−1)d−1
d−1∑
q=0

(−1)q
(
d− 1

q

)(
n+ q − 1

d− 1

)

−
∞∑
p=1

(−1)p2pπ2p

p!

d−1∑
q=0

(−1)d−1−q
(
d− 1

q

)
σd,p(n+ q,k).

We note that the penultimate line above coincides with En,d(0) (3.10) which we have shown to be zero. To
simplify the notation we recall the forward divided difference functional of order k is defined by

∆kf =

k∑
q=0

(−1)k−q
(
k

q

)
f(q).

12



Taking k = d− 1 we can express the d−dimensional sparse grid convolution error coefficients as

Ên,d(k) = 2π2∆d−1σd,1(n+ ·,k)−
∞∑
p=2

(−1)p2pπ2p

p!
∆d−1σd,p(n+ ·,k). (3.26)

The above result is the d−dimensional equivalent of (3.21). In order to complete the investigation we need
to derive a representation of σd,p(m,k), analogous to (3.17) in two dimensions, that describes the rate at which
the error coefficients decay. The following result provides the insight we need.

Theorem 3.2. Let d ≥ 2, ` = (`1, . . . , `d)
T ∈ INd and k = (k1, . . . , kd)

T ∈ Zd. Then, for m ≥ d, we have

σd,1(m, k) = ‖k‖2
(
πd−2(m) + (−1)d−1

(
4

3

)d−1
1

22m

)
, (3.27)

where πd−2(m) is a polynomial in m of degree d− 2. Furthermore, for p ≥ 2 we also have

σd,p(m, k) = πk,p
d−2(m) + δp,d

dk2
1 · · · k2

dm
d−1

22m
+
C(k, p, d)md−2

22m
+O

(
md−3

22m

)
, (3.28)

where πk,p
d−2(m) is a polynomial in m of degree d− 2 whose coefficients depend upon k and p.

We observe that Proposition 3.1 verifies the d = 2 case of the theorem, where

π0(m) = C0 (see (3.18)), and πk,p
0 (m) = Ck,p

0 (see (3.19), (3.20)).

and thus serves as the base case for a proof by induction.
The full proof of this theorem relies on some rather technical machinery and this, together with the proof, is

provided in the final section of the paper. We close this subsection in two parts. First, we will use the results of
Theorem 3.2 to establish the asymptotic decay rate of the error coefficents (3.26), and hence deliver approxima-
tion rates for sparse grid Gaussian convolution approximation. Second, we will present some numerical results
to demonstrate how well the asymptotic formula tracks the values of the coefficients as n becomes large.

The key insight from Theorem 3.2 is that, for each p, the σd,p(m,k) function can be expressed as a polynomial
in m of degree d − 2 plus either a constant multiple of md−2/22m (when p 6= d) or dk2

1 · · · k2
dm

d−1/22m (when
p = d) followed by higher order terms (i.e., those decaying at a faster rate as m grows). Given that the forward
divided difference functional annihilates polynomials of degree d − 2 we can, after ignoring the higher order
terms, deduce that

Ên,d(k) =
1

22n

[
(−1)d2π2‖k‖2

d−1∑
q=0

(−1)d−1−q
(
d− 1

q

)
1

22q

−
∞∑
p=2
p 6=d

(−1)p2pπ2pC(k, p, d)

p!

d−1∑
q=0

(−1)d−1−q
(
d− 1

q

)
(n+ q)d−2

22q

− (−1)d2dπ2ddk2
1 · · · k2

d

d!

d−1∑
q=0

(−1)d−1−q
(
d− 1

q

)
(n+ q)d−1

22q
+O(nd−3)

]
.
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Examining the above sum we see that the asymptotic decay of the coefficients is dominated by the nd−1

weight arising from the application of the forward divided difference operator to (n + · )d−1 in the final sum.
Thus, using the binomial identity

d−1∑
q=0

(−1)d−1−q
(
d− 1

q

)
xq = (−1)d−1(1− x)d−1,

with x = 1/4 we may deduce that

Ên,d(k) ∼ 2π2dk2
1 · · · k2

d

(d− 1)!

(
3

2

)d−1
nd−1

22n
. (3.29)

Employing this result in (3.8) we can deduce

En,d(f)(x) ∼ 2π2d

(d− 1)!

(
3

2

)d−1
nd−1

22n

∑
k∈Zd

f̂(k)k2
1 · · · k2

dek(x), (3.30)

which we observe is the d−dimensional analogue of (3.24). Furthermore, by mirroring the proof of Proposition
2.1, we can conclude the following.

Corollary 3.3. Let f ∈ Nβ , where β > d
2 + 2. Let C 1

2n
(f) denote the plain Gaussian convolution

approximation (2.1) to f on the full isotropic grid Xn,d with spacing 1/2n and Cn,d(f) denote the combined
convolution approximation to f (3.6) on the sparse grid Sn,d. Then

‖C 1
2n

(f)− f‖∞ ≤
Cd
22n
‖f‖β and ‖Cn,d(f)− f‖∞ ≤

Cdn
d−1

22n
‖f‖β ,

where Cd denotes a generic dimension dependent constant.
Tables 1 and 2 contain numerical results to show how closely the Fourier coefficients of the sparse grid

convolution approximation track the asymptotic formula (3.29). Specifically, Table 1 covers the two dimensional
case where we compare the Fourier coefficients of the error function (3.9) given by

Ên,2(k) = 1 +

n−1∑
i=1

e
−2π2

(
k21
22i

+
k22

22(n−i)

)
−

n∑
i=1

e
−2π2

(
k21
22i

+
k22

22(n+1−i)

)

against their predicted asymptotic decay rate (3.29) of 3π4k2
1k

2
2 · n2−2n. Table 2 covers the three dimensional

case where we compare

Ên,3(k) = 1−
n−2∑
i=1

n−i−1∑
j=1

e
−2π2

(
k21
22i

+
k22
22j

+
k23

22(n−i−j)

)
+ 2

n−1∑
i=1

n−i∑
j=1

e
−2π2

(
k21
22i

+
k22
22j

+
k23

22(n+1−i−j)

)

−
n∑
i=1

n−i+1∑
j=1

e
−2π2

(
k21
22i

+
k22
22j

+
k23

22(n+2−i−j)

)
,

against the predicted asymptotic decay rate of
(

3
2

)2
π6k2

1k
2
2k

2
3 · n22−2n; in both cases the values were computed

using Wolfram Mathematica v12.
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Table 1: Comparison of numerically computed 2−d expansion coefficients Ên,2(k) against their predicted asymp-
totic formula (3.29), with k = (1, 1) (left) and k = (500, 700) (right)

n Ên,2(k) formula Ên,2(k) formula

40 8.69 (-21) 9.67 (-21) 5.19 (-10) 1.18 (-9)
80 1.52 (-44) 1.60 (-44) 1.41 (-33) 1.99 (-33)
160 2.13 (-92) 2.19 (-92) 2.31 (-81) 2.68 (-81)
320 2.02 (-188) 2.05 (-188) 2.33 (-177) 2.51 (-177)
640 8.93 (-381) 8.98 (-381) 1.06 (-369) 1.10 (-369)

Table 2: Comparison of numerically computed 3−d expansion coefficients Ên,3(k) against their predicted asymp-
totic formula (3.29), with k = (1, 1, 1) (left) and k = (500, 700, 900) (right)

n Ên,3(k) formula Ên,3(k) formula

40 1.72 (-18) 2.86 (-18) 3.54 (-2) 2.84 (-1)
80 6.65 (-42) 9.47 (-42) 4.62 (-25) 9.40 (-25)
160 1.95 (-89) 2.59 (-89) 1.69 (-72) 2.57 (-72)
320 3.80 (-185) 4.85 (-185) 3.54 (-168) 4.82 (-168)
640 3.39 (-377) 4.26 (-377) 3.27 (-360) 4.22 (-360)

4 Proof of Main Theorem

In order to convey the main results stated in Theorem 3.2 it is instructive to revisit the 2− d case of subsection
3.1. In this setting we applied the binomial theorem to represent σp,2 as (3.14), an expression containing an

inner finite geometric sum. We observed there that in the case where p is even this collapses to
∑m−1
j=1 1 = m−1,

thus introducing a linear term in m. If one were to carefully examine the 3− d case with an application of the
trinomial theorem then one would arrive upon an expression for σm,3 containing nested geometrics sums. In the
cases where p is not a multiple of 3, these sums lead to terms that are linear in m and in the cases where p is
a multiple of 3, the sums collapse to

∑m−2
j=1 j = (m− 1)(m− 2)/2, and hence introduce a quadratic term in m.

This pattern continues into higher dimensions where an application of the multinomial expansion leads to an
expression for σp,d involving linear combinations of nested finite geometric sums and these introduce polynomial

terms in m. In the case where p is is a multiple of d these nested sums collapse to
∑m−2
j=1 jd−2 and so introduce

the highest degree polynomial in m of order d− 1, and hence the form of (3.28).

The formal proof of the result is made difficult due, in part, to the notational complexity that is involved.
We will establish the theorem in two parts. First we will directly establish identity (3.27); a surprisingly neat
representation for the p = 1 case. Here we will require an intermediate result concerning the evaluation of
certain geometric sum, this will then be used as a tool to prove (3.27). We will then move on to establish (3.28),
here we will proceed via induction (we have already established the result to be true for d = 2). As alluded to
in the previous paragraph, the polynomial terms that appear in (3.28) arise from the nested geometric sums
that follow from an application of the multinomial theorem and, to aid the proof, we will present background
results on such sums before we use them to verify (3.28).
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4.1 Towards the proof of (3.27)

We begin with the following lemma which sheds some insight on a particular finite sum.

Lemma 4.1. Let d ≥ 2 be a positive integer and m > d. Then, for a positive integer r, we have

m−(d−1)∑
j=1

(
m−j−1
d−2

)
22jr

= pd−2(m) +

(
22r

1− 22r

)d−1
1

22rm
,

where prd−2(m) is a polynomial in m of degree d− 2, whose coefficients depend on the value of r.

Proof. Recall the Gauss hypergeometric function (see [1], 15.1.1) is defined by

2F1(a, b; c; z) :=
∞∑
j=0

(a)j(b)j
(c)j

zj

j!
, (4.1)

where
(x)j := x(x+ 1) · · · (x+ j − 1) j ≥ 1 (4.2)

denotes the Pochhammer symbol, with (x)0 = 1. If n is a positive integer we have

(n)j =
(n+ j − 1)!

(n− 1)!
and (−n)j =

(−1)jn!

(n− j)!
.

Using the above it is straight forward to verify that

m−(d−1)∑
j=1

(
m−j−1
d−2

)
22jp

=
1

22p

(
m− 2

d− 2

)
2F1

(
1,−(m− d);−(m− 2);

1

22p

)
. (4.3)

The following identity, see [13] Formula 7.3.1.178, is valid for non-negative integers p and q

2F1(1,−p;−q; z) =
q + 1

p+ 1

q−p∑
k=0

(p− q)k
(p+ 2)k

(1− z)−(k+1) +
(−1)pp!

(−q)p
zq+1(z − 1)p−q−1.

Applying this with p = m− d, q = m− 2 and z = 1
22r , we find that

2F1

(
1,−(m− d);−(m− 2);

1

22r

)
=

m− 1

m− (d− 1)

d−2∑
k=0

(−(d− 2))k

(
22r

22r−1

)k+1

(m− (d− 2))k
+

(−1)m−1(m− d)!
(

22r

22r−1

)d−1

(−(m− 2))m−d

22r

22rm

= (m− 1)

d−2∑
k=0

(−1)k(d− 2)!(m− d)!
(

22r

22r−1

)k+1

(d− 2− k)!(m+ k − (d− 1))!
+

(−1)d−122r
(

22r

22r−1

)d−1

(
m−2
d−2

)
22rm

.

16



In view of (4.3) we now multiply this by 1
22r

(
m−2
d−2

)
and, following some elementary simplifications, we have

the following expression

m−(d−1)∑
j=1

(
m−j−1
d−2

)
22rj

=

d−2∑
k=0

(−1)k
(

m−1
m+k−(d−1)

) (
22r

22r−1

)k
22r − 1

+
(−1)d−1

(
22r

22r−1

)d−1

22rm

= prd−2(m) +

(
22r

1− 22r

)d−1
1

22rm
,

where prd−2(m), which represents the sum appearing above, is a polynomial in m of degree d− 2.

4.1.1 Proof of identity (3.27)

We know from (3.15) that

σd,1(m,k) =
∑
|`|1=m

k2
1

22`1
+ · · ·+ k2

d

22`d
=

d∑
i=1

k2
i

∑
|`|1=m

1

22`i .

The inner sum of the above expression concerns the set of d−dimensional multi-indices ` satisfying |`|1 = m.
A typical component `i of ` can, theoretically, take on any value between 1 and m − (d − 1) included (in the
latter case the remaining d − 1 components are all set to 1). The number of times `i takes on a certain value
j ∈ {1, 2, . . . ,m− (d− 1)} is precisely the number of ways in which the remaining d− 1 components of ` sum
to m− j and this is given by

(
m−j−1
d−2

)
. Since the last sum in the above expression only depends on the value `i

and not on i we have that

σd,1(m,k) =

d∑
i=1

k2
i

m−(d−1)∑
j=1

(
m− j − 1

d− 2

)
1

22j
= ‖k‖2

(
pd−2(m) +

(
22

1− 22

)d−1
1

22m

)
,

where the last equation follows from Lemma 4.1, with r = 1, and the proof of (3.27) is complete.

4.2 Towards the proof of (3.28)

In this subsection we outline some key results on the representation of the kinds of weighted geometric series that
are encountered if one applies the appropriate multinomial expansion in order to examine the sums σd,p(m,k)
(3.25) for p ≥ 2. We begin by differentiating the plain geometric sum formula, followed by multiplication by x
to deduce that

n∑
j=1

jxj = x
d

dx

n∑
j=1

xj =

{
x

(1−x)2 (1− xn ((1 + n)− nx)) if x 6= 1;∑n
k=1 k = n(n+1)

2 if x = 1.
(4.4)

Let us consider the more general weighted geometric sum

G
(n)
i (x) =

n∑
j=1

jixj .
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We note in the case where x = 1 we have the sum of the ith powers of the first n positive integers which,
due to Faulhaber’s formula, see [8] Formula 0.121, is a polynomial in n of degree i+ 1,

G
(n)
i (1) =

n∑
j=1

ji =
ni+1

i+ 1
+ qi(n), (4.5)

where qi(n) is a polynomial in n of degree i. For the more general case (x 6= 1) we observe that

G
(n)
i+1(x) = x

d

dx
G

(n)
i (x) (4.6)

and this allows us to establish the following.
Lemma 4.2. Let j denote a non-negative integer and x 6= 1, then

G
(n)
i (x) =

x

(1− x)i+1
(qi−1(x)− xnpi(x, n)) , (4.7)

where qi−1(x) is a polynomial of degree i− 1 in x and pi(x, n) is a polynomial of degree i in both x and n.

Proof. We establish the result via induction. Appealing to (4.4) we see that the result is true for i = 1 with
q0(x) = 1 and p1(x, n) = 1 + n − nx. Assume the result is true for i and consider the following development,
using (4.6), for the case i+ 1.

G
(n)
i+1(x) = x

d

dx
G

(n)
i (x) = x

d

dx

(
x

(1− x)i+1
(qi−1(x)− xnpi(x, n))

)
= x

[ x

(1− x)i+1

(
d

dx
qi−1(x)− xn d

dx
pi(x, n)− nxn−1pi(x, n)

)
+

(
1

(1− x)i+1
+

ix+ x

(1− x)i+2

)
(qi−1(x)− xnpi(x, n))

]
=

x

(1− x)i+2

[
x(1− x)

(
d

dx
qi−1(x)− xn d

dx
pi(x, n)− nxn−1pi(x, n)

)
+ (1 + ix) (qi−1(x)− xnpi(x, n))

]
=

x

(1− x)i+2

[
qi(x)− xnpi+1(x, n)

]
,

where

qi(x) = (1 + ix)qi−1(x) + x(1− x)
d

dx
qi−1(x)

is clearly a polynomial in x of degree i and, likewise, where

pi+1(x, n) = (1 + ix+ n− nx)pi(x, n) + x(1− x)
d

dx
pi(x, n)

is clearly a polynomial of degree i+ 1 in both x and n.
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In order to prepare for how the above result will be used, we let d be the fixed spatial dimension and m > d
a positive integer. In what follows we will evaluate various sums and, in each case, we will ignore terms that
decay faster than md−22−2m for large m. In each case we consider a fixed integer parameter t ≥ 1 and, where
appropriate, we will also consider specific cases of t = 0 and t = −1. We begin with a straightforward geometric
sum for t ≥ 1

m−d∑
j=1

1

22jt
=

1

22t − 1

(
1− 22dt

22mt

)
= constant +O(2−2m). (4.8)

For the following sum with t > 1 we can directly use (4.7) in its evaluation:

m−d∑
j=1

(m− j)i

22tj
=

1

22mt

m−1∑
j=d

22tjji =
1

22mt

(
G

(m−1)
i (22t)−G(d−1)

i (22t)
)

=
1

(1− 22t)i+1

[ 22td

22tm
pi(2

2t, d− 1)− pi(22t,m− 1)
]

=
Pi(m)

(1− 22t)i+1
+O(2−2m),

(4.9)

where Pi(m) is a polynomial in m of degree i whose coefficients depend on 22t. In the case where t = 0 the
above collapses to

m−d∑
j=1

(m− j)i =

m−d∑
j=d

ji = Gm−1
i (1)−Gd−1

i (1)

=
(m− 1)i+1

i+ 1
− (d− 1)i+1

i+ 1
+ qi(0, d− 1)− qi(0,m− 1)

=
mi+1

i+ 1
+ πi(m),

(4.10)

where πi(m) is a polynomial in m of degree i. In the case where t = −1 we have

m−d∑
j=1

22j(m− j)i = Cd,i2
2m +

(
4

3

)i+1

P ∗i (m) (4.11)

where P ∗i (m) is a polynomial in m of degree i and Cd,i is a constant depending on d and i.

4.2.1 Proof of (3.28)

We know, from subsection 3.1, that (3.28) holds for d = 2 and any value p, let us also assume that it is true
for d0 < d and any value of p, we will now proceed to show, by induction, that the same statement is true for
d and any value of p. First we establish a recurrence relation for σd,p using

r = (r1, . . . , rd)
T , r̂ = (r1, . . . , rd−1)T

` = (`1, . . . , `d)
T , ˆ̀ = (`1, . . . , `d−1)T

k = (k1, . . . , kd)
T , k̂ = (k1, . . . , kd−1)T
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and the multinomial theorem to find

σd,p(m,k) =
∑
|`|1=m

(
d∑
i=1

k2
i

22`i

)p

=
∑
|`|1=m

∑
|r|=p

(
p

r1 . . . rd

) d∏
i=1

(
k2
i

22`i

)ri
(multinomial theorem)

=
∑
|r|=p

(
p

r1 . . . rd

) d∏
i=1

k2ri
i

∑
|`|1=m

2−2
∑d
i=1 `iri

=

p∑
rd=0

p!k2rd
d

(p− rd)!rd!

m−d∑
`d=1

2−2`drd
∑

|r̂|=p−rd

(
p− rd

r1 . . . rd−1

) d−1∏
i=1

k2ri
i

∑
|ˆ̀|1=m−`d

2−2
∑d
i=1 `iri

=

p∑
rd=0

p!k2rd
d

(p− rd)!rd!

m−d∑
`d=1

σd−1,p−rd(m− `d, k̂)

22`drd
.

Applying the inductive hypothesis (3.28) we have

σd−1,p−rd(m− `d, k̂) =πk̂,p−rd
d−3 (m− `d) + δp−rd,d−1

(d− 1)k2
1 · · · k2

d−1(m− `d)d−2

22(m−`d)

+ C(k̂, p− rd, d− 1)
(m− `d)d−3

22(m−`d)
+O

(
md−4

22m

)
.

Inserting this representation into the inner sum of the above computation yields

m−d∑
`d=1

σd−1,p−rd(m− `d, k̂)

22`drd
= S1(rd) + S2(rd) + S3(rd) +O

(
md−3

22m

)
, (4.12)

where

S1(rd) =

m−d∑
`d=1

πk̂,p−rd
d−3 (m− `d)

22`drd
,

S2(rd) = δp−rd,d−1(d− 1)
k2

1 · · · k2
d−1

22m

m−d∑
`d=1

(m− `d)d−2

22`d(rd−1)
,

and S3(rd) =
C(k̂, p− rd, d− 1)

22m

m−d∑
`d=1

(m− `d)d−3

22`d(rd−1)
.

(4.13)

For the final term of (4.12) we have used that the sum consists of less than m terms and each of which is

order md−4

22m . We can use the weighted geometric sums to investigate the three summands above. We begin with
S1(rd) and in this case we write the polynomial of degree d− 3 as

πk̂,p−rd
d−3 (m− `d) =

d−3∑
i=0

ak̂,p−rdi (m− `d)i,
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and thus we have

S1(rd) =

d−3∑
i=1

ak̂,p−rdi

m−d∑
`d=1

(m− `d)i

22`drd
.

Appealing to (4.9) and (4.10) we have that

m−d∑
`d=1

(m− `d)i

22`drd
=

{
Pi(m)

(1−22rd )i+1 +O(2−2m) if rd 6= 0;
mi+1

i+1 + πi(m) if rd = 0,

where Pi(m) and πi(m) are polynomials in m of degree i. This insight allows us to write

S1(rd) =

{
P k̂,p,rd
d−3 (m) +O

(
1

22m

)
if rd 6= 0;

P k̂,p,0
d−2 (m) if rd = 0,

(4.14)

where

P k̂,p,rd
d−3 (m) =

d−3∑
i=1

ak̂,p−rdi

(1− 22rd)i+1
Pi(m) and P k̂,p,0

d−2 (m) =

d−3∑
i=1

ak̂,pi

(
mi+1

i+ 1
+ πi(m)

)
(4.15)

are polynomials in m of degree d− 3 and d− 2 respectively.

For the second sum S2(rd) we can bring the identities (4.9), (4.10) and (4.11) together to give

m−d∑
`d=1

(m− `d)d−2

22`d(rd−1)
=


Pd−2(m)

(1−22(rd−1))d−1 +O(2−2m) if rd > 1;

md−1

d−1 + πd−2(m) if rd = 1;

Cd,d−222m +
(

4
3

)d−1
P ∗d−2(m) if rd = 0,

and so deduce that

S2(rd) = δp−rd,d−1(d− 1)
(
k2

1 · · · k2
d−1

)
Pd−2(m)

22m(1−22(rd−1))d−1 +O(2−4m) if rd > 1;

md−1

22m(d−1) + πd−2(m)
22m if rd = 1;

Cd,d−2 +
(

4
3

)d−1 P∗d−2(m)

22m if rd = 0.

Isolating the dominant term from those exhibiting faster decay we have that

S2(rd) = δp−rd,d−1

(
k2

1 · · · k2
d−1

)

Cdm

d−2

22m +O
(
md−3

22m

)
if rd > 1;

md−1

22m +O
(
md−2

22m

)
if rd = 1;

C ′d +O
(
md−2

22m

)
if rd = 0,

(4.16)

where C ′d = (d−1)Cd,d−2. For the third sum S3(rd) we can use the same approach as above, with d−3 replacing
d− 2, to deduce that

S3(rd) = C(k̂, p− rd, d− 1)


Cd−1m

d−3

22m +O
(
md−4

22m

)
if rd > 1;

md−2

(d−2)22m +O
(
md−3

22m

)
if rd = 1;

C ′d−1 +O
(
md−3

22m

)
if rd = 0.

(4.17)
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We now bring our findings (4.14),(4.16),(4.17) together, where again we isolate the dominant terms from
those with faster decay to provide

σd,p(m,k) =

p∑
rd=0

p!k2rd
d

(p− rd)!rd!
(S1(rd) + S2(rd) + S3(rd)) +O

(
md−3

22m

)

= P k̂,p,0
d−2 (m) +

p∑
rd=1

p!k2rd
d

(p− rd)!rd!
P k̂,p,rd
d−3 (m)

+ δp,d−1

(
k2

1 · · · k2
d−1

)
C ′d + δp−1,d−1

(
k2

1 · · · k2
d−1

) k2
dp!

(p− 1)!

md−1

22m
+O

(
md−2

22m

)
+ C(k̂, p, d− 1)C ′d−1 + C(k̂, p− 1, d− 1)

pk2
d

d− 2

md−2

22m
+O

(
md−3

22m

)
.

By inspection we observe that the above can be expressed as

σd,p(m,k) = πk,p
d−2(m) + δp,d

dk2
1 · · · k2

dm
d−1

22m
+
C(k, p, d)md−2

22m
+O

(
md−3

22m

)
, (4.18)

where πk,p
d−2(m) is a polynomial in m of degree d − 2 whose coefficients depend upon k and p. This completes

the proof of Theorem 3.2.
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